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Abstract— We define the routing capacity of a network to be
the supremum of all possible fractional message throughputs
achievable by routing. We prove that the routing capacity of every
network is achievable and rational, we present an algorithm for
its computation, and we prove that every non-negative rational
number is the routing capacity of some network. We also
determine the routing capacity for various example networks.
Finally, we discuss the extension of routing capacity to fractional
coding solutions and show that the coding capacity of a network
is independent of the alphabet used.

I. INTRODUCTION

A network is a directed acyclic graph, together with non-
empty sets of source nodes, sink nodes, source node messages,
and sink node demands. Each message is an arbitrary element
of a fixed finite alphabet and is associated with exactly one
source node, and each demand at a sink node is a specification
of a specific source message that needs to be obtainable at the
sink. A network is degenerate if there exists a source message
demanded at a particular sink, but no directed path through
the graph from the source to the sink.

Each edge in a network carries a vector of symbols from
some alphabet. The maximum dimension of these vectors is
called the edge capacity. For a given finite alphabet, an edge
function is a mapping, associated with a particular edge

� � � � �
,

which takes as inputs the edge vector carried on each in-edge
to the node

�
and the source messages generated at node

�
,

and produces an output vector to be carried on the edge
� � � � �

.
A decoding function is a mapping, associated with a message
demanded at a sink, which takes as inputs the edge vector
carried on each in-edge to the sink and the source messages
generated at the sink, and produces an output vector hopefully
equal to the demanded message.

A solution to a network for a given alphabet is an assign-
ment of edge functions to a subset of edges and an assignment
of decoding functions to all sinks in the network, such that
each sink node obtains all of its demands. A network is
solvable if it has a solution for some alphabet. A network
solution is a vector routing solution if every edge function
is defined so that each component of its output is copied
from a (fixed) component of one of its inputs. A network
solution is a vector linear solution if every edge function is
a linear combination of in-edge vectors, with the coefficients
being matrices. A solution is reducible if it has at least one
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ent of an edge function which, when removed, still
solution.� � �

fractional routing solution of a network is a vector
solution that uses messages with



components and

ith capacity
�

. Note that if a network is solvable then
have a (coding) solution with


 � � � �
. A

� 
 � � �
al routing solution is minimal if it is not reducible and� � � �

fractional routing solution exists for any
� � � �

.
ratio


 � �
in a

� 
 � � �
fractional routing solution quanti-

capacity of the solution and the rational number

 � �

to be an achievable routing rate of the network. Define! � # % ' ) + %
is an achievable routing rate - /

ting capacity of a network is the quantity 0 � 2 3 5 !
.

uting capacity is said to be achievable if it is an
ble routing rate.
known that if a network has a vector routing solution,
does not necessarily have a scalar routing solution.

ly, if a network has a vector linear solution, then it does
essarily have a scalar linear solution [5]. It was noted
hat for some networks, the size of the alphabet needed
lution can be significantly reduced if the solution does
rate at the full capacity of the network. In particular,
monstrated that, for certain networks, fractional coding
ieve a solution where the ratio of edge capacity

�
to

e vector dimension



is an arbitrarily small amount
ne. This paper considers examples and achievability of

k routing capacity, and briefly discusses network coding
y. All proofs and derivations are omitted throughout due
e limitations.1

ROUTING CAPACITY OF EXAMPLE NETWORKS

first present the routing capacity of some example
ks. Let



be the dimension of the messages and let

e capacity of the edges. Critical edges are labeled to
trate a fractional routing solution which achieves the
capacity.
ple 2.1: (See Figure 1.)
ple 2.2: (See Figure 2.)
ple 2.3: (See Figure 3.) The network 6 8 contains a

ence [2] is a full length version of this paper, complete with proofs,
ailable on-line at http://code.ucsd.edu/zeger/pubs.html .
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Fig. 1. The multicast network � � whose routing capacity is � � � .
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Fig. 2. The network � 	 whose routing capacity is 
 �  .

single source
� �

with � messages. The second layer of the
network consists of � nodes, each connected to the source
via a single edge. The third layer consists of � � � � nodes, each
receiving a distinct set of � in-edges from the second layer.
Each third layer node demands all messages. The network is
linearly solvable if and only if � � � (since the network is
multicast and the minimum cut size is � for each sink node
[4]).

Example 2.4: (See Figure 4.) This network, due to R.
Koetter, was used by Médard et al. [5] to demonstrate that
there exists a network with no scalar linear solution but with
a vector linear solution.

III. ROUTING CAPACITY ACHIEVABILITY

We now consider the achievability of network routing capac-
ity. Consider a network and its associated graph � � � � � � �

,
sources  , messages ! , and sinks " . For each message # , we
say that a directed subgraph of � is an # -tree if the subgraph
has exactly one directed path from the source emitting # to
each destination node which demands # , and the subgraph is
minimal with respect to this property. For each message # , let$ � # �

denote the number of # -trees. For a given network and
for each message # , let % '� � % ') � � � � � % '* + ' - be an enumeration
of all the # -trees in the network.
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is a message and ? is the unique index in a minimal
ractional routing solution such that every edge carrying
onent @ B appears in % 'D , then we say the # -tree % 'D
the message component @ B . Such a tree is guaranteed
since each message component must be routed from its
to every destination node demanding the message, and
imality of the solution ensures that the edges carrying

ssage form an # -tree.
and F are distinct messages and % 'B and % GD are

ically the same directed subgraph of the network, then
e the convention that % 'B I� % GD . That is, such trees are

ined by their topology together with their associated
e.
te by % B the K L N tree in some fixed ordering of the setO

' Q S
� % '� � � � � � % '* + ' - 

ne the following index sets:T � # � � � K � % B is an # -tree U � V � � � K � % B contains edge
V  �

hat the sets
T � # �

and
U � V �

are determined by the
k, rather than by any particular solution to the network.



Denote the total number of trees � � by
� � �

� � �
� � � �

.
We refer to the following four conditions as the network
inequalities associated with a given network:�

� � � 	 � �

� � � � � 
 � � � �

�
� � � 	  �

� �  � � 
 � � � �

�  � �  �
�  �  �

where
� � � � � � � � � � � are real variables. If a solution� � � � � � � � � � � � �

to the network inequalities has all rational
components, then it is said to be a rational solution.

Lemma 3.1: If a non-degenerate network has a minimal
fractional routing solution with achievable routing rate

	 � �
,

then the network inequalities have a rational solution with
� � � 
 	

.
Lemma 3.2: If the network inequalities corresponding to a

non-degenerate network have a rational solution with � � �
,

then there exists a fractional routing solution to the network
with achievable routing rate

� 
 � .
We use the network inequalities to prove that the routing

capacity of a network is achievable. To prove this property,
the network inequalities are viewed as a set of equations in� � �

variables,
� � � � � � � � � � � , which one can attempt to solve.

By formulating a linear program, it is possible to determine a
fractional routing solution to the network which achieves the
routing capacity.

Theorem 3.3: The routing capacity of every non-degenerate
network is achievable.

Corollary 3.4: The routing capacity of every network is
rational.

Corollary 3.5: There exists an algorithm for determining
the routing capacity of a network.

Theorem 3.6: For each rational
	 � �

there exists a solvable
network with routing capacity

	
.

IV. CODING CAPACITY

The concept of the routing capacity of a network is now
generalized to the coding capacity of a network. A

� � � � �
fractional coding solution of a network is a coding solution
that uses messages with

�
components and edges with capacity�

. If a network has a
� � � � �

fractional coding solution, then
the rational number

� 
 �
is said to be an achievable coding

rate. The coding capacity is then defined to be
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� � � � � 	 � � � 	
is an achievable coding rate � �

� � �
fractional coding solution uses only linear coding,�

is an achievable linear coding rate and we define
ar coding capacity to be

� � � � 	 � � � 	
is an achievable linear coding rate � �

rly, for a given alphabet, the coding capacity of a
k is always greater than or equal to the linear coding
y. Also, if a network is solvable (i.e. with

� � �
),

e coding capacity is greater than or equal to 1, since� 
 �
is an achievable coding rate. Similarly, if a network

rly solvable, then the linear coding capacity is greater
equal to 1.
ple 4.1: As considered in Example 2.1, the network
routing capacity " � � 
 �

. We can show that both the
and linear coding capacities are equal to 1, which is
greater than the routing capacity.
that unlike fractional routing solutions, fractional cod-

utions must be considered in the context of a specific
t. Indeed, the linear coding capacity in general depends
alphabet [3]. However, the following theorem can be

.
rem 4.2: The coding capacity of any network is inde-
t of the alphabet used.
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