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Abstract
Representation learning has shown its effectiveness
in many tasks such as image classification and text
mining. Network representation learning aims at
learning distributed vector representation for each
vertex in a network, which is also increasingly rec-
ognized as an important aspect for network analy-
sis. Most network representation learning methods
investigate network structures for learning. In real-
ity, network vertices contain rich information (such
as text), which cannot be well applied with algorith-
mic frameworks of typical representation learning
methods. By proving that DeepWalk, a state-of-
the-art network representation method, is actually
equivalent to matrix factorization (MF), we propose
text-associated DeepWalk (TADW). TADW incor-
porates text features of vertices into network rep-
resentation learning under the framework of matrix
factorization. We evaluate our method and various
baseline methods by applying them to the task of
multi-class classification of vertices. The experi-
mental results show that, our method outperforms
other baselines on all three datasets, especially
when networks are noisy and training ratio is small.
The source code of this paper can be obtained from
https://github.com/albertyang33/TADW.

1 Introduction
Networks are ubiquitous in our daily lives, e.g., friendship
between Facebook users or citations between academic pa-
pers. In recent years, researchers have extensively studied on
many important machine learning applications in networks,
such as vertex classification [Sen et al., 2008], tag recommen-
dation [Tu et al., 2014], anomaly detection [Bhuyan et al.,
2014] and link prediction [Lü and Zhou, 2011]. Data spar-
sity is the common problem faced by these tasks. To address
the sparsity issue, network representation learning (NRL) en-
codes and represents each vertex in a unified low-dimensional
space. NRL facilitates us to better understand the semantic
relatedness between vertices, and further alleviates the incon-
veniences caused by sparsity [Perozzi et al., 2014].
∗Corresponding author: Zhiyuan Liu(liuzy@tsinghua.edu.cn)

Most works in NRL learn representations from network
structure. For example, social dimensions [Tang and Liu,
2009; 2011] are proposed by computing eigenvectors of
Laplacian or modularity matrix of a network. Recently,
Skip-Gram, a word representation model in NLP, is intro-
duced to learn vertex representations from random walk se-
quences in social networks, dubbed DeepWalk [Perozzi et al.,
2014]. Both social dimensions and DeepWalk methods take
a network structure as input to learn network representations,
without considering any other information.

In real world, a vertex in a network usually has rich in-
formation, such as text content and other meta data. For ex-
ample, Wikipedia articles connect to each other and form a
network, and each article, as a vertex, has substantial text in-
formation, which may also be important to NRL. Hence, we
come up with an idea to learn network representations from
both network structure and text information.

A straightforward method is to learn representations from
text features and network features independently, and then
concatenate the two separate representations. The method,
however, does not take the sophisticated interactions between
network structure and text information into consideration,
and thus usually leads to no avail. It is also non-trivial to in-
corporate text information in existing NRL frameworks. For
example, DeepWalk cannot easily handle additional informa-
tion during its random walks in a network.

Fortunately, given a network G = (V,E), we prove that
DeepWalk is actually factorizing a matrix M ∈ R|V |×|V |
where each entry Mij is logarithm of the average proba-
bility that vertex vi randomly walks to vertex vj in fixed
steps. Figure 1(a) shows the MF-style DeepWalk: factorize
matrix M into the product of two low-dimensional matrices
W ∈ Rk×|V | and H ∈ Rk×|V | where k � |V |. DeepWalk
then takes the matrix W as vertex representation. We will
give a detailed introduction in the next section.

The matrix-factorization view of DeepWalk inspires us to
introduce text information into MF for NRL. Figure 1(b)
shows the main idea of our method: factorize matrix M into
the product of three matrices: W ∈ Rk×|V |, H ∈ Rk×ft and
text features T ∈ Rft×|V |. Then we concatenate W and HT
as 2k-dimensional representations of vertices.

We test our algorithm against several baselines on three
datasets. The classification accuracy of our representation
outperforms other baselines by at most 2% to 10% when
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(a) DeepWalk

(b) TADW

Figure 1: (a) DeepWalk as matrix factorization. (b) Text-
associated matrix factorization (TADW).

the ratio of training set ranges from 10% to 50%. We also
test these methods with a semi-supervised classifier, Trans-
ductive SVM (TSVM), when training ratio is less than 10%.
Our method has a 5% to 20% advantage than other baselines
with 1% training ratio, especially when network information
is noisy.

There are two main contributions of this paper: (1) We
prove that DeepWalk algorithm actually factorizes a matrix
M and figure out the closed form of M . (2) We introduce
text features into NRL and get a 5% to 20% advantage as
compared to other baselines especially when the training ra-
tio is small.

Related Work Representation learning is widely used in
computer vision [Krizhevsky et al., 2012], natural language
processing [Mikolov et al., 2013] and knowledge represen-
tation learning [Lin et al., 2015]. Some researches focus
on NRL [Chen et al., 2007; Tang and Liu, 2009; 2011;
Perozzi et al., 2014], but none of them can be generalized
to deal with other features of vertices trivially. To the best of
our knowledge, little work has been devoted to consider text
information in NRL. There are some topic models, such as
NetPLSA [Mei et al., 2008], considering both networks and
text information for topic modeling, in which we can repre-
sent each vertex with a topic distribution. In this paper, we
take NetPLSA as a baseline method.

The rest of this paper is organized as follows. Section 2
gives the formal definition for NRL and proves that Deep-
Walk is actually equivalent to matrix factorization. Section 3
presents our algorithm for NRL with text features. We intro-
duce the datasets and experimental results in Section 4. Sec-
tion 5 concludes the paper.

2 DeepWalk as Matrix Factorization
2.1 Formalization of NRL
Network representation learning is formalized as follows.
Given a network G = (V,E), we want to build a low-
dimensional representation rv ∈ Rk for each vertex v, where
k is expected to be much smaller than |V |.

As a dense real-valued representation, rv can alleviate the
sparsity of network representations such as adjacency matrix.
We can regard rv as features of vertex v and apply the features
to many machine learning tasks like vertex classification. The
features can be conveniently fed to many classifiers, e.g. lo-
gistic regression and SVM. Also note that the representation
is not task-specific and can be shared among different tasks.

We first introduce DeepWalk and then give the proof of
equivalence between DeepWalk and matrix factorization.

2.2 DeepWalk
DeepWalk introduced Skip-Gram [Mikolov et al., 2013], a
widely-used distributed word representation method, into the
study of social network for the first time to learn vertex rep-
resentation according to network structure.

DeepWalk first generates short random walks which have
been used as a similarity measure [Fouss et al., 2007]. Given
a sequence of vertices S = {v1, v2, . . . , v|S|} generated by
random walks, we regard the vertices v ∈ {vi−t, . . . , vi+t} \
{vi} as the context of the center vertex vi, where t is the win-
dow size. Following the idea of Skip-Gram, DeepWalk aims
to maximize the average log probability of all vertex-context
pairs in the random walk vertex sequence S:

1

|S|

|S|∑
i=1

∑
−t≤j≤t,j 6=0

log p(vi+j |vi), (1)

where p(vj |vi) is defined by softmax function,

p(vj |vi) =
exp(cTvj rvi)∑
v∈V exp(cTv rvi)

. (2)

Here rvi and cvj are the representation vectors of the center
vertex vi and its context vertex vj . Namely, each vertex v has
two representation vectors: rv when v plays as a center vertex
and cv when v plays as a context vertex.

Afterwards, DeepWalk uses Skip-Gram and Hierarchical
Softmax to learn representations of vertices from sequences
generated by random walks. Note that Hierarchical Softmax
[Morin and Bengio, 2005] is a variant of softmax for speedup.

2.3 Equivalence Proof
Suppose a vertex-context set D is generated from random
walk sequences, where each member of D is a vertex-context
pair (v, c). V is the set of vertices and VC is the set of context
vertices. In most cases, V = VC .

DeepWalk embeds a vertex v into a k-dimensional vector
rv ∈ Rk. Also, a context vertex v ∈ VC is represented by a
k-dimensional vector cv ∈ Rk. Let W be a k × |V | matrix
where column i is vector rvi and H be a k × |VC | matrix
where column j is vector cvj . Our goal is to figure out the
closed form of matrix M where M = WTH .
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Let us consider a vertex-context pair (v, c). N(v, c) de-
notes the number of times that (v, c) appears in D. N(v) =∑

c′∈VC
N(v, c′) and N(c) =

∑
v′∈V N(v′, c) denote the

numbers of times v and c appear in D, respectively.
It has been shown that Skip-Gram with Negative Sampling

(SGNS) is implicitly factorizing a word-context matrix M
[Levy and Goldberg, 2014] by assuming that dimensionality
k is sufficiently large. Each entry in M is

Mij = log
N(vi, cj) · |D|
N(vi) ·N(cj)

− logn, (3)

where n is the number of negative samples for each word-
context pair. Mij can be interpreted as Pointwise Mutual
Information (PMI) of word-context pair (vi, cj) shifted by
log n. Similarly, we can prove that Skip-Gram with softmax
is factorizing a matrix M where

Mij = log
N(vi, cj)

N(vi)
. (4)

We now discuss what Mij in DeepWalk represents. It is
clear that the method of sampling vertex-context pairs will
affect matrix M . Assume that the network is connected
and undirected and that window size is t. We will discuss
N(v)/|D|, N(c)/|D| and N(v, c)/N(v) based on an ideal
sampling method for DeepWalk algorithm: first we generate
a sufficiently long random walk RW . Denote RWi as the
vertex on position i of RW . Then we add vertex-context pair
(RWi, RWj) into D if and only if 0 < |i− j| ≤ t.

Each occurrence of vertex i will be recorded 2t times in D
for undirected graph. Thus N(vi)/|D| is the frequency of vi
appears in the random walk, which is exactly the PageRank
value of vi. Also note that 2tN(vi, vj)/N(vi) is the expec-
tation times that vj is observed in left or right t neighbors of
vi. Now we try to figure out N(vi, vj)/N(vi) based on this
comprehension.

Denote the transition matrix in PageRank as A. Let di
be the degree of vertex i, and we have Aij = 1/di if
(i, j) ∈ E and Aij = 0 otherwise. We use ei to denote a
|V |-dimensional row vector where all entries are 0 except the
i-th entry is 1.

Suppose that we start a random walk from vertex i and use
ei to denote the initial state. Then eiA is the distribution over
all the vertices and the j-th entry of eiA is the probability
that vertex i walks to vertex j. Hence the j-th entry of eiAt

is the probability that vertex i walks to vertex j at exactly t
steps where At is the multiplication of matrix A by t times.
Thus [ei(A + A2 + · · · + At)]j is the expectation times that
vj appears in right t neighbors of vi. Hence we have

N(vi, vj)

N(vi)
=

[ei(A+A2 + · · ·+At)]j
t

. (5)

This equality also holds for directed graph. Hence, we can
see Mij = logN(vi, vj)/N(vi) is logarithm of the average
probability that vertex i randomly walks to vertex j in t steps.

By proving that DeepWalk is equivalent to matrix factor-
ization, we propose to incorporate rich text information for
NRL based on DeepWalk-derived matrix factorization.

3 Our Method
In this section, we first give a brief introduction to low-rank
matrix factorization, and then we formulate our method of
representation learning from both network and text informa-
tion.

3.1 Low-rank Matrix Factorization
Matrix is a common way to represent relational data. An in-
teresting topic for matrix analysis is to figure out the inherent
structure of a matrix by a fraction of its entries. One assump-
tion is that matrixM ∈ Rb×d admits an approximation of low
rank k, where k � {b, d}. Then we can complete the miss-
ing entries in matrix M with such a low-rank approximation
under this assumption. However, solving a rank constraint
optimization is always NP-hard. Therefore researchers resort
to finding matrices W ∈ Rk×b and H ∈ Rk×d to minimize
the loss function L(M,WTH) with a trace norm constraint,
which is further removed by adding a penalty term to the loss
function [Yu et al., 2014]. In this paper, we use square loss
function.

Formally, let the observation set of matrix M be Ω. We
want to find matrices W ∈ Rk×b and H ∈ Rk×d to minimize

min
W,H

∑
(i,j)∈Ω

(
Mij − (WTH)ij

)2
+
λ

2

(
||W ||2F + ||H||2F

)
, (6)

where || · ||F means Frobenius norm of the matrix and λ is a
harmonic factor to balance two components.

Low-rank matrix factorization completes matrix M only
based on the low-rank assumption of M . If items in matrix
M have additional features, we can apply inductive matrix
completion [Natarajan and Dhillon, 2014] to take advantage
of them. Inductive matrix completion utilizes more informa-
tion of row and column units by incorporating two feature
matrices into the objective function. Suppose that we have
feature matrices X ∈ Rfx×b and Y ∈ Rfy×d where column i
of X and Y are fx and fy dimensional feature vectors of unit
i, respectively. Our goal is to solve matrices W ∈ Rk×fx and
H ∈ Rk×fy to minimize

min
W,H

∑
(i,j)∈Ω

(
Mij−(XTWTHY )ij

)2
+
λ

2

(
||W ||2F+||H||2F

)
. (7)

Note that, inductive matrix completion is originally pro-
posed to complete gene-disease matrix with gene and disease
features [Natarajan and Dhillon, 2014], the goal of which is
quite different from that of our work. Inspired by the idea of
inductive matrix completion, we introduce text information
into NRL.

3.2 Text-Associated DeepWalk (TADW)
Given a network G = (V,E) and its corresponding text fea-
ture matrix T ∈ Rft×|V |, we propose text-associated Deep-
Walk (TADW) to learn representation of each vertex v ∈ V
from both network structure G and text features T .

Recall that DeepWalk factorizes matrix M where Mij =
log([ei(A + A2 + · · · + At)]j/t). Computing an accurate
M has the complexity of O(|V |3) when t gets large. In fact,
DeepWalk uses a sampling method based on random walk to
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avoid explicitly computing accurate matrix M . When Deep-
Walk samples more walks, the performance will be better
while DeepWalk will be less efficient.

In TADW, we find a tradeoff between speed and accuracy:
factorize the matrix M = (A+A2)/2. Here, we factorize M
instead of logM for computational efficiency. The reason is
that, logM has much more non-zero entries than M , and the
complexity of matrix factorization with square loss is propor-
tional to the number of non-zero elements in matrix M [Yu
et al., 2014]. Since most real-world networks are sparse, i.e.
O(E) = O(V ), computing matrix M takes O(|V |2) time. If
a network is dense, we can even directly factorize matrix A.
Our task is to solve matrices W ∈ Rk×|V | and H ∈ Rk×ft to
minimize

min
W,H
||M −WTHT ||2F +

λ

2
(||W ||2F + ||H||2F ). (8)

For optimizing W and H , we alternately minimize W and H
because it is a convex function for either W or H . Though
TADW may converge to a local minimum instead of the
global minimum, our method works well in practice as shown
in our experiments.

Different from low-rank matrix factorization and inductive
matrix completion which focus on completing the matrix M ,
the goal of TADW is to incorporate text features to obtain
better network representations. Also, inductive matrix com-
pletion obtains matrix M directly from raw data while we
artificially build matrix M from the derivation of MF-style
DeepWalk. Since both W and HT obtained from TADW can
be regarded as low-dimensional representations of vertices,
we build a unified 2k-dimensional matrix for network rep-
resentations by concatenating them. In experiments, we will
show that the unified representation significantly outperforms
a naive combination of network representations and text fea-
tures (i.e. the matrix T ).

3.3 Complexity Analysis
In TADW, the procedure of computing M takes O(|V |2)
time. We use the fast procedure introduced by [Yu et al.,
2014] to solve the optimization problem in Equation (8).
The complexity of each iteration of minimizing W and H
is O(nnz(M)k+ |V |ftk+ |V |k2) where nnz(·) indicates the
number of non-zero entries. For comparison, the complexity
of traditional matrix factorization, i.e. optimization problem
in Equation (6), isO(nnz(M)k+ |V |k2). In our experiments,
the optimization converges in 10 iterations.

4 Experiments
We use multi-class vertex classification to evaluate the quality
of NRL. Formally, we regard low-dimensional representation
R = {r1, r2, . . . , r|V |} as vertex features. Our task is to pre-
dict the labels of unlabeled set U with labeled set L based on
vertex featuresR.

A number of classifiers in machine learning can deal with
this task. We select SVM and transductive SVM for super-
vised and semi-supervised learning and testing, respectively.
Note that, since the representation learning procedure ignores
vertex labels in training set, representation learning is unsu-
pervised.

We evaluate TADW with five baseline methods of repre-
sentation learning using three publicly available datasets 1.
We learn representations from the links or citations between
the documents as well as the term frequency-inverse docu-
ment frequency (TFIDF) matrices of these documents.

4.1 Datasets and Experiment Settings
Datasets
Cora contains 2, 708 machine learning papers from seven
classes and 5, 429 links between them. The links are cita-
tion relationships between the documents. Each document is
described by a binary vector of 1, 433 dimensions indicating
the presence of the corresponding word.

Citeseer contains 3, 312 publications from six classes and
4, 732 links between them. Similar to Cora, the links are ci-
tation relationships between the documents and each paper is
described by a binary vector of 3, 703 dimensions.

Wiki contains 2, 405 documents from 19 classes and
17, 981 links between them. The TFIDF matrix of this dataset
has 4, 973 columns.

The documents in Cora and Citeseer are short texts gener-
ated from titles and abstracts. Stop words and all words with
document frequency less than 10 are removed. Each docu-
ment has 18 or 32 words on average correspondingly. The
documents in Wiki are long texts. We remove all documents
which have no connection in the network. Each document has
640 words on average. We regard the networks as undirected
graphs.

TADW Settings
For all three datasets, we reduce the dimension of word vec-
tors to 200 via SVD decomposition of the TFIDF matrix, and
obtain text feature matrices T ∈ R200×|V |. The preprocess-
ing will reduce the number of parameters in matrix H . We
also take text feature matrix T as a content-only baseline. We
select k = 80 and λ = 0.2 for Cora and Citeseer datasets;
k = 100, 200 and λ = 0.2 for Wiki dataset. Note that, the
dimension of representation vectors from TADW is 2k.

Baseline Methods
DeepWalk. DeepWalk [Perozzi et al., 2014] is a network-
only representation learning method. We set parameters as
follows, walks per vertex γ = 80 and window size t = 10
which are the same with those in the original paper. We
choose representation dimension k = 100 for Cora and Cite-
seer and k = 200 for Wiki which are the lengths with best
performance between 50 and 200.

We also evaluate the performance of MF-style DeepWalk
by solving Equation (6) and concatenate W and H as vertex
representations. The result is competitive with DeepWalk.
Hence we only report the performance of original DeepWalk.

PLSA. We use PLSA [Hofmann, 1999] to train a topic
model from the TFIDF matrix by regarding each vertex as
a document. Hence, PLSA is a content-only baseline. PLSA
estimates topic distribution of documents and word distribu-
tion of topics via EM algorithm. We use topic distribution of
documents as vertex representations.

1http://linqs.cs.umd.edu/projects//projects/lbc/index.html.
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Table 1: Evaluation results on Cora dataset.
Classifier Transductive SVM SVM

% Labeled Nodes 1% 3% 7% 10% 10% 20% 30% 40% 50%
DeepWalk 62.9 68.3 72.2 72.8 76.4 78.0 79.5 80.5 81.0

PLSA 47.7 51.9 55.2 60.7 57.0 63.1 65.1 66.6 67.6
Text Features 33.0 43.0 57.1 62.8 58.3 67.4 71.1 73.3 74.0

Naive Combination 67.4 70.6 75.1 77.4 76.5 80.4 82.3 83.3 84.1
NetPLSA 65.7 67.9 74.5 77.3 80.2 83.0 84.0 84.9 85.4

TADW 72.1 77.0 79.1 81.3 82.4 85.0 85.6 86.0 86.7

Table 2: Evaluation results on Citeseer dataset.
Classifier Transductive SVM SVM

% Labeled Nodes 1% 3% 7% 10% 10% 20% 30% 40% 50%
DeepWalk - - 49.0 52.1 52.4 54.7 56.0 56.5 57.3

PLSA 45.2 49.2 53.1 54.6 54.1 58.3 60.9 62.1 62.6
Text Features 36.1 49.8 57.7 62.1 58.3 66.4 69.2 71.2 72.2

Naive Combination 39.0 45.7 58.9 61.0 61.0 66.7 69.1 70.8 72.0
NetPLSA 45.4 49.8 52.9 54.9 58.7 61.6 63.3 64.0 64.7

TADW 63.6 68.4 69.1 71.1 70.6 71.9 73.3 73.7 74.2

Text Features. We use text feature matrix T ∈ R200×|V |

as a 200-dimensional representation. The method of Text
Features is a content-only baseline.

Naive Combination. We can simply concatenate the vec-
tors from both Text Features and DeepWalk for network rep-
resentations. It has a length of 300 for Cora and Citeseer and
400 for Wiki.

NetPLSA. [Mei et al., 2008] proposed to learn topic dis-
tributions of documents by considering links between doc-
uments as a network regularization that linked documents
should share similar topic distributions. We use the network-
enhanced topic distribution of documents as network repre-
sentations. NetPLSA can be regarded as an NRL method
considering both network and text information. We set topic
numbers to 160 for Cora and Citeseer, and 200 for Wiki.

Classifiers and Experiment Setup
For supervised classifier, we use linear SVM implemented
by Liblinear [Fan et al., 2008]. For semi-supervised classi-
fiers, we use transductive SVM implemented by SVM-Light
[Joachims, 1999]. We use linear kernel for TSVM. We train a
one-vs-rest classifier for each class and select the classes with
maximum scores in linear SVM and transductive SVM.

We take representations of vertices as features to train
classifiers, and evaluate classification accuracy with different
training ratios. The training ratio varies from 10% to 50%
for linear SVM and 1% to 10% for TSVM. For each training
ratio, we randomly select documents as training set and the
remaining documents as test set. We repeat the trial for 10
times and report the average accuracy.

4.2 Experimental Results and Analysis
Table 1, Table 2 and Table 3 show classification accuracies
on Cora, Citeseer and Wiki datasets. Here “-” indicates
TSVM can not converge in 12 hours because of low quality
of representation (TSVM can always converge in 5 minutes
for TADW). We did not show the results of semi-supervised
learning on Wiki dataset because supervised SVM has al-

ready attained a competitive and even better performance
with small training ratio on this dataset. Thus we only report
the results of supervised SVM for Wiki. Wiki has much more
classes than the other two datasets, which requires more data
for sufficient training, hence we set the minimum training ra-
tio to 3%. From these tables, we have following observations:

(1) TADW consistently outperforms all the other baselines
on all three datasets. Furthermore, TADW can beat other
baselines with 50% less training data on Cora and Citeseer
datasets. These experiments demonstrate that TADW is ef-
fective and robust.

(2) TADW has more significant improvement for semi-
supervised learning. TADW outperforms the best baseline,
i.e. naive combination, by 4% on Cora and 10% to 20% on
Citeseer. This is because the quality of network represen-
tations is poor on Citeseer, while TADW is more robust for
learning from noisy data than naive combination.

(3) TADW has an encouraging performance when training
ratio is small. The accuracies of most baselines drop quickly
as training ratio decreases because their vertex representa-
tions are much noisy and inconsistent for training and testing.
Instead, since TADW learns representation jointly from both
network and text information, the representations have less
noises and are more consistent.

These observations demonstrate the high quality of repre-
sentations generated by TADW. Moreover, TADW is not task-
specific and the representations can be conveniently used for
different tasks, such as link prediction, similarity computa-
tion and vertex classification. The classification accuracy of
TADW is also competitive with several recent collective clas-
sification algorithms [Shi et al., 2011; McDowell and Aha,
2012; 2013] though we don’t perform specific optimization
for the tasks when we learn representations.

4.3 Parameter Sensitivity
TADW has two hyperparameters: dimension k and weight of
regularization term λ. We fix training ratio to 10% and test
classification accuracies with different k and λ.
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Table 3: Evaluation results on Wiki dataset.
Classifier SVM

% Labeled Nodes 3% 7% 10% 20% 30% 40% 50%
DeepWalk 48.4 56.6 59.3 64.3 66.2 68.1 68.8

PLSA 58.3 66.5 69.0 72.5 74.7 75.5 76.0
Text Features 46.7 60.8 65.1 72.9 75.6 77.1 77.4

Naive Combination 48.7 62.6 66.3 73.0 75.2 77.1 78.6
NetPLSA 56.3 64.6 67.2 70.6 71.7 71.9 72.3

TADW (k=100) 59.8 68.2 71.6 75.4 77.3 77.7 79.2
TADW (k=200) 60.4 69.9 72.6 77.3 79.2 79.9 80.3
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Figure 2: Parameter sensitivity of k and λ

We let k vary from 40 to 120 and λ vary from 0.1 to 1
for Cora and Citeseer datasets; k vary from 100 to 200 and
λ vary from 0.1 to 1 for Wiki dataset. Figure 2 shows the
variation of classification accuracies with different k and λ.
The accuracies range within 1.5%, 1% and 2% for fixed k
on Cora, Citeseer and Wiki, respectively. The accuracies are
competitive when k ≥ 80 on Cora and Citeseer and k ≥ 140
on Wiki. Therefore TADW can keep stable when k and λ
vary within a reasonable range.

4.4 Case Study
To better understand the effectiveness of text information for
NRL, we present an example in Cora dataset. The document
title is “Irrelevant Features and the Subset Selection Prob-
lem”. We call this paper IFSSP for short. The class label
of IFSSP is “Theory”. As shown in Table 4, using represen-
tations generated by DeepWalk and TADW, we find 5 most
similar documents of IFSSP ranked by cosine similarity.

We find that, all these documents are cited by IFSSP. How-
ever, 3 of the 5 documents found by DeepWalk have different
class labels while the first 4 documents found by TADW have
the same label “Theory”. This indicates that, as compared to
pure network-based DeepWalk, TADW can learn better net-
work representations with the help of text information.

The 5th document found by DeepWalk also shows another
limitation of considering only network information. “MLC
Tutorial A Machine Learning library of C classes” (MLC for
short) is a document describing a general toolbox, which may
be cited by many works in different topics. Once some of
these works cite IFSSP as well, DeepWalk will tend to give
IFSSP a similar representation with MLC even though they

are totally on different topics.

Table 4: Five nearest documents by DeepWalk and TADW
Top 5 nearest documents by DeepWalk

Title Class Label
Feature selection
methods for classifications Neural Network

Automated model selection Rule Learning
Compression-Based
Feature Subset Selection Theory

Induction of Condensed Determinations Case Based
MLC Tutorial A Machine
Learning library of C classes Theory

Top 5 nearest documents by TADW
Title Class Label

Feature subset selection as
search with probabilistic estimates Theory

Compression-Based
Feature Subset Selection Theory

Selection of Relevant
Features in Machine Learning Theory

NP-Completeness of Searches
for Smallest Possible Feature Sets Theory

Feature subset selection
using a genetic algorithm Genetic Algorithms

5 Conclusion
In this paper we prove that DeepWalk, a typical NRL algo-
rithm, is actually equivalent to matrix factorization. Based
on the view of matrix factorization, we propose a novel NRL
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method TADW to incorporate text features of vertices into
network representation learning. Experimental results on
three datasets with different training ratios show the effective-
ness and robustness of TADW as compared to other baselines.

TADW can also be regarded as a framework for combin-
ing features obtained from two different types of information.
Rather than simply concatenating features, TADW provides a
novel view of feature combination by jointly modeling them
via matrix factorization.

For future work, an intriguing direction is to explore the
online and distributed learning of TADW for the scenario of
large-scale network data. Also, we can investigate other tech-
nics of matrix factorization such as matrix co-factorization to
involve rich information from other sources.
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