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Abstract
We study the resilience of complex networks against attacks in which nodes
are targeted intelligently, but where disabling a node has a cost to the attacker
which depends on its degree. Attackers have to meet these costs with limited
resources, which constrains their actions. A network’s integrity is quantified
in terms of the efficacy of the process that it supports. We calculate how the
optimal attack strategy and the most attack-resistant network degree statistics
depend on the node removal cost function and the attack resources. The
resilience of networks against intelligent attacks is found to depend strongly
on the node removal cost function faced by the attacker. In particular, if
node removal costs increase sufficiently fast with the node degree, power law
networks are found to be more resilient than Poissonian ones, even against
optimized intelligent attacks. For cost functions increasing quadratically in
the node degrees, intelligent attackers cannot damage the network more than
random damages would.

PACS numbers: 75.10.Nr, 05.20.−y, 64.60.Cn

1. Introduction

In recent years there have been several studies into the resilience of complex networks against
random failures and targeted attacks, in which a fraction of the nodes or of the bonds is
removed. It was found that scale-free networks (with degree distributions that decay slowly
via power laws, as in preferential attachment models) are more robust against random node
removal than Poissonnian (or Erdös–Rényi) graphs which may explain why many real-world
complex systems involve networks with power-law distributed degrees. However, scale-free
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networks were found to be very vulnerable to intelligent attackers that target high-degree
nodes [1, 2]. Against edge removal, Poissonian and power law networks turned out to produce
similar responses [3]. There are two reasons why we aim to study network resilience further.
First, while the motivation behind such studies is that networks provide the infrastructure for
some process (with interacting ‘agents’ or processors occupying the nodes), and that process
disruption is the true goal of an attacker, most authors measure the impact of attacks indirectly,
via topological properties that serve as proxies for the integrity of the process (e.g. the overall
connectivity and path-length statistics [4], or percolation characteristics [1, 2, 5–7]). Here
we seek to quantify the damage inflicted by attacks directly in terms of the process which
the network is meant to support, similar to [8]. This requires solving stochastic processes
on complex networks with arbitrary degree distributions, which is what statistical mechanics
enable us to do. Our second and most important reason is that network resilience has so far
been studied strictly in the context of random or intelligent removal of a fixed fraction of sites or
bonds. This seems unrealistic. In most real-world scenarios (attacks on computer networks,
viruses attacking cellular networks, etc) attacking a highly connected node demands more
effort on behalf of the attacker than removing a weakly connected one. Similarly, any sensible
defender of a network would devote more resources to the protection of ‘hubs’ than to the
protection of ‘outpost’ nodes. The study of network resilience against attack or dilution calls
for more appropriate and realistic definitions that include the inevitable resource constraints
faced by attackers and defenders alike.

Turning to a formulation where attackers have finite resources, to be deployed intelligently
when the cost of removing a network node depends on the degree of that node, changes the
game drastically. It introduces a trade-off between the merit in terms of inflicted damage of
targeting high-degree nodes versus the disadvantage of associated cost (attacking many ‘hubs’
may be unaffordable). One would like to know the maximum amount of damage that can be
inflicted (by e.g. a virus to a biological network), given the limited resources available to the
attacker (e.g. food, lifetime) and given the network’s degree-dependent node removal costs.
Similarly one would like to identify the most resilient network degree statistics to withstand
an optimal attack. The answers to these questions may not only aid our understanding of
structural properties of biological (e.g. proteomic) signalling networks, where competition
and natural selection act as driving forces towards attack resistance, but also the design of
attack-resistant synthetic real-world (e.g. communication) networks.

Here we develop a framework for the study of network resilience that includes limited
attack resources, degree-dependent node removal costs and resilience measures based on
process integrity. We consider two types of processes where structurally different interacting
variables are placed on the nodes of networks with arbitrary degree distributions: interacting
Ising spins (where the global order is ferromagnetic or of the spin-glass type), and coupled
Kuramoto oscillators (where the global order is measured by synchronization). Both are
solvable using finite connectivity replica theory, which enables us to quantify their integrity
by the critical temperature of the ordered state. An attacker with finite resources seeks
to destabilize these processes by removing or disrupting selected network nodes using his
knowledge of the network’s degrees. The attacker is also allowed to disable nodes partially
(with a proportional reduction in attack costs). We identify the most damaging attack strategy,
given a network’s degree distribution and given the degree dependence of the node removal
costs and the attack resources available. We then determine the optimal network topology
from the point of view of the defender, i.e. that degree distribution for which the integrity of
the process is preserved best when attacked by a foe who employs the most damaging attack
strategy. The optimal attack strategy and the optimally attack-resistant network topology
are found to be universal across the types of microscopic variables and types of global
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order considered. As expected, the resilience of network processes against intelligent attacks
depends strongly on the node removal cost function faced by the attacker. Moreover, in sharp
contrast to the traditional setup where attackers are allowed to remove a fixed fraction of the
nodes (and hence can simply target the ‘hubs’), we find that if node removal costs increase
sufficiently fast with the node degree, and if attackers have finite resources to meet these costs,
power law networks are more resilient than Poissonian ones, even against optimized intelligent
attacks.

2. Definitions

2.1. Processes, supporting networks and constrained attack variables

We study two systems in which interacting stochastic variables are placed on the N nodes of a
complex network. The network is defined via variables cij ∈ {0, 1}, with cij = 1 if and only
if the nodes i and j are connected. We define cij = cji and cii = 0 for all (i, j) and abbreviate
c = {cij }. The first system (A) consists of N Ising spins σi ∈ {−1, 1}, in thermal equilibrium,
characterized by the following Hamiltonian:

A: H(σ) = −
∑
i<j

cij Jij ξiξjσiσj (1)

with σ = (σ1, . . . , σN). The second system (B) consists of N Kuramoto oscillators, with
phases θi ∈ [−π, π ], again in equilibrium but now with the Hamiltonian:

B: H(θ) = −
∑
i<j

cij Jij ξiξj cos(θi − θj ) (2)

with θ = (θ1, . . . , θN). The bonds Jij ∈ IR are drawn randomly and independently from a
distribution P(J ). The variables ξi ∈ � ⊆ [0, 1] in (1), (2) represent the impact of attacks,
with ξi = 0 if node i is removed completely and ξi = 1 if it is left alone. We demand that
1 ∈ �, so leaving a node intact is always an option, and for simplicity we take � to be discrete
and finite. We define the node degrees ki(c) = ∑

j cij , so the degree distribution and the
average connectivity of c are p(k|c) = N−1 ∑

i δk,ki (c) and 〈k〉 = ∑
k�0 kp(k|c), respectively.

We assume that the cost to the attacker of setting ξi = ξ at a node of degree ki = k is
ψ(ξ, k) � 0, where ψ(1, k) = 0 and ∂ψ(ξ, k)/∂ξ � 0 for all ξ ∈ �. If attackers have limited
resources they can only disrupt a subset of the nodes, since the {ξi} will now be subject to a
constraint of the form

∑
i ψ(ξi, ki) � C. A natural choice for ψ is

ψ(ξ, k) = κ(1 − ξ)φ(k), (3)

where φ(k) is a non-decreasing function, with φ(0) = 0 and φ(k > 0) > 0. The attack cost
for a node increases with the number of links to/from it; disconnected nodes can be attacked
for free. The normalization factor κ is chosen such that the resource constraint takes the simple
form N−1 ∑

i ψ(ξi, ki) � 1. The attacker is assumed to act intelligently, using knowledge
of the network’s degrees, so the degrees {ki} and the attack variables {ξi} will generally be
correlated. Finally we draw the network c randomly from a maximum-entropy ensemble
defined by a probability distribution in which the degrees are constrained to take prescribed
values k = (k1, . . . , kN):

Prob(c) = Z−1[k]
∏

i

δki ,ki (c), Z[k] =
∑

c

∏
i

δki ,ki (c). (4)

We abbreviate p(ξ, k) = N−1 ∑
i δξi ,ξ δki ,k and define q(ξ |k) via p(ξ, k) = q(ξ |k)p(k). The

resource constraint on the attack variables then translates into
∑

ξk ψ(ξ, k)q(ξ |k)p(k) � 1.
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The attacker is assumed to know the degree sequence k of the network to be attacked and can
adapt accordingly the conditional likelihood q(ξ |k) to maximize the impact of his actions;
q(ξ |k) constitutes his attack strategy. The realistic regime is that where ψ(ξ, k) obeys∑

k ψ(0, k)p(k) > 1, so that the trivial ‘destroy-all’ attack strategy q(ξ |k) = δξ,0 ∀k is
not feasible (i.e. too costly).

2.2. Quantifying process integrity and optimal attack and defence strategies

With each process (1), (2) running on the network, each associated ordered phase
(ferromagnetic, spin-glass or synchronized) corresponds a critical temperature Tc, which will
for large N depend on the network and attack characteristics k and ξ only via q(ξ |k) and p(k).
The larger the Tc, the more robust is the ordered phase against local noise, so we can quantify
the integrity of the process by the value of Tc[p, q]. The attacker wants to destroy the ordered
phase of the process, whereas the defender seeks to protect it. This allows us to give precise
definitions for the optimal attack strategy and the optimally resistant degree distribution in
terms of process integrity. The optimal attack strategy q�[p] is the conditional distribution
q(ξ |k) for which Tc[p, q] is minimal, given the degree distribution p and given the resource
constraint:

q�[p] = argmin{q,
∑

ξk ψ(ξ,k)q(ξ |k)p(k)�1}Tc[p, q]. (5)

The optimal (most resistant) degree distribution p� to be chosen by the defender, given the
average connectivity c (finite network resources) and attack cost function ψ is then that p(k)

which subsequently maximizes this q-minimized critical temperature:

p� = argmax{p,
∑

k kp(k)=c}Tc[p, q�[p]]

= argmax{p,
∑

k kp(k)=c} argmin{q,
∑

ξk ψ(ξ,k)q(ξ |k)p(k)�1}Tc[p, q]. (6)

The end result is a situation where the defender, by choosing an appropriate degree distribution,
maintains the highest achievable critical temperature Tc[p�, q�[p�]], given he is subjected to
the most damaging attack. However, within this scenario one could in fact ask many more
interesting questions, such as what would be the effect of misinformation, a situation where
a defender optimizes the network on the basis of an anticipated attack q�[p] (so he chooses
degree distribution p�) but is then faced with an attack with strategy q ′ �= q�[p], so that the
actual critical temperature is Tc[p�, q ′].

We see that the problem of identifying the optimal attack and defence strategies (5),
(6) splits automatically into two distinct parts. The first part is calculating the critical
temperature(s) Tc[p, q] of the relevant phases. This is done by evaluating for the systems
(1), (2) the asymptotic disorder-averaged free energy per spin f , from which one extracts the
phase diagrams for systems on typical graphs from (4):

fA = − lim
N→∞

1

βN
log

∑
σ

e−βH(σ) (7)

fB = − lim
N→∞

1

βN
log

∫ π

−π

dθ e−βH(θ) (8)

in which β = T −1 (where T denotes the temperature) and where · · · denotes averaging over the
disorder in the problem, namely the randomly drawn graphs with statistics (4) and the random
bonds {Jij }. The calculation of (7) and (8) is done with the finite connectivity replica method,
based on the identity log Z = limn→0 n−1 log Zn, and details are relegated to appendix A and
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appendix B in order not to disrupt the flow of the paper. The second part of the problem, to be
tackled once the formulae for Tc[p, q] have been derived (which, expectedly and fortunately,
turn out to be simple and very similar across models and ordered phases), is to carry out the
constrained optimizations in (5), (6), by a combination of analytical and numerical techniques.

3. The process integrity measure

We show in the appendices of this paper that the critical temperatures Tc[p, q] for the
emergence of global ferromagnetic (F) or spin-glass (SG) order, given we choose the bond
distribution P(J ) = 1

2 (1 + η)δ(J − J0) + 1
2 (1 − η)δ(J + J0) (with J0 � 0), follow for both

Ising spins and coupled oscillators from formulae of the following form:

F: λ(1)
max(β) = 1, λ(1): eigenvalues of M

(1)
ξξ ′ (β) = ηK(βJ0ξξ ′)γ (ξ ′) (9)

SG: λ(2)
max(β) = 1, λ(2): eigenvalues of M

(2)
ξξ ′ (β) = K2(βJ0ξξ ′)γ (ξ ′) (10)

in which β = 1/T and

γ (ξ) = 〈k〉−1
∑

k

q(ξ |k)p(k)k(k − 1). (11)

Here K(z) = tanh(z) for interacting Ising spins and K(z) = I1(z)/I0(z) for coupled
oscillators. In both cases K(−z) = −K(z), d

dz
K(z) � 0 and limz→∞ K(z) = 1. There

is no F phase if η � 0, so we take η > 0 from now on. The structure of the above formulae is
in agreement with results from percolation theory and spreading phenomena, which show that
the threshold characterizing the percolation transition or an epidemic outbreak in a network
depends on the ratio 〈k2〉/〈k〉 of the first two moments of its degree distribution [1, 2, 5–7,
9–11]. The approach followed here is closer to the envisaged picture of interacting agents or
processors on network nodes and has the benefit of applying to the whole interval � = [0, 1],
as opposed to � = {0, 1} which can be accessed by the percolation theory.

3.1. Tests and bounds for critical temperatures

Before any attack one has ξ ∈ {1}, so γ (ξ) = γ (1) = 〈k2〉/〈k〉 − 1 and the above formulae
would have reproduced the known results for the unperturbed system, namely

F: ηK(βJ0)[〈k2〉/〈k〉 − 1] = 1 (12)

SG: K2(βJ0)[〈k2〉/〈k〉 − 1] = 1. (13)

Another simple test is to consider � = {0, 1}. Here each node is either unaffected or removed
completely, leaving a new network identical to an unperturbed network as described by (12),
(13), but with reduced size N ′ = ∑

i ξi , and with degrees k′
i = ∑

j cij ξj . We would find, in
the case of random attacks q(ξ |k) = ζ δξ,0 + (1 − ζ )δξ,1:

〈k〉′ = lim
N→∞

1

(1 − ζ )N

∑
ij

ξicij ξj = (1 − ζ )〈k〉 (14)

〈k2〉′ = lim
N→∞

1

(1 − ζ )N

∑
ij�

ξicij ci�ξj ξ� = (1 − ζ )2〈k2〉 + ζ(1 − ζ )〈k〉 (15)

giving the following transparent formulae for the post-attack transition points:
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F: ηK(βJ0)(1 − ζ )[〈k2〉/〈k〉 − 1] = 1 (16)

SG: K2(βJ0)(1 − ζ )[〈k2〉/〈k〉 − 1] = 1. (17)

If, alternatively, we apply to this scenario the result (9), (10), we find γ (ξ) = q(ξ)[〈k2〉/〈k〉−1]
and K(βJ0ξξ ′) = K(βJ0)δξ,1δξ ′,1, and the relevant matrices reduce to M

(1)
ξξ ′ (β) =

ηK(βJ0)(1 − ζ )[〈k2〉/〈k〉− 1]δξ,1δξ ′,1 and M
(2)
ξξ ′ (β) = K2(βJ0)(1 − ζ )[〈k2〉/〈k〉− 1]δξ,1δξ ′,1.

One solves the eigenvalue problems trivially and indeed recovers (16), (17). A final trivial test
is to consider q(ξ |k) = δξ,ξ0 , where ξ0 ∈ (0, 1), an attack equivalent to replacing J0 → ξ 2

0 J0.
Upon substituting this choice into (9), (10) one confirms, via γ (ξ) = δξ,ξ0 [〈k2〉/〈k〉 − 1], that
our general theory indeed reduces to (12), (13) with the correctly reduced coupling strength.

Solving the eigenvalue problems (9), (10) analytically is not always possible, but
eigenvalue bounds are obtained easily. Our matrices are of the form Mξξ ′ = L(ξξ ′)γ (ξ ′),
where L(u) = ηK(βJ0u) for the F transition (so L(u) is anti-symmetric) and L(u) =
K2(βJ0u) for the SG transition (so L(u) is symmetric), and where γ (ξ) � 0 for all ξ . We
symmetrize the eigenvalue problem λx(ξ) = ∑

ξ ′ Mξξ ′x(ξ ′) by defining y(ξ) = x(ξ)
√

γ (ξ),
giving λy(ξ) = ∑

ξ ′ [
√

γ (ξ)L(ξξ ′)
√

γ (ξ ′)]y(ξ ′). This implies that

λmax = max
y

∑
ξξ ′ y(ξ)

√
γ (ξ)L(ξξ ′)

√
γ (ξ ′)y(ξ ′)∑

ξ y2(ξ)
(18)

which can be simplified to

λmax = max
y

∑
ξξ ′ y(ξ)

√
γ (ξ)L(|ξξ ′|)√γ (ξ ′)y(ξ ′)∑

ξ y2(ξ)
. (19)

Variational arguments can now be applied in order to get lower bounds. In particular, upon
substituting y(ξ) = δξ,ξ̂ and varying ξ̂ one derives the statement

λmax � max
ξ

{γ (ξ)L(ξ 2)}. (20)

To find upper bounds, we use the fact that the maximum in (19) will have y(ξ) � 0 for all ξ .
We then use the inequalities L(|u|) � αηβJ0|u| (for F) and L(|u|) � (αβJ0)

2|u|2 (for SG),
where α = 1 for Ising spins and α = 1

2 for coupled oscillators, to get

λ(1)
max � αηβJ0 max

y

{∑
ξξ ′ y(ξ)γ

1
2 (ξ)|ξ ||ξ ′|γ 1

2 (ξ ′)y(ξ ′)∑
ξ y2(ξ)

}
(21)

λ(2)
max � (αβJ0)

2 max
y

{∑
ξξ ′ y(ξ)γ

1
2 (ξ)|ξ |2|ξ ′|2γ 1

2 (ξ ′)y(ξ ′)∑
ξ y2(ξ)

}
. (22)

The last two maxima are calculated easily, leading us to

F: Tc[p, q] � ηαJ0

∑
ξ

ξ 2γ (ξ) (23)

SG: Tc[p, q] � αJ0

(∑
ξ

ξ 4γ (ξ)

)1
2

. (24)
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3.2. Explicit simple form for a process integrity measure �[p, q]

The inequalities (23), (24) become equalities for large c, where the critical temperatures
diverge and hence β → 0 in (12), (13); the right-hand sides of (23), (24) then become the
true integrity measures of the process. Moreover, for certain natural choices of the set � the
latter statement is in fact true for any connectivity c. For instance, if � ⊆ {0, 1} (all nodes
are either fully disabled or left alone) one may use K(βJ0ξξ ′) = ξξ ′K(βJ0) to diagonalize
the matrices in (9), (10) and find

F:
1

K(J0/Tc[p, q])
= η

∑
ξ

ξ 2γ (ξ) (25)

SG:
1

K(J0/Tc[p, q])
=

(∑
ξ

ξ 4γ (ξ)

) 1
2

(26)

which reveals that the critical temperatures are monotonically increasing functions of the sums∑
ξ ξ 2γ (ξ) for the F-type order and

∑
ξ ξ 4γ (ξ) for the SG-type order (for � = {0, 1} the two

sums are in fact identical). In view of these properties, and in view of the minor differences
between the F and SG cases, in the remainder of this study we adopt the quantity

∑
ξ ξ 2γ (ξ)

as our integrity measure, giving

�[p, q] = 1

〈k〉
∑
ξk

ξ 2q(ξ |k)p(k)k(k − 1). (27)

We define the set of relevant degrees k as S = {k > 1|p(k) > 0}. The optimal attack strategy
is then the choice q�[p] which solves the following optimization problem:

minimize: �[p, q] (28)

subject to: q(ξ |k) � 0 ∀(ξ, k),
∑
ξ∈�

q(ξ |k) = 1 ∀k ∈ S (29)

∑
ξ∈�

∑
k∈S

(1 − ξ)φ(k)q(ξ |k)p(k) � κ−1. (30)

To avoid trivial pathologies we assume that ∃k � 2 with p(k) > 0 (if untrue we would
not have an ordered state in the first place, as it would have given Tc[p, q] = 0), and that∑

k p(k)k(k − 1) < ∞ (if untrue there would not be a finite critical temperature before
the attack). Clearly q�(ξ |k) = δξ,1 for k /∈ S; any other choice would sacrifice attack
resources without benefit. The best defence against optimal attacks is the choice for the
degree distribution p(k) such that the above minimum over q is maximized.

3.3. Bounds on the process integrity measure

To judge the quality of attack strategies it will prove useful to have bounds on the value
�[p, q�[p]] corresponding to the optimal attack q�[p]. An upper bound is easily obtained by
inspecting the result of non-intelligent random attacks of the type q(ξ |k) = (1−Q)δξ,0+Qδξ,1,
with 0 � Q � 1:

�[p, q] = [〈k2〉/〈k〉 − 1]Q (31)

Q � 1 − 1/κ〈φ(k)〉. (32)

7
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The sharpest bound of this form follows when seeking equality in the last line, giving4

�[p, q�[p]] � �[p, q�
random I] =

(
1 − 1

κ〈φ(k)〉
)

〈k(k − 1)〉/〈k〉. (33)

If � = {0, 1} then (33) is the best possible upper bound based on random attacks. If � = [0, 1]
we can improve upon (33) by investigating random attacks of the form q(ξ |k) = δ[ξ − ξ̂ ].
The optimal choice turns out to be ξ̂ = 1 − 1/κ〈φ〉, giving

�[p, q�[p]] � �[p, q�
random II] =

(
1 − 1

κ〈φ(k)〉
)2

〈k(k − 1)〉/〈k〉. (34)

To find lower bounds for �[p, q�[p]] we first define modified probabilities π(k) ∈ [0, 1]:

π(k) =
∑

ξ∈�(1 − ξ)q(ξ |k)φ(k)p(k)〈 ∑
ξ∈�(1 − ξ)q(ξ |k)φ(k)

〉 , (35)

with associated averages written as 〈· · ·〉π . Note that the denominator of (35) is bounded from
above by κ−1, via the resource constraint. We can now write

�[p, q] = 〈k(k − 1)〉
〈k〉 − 1

〈k〉
∑

k

p(k)k(k − 1)
∑
ξ∈�

(1 − ξ 2)q(ξ |k)

= 〈k(k − 1)〉
〈k〉 − 1

〈k〉

〈 ∑
ξ∈�

(1 − ξ)q(ξ |k)φ(k)

〉〈
k(k − 1)

φ(k)

∑
ξ∈�(1 − ξ 2)q(ξ |k)∑
ξ∈�(1 − ξ)q(ξ |k)

〉
π

� 〈k(k − 1)〉
〈k〉 − 1

κ〈k〉
〈
k(k − 1)

φ(k)

∑
ξ∈�(1 − ξ 2)q(ξ |k)∑
ξ∈�(1 − ξ)q(ξ |k)

〉
π

� 〈k(k − 1)〉
〈k〉 − C�

κ〈k〉
〈
k(k − 1)

φ(k)

〉
π

(36)

in which the factor C� � 0 depends only on the choice made for the value set �:

C� = max
w

{
1 − 〈ξ 2〉w
1 − 〈ξ 〉w

}
with 〈f (ξ)〉w =

∑
ξ∈�

w(ξ)f (ξ) and
∑
ξ∈�

w(ξ) = 1. (37)

One easily proves using � ⊆ [0, 1] that C� ∈ [1, 2], C{0,1} = 1 and C[0,1] = 2. We conclude,
in combination with (33), (34), that

� = {0, 1}: 1 − 1

κ〈k(k − 1)〉
〈
k(k − 1)

φ(k)

〉
π

� 〈k〉�[p, q�[p]]

〈k(k − 1)〉 � 1 − 1

κ〈φ(k)〉 (38)

� = [0, 1]: 1 − 2

κ〈k(k − 1)〉
〈
k(k − 1)

φ(k)

〉
π

� 〈k〉�[p, q�[p]]

〈k(k − 1)〉 �
(

1 − 1

κ〈φ(k)〉
)2

. (39)

The lower bounds are satisfied with equality if the attack resources are exhausted and if
〈(1 − ξ 2)〉q = 〈(1 − ξ)〉q for each q(ξ |k) with k ∈ S; the last condition is always met if
� = {0, 1}. However, the lower bounds still depend on the attack strategy via the measure π .
From (38), (39) and the general property �[p, q] � 0, which follows from the definition of
�[p, q], we finally obtain the strategy-independent bounds

� = {0, 1}: max

{
0, 1 − R/κ

〈k(k − 1)〉
}

� 〈k〉�[p, q�[p]]

〈k(k − 1)〉 � 1 − 1

κ〈φ(k)〉 (40)

4 Note that κ〈φ(k)〉 > 1 due to our earlier ruling out of the trivial attack strategy q(ξ |k) = δξ,0.
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� = [0, 1]: max

{
0, 1 − 2R/κ

〈k(k − 1)〉
}

� 〈k〉�[p, q�[p]]

〈k(k − 1)〉 �
(

1 − 1

κ〈φ(k)〉
)2

(41)

with

R = maxk∈S

{
k(k − 1)/φ(k)

}
. (42)

The latter bounds reveal immediately two distinct situations where it is not possible for any
intelligent attack to improve on the damage done by random attacks: the case φ(k) = k(k−1)

for all k ∈ S (here the benefit of degree knowledge exactly balances the cost to the attacker
of using it), and the case of regular random graphs, namely p(k) = δk,〈k〉, where there is no
degree knowledge to be exploited in the first place.

4. Optimal attack and optimal defence for Ξ = {0, 1}
The attacker’s objective is to minimize �[p, q]. We have seen that for � = {0, 1}, where
nodes are either fully disabled or left alone and C{0,1} = 1, the lower bound in (40) could in
principle be realized. This will serve as an efficient guide in finding q�[p]. Attack strategies
for � = {0, 1} are of the form q(ξ |k) = q(0|k)δξ,0 + [1 −q(0|k)]δξ,1, so we need to determine
q(0|k) for all k ∈ S.

4.1. Construction of the optimal attack strategy

We first define the attacker’s ‘target’ degree set A ⊆ S, with R as defined in (42):

A = {k ∈ S|k(k − 1)/φ(k) = R}. (43)

The inequality 〈k(k−1)/φ(k)〉π � R used in the final step of our derivation of (40) is satisfied
with equality only if π(k) = 0 for all k /∈ A. According to (35) this requires q(ξ |k) = δξ,1

for all k /∈ A. The only remaining requirement for satisfying the lower bound in (40) is that
we satisfy the resource constraint with equality. Hence, the set of optimal attack strategies is
defined strictly by the following demands:

∀k /∈ A: q(0|k) = 0 (44)

∀k ∈ A: q(0|k) ∈ [0, 1],
∑
k∈A

q(0|k)φ(k)p(k) = 1/κ. (45)

It is straightforward to verify directly, using φ(k) = k(k − 1)/R for all k ∈ A, that strategies
satisfying these conditions indeed give the lowest possible value for �[p, q] according to our
bounds and satisfy the resource constraint with equality. By construction, the set A cannot be
empty.

At this stage in our argument we must distinguish between two distinct cases. In the first
case the attacker need not look beyond nodes in the target set A (43), since removing those
will already exhaust or exceed his resources; he will simply remove as many of those as can
be afforded. In the second case, the removal of all nodes in A does not exhaust the attack
resources, and new target sets need to be identified.

• The target set A is exhausting,
∑

k∈A φ(k)p(k) � 1/κ:

Here it is immediately clear that optimal attacks will indeed exist, i.e. the conditions
(44), (45) can be met. Only nodes from A will be removed. If there is at least one k� ∈ A
with φ(k�)p(k�) � 1/κ , the attacker can simply execute

9
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k� = argmax
k∈A

{φ(k)p(k)} (46)

q(0|k�) = 1/κp(k�)φ(k�), ∀k �= k� : q(0|k) = 0. (47)

If instead φ(k)p(k) < 1/κ for all k ∈ A there is no target degree in A which would on
its own exhaust the attacker’s resources. The attacker will first remove all nodes with
degree k�

1 = argmaxk∈A{φ(k)p(k)} by setting q(0|k�
1) = 1. He will next direct attention

to the reduced set A/{k�
1} and remove nodes with degree k�

2 = argmaxk∈A/{k�
1}{φ(k)p(k)},

etc until the resources are exhausted. At the end of this iterative process the attacker will
have removed a sequence of degrees {k�

1, . . . , k
�
L} ⊆ A (where nodes with degree k�

L will
generally be only partially removed, as allowed by remaining resources). In words the
attacker first determines the target set A of those degrees with p(k) > 0 for which the
ratio k(k − 1)/φ(k) is maximal. He then ranks the degrees in A according to the value
of φ(k)p(k) and proceeds to remove degrees iteratively according to this ranking until
his resources are exhausted. This strategy will always lead to 〈k(k − 1)/φ(k)〉π = R and
satisfy the lower bound in (40) with equality.

• The target set A is non-exhausting,
∑

k∈A φ(k)p(k) < 1/κ:

Here the attacker can afford to remove completely all degrees in the set A, but setting
q(0|k) = 1 for all k ∈ A does not exhaust his resources. He should subsequently direct
attention to those nodes in the reduced set S/A for which the ratio k(k − 1)/φ(k) is
maximal, and so on. The result is again an iteration, at the end of which the attacker
will have removed a set of degrees {k�

1, . . . , k
�
L} ⊃ A (where nodes with degree k�

L will
generally be only partially removed). In this case 〈k(k − 1)/φ(k)〉 < R and the lower
bound in (40) is no longer satisfied with equality; however, this does not imply that the
strategy is non-optimal, since it might be that the bound is no longer tight. Here it is
therefore difficult to prove rigorously that the identified strategy always constitutes the
optimal attack, but it is the logical continuation of the optimal attack identified earlier and
its optimality is consistent with numerical experiments (to be shown later).

We can combine both cases above in a transparent iterative attack protocol. We define at each
step �: the target set A�, the set S� of nodes that have not yet been targeted and the resource
remainder �� = κ−1 − ∑

k q(0|k)φ(k)p(k). The process is initialized according to S0 = S

and �0 = κ−1, and starts with q(0|k) = 0 for all k. It is iterated until �� = 0, according to

step 1: calculate the new ratio R� = maxk∈S�−1{k(k − 1)/φ(k)}
step 2: identify the target set A� = {k ∈ S�−1|k(k − 1)/φ(k) = R�}
step 3: choose (any) k�

� ∈ A� for which φ(k�
�)p(k�

�) = maxk∈A�
{φ(k)p(k)}

step 4: check whether attack resources can be exhausted:

φ(k�
�)p(k�

�) � ��−1: yes,

remove as many degree k�
� nodes as possible

set q(0|k�
�) = ��−1/φ(k�

�)p(k�
�)

�� = 0, attack terminates

φ(k�
�)p(k�

�) < ��−1: no,

remove all degree k�
� nodes

set q(0|k�
�) = 1

step 5: define S� = S�−1/k�
� and �� = ��−1 − φ(k�

�)p(k�
�)q(0|k�

�).
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Always the end result is a sequence {k�
1, . . . , k

�
L−1} of target degrees that are fully removed,

possibly supplemented by a further degree k�
L of which a fraction will be removed (to exhaust

fully the attack resources).

4.2. Properties of the optimal attack strategy

We next evaluate the impact of the above attack strategy q�[p] on our process integrity measure.
We define the set A� = {k�

1, . . . , k
�
L−1} of fully removed degrees, and write k�

L simply as k�.
The post-attack value of the process integrity measure will be

�[p, q�[p]] = 〈k(k − 1)〉
〈k〉 − 1

〈k〉
∑
k∈A�

p(k)k(k − 1) − 1

〈k〉q(0|k�)k�(k�− 1)p(k�)

= 〈k(k − 1)〉
〈k〉 − 1

〈k〉
∑
k∈A�

p(k)k(k − 1) − �L−1

〈k〉
k�(k�− 1)

φ(k�)
. (48)

The attack q�[p] exhausts all resources, so �L−1 = κ−1 − ∑
k∈A� φ(k)p(k). Hence,

�[p, q�[p]] = 〈k(k − 1)〉
〈k〉 − 1

〈k〉
∑
k∈A�

p(k)φ(k)

[
k(k − 1)

φ(k)
− k�(k� − 1)

φ(k�)

]
− k�(k�− 1)

κ〈k〉φ(k�)
.

(49)

Since by definition k(k − 1)/φ(k) > k�(k� − 1)/φ(k�) for all k ∈ A�, both the second and the
third term of (49) are strictly non-positive.

The result (49) can be compared to that of random attack (where no degree information is
used), namely to (33). The benefit �� = �[p, q�[p]] − �[p, q�

random] to the attacker of using
optimal attacks as opposed to random attacks then takes the form

�� = − 1

〈k〉
∑
k∈A�

p(k)φ(k)

[
k(k − 1)

φ(k)
− k�(k�− 1)

φ(k�)

]
− 1

κ〈k〉
[
k�(k�− 1)

φ(k�)
− 〈k(k − 1)〉

〈φ(k)〉
]

= − 1

〈k〉
∑
k∈A�

p(k)φ(k)

[
k(k − 1)

φ(k)
− k�(k�− 1)

φ(k�)

]

− 1

κ〈k〉 〈φ(k)〉
∑

k

p(k)φ(k)

[
k�(k�− 1)

φ(k�)
− k(k − 1)

φ(k)

]

= − 1

〈k〉
∑
k∈A�

p(k)φ(k)

[
k(k − 1)

φ(k)
− k�(k�− 1)

φ(k�)

](
1 − 1

κ〈φ(k)〉
)

+
1

κ〈k〉 〈φ(k)〉
∑
k /∈A�

p(k)φ(k)

[
k(k − 1)

φ(k)
− k�(k� − 1)

φ(k�)

]
. (50)

Since the set A� ⊆ S is constructed specifically from those degrees for which k(k − 1)/φ(k)

is maximal, and since 〈φ(k)〉 > κ−1, both terms of �� are strictly non-positive. One will
thus generally have �� < 0. Again we also recognize the two special cases where there will
be no gain in intelligent attacks, namely φ(k) = k(k − 1) (with any degree distribution) and
p(k) = δk,〈k〉 (with any cost function φ(k)).

In terms of the dependence of our results on the cost function φ(k) it is clear that everything
evolves around the dependence on k of the ratio φ(k)/k(k − 1). This ratio represents for each
k the balance between the cost of removing degree-k nodes versus the benefits in terms of
damage achieved. If for simplicity we choose φ(k) = kζ (k −1), then for ζ < 1 the intelligent
attack will be to take out first the nodes with the largest degrees k ∈ S that can be removed
without violating the resource constraint (i.e. the ‘greedy’ attack strategy is optimal), whereas
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Table 1. Size N, average connectivity 〈k〉, maximum degree kmax, experimental detection method
or source, and reference for the biological (protein interaction) network data sets used in our
numerical experiments. The detection methods or sources are abbreviated as follows: Y2H, yeast
two-hybrid; PMS, purification-mass spectrometry; HPRD, the human protein reference database.

Species N 〈k〉 kmax Method Reference

C. elegans 3512 3.72 524 Y2H [12]
C. jejuni 1324 17.52 207 Y2H [13]
E. coli 2457 7.05 641 PMS [14]
H. sapiens 9306 7.53 247 HPRD [15]
S. cerevisiae 3241 2.69 279 Y2H [16]

for ζ > 1 the intelligent attack will target first the nodes with the smallest degrees k ∈ S that
can be removed without violating the constraint (here attacking hubs is too expensive to be
efficient). Furthermore, it is not at all a priori clear what would be the most resistant degree
distribution against such attacks in the presence of resource constraints. Naively one could
perhaps have expected that for small ζ (where the attacker will target hubs) the best strategy
for the defender could be to choose a narrowly distributed degree distribution, so there are no
hubs to be exploited. Interestingly, we will see below that that is not the case, and the optimal
degree distribution can be more subtle.

5. Numerical results

5.1. General methods

In this section we illustrate, apply and extend via numerical experimentation the results derived
above. We determine by numerical maximization the most resistant degree distribution against
optimal intelligent attacks, and we compare for typical biological networks the effects of
optimal intelligent attacks in terms of process integrity against random attacks and against
the bounds established earlier. The biological networks used are experimentally determined
protein interaction networks (PINs) of different species, namely Caenorhabditis elegans,
Campylobacter jejuni, Escherichia coli, Homo sapiens and Saccharomyces cerevisiae; see
table 1 for characteristics and references. For each biological network we also generate several
synthetic alternatives with the same size N and average connectivity 〈k〉 as the biological one,
but with different degree distributions: Poissonian, the optimally resistant degree distribution,
or a distribution generated via preferential attachment with a fat tail similar to the biological
network. In all cases we choose node attack cost functions of the form φ(k) = kζ (k − 1),
with ζ = 0, 1, 2, and we set the attack resource limit to κ−1 = 〈φ(k)〉P/q, where q > 1
is a control parameter and the average 〈· · ·〉P is calculated over the Poissonian distribution
P(k) = 〈k〉ke〈k〉/k! For each PIN and each synthetically generated counterpart the average
cost function 〈φ(k)〉 is found to be always larger than or equal to the one calculated over
the equivalent Poissonian distribution (if ζ = 0, where φ(k) = k − 1, equality of course
holds trivially for all distributions since they share by construction the value of 〈k〉). This
ensures that for q > 1 the attacker’s resources will in all our experiments be in the relevant
regime 〈φ(k)〉 > κ−1. The optimally attack resistant networks are found via a stochastic graph
dynamics, starting from a biological protein interaction network, in which at each step a bond
is selected at random and is moved to another location if this move increases the post-attack
integrity measure �[p, q�[p]]. Bond relocations are the minimal moves that preserve the
average degree of the network. After each move, the optimal attack strategy q�[p] defined in
the previous section is applied to the new network. In order to prevent the graph dynamics
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Figure 1. Left: log–log plot of the degree distribution of the H. sapiens PIN, synthetically
generated networks with the same size N and average connectivity 〈k〉 as H. sapiens PIN but with
Poissonian and preferential attachment degree distributions. Right: log–log plot of the degree
distribution of the network that has the same size and average connectivity as the H. sapiens PIN,
but that has been constructed to be optimally resistant against optimal intelligent attacks, given
the node removal cost function φ(k) = kζ (k − 1), with ζ = 0, 1, 2, and given available attack
resources, characterized by κ−1 = 1

q
〈φ(k)〉P , with q = 3, 5 (see the legend). We observe that

upon decreasing ζ , where the optimal attack strategy starts targeting the high-degree nodes, the
optimally resistant degree distribution takes a binary form, describing a module of high-degree
nodes in a sea of unconnected nodes.

from getting stuck in suboptimal configurations, we allow initially for groups of bonds to
be moved and as the algorithm proceeds, the size of these groups is reduced, in the spirit
of [17].

5.2. Degree statistics before and after network optimization

Figure 1 shows the results of applying the above procedures to the H. sapiens PIN for
ζ = 0, 1, 2 and q = 3, 5. For ζ = 1, 2 (where it is not advantageous to the attacker to target
high-degree nodes) the optimally resistant degree distribution p�[q] is seen to exhibit a smooth
dependence on the degree k. For ζ = 0, where the degree dependence of node removal costs
is modest and the optimal attack strategy is to target high degree nodes, one could expect
the optimal network to become regular, in order to disallow attackers to benefit from degree
information. Instead, we observe an entirely different solution. Here, the optimal defender
produces as many hubs as possible, so that the attacker is unable to remove all of these. The
result is a distribution of the form

p�(k) =
(

1 − 〈k〉
K

)
δk,0 +

〈k〉
K

δk,K, K � 〈k〉 (51)

with K = 192 for a network with size and average connectivity identical to the H. sapiens
PIN. In a situation where attackers can and will target nodes with maximal degree first, it
appears that the optimal defender chooses a network with a ‘modular’ configuration, with a
core of nodes highly connected to each other, in a sea of disconnected nodes. The attacker
is prevented by resource limitations from removing more than a (tiny) fraction of the core.
The strategy of the optimal defender is to sacrifice a few highly connected nodes to save
many.

For distributions of the form (51) the attack resources can be exhausted, and the optimal
attack is q�(0|k) = δk,KK/κφ(K)〈k〉. This results in

�[p, q�[p]] = K − 1 − K1−ζ /κ〈k〉. (52)
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Insertion into (40) shows that both bounds are now satisfied with equality. For ζ > 0 the
defender would wish to choose K as large as possible, but for a finite network there is a
limit. There are just N〈k〉/K connected nodes; if each of these is to have K neighbours we
must demand N〈k〉/K − 1 � K , i.e. K � Kc = √

N〈k〉 + O(N0). The same result follows
from general entropic arguments [18, 19]. For large N the number of graphs with degree
distribution p(k) equals exp[NS] where S = 1

2 〈k〉[log(N/〈k〉)+1]−∑
k p(k) log[p(k)/π(k)]

with π(k) = e−〈k〉〈k〉k/k!. For (51) one obtains

S = 1

2
〈k〉

{
1 − log

(
K2

N〈k〉
)}

+ O(K−1 log K). (53)

Again we obtain the cut-off point K � Kc ≈ √
N〈k〉 for graphs with (51) to exist. The value

K = 192 found numerically, see figure 1, is consistent with this bound (for H. sapiens one
has Kc = 264), but not identical to it. This is expected to reflect finite size corrections to our
theory, and the fact that the theory requires all relevant k to be finite relative to N, whereas
close to Kc one has k = O(

√
N).

Note, however, that the distribution chosen by the optimal defender is not always exactly
of the form (51). In some situations (depending on the amount of resources available to the
attacker) the peak at k = 0 is not strictly δ-shaped, so that K is no longer subjected to the
previously identified cut-off Kc, and one indeed observes the second peak to move to higher
values of K (albeit with a reduced height). This results in a bimodal distribution with a δ-peak
at some K > Kc and a broader peak at k = 0, corresponding to a strongly disassortative
network configuration (for the notion of assortativity see e.g. [20]) where a small number of
hubs are connected with an extremely large number of low degree nodes (reminiscent of results
derived in [21]). For this later distribution, as was the case with the bimodal distribution (51)
with two strictly δ-shaped peaks, the attacker will again exhaust his resources upon removal
of just a tiny fraction, q(0|K) = 1/κφ(K)p(K), of hubs.

The actual distribution p�(k) selected by the optimal defender when the attacker is bound,
by resource limitations, to play the strategy q�(0|k) = δk,K 1/κφ(k)p(k) is the one which
maximizes the minimal integrity measure

�(p, q�[p]) = 1

〈k〉

(
〈k(k − 1)〉 −

∑
k

p(k)k(k − 1)q(0|k)

)
(54)

= 1

〈k〉 (〈k(k − 1)〉 − κ−1K1−ζ ) (55)

achieved by the attacker. It is clear that the shape of the optimally resistant distribution will
depend on the interplay between 〈k2〉 and K, which is controlled by the resource limit κ−1.
For ζ = 0, numerical studies show that for q sufficiently small (large amount of resources)
p�(k) assumes the shape (51), whereas for large q (small amount of resources) the width of
the peak at k = 0 increases and the second peak moves to K � Kc.

5.3. Values of process integrity measures before and after attacks

In figure 2 we plot the integrity measure �[p, q], for the different network distributions
considered, before and after an optimal intelligent attack. We also show the values that the
integrity measure would take after a random attack (where sites are picked up at random
and removed until resources are exhausted), with the same attack resource limit. The node
attack cost function and resource limit chosen are φ(k) = kζ (k − 1) and κ−1 = 〈φ(k)〉P/q,
respectively, with ζ = 0, 1, 2 and q > 1. In addition we show the lower and upper bounds
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Figure 2. Values of the process integrity measure �[p, q] before attack (�), after optimal
intelligent attacks (∗) and after optimal random attacks (◦), for different networks. The
specific networks considered are experimentally determined PINs of different species (C. elegans,
C. jejuni, E. coli, H. sapiens and S. cerevisiae) and their synthetically generated counterparts with
the same size and average connectivity, but different degree distributions (Poissonian, preferential
attachment and optimally attack resistant degree distribution following the attack q�[p]). The node
attack cost function is φ(k) = kζ (k − 1) and the available attack resources are characterized by
κ−1 = 〈φ(k)〉P/q with ζ = 0, 1, 2 and q = 3, 5 (see the legends). The theoretical upper and
lower bounds (40) are shown as dotted and dashed lines, respectively. All results consistently
reproduce the built-in order �before � �random � �intelligent (namely ��◦�∗). Furthermore, the
network realizations are consistently ranked, with the optimally resistant network (as expected)
always outperforming the others, but with also the biological and preferential attachment network
outperforming their Poissonian counterparts. In fact, the degree of resistance of the optimally
resistant network is quite remarkable.

(40) on the process integrity measure after an optimal intelligent attack q�[p], as described
by the protocol in the previous section, as dashed and dotted lines. As expected, the data
points for random attacks always coincide with the dotted line of the theoretical upper bound
(since such strategies formed the basis from which the upper bound was derived). Optimally
attack-resistant degree distributions are expected and indeed seen to be the ones for which
the integrity measure of the network process after optimal intelligent attack is the highest,
but when quantified via �[p, q] as in the figure one is struck by how well they perform, i.e.
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by the remarkably small reduction in the process integrity measure which they exhibit. For
ζ = 1, the theoretical lower and upper bounds coincide with each other, and with the integrity
measure values for random attacks and optimal intelligent attacks. Here φ(k) = k(k − 1),
so costs and benefit for the attacker of degree knowledge balance each other out, and we
have already shown that there is then no scope for the intelligent attacker to improve on the
damage inflicted by random attacks. One can often understand the actual values obtained
for �[p, q]. The relative reduction of the integrity measure before and after random attacks,
for instance, can be calculated from (40), and for our resource limit κ−1 = 〈φ(k)〉P/q, this
gives (�before − �after)/�before = 〈φ(k)〉P/q〈φ(k)〉. For ζ = 0 this is always equal to 1/q;
for ζ = 1, 2 it is small for degree distributions with large second and third moments, much
larger than for a Poissonian distribution. Similarly, for optimal intelligent attacks equation (40)
yields an upper bound on the relative attack-induced reduction of the process integrity measure:
(�before −�after)/�before � [〈kζ (k−1)〉P/q〈k(k−1)〉]maxk∈S{k1−ζ }. For ζ = 1, 2, this change
is again small for optimally resistant and biological networks, as a result of their large degree
variance (except for C. jejuni, which is distinct due to an unusually large average connectivity).

Our results re-confirm that random and hub-targeted attacks have similar effects on
Poissonian graphs, as often remarked in the literature, due to the large homogeneity of the
degrees. For regular graphs they would have produced identical results. However, one should
be careful in concluding from this that processes running on Poissonian networks are hence
the most resistant ones against hub removal. In contrast, figure 2 shows that they are the
most vulnerable ones, as their post-attack integrity measure is the smallest. Interestingly, we
find that processes running on networks produced by a preferential attachment mechanism
are more resistant than those running on Poissonian networks, against both random attacks
and optimal intelligent attacks. All this is due to the profound impact of resource constraints
on the network resilience problem. Moreover, the degree distributions found in biological
PINs generally exhibit, in turn, higher values for the post-attack process integrity measure
than both Poissonian and preferential attachment networks, for random attacks and optimal
intelligent attacks. A final feature emerging from figure 2 is that, while overall more robust
compared to their preferential attachment and Poisonnian counterparts, biological networks
seem significantly more resilient against random attacks than against hub-targeted attacks (see
the top two panels with ζ = 0, where the optimal attack indeed targets hubs).

5.4. Connection with results of previous studies—fraction of removed nodes

Previous studies of network resilience, based on the analysis of static topological properties
of networks under attacks, had shown that power law networks (such as the ones produced by
a preferential attachment mechanism) are more resistant than Poissonian ones against random
removal of a fixed fraction of nodes (see e.g. [22, 23]), but are very vulnerable against hub
removal [1, 24]. In the light of our new results, one may wonder how the fraction f of nodes
removed varies among different degree distributions, when considering attacks constrained by
degree-dependent node removal costs, with limited attack resources. The results of numerical
explorations for ζ = 0 (where optimal attacks will target hubs) and q = 3 are shown in
figure 3, in the form of scatter plots of the relative variation ��/� = (�before − �after)/�before

of the integrity measure under optimal attacks versus the fraction of sites removed (left) and
under random attacks versus the fraction of nodes removed (right). The dotted line in the latter
plot shows the theoretically predicted (constant) value of the relative variation of the process
integrity measure under random attacks for ζ = 0. Figure 3 reveals that biological PINs are
indeed affected by a dramatic drop in the integrity measure under hub removal, even for tiny
fractions of removed nodes; this confirms our intuition that their observed resilience depends
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Figure 3. Scatter plots of the relative variation ��/� of the integrity measure versus the fraction
f of sites removed under optimal intelligent (left) and random (right) attacks, with φ(k) = k − 1
and κ−1 = 〈φ(k)〉/3. Different markers correspond to different network families. The biological
family is composed of the five experimentally determined PINs of table 1. The other families are
the synthetically generated counterparts of the biological PINs, with the same size and average
connectivity, but different degree distributions (Poissonian, preferential attachment and optimally
resistant against intelligent attack).

crucially on having degree statistics such that attack costs prevent intelligent attackers from
removing significant number of hubs. The same statement is expected to apply to any random
graph drawn from the ensemble (4), where the imposed local degrees are those of the biological
networks. Finally, figure 3 also shows that, as expected, the fraction of sites removed during
hub-targeted attacks in a Poissonian graph, with fixed attack resources and when the node
removal cost function is monotonically increasing with k, is considerably larger than in power
law graphs. We conclude that the often claimed superiority of Poissonian networks over
power law graphs for hub-targeted attacks is strictly a consequence of the decision to keep
the fraction of removed sites fixed. This is consistent with the findings in [3], where it was
argued that power law networks are no longer more fragile than Poissonian graphs against
hub-targeted attacks when one looks at the number of removed links, and that the efficiency
of hub removal in power law graphs would mainly lie in the fact that this removes many more
links than it would have in Poissonian graphs.

In order to make contact with earlier results in the literature, we consider below optimal
attacks calculated for the constant cost function φ(k) = φ. Here, the effects of attack costs
should vanish from the problem, and our attacks should reduce to those where the fraction
f of degrees to be removed is kept fixed. In fact, from the resource constraint one has
f = ∑

k p(k)q(0|k) = 1/κφ. We plot in figure 4 (left) the integrity measure �[p, q] for the
different networks considered so far, before and after optimal intelligent and random attacks,
with the constant cost function φ = 〈k〉 − 1 and resources κ−1 = φ/5. In the right panel
we show a scatter plot of the relative variation of the process integrity measure under optimal
intelligent attack versus the fraction of removed sites, similar to figure 3. The fraction of
removed sites is now constant, as expected, and indeed equals 1/5 for our choice of the
resource limit. We see that for the constant node removal cost function the dependence of
the post-attack integrity measure on the degree distribution is drastically different from that
in the case of monotonically increasing cost functions, and we retrieve the old results known
from the literature: power law networks are now more resilient than Poissonian ones against
random attacks, but are extremely sensitive to hub removal.
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Figure 4. Left: process integrity measure �[p, q] before and after optimal intelligent and random
attacks, when the node removal cost function is a constant, φ(k) = 〈k〉 − 1, and attack resources
are constrained according to κ−1 = 〈φ(k)〉/5. The theoretical upper and lower bounds of (40)
are shown as dotted and dashed lines, respectively. Right: a scatter plot of the relative variation
��/� of the integrity measure versus the fraction of sites removed under intelligent attacks, with
attack resources constrained according to κ−1 = 〈φ(k)〉/5 and with node attack cost function
φ(k) = 〈k〉 − 1. Here different markers correspond to different network families, similar to
figure 3.

5.5. Misinformation

We finally illustrate briefly the possible effects on the network resilience problem of
misinformation, i.e. a situation where a network is designed to be optimally resistant against
an optimal intelligent attack on the basis of a node removal cost function φd(k) and a resource
limit κ−1

d , but where in fact it faces an optimal intelligent attack constrained by an actual cost
function φa(k) and with resource limit κ−1

a . Here the cost functions φ�(k) and resource limits
κ−1

� are defined as follows (with integer � � 1): φ1(k) = 〈k〉 − 1, φ�>1(k) = k�−2(k − 1)

and κ−1
� = 〈φ�(k)〉P/q� with q1 = 5 and q�>1 = 3. Note that for a = 3 the intelligent

attacks in fact reduce to random ones. The results of our numerical explorations are shown in
figure 5. For every attack, the distribution for which the post-attack process integrity measure
is the largest is indeed seen to be the one which is optimally resistant to the actual attack, i.e.
the choice d = a (for d = 3, 4 the optimally resistant degree distributions are very similar, and
their behaviour is almost identical). Figure 5 suggests that, as long as the node removal cost
functions are monotonically increasing with the node degree (i.e. for a � 2), networks which
are optimally resistant against non-hub attacks (a = 3, 4) are reasonably resistant against
hub-targeted attacks (a = 2), whereas networks which are well prepared against hub-targeted
attacks behave quite poorly when subjected to non-hub attacks (a = 3, 4). In other words,
degree statistics designed to be optimally resistant against hub removal appear to be quite
sensitive to misinformation, whereas those optimally resistant to random attacks suffer less
from misinformation, at least as long as the node removal cost function is monotonically
increasing with the node degree.

6. Discussion

Many research papers have been devoted recently to the resilience of networks under attacks.
Most study resilience in terms of the behaviour of static properties of networks under random
and intelligent removal of a fixed fraction of sites or bonds. Results obtained empirically
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Figure 5. Log–plot of the post-attack integrity measure for the case where assumed and actual
node removal costs and resource constraints need not be identical. Our network has the size and
average connectivity of the C. elegans PIN. The node removal cost function is taken from a family
φ�(k) and the resource constraint is κ−1

� = 〈φ�(k)〉P/q� with � ∈ {1, 2, 3, 4} (see the main text for
further details). The defender assumes that � = d and chooses the associated optimally resistant
degree distribution, whereas the actual value is � = a, and the attacker bases his strategy on the
latter. The defender is optimally prepared only for a = d.

[1, 25] or analytically (within mean-field and asymptotic approximations) [2, 6, 7, 26, 27]
have shown that power law networks are more resistant than Poissonian ones against random
attacks (see e.g. [22, 23]), but are very vulnerable against hub removal [1, 24]. In contrast,
more recent studies [3] suggest that power law networks are not more fragile than Poissonian
graphs against hub-targeted attacks when one looks at the number of removed links (as opposed
to nodes).

In this paper, we have sought to study network resilience in a more realistic setting, where
attackers have fixed resources and where removing or disrupting a node carries a cost for
the attacker which depends on the degree of the disrupted node. We quantify the resilience
of the system in terms of the process for which the network acts as infrastructure, based on
determining the critical temperatures for the onset of various types of global orders that could
be envisaged (the resulting network integrity measure is only weakly dependent upon the
specific choices made). This formulation also allows for attacks involving partial disruption
of individual nodes, which would have been inaccessible to the techniques normally used
when studying network resilience, such as percolation theory. We can define precisely the
most damaging attack strategy, given knowledge of the degree sequence of a network, and
for any given node-removal cost function. In addition we could subsequently define the
optimal network topology, i.e. the degree distribution for which the integrity of the collective
process is preserved best when attacked by a foe who employs the most damaging attack
strategy.

A network’s resilience against attacks is extremely sensitive to the dependence of the
node removal cost function on the degree of the targeted node. This dependence determines
the crucial outcome of the competition in such scenarios between the benefit and the cost of
attacking high-degree nodes. If we choose a trivial constant cost function, we retrieve results
from the literature on network resilience under random and targeted removal of fixed fractions
of sites or bonds. However, as soon as one chooses more realistic node removal cost functions
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that increase sufficiently fast with the node’s degree, power law networks are found to be
more resistant than Poissonian ones, even against optimized intelligent attacks. Our results
show that ‘modular’ configurations with a core of nodes highly connected to each other, in a
sea of disconnected nodes, and strongly disassortative configurations, are, depending on the
attacker’s resources, the most resistant ones against hub-targeted attacks, respectively. Broad
distributions with fat tails are the best defence against random and low degree targeted attacks.
We also touched briefly upon the effects of misinformation, where a network is designed to
be optimally resistant to a certain attack, whereas it actually faces a different one. Results
suggest that for monotonically increasing cost functions, degree distributions with fat tails are
much less sensitive to misinformation effects.

Upon comparing real protein interaction networks with random networks of the same size
and average degree, we found that the attack resilience of the biological networks is superior
to that of power law and Poissonian ones, even against optimized intelligent attacks. It may
be that topological properties beyond the degree sequence play an important role here, and
this deserves further investigation. In particular, one could calculate the integrity measure for
processes supported by networks drawn from ensembles tailored to the production of graphs
with built-in structure beyond that imposed by the degree distribution, along the lines of
[18, 28]. Another direction for future work may be to consider graph ensembles in
which both the network topologies and the node removal cost functions involve hidden
variables.

Our paper emphasizes the importance of distinguishing between different classes of
network attacks on the basis of the node removal cost function and resource limitations
imposed upon the attacker, and of studying and quantifying network resilience strictly within
a given class of attacks. Previously proposed conclusions about the vulnerability of power
law networks against intelligent attacks should be moderated in all cases where there is no
compelling reason to assume that the cost to attackers of node removal is independent of the
node degrees.
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Appendix A. Equilibrium analysis for model A

Most of the derivations in both appendices follow the lines of similar calculations in e.g.
[28, 29], and we will hence be brief and highlight only crucial steps to indicate the changes
generated by the introduction of the attack variables {ξi}. Following [18] we use the property
that with 〈k〉 = N−1 ∑

i ki the ensemble (4) is identical to

Prob(c) = δk,k(c)

Z
∏
i<j

[ 〈k〉
N

δcij ,1 +

(
1 − 〈k〉

N

)
δcij ,0

]
(A.1)

Z =
∑

c

δk,k(c)

∏
i<j

[ 〈k〉
N

δcij ,1 +

(
1 − 〈k〉

N

)
δcij ,0

]
. (A.2)
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A.1. Derivation of saddle-point equations

We write the Kronecker δ’s of the degree constraints in the integral form, and we introduce
the short-hands σi = (σ 1

i , . . . , σ n
i ) ∈ {−1, 1}n so that

fA = lim
N→∞

lim
n→0

1

βnN

{
logZ − log

∑
σ1...σN

∫ π

−π

∏
i

[
dωi

2π
eiωiki

]

×
∏
i<j

(
1 +

〈k〉
N

[ ∫
dJP (J ) eβJξiξj σi ·σj −i(ωi+ωj )− 1

])}

= lim
N→∞

lim
n→0

1

βnN

{
logZ − log

∑
σ1...σN

∫ π

−π

∏
i

[
dωi

2π
eiωiki

]

× exp

[ 〈k〉
2N

∑
ij

[ ∫
dJP (J ) eβJξi ξj σi ·σj −i(ωi+ωj )− 1

]
+ O(N0)

]}
. (A.3)

We proceed by introducing for σ ∈ {−1, 1}n and ξ ∈ � the functions D(ξ, σ|{σi , ωi, ξi}) =
N−1 ∑

i δξ,ξi
δσ,σi

e−iωi . They are introduced via the substitution of integrals over appropriate
δ-distributions, written in the integral form:

1 =
∫

dD(ξ, σ) dD̂(ξ, σ)

2π/N
eiND̂(ξ,σ)[D(ξ,σ)−D(ξ,σ|{σi ,ωi ,ξi })]. (A.4)

Upon using the short hand {dD dD̂} = ∏
ξ,σ D(ξ, σ) dD̂(ξ, σ) we then obtain

fA = lim
N→∞

lim
n→0

1

βnN

{
logZ − log

∫
{dD dD̂} eiN

∑
ξσ D̂(ξ,σ)D(ξ,σ)− 1

2 N〈k〉+O(log N)

× exp

[
1

2
〈k〉N

∑
ξξ ′

∑
σσ′

D(ξ, σ)D(ξ ′, σ′)
∫

dJP (J ) eβJξξ ′σ·σ′
]

× exp

[
N

∑
ξk

p(ξ, k) log
∑

σ

∫ π

−π

dω

2π
eiωk−iD̂(ξ,σ)e−iω

]}
. (A.5)

We next define z = limN→∞ N−1 logZ (anticipating this limit to exist), which allows us to
evaluate f by the steepest descent:

fA = lim
n→0

1

n
extr{D,D̂}fn,A[{D, D̂}] (A.6)

fn,A[. . .] = − 1

β

{
i
∑
ξσ

D̂(ξ, σ)D(ξ, σ) − 1

2
〈k〉 − z

+
1

2
〈k〉

∑
ξξ ′

∑
σσ′

D(ξ, σ)D(ξ ′, σ′)
∫

dJP (J ) eβJξξ ′σ·σ′

+
∑
ξk

p(ξ, k) log
∑

σ

∫ π

−π

dω

2π
eiωk−iD̂(ξ,σ)e−iω

}
. (A.7)

Extremization (A.7) with respect to {D, D̂} gives the saddle-point equations

D̂(ξ, σ) = i〈k〉
∑
ξ ′

∑
σ′

D(ξ ′, σ′)
∫

dJP (J ) eβJξξ ′σ·σ′
(A.8)
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D(ξ, σ) =
∑

k

p(ξ, k)

∫ π

−π
dω eiω(k−1)−iD̂(ξ,σ)e−iω∑

σ′
∫ π

−π
dω eiωk−iD̂(ξ,σ′)e−iω

. (A.9)

The second of these equations is simplified using the identity∫ π

−π

dω eiω�−iD̂(ξ,σ)e−iω =
{

2π [−iD̂(ξ, σ)]�/�! if � � 0
0 if � < 0.

(A.10)

So, if we also re-define D̂(ξ, σ) = i〈k〉F(ξ, σ), we arrive at

F(ξ, σ) =
∑
ξ ′

∑
σ′

D(ξ ′, σ′)
∫

dJP (J ) eβJξξ ′σ·σ′
(A.11)

D(ξ, σ) =
∑
k>0

p(ξ, k)
k

〈k〉
Fk−1(ξ, σ)∑
σ′ Fk(ξ, σ′)

. (A.12)

We note that
∑

ξ

∑
σ D(ξ, σ)F (ξ, σ) = 1 at the saddle-point. The term z =

limN→∞ N−1 logZ measures the number of graphs in the ensemble. It follows from
limβ→0(βf ) = − log 2, giving z = 〈k〉 log〈k〉 − 〈k〉 − ∑

k p(k) log k!, and hence

fA = − lim
n→0

1

βn

∑
ξk

p(ξ, k) log

[∑
σ

Fk(ξ, σ)

]
. (A.13)

A.2. Replica symmetric theory

To take the required limit n → 0 in our formulae we make the replica-symmetric (RS) ansatz.
The order parameter D(ξ, σ) must now be invariant under all replica permutations, and thus
have the following form:

D(ξ, σ) =
∫

dhD(ξ, h)
eβh

∑
α σα

[2 cosh(βh)]n
. (A.14)

Via equations (A.11), (A.12) one then finds a similar structure for F(k, σ)

F (ξ, σ) =
∫

dhF(ξ, h)eβh
∑

α σα (A.15)

and in the limit n → 0, after some standard manipulations, a closed set of transparent equations
for the RS order parameters D(ξ, h) and F(ξ, h):

F(ξ, h) =
∑
ξ ′

∫
dh′ dJ D(ξ ′, h′)P (J )δ

[
h − 1

β
atanh[tanh(βJ ξξ ′) tanh(βh′)]

]
(A.16)

D(ξ, h) =
∑

k

p(ξ, k)
k

〈k〉

∫ ∏
�<k[dh� F (ξ, h�)]δ

[
h − ∑

�<k h�

]
[ ∫

dh′F(ξ, h′)
]k

. (A.17)

We note upon integrating and combining these equations that
∫

dhF(ξ, h) =∑
ξ ′

∫
dh D(ξ ′, h) = 1. This enables us to write F(ξ, h) = F(h|ξ) with

∫
dh F(h|ξ) = 1,

which gives immediate probabilistic interpretations of the functions F(h|ξ). Upon eliminating
D(ξ, h) the RS saddle-point equations then take the new form

F(h|ξ) =
∑
kξ ′

p(ξ ′, k)
k

〈k〉
∫

dJP (J )

∫ ∏
�<k

[dh� F (h�|ξ ′)]

× δ

[
h − 1

β
atanh

[
tanh(βJ ξξ ′) tanh

(
β

∑
�<k

h�

)]]
. (A.18)
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Clearly F(h|0) = δ(h). To identify the relevant observables and calculate for σ ∈ {−1, 1}n
the quantity P(ξ, k, σ) = limN→∞ N−1 ∑

i 〈δξ,ξi
δk,ki

δσ,σi
〉 one uses the alternative form of

the replica identity, namely

〈g(σ)〉 =
[∑

σ g(σ)e−βH(σ)∑
σ e−βH(σ)

]
= lim

n→0

∑
σ1...σn

g(σ 1)e−β
∑n

α=1 H(σα). (A.19)

Upon also making the RS ansatz this results in

PRS(ξ, k, σ) = p(ξ, k)

∫
dh W(h|ξ, k)

eβh
∑

α σα

[2 cosh(βh)]n
(A.20)

W(h|ξ, k) =
∫ ∏

��k

[dh� F (h�|ξ)]δ

[
h −

∑
��k

h�

]
. (A.21)

The measure W(h|ξ, k) is the effective field distribution for those sites where (ξi, ki) =
(ξ, k). We note that W(h|0, k) = δ(h). With W(h) = ∑

ξk p(ξ, k)W(h|ξ, k) we

can write the conventional scalar order parameters m = limN→∞ N−1 ∑
i 〈σi〉 and q =

limN→∞ N−1 ∑
i 〈σi〉2 in their familiar forms

m =
∫

dh W(h) tanh(βh), q =
∫

dh W(h) tanh2(βh). (A.22)

The subset of sites with (ξi, ki) = (ξ, k) can be regarded as sublattices in the sense of [30],
and we can define sublattice magnetizations m(ξ, k) via m(ξ, k) = ∫

dh W(h|ξ, k) tanh(βh),
such that m = ∑

ξk p(ξ, k)m(ξ, k). In the limit T → ∞ (i.e. β → 0) the only solution of
(A.18) is as always the trivial paramagnetic (P) one: F(h|ξ) = δ(h). This is a saddle-point at
any temperature, but can become unstable in favour of ferromagnetic (F) or spin-glass (SG)
states as T is lowered.

A.3. Continuous phase transitions away from the paramagnetic state

Continuous bifurcations away from the trivial state are found as usual by expanding (A.18)
in moments of F(h|ξ), assuming the existence of a small parameter ε with 0 < |ε|� 1 such
that

∫
dhh�F (h|ξ) = O(ε�). With some foresight we define a function γ (ξ) and two |�|×|�|

matrices M(�)(β) with entries M
(�)
ξξ ′(β) for � ∈ {1, 2}:

γ (ξ) = 〈k〉−1
∑

k

p(ξ, k)k(k − 1) (A.23)

M
(�)
ξξ ′(β) = γ (ξ ′)

∫
dJP (J ) tanh�(βJ ξξ ′). (A.24)

We define λ(�)
max(β) as the largest eigenvalue of M(�)(β). If the first order to bifurcate away

from F(h|ξ) = δ(h) is ε1, the bifurcation is towards a state where m �= 0, i.e. describing
a P→F transition. Upon multiplying both sides of (A.18) by h and integrating over h, the
bifurcation condition for this is found to be

P → F: λ(1)
max(β) = 1. (A.25)

If instead the first order to bifurcate is ε2, the bifurcating new state has m = 0 and q > 0,
describing a P→SG transition. Upon multiplying both sides of (A.18) by h2 and integrating
over h, the bifurcation condition for this is found to be

P → SG: λ(2)
max(β) = 1. (A.26)
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We focus on a specific simple bond distribution, the binary P(J ) = 1
2 (1 + η)δ(J − J0) +

1
2 (1 − η)δ(J + J0) (with J0 � 0), where the matrices M(�)(β) take the simple form:

M
(1)
ξξ ′ (β) = η tanh(βJ0ξξ ′)γ (ξ ′) M

(2)
ξξ ′ (β) = tanh2(βJ0ξξ ′)γ (ξ ′). (A.27)

Appendix B. Equilibrium analysis for model B

B.1. Derivation of saddle-point equations

The calculation for coupled oscillators is initially very similar to the previous one, with
summations replaced by integrations. The main differences start at the introduction of the
replica-symmetry ansatz; from then onwards, we have to implement appropriate adaptations
of the calculation for XY spins in [29] (an alternative route would be to adapt the cavity-based
analysis in [31]). As before we write degree constraints in the integral form, and we introduce
the short-hands θi = (θ1

i , . . . , θn
i ) ∈ [−π, π ]n so that

fB = lim
N→∞

lim
n→0

1

βnN

{
logZ − log

∫ π

−π

dθ1 . . . dθN

∫ π

−π

∏
i

[
dωi

2π
eiωiki

]

× exp

[
〈k〉
2N

∑
ij

[ ∫
dJP (J ) eβJξiξj

∑
α cos(θα

i −θα
j )−i(ωi+ωj ) − 1

]
+ O(N0)

]}
. (B.1)

We next introduce for θ ∈ [−π, π ]n and ξ ∈ {0, 1} the functions D(ξ, θ|{θi , ωi, ξi}) =
N−1 ∑

i δξ,ξi
δ[θ, θi] e−iωi , via the substitution of functional integrals over appropriate

δ-distributions, written in the integral form. With the short hand {dD dD̂} =∏
ξ,θ D(ξ, θ) dD̂(ξ, θ), we then obtain an expression in the form of the path integral:

fB = lim
N→∞

lim
n→0

1

βnN

{
logZ − log

∫
{dD dD̂} eiN

∑
ξ

∫
dθD̂(ξ,θ)D(ξ,θ)− 1

2 N〈k〉+O(log N)

× exp

[
1

2
〈k〉N

∑
ξξ ′

∫
dθ dθ′D(ξ, θ)D(ξ ′, θ′)

∫
dJP (J ) eβJξξ ′ ∑

α cos(θα−θ ′
α)

]

× exp

[
N

∑
ξk

p(ξ, k) log
∫ π

−π

dθ

∫ π

−π

dω

2π
eiωk−iD̂(ξ,θ)e−iω

]}
. (B.2)

With z = limN→∞ N−1 logZN = 〈k〉 log〈k〉 − 〈k〉 − ∑
k p(k) log k! (which has already been

calculated earlier), we evaluate f by the steepest descent:

fB = lim
n→0

1

n
extr{D,D̂}fn,B[{D, D̂}] (B.3)

fn,B [. . .] = − 1

β

{
i
∑

ξ

∫
dθD̂(ξ, θ)D(ξ, θ) − 1

2
〈k〉 − z

+
1

2
〈k〉

∑
ξξ ′

∫
dθ dθ′D(ξ, θ)D(ξ ′, θ′)

∫
dJP (J ) eβJξξ ′ ∑

α cos(θα−θ ′
α)

+
∑
ξk

p(ξ, k) log
∫ π

−π

dθ

∫ π

−π

dω

2π
eiωk−iD̂(ξ,θ)e−iω

}
. (B.4)
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Functional variation of (B.3) with respect to {D, D̂}, followed by application of (A.10) and
transformation via D̂(ξ, θ) = i〈k〉F(ξ, θ), gives the saddle-point equations

F(ξ, θ) =
∑
ξ ′

∫
dθ′D(ξ ′, θ′)

∫
dJP (J ) eβJξξ ′ ∑

α cos(θα−θ ′
α) (B.5)

D(ξ, θ) =
∑
k>0

p(ξ, k)
k

〈k〉
Fk−1(ξ, θ)∫
dθ′Fk(ξ, θ′)

. (B.6)

Again
∑

ξ

∫
dθ D(ξ, θ)F (ξ, θ) = 1 at the saddle-point, and we obtain

fB = − lim
n→0

1

βn

∑
ξk

p(ξ, k) log

[ ∫
dθFk(ξ, θ)

]
. (B.7)

B.2. Replica symmetric theory

For real-valued variables the replica-symmetric ansatz is less straightforward. Permutation
invariance with respect to θ components now implies that D(ξ, θ) and F(ξ, θ) are functional
integrals over the space of normalized functions P : [−π, π ] → IR (i.e.

∫ π

−π
dθP (θ) = 1),

with functional measures WD[ξ, {P }] and WF [ξ, {P }]:

D(ξ, θ) =
∫

{dP }WD[ξ, {P }]
∏
α

P (θα) (B.8)

F(ξ, θ) =
∫

{dP }WF [ξ, {P }]
∏
α

P (θα) (B.9)

(we may use the same symbol P as employed to define the bond probabilities via P(J );
the arguments will always prevent ambiguity). Insertion of (B.8), (B.9) into the two
equations (B.5), (B.6) then gives, in the limit n → 0 and after some manipulations, the
following closed equations for the RS measures WD[ξ, {P }] and WF [ξ, {P }]:

WF [ξ, {P }] =
∑
ξ ′

∫
{dP ′}WD[ξ ′, {P ′}]

∫
dJP (J )

×
∏
θ

δ

[
P(θ) −

∫
dθ ′eβJξξ ′ cos(θ−θ ′)P ′(θ ′)

2πI0(βJ ξξ ′)

]
(B.10)

WD[ξ, {P }] =
∑
k>0

p(ξ, k)k/〈k〉[ ∫{dP ′}WF [ξ, {P ′}]]k

∫ ∏
�<k

[{dP�}WF [ξ, {P�}]]

×
∏
θ

δ

[
P(θ) −

∏
�<k P�(θ)∫

dθ ′ ∏
�<k P�(θ ′)

]
. (B.11)

Functional integration of both equations over P shows that
∫ {dP }WF [ξ, {P }] =∑

ξ ′
∫ {dP }WD[ξ ′, {P }] = 1. This allows us to write WF [ξ, {P }] = WF [{P }|ξ ] with∫ {dP }WF [{P }|ξ ] = 1, which also allows here for probabilistic interpretations of the

order parameters WF [ξ, {P }], which are now functionals acting on the space of probability
distributions over the interval [−π, π ]. Upon eliminating WD[ξ, {P }], the RS saddle-point
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equations then take the following form (where θ, θ ′ ∈ [−π, π ]):

WF [{P }|ξ ] =
∑
kξ ′

p(ξ ′, k)
k

〈k〉
∫

dJP (J )

∫ ∏
�<k

[{dP�}WF [{P�}|ξ ′]]

×
∏
θ

δ

[
P(θ) −

∫
dθ ′eβJξξ ′ cos(θ−θ ′) ∏

�<k P�(θ
′)

2πI0(βJ ξξ ′)
∫

dθ ′ ∏
�<k P�(θ ′)

]
. (B.12)

We observe that WF [{P }|0] = ∏
θ δ[P(θ) − (2π)−1]. To identify the physical

meaning of our observables we define and calculate the quantity P(ξ, k, θ) =
limN→∞ N−1 ∑

i 〈δξ,ξi
δk,ki

δ[θ, θi]〉. Within the RS ansatz it is found to be

PRS(ξ, k, θ) = p(ξ, k)

∫
{dP }W [{P }|ξ, k]

∏
α

P (θα) (B.13)

W [{P }|ξ, k] =
∫ ∏

��k

[{dP�}WF [{P�}|ξ ]]
∏
θ

δ

[
P(θ) −

∏
��k P�(θ)∫

dθ ′ ∏
��k P�(θ ′)

]
. (B.14)

The functional measure W [{P }|ξ, k] generalizes the concept of an effective field to
an ‘effective’ angle distribution of those oscillators with (ξi, ki) = (ξ, k). Note that
W [{P }|0, k] = ∏

θ δ[P(θ) − (2π)−1]. With W [{P }] = ∑
ξk p(ξ, k)W [{P }|ξ, k] we can

write the conventional types of scalar-order parameters in a compact form:

lim
N→∞

1

N

∑
i

〈f (θi)〉 =
∫

{dP }W [{P }]
∫ π

−π

dθP (θ)f (θ) (B.15)

lim
N→∞

1

N

∑
i

〈f (θi)〉〈g(θi)〉 =
∫

{dP }W [{P }]
[∫ π

−π

dθP (θ)f (θ)

][∫ π

−π

dθP (θ)g(θ)

]
. (B.16)

For T → ∞ (i.e. β → 0) the only solution of our equations is the trivial P state of fully
random phases θi : WF [{P }|ξ ] = W [{P }|ξ, k] = W [{P }] = ∏

θ δ[P(θ) − (2π)−1], which
solves out equations at any temperature, but will destabilize at some T in favour of ordered
states with (partially) frozen relations between the phases of the oscillators.

B.3. Continuous phase transitions away from the incoherent state

To find continuous bifurcations away from the incoherent (P) state one has to carry out a
Guzai expansion [29] of the functional order parameter equations (B.12) around the solution
WF [{P }|ξ ] = ∏

θ δ[P(θ) − (2π)−1]. This will involve the modified Bessel functions Im(z)

[32]. One writes P(θ)= (2π)−1 + �(θ) and WF [{P }|ξ ]→W̃ [{�}|ξ ], with W̃ [{�}|ξ ] = 0 as
soon as

∫ π

−π
dθ�(θ) �= 0 and one expands (B.12) in �(θ):

W̃ [{�}|ξ ] =
∑
kξ ′

p(ξ ′, k)
k

〈k〉
∫

dJP (J )

∫ ∏
�<k

[
{d��}W̃ [{��}|ξ ′]

]

×
∏
θ

δ

[
�(θ) − 1

2πI0(βJ ξξ ′)

∑
�<k

∫
dθ ′eβJξξ ′ cos(θ−θ ′)��(θ

′)

− 1

2

k−1∑
� �=�′

∫
dθ ′

(
eβJξξ ′ cos(θ−θ ′)

I0(βJ ξξ ′)
− 1

)
��(θ

′)��′(θ ′) + O(�3)

]
. (B.17)

We next evaluate functional moments of both sides of this equation. If the first bifurcation
away from the P state is of order �, we multiply by �(θ) and integrate (functionally) over all
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�, leading to an eigenvalue problem for the functions �ξ(θ) = ∫ {d�}W̃ [{�}|ξ ]�(θ) subject
to the constraint

∫ π

−π
dθ �ξ (θ) = 0:

�ξ(θ) =
∑
ξ ′

γ (ξ ′)
∫

dJP (J )

I0(βJ ξξ ′)

∫ π

−π

dθ ′

2π
eβJξξ ′ cos(θ−θ ′)�ξ ′(θ ′) (B.18)

with γ (ξ) as defined in (A.23). The solutions are of the form �ξ(θ) = ψ(ξ)eimθ , with
m ∈ {1, 2, 3, . . .} and with ψ(ξ) to be solved from the eigenvalue equation

O(�) bifurcations: ψ(ξ) =
∑
ξ ′

( ∫
dJP (J )

Im(βJξξ ′)
I0(βJ ξξ ′)

)
γ (ξ ′)ψ(ξ ′). (B.19)

For m = 1 the bifurcating state (F) is one where the oscillators synchronize (partly) to a
preferred overall phase, whereas for m > 1 the transition is towards a state with non-uniform
phase statistics but without global synchronization [29].

If the first bifurcation away from the P state is of order �2 rather than �,
so

∫ {d�}W̃ [{�}|ξ ]�(θ) = 0, we multiply (B.17) by �(θ1)�(θ2) and integrate over
all functions �, leading to an eigenvalue problem for the function �ξ(θ1, θ2) =∫ {d�}W̃ [{�}|ξ ]�(θ1)�(θ2) subject to

∫ π

−π
dθ1 �ξ(θ1, θ2) = ∫ π

−π
dθ2 �ξ(θ1, θ2) = 0:

�ξ(θ1, θ2) =
∑
ξ ′

γ (ξ ′)
∫

dJ P (J )

I 2
0 (βJ ξξ ′)

∫ π

−π

dθ ′
1 dθ ′

2

4π2
eβJξξ ′[cos(θ1−θ ′

1)+cos(θ2−θ ′
2)]�ξ ′(θ ′

1, θ
′
2). (B.20)

The solutions are of the form �ξ(θ1, θ2) = ψ(ξ) ei(m1θ1+m2θ2) with m1,2 ∈ {1, 2, 3, . . .},
representing new states with ‘frozen’ local phase ordering but no global synchronization,
i.e. spin-glass-type states (SG), each bifurcating when

O(�2) bifurcations: ψ(ξ) =
∑
ξ ′

( ∫
dJ P (J )

Im1(βJ ξξ ′)Im2(βJ ξξ ′)
I 2

0 (βJ ξξ ′)

)
γ (ξ ′)ψ(ξ ′).

(B.21)

The right-hand sides of both (B.19) and (B.21) vanish at β = 0, so the transitions
correspond to the smallest β such that solutions of (B.19) and (B.21) exist. Hence, we
need the maxima of the right-hand sides over m and (m1,m2), respectively. The properties
of the modified Bessel functions (see e.g. [29]) ensure that these maxima are found for
m = 1 and (m1,m2) = (1, 1). Finally, if we again choose the bond distribution P(J ) =
1
2 (1 + η)δ(J − J0) + 1

2 (1 − η)δ(J + J0), the bifurcation conditions can once more be written
in the form (A.25), (A.26), but where in the case of coupled oscillators the largest eigenvalues
λ(1)

max and λ(2)
max refer to the following matrices:

M
(1)
ξξ ′ (β) = η

I1(βJ0ξξ ′)
I0(βJ ξξ ′)

γ (ξ ′), M
(2)
ξξ ′ (β) = I 2

1 (βJ0ξξ ′)
I 2

0 (βJ0ξξ ′)
γ (ξ ′). (B.22)

Comparison with (A.27) shows that, inasmuch as the location of the transition lines away
from the P state is concerned, the differences between having interacting Ising spins or
coupled oscillators on the nodes of the network are accounted for by the simple substitution
tanh(z) → I1(z)/I0(z) in the relevant remaining eigenvalue problem.
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[31] Skantzos S, Pérez Castillo I and Hatchett J P L 2005 Phys. Rev. E 72 066127
[32] Menzel D H 1960 Fundamental Formulas of Physics vol 1 (New York: Dover)

28

http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevLett.85.5468
http://dx.doi.org/10.1103/PhysRevLett.85.4626
http://dx.doi.org/10.1088/1751-8113/41/14/145002
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevE.63.066117
http://dx.doi.org/10.1126/science.1061076
http://dx.doi.org/10.1038/nmeth.1279
http://dx.doi.org/10.1186/gb-2007-8-7-r130
http://dx.doi.org/10.1101/gr.4527806
http://dx.doi.org/10.1093/nar/gkn892
http://dx.doi.org/10.1073/pnas.061034498
http://www.arxiv.org/abs/cond-mat/9805137
http://dx.doi.org/10.1088/1751-8113/42/48/485001
http://dx.doi.org/10.1103/PhysRevE.78.016114
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://dx.doi.org/10.1140/epjb/e2004-00112-3
http://dx.doi.org/10.1016/S1389-1286(00)00083-9
http://dx.doi.org/10.1088/1751-8113/41/25/255003
http://dx.doi.org/10.1088/0305-4470/38/39/001
http://dx.doi.org/10.1088/0305-4470/36/37/302
http://dx.doi.org/10.1103/PhysRevE.72.066127

	1. Introduction
	2. Definitions
	2.1. Processes, supporting networks and constrained attack variables
	2.2. Quantifying process integrity and optimal attack and defence strategies

	3. The process integrity measure
	3.1. Tests and bounds for critical temperatures
	3.2. Explicit simple
	3.3. Bounds on the process integrity measure

	4. Optimal attack and optimal defence
	4.1. Construction of the optimal attack strategy
	4.2. Properties of the optimal attack strategy

	5. Numerical results
	5.1. General methods
	5.2. Degree statistics before and after network optimization
	5.3. Values of process integrity measures before and after attacks
	5.4. Connection with results of previous studies---fraction of removed nodes
	5.5. Misinformation

	6. Discussion
	Acknowledgment
	Appendix A. Equilibrium analysis for model A
	A.1. Derivation of saddle-point equations
	A.2. Replica symmetric theory
	A.3. Continuous phase transitions away from the paramagnetic state

	Appendix B. Equilibrium analysis for model B
	B.1. Derivation of saddle-point equations
	B.2. Replica symmetric theory
	B.3. Continuous phase transitions away from the incoherent state

	References

