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ABSTRACT
Path vector protocols are currently in the limelight, mainly
because the inter-domain routing protocol of the Internet,
BGP (Border Gateway Protocol), belongs to this class. In
this paper, we cast the operation of path vector protocols
into a broad algebraic framework and relate the convergence
of the protocol, and the characteristics of the paths to which
it converges, with the monotonicity and isotonicity proper-
ties of its path compositional operation. Here, monotonicity
means that the weight of a path cannot decrease when it is
extended, and isotonicity means that the relationship be-
tween the weights of any two paths with the same origin
is preserved when both are extended to the same node. We
show that path vector protocols can be made to converge for
every network if and only if the algebra is monotone, and
that the resulting paths selected by the nodes are optimal if
and only if the algebra is isotone as well.
Many practical conclusions can be drawn from instances

of the generic algebra. For performance-oriented routing,
typical in intra-domain routing, we conclude that path vec-
tor protocols can be made to converge to widest or widest-
shortest paths, but that the composite metric of IGRP (In-
terior Gateway Protocol), for example, does not guarantee
convergence to optimal paths. For policy-based routing, typ-
ical in inter-domain routing, we formulate existing guide-
lines as instances of the generic algebra and we propose new
ones. We also show how a particular instance of the alge-
bra yields a sufficient condition for signaling correctness of
internal BGP.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—routing protocols

General Terms
Algorithms, Theory
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1. INTRODUCTION
Path vector protocols have recently attracted much atten-

tion, mostly because the only protocol for inter-domain rout-
ing in the Internet, BGP (Border Gateway Protocol) [13, 16,
9], belongs to this class of protocols. Other protocols seem
to follow suit, such as those for optical inter-networking [1]
and telephony routing over IP [14].
We feel that current analysis of path vector protocols have

been too tied to the specifics of particular systems hindering
a broad understanding of what can and cannot be accom-
plished with those protocols in terms of convergence and
characteristics of the paths the protocols converge to. In
this work, we provide a modern algebraic theory of path
vector protocols. The algebra comprises a set of labels, a
set of signatures, and a set of weights. There is an op-
eration to obtain the signature of a path from the labels
of its constituent links, and a function mapping signatures
into weights. Ultimately, each path will have a weight, and
these weights are ordered so that any set of paths with the
same origin and destination can be compared. The concept
of optimal path follows naturally from this framework, and
we adjoin it with the more general concept of local-optimal
path.
The challenge in this approach is to find exactly the prim-

itive properties that should be imposed on the algebra so
that definite and general statements about protocol conver-
gence can be made. Monotonicity and isotonicity are the
two such properties. Monotonicity means that the weight of
a path does not decrease when it is extended, and isotonic-
ity means that the relationship between the weights of any
two paths with the same origin is preserved when both are
extended to the same node. We conclude that path vector
protocols can be made to converge robustly, for every net-
work, if and only if the algebra is monotone. In this case,
the set of paths the protocol converges to are local-optimal
paths. The local-optimal paths become optimal paths if and
only if the algebra is isotone as well as monotone.
Many applications can be drawn from the general theory.

For environments where routing performance is the main
concern, we conclude, for example, that path vector pro-
tocols can be used to make packets travel over widest or
widest-shortest paths, but that the composite metric used
by IGRP (Interior Gateway Routing Protocol) [2] does not
make them travel over optimal paths. The most immediate
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practical application of the generic framework, however, is
to policy-based routing and BGP. We formulate the guide-
lines of Gao and Rexford [4] and Gao, Griffin and Rexford [3]
in algebraic terms, showing that the first can be regarded as
an optimal path problem but the latter cannot. The frame-
work is also used to present new guidelines for policy-based
routing with BGP, to discuss QoS (Quality-of-Service) ex-
tensions to BGP [17], and to derive a sufficient condition for
signaling correctness of iBGP (internal BGP).
We discuss related work in the next section. The network

model and some definitions are given in Section 3. The
properties of the algebra and the concepts of optimal and
local-optimal paths are presented in Section 4. The path
vector protocol used as reference appears in Section 5, and
the convergence results are stated and discussed in Section 6.
Section 7 is dedicated to applications and counter-examples,
leaving the proof of the main convergence result to Section 8.
Section 9 discusses the use of the algebraic framework in a
BGP context, just before the paper ends, in Section 10.

2. RELATED WORK
Besides the work on guidelines for policy-based routing

with BGP and QoS extensions to BGP, already referred to
in the introduction, our work relates with two other research
areas: algebras for network routing; convergence of path
vector protocols.
The application of modern algebraic concepts to network

routing problems seems to have been initiated by Sobrinho
[15], with a study on optimal path routing supported on
link-state protocols. The algebra in the present work con-
templates both optimal and local-optimal path routing and
is the one algebra suited to path vector protocols, as opposed
to link-state protocols.
The convergence of generic path vector protocols was first

studied by Griffin, Shepherd, and Wilfong [6, 7] using a com-
binatorial model. In this model, the problem is represented
by sets of ordered paths, one set per node, leading to a
representation whose size may be exponential in the size of
the network. This cardinality is carried through to the size
of the data structures used to verify convergence, exacting
a computational toll on such a verification. The algebraic
model presented here is positioned at a higher level of ab-
straction than the combinatorial model bringing two main
advantages. On the one hand, an algebra provides a seman-
tic context for the design and specification of routing strate-
gies. On the other hand, the monotonicity and isotonicity
of an algebra, properties which can typically be checked at
low computational complexity (see Section 6.3), completely
determine the convergence properties of path vector proto-
cols.

3. NETWORK MODEL AND TERMINOL-
OGY

A network is modelled as a directed graph. Given link
(u, v) in the network, we say that node u is the head of the
link, that node v is an out-neighbor of node u, and that node
u is an in-neighbor of node v. In general, the presence of
link (u, v) in the network means that packets can flow from
u to v and that signaling routing messages may be sent in
the opposite direction, from v to u.
A path is a directed graph with node and link sets of the

form {un, un−1, · · · , u1} and {(un, un−1), · · · , (u2, u1)}, re-
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Figure 1: The dark links represent an in-tree rooted
at node 0.

spectively. This path is represented by unun−1 · · ·u1, with
un and u1 being its origin and destination, respectively.
Given two paths Q and P , if their nodes are distinct ex-
cept for the destination of Q and the origin of P , then their
union is also a path which we denote by Q ◦ P . In par-
ticular, if uv is a path with only two nodes, then the path
uv ◦ P is called the extension of path P to node u. If link
(u1, un) is added to path un · · ·u2u1, we obtain a cycle. This
cycle is represented as unun−1 · · ·u1u0 with the understand-
ing that u0 = un. An in-tree is a directed graph with the
following three properties: there is only one node, called the
root, without out-neighbors; all nodes other than the root
have one and only one out-neighbor; there is a path from
every node to the root. Figure 1 shows an in-tree rooted
at node 0. In-trees are the graph structures one expects to
find when forwarding packets based only on their destination
addresses.

4. ALGEBRA

4.1 Properties
The algebra is a seven-tuple (W,�, L,Σ, φ,⊕, f). It com-

prises a set weights, W , a set of labels, L, and a set of sig-
natures, Σ, with special signature φ. The set of weights is
totally ordered by the relation �. The operation ⊕ has do-
main L×Σ and range Σ, and the function f maps signatures
to weights. Properties of the algebra are given next:

Maximality ∀α∈Σ−{φ} f(α) ≺ f(φ)

Absorption ∀l∈L l ⊕ φ = φ

Monotonicity ∀l∈L∀α∈Σ f(α) � f(l ⊕ α)

Isotonicity ∀l∈L∀α,β∈Σ f(α) � f(β)
⇒ f(l ⊕ α) � f(l ⊕ β)

Maximality and absorption are trivial properties, which
we assume always hold. The interesting properties, on which
we center our study, are monotonicity and isotonicity. Mono-
tonicity is important for convergence of path vector proto-
cols, and the conjunction of monotonicity and isotonicity is
important for convergence to optimal paths.
The relation ≺ is defined such that a ≺ b if a � b and

a �= b, and the relation � is defined such that a � b if
b ≺ a. We make the distinction between monotonicity, as
just defined, and its stronger kin, called strict monotonicity:

Strict monotonicity ∀l∈L∀α∈Σ−{φ} f(α) ≺ f(l ⊕ α)
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4.2 Optimal and local-optimal paths
Each network link carries a label, and each network path

has a signature. The label of link (u, v) is denoted by l(u, v).
The signature of the trivial path composed of node d alone
is denoted by s(d). The signature of the non-trivial path
uv ◦Q is defined inductively as follows:

s(uv ◦Q) = l(u, v)⊕ s(Q).

The operation s is well-defined since path Q has one less
node than path uv ◦Q. We refer to f(s(P )) as the weight of
path P . Monotonicity implies that f(s(P )) � f(s(Q ◦ P )),
that is, the weight of a path cannot decrease when it is
prefixed by another path. On the other hand, isotonicity
yields that f(s(P )) � f(s(R)) implies f(s(Q◦P )) � f(s(Q◦
R)), that is, the weight relationship between two paths with
the same origin is preserved when both are prefixed by a
common, third, path.
A path is usable if its signature is different from φ. An

optimal path from node u to d is a usable path with weight
less than or equal, according to the order �, to the weight of
any other path from u to d. An optimal-paths in-tree rooted
at node d is an in-tree rooted at d which satisfies the next
two conditions:

• if node u belongs to the in-tree, then the only path in
the in-tree from u to d is an optimal path;

• if node u does not belong to the in-tree, then there is
no optimal path from u to d.

Contrary to the concept of optimal path, the concept of
local-optimal path from node u to node d exists only with
respect to a set of paths, each with origin in an out-neighbor
of node u and destination at node d. Let V be a set of such
paths, and let V be the extensions of the paths in V to node
u.

V = {uv ◦ P : P ∈ V, u is not a node of P}.
A local-optimal path with respect to the set V is a usable
path of V with weight less than or equal to the weight of
any other path in V . Given an in-tree rooted at node d, Td,
we define Vu(Td) as the set of in-tree paths which have an
out-neighbor of node u for origin and node d for destination.
For instance, in the in-tree T0 of Figure 1, we have V1(T0) =
{0, 3 0, 4 1 3 0}. The in-tree Td is a local-optimal-paths
in-tree if it satisfies the next two conditions:

• if node u belongs to the in-tree, then the only path
in the in-tree from u to d is a local-optimal path with
respect to Vu(Td);

• if node u does not belong to the in-tree, then there
is no local-optimal path from u to d with respect to
Vu(Td).

So, in a local-optimal-paths in-tree, the in-tree path from
node u to the destination is local-optimal with respect to
the in-tree paths with origin at the out-neighbors of node u.
We will now establish that, given a monotonic algebra,

a local-optimal-paths in-tree is an optimal-paths in-tree if
and if the algebra is isotone. First, we need the following
proposition.

Proposition 1. If the algebra is isotone as well as mono-
tone, then there is an optimal path from node u to node d
such that all of its subpaths with destination at d are optimal
paths on their own.

Proof. We sketch a proof by contradiction. Suppose the
algebra is both monotone and isotone and that for every
path from u to d there is a node along this path such that
the subpath with origin at that node and destination at d is
not an optimal path. Let u1u2 · · ·uk ◦P be an optimal path
from u = u1 to d for which u1u2 · · ·uk is a maximal subpath
(i.e., k is maximal) such that the subpath with origin at ui,
1 ≤ i < k, and destination at d is an optimal path, but
the path P , with origin at uk and destination at d, is not.
Clearly, uk �= d. Let ukuk+1 ◦ Q be an optimal path from
uk to d. From monotonicity, node ui, 1 ≤ i < k, cannot be
a node of Q. Hence, we can form the path u1u2 · · ·ukuk+1 ◦
Q. From isotonicity and f(s(ukuk+1 ◦ Q)) ≺ f(s(P )), we
conclude that f(s(ui · · ·ukuk+1 ◦ Q)) � f(s(ui · · ·uk ◦ P ))
for 1 ≤ i < k: the subpath ui · · ·ukuk+1 ◦Q is optimal. By
hypothesis so is subpath ukuk+1 ◦ Q, and this contradicts
the choice of path u1u2 · · ·uk ◦ P .

Proposition 2. Given a monotonic algebra, every local-
optimal-paths in-tree is an optimal-paths in-tree if and only
if the algebra is isotone.

Proof. We first show the direct implication. Suppose
that Td is a local-optimal-paths in-tree rooted at d which is
not an optimal-paths in-tree. Then, there is a node u with
an optimal path to d such that either u does not belong to Td

or the unique path in Td from u to d is not an optimal path.
Let unun−1 · · · u1, with un = u and u1 = d, be an optimal
path from u to d such that all of its subpaths with destina-
tion d are also optimal paths. The existence of this path is
assured by Proposition 1. For every k such that uk belongs
to in-tree Td, let Pk be the path in the in-tree from uk to d.
Let i, i > 1, be the smallest index such that either ui does
not belong to Td or Pi is not an optimal path. In the lat-
ter case, we have f(s(uiui−1 · · ·u1)) ≺ f(s(Pi)). Both Pi−1

and ui−1 · · ·u1 are optimal paths, Pi−1 ∈ Vui(Td) and, from
monotonicity, Pi−1 does not contain ui. From isotonicity,
f(s(ui−1 · · ·u1)) = f(s(Pi−1)) implies f(s(uiui−1 · · · u1)) =
f(s(uiui−1 ◦ Pi−1)). In particular, s(uiui−1 ◦ Pi−1) �= φ,
so that node ui has to belong Td. But then f(s(uiui−1 ◦
Pi−1)) ≺ f(s(Pi)) which contradicts the assumption of Pi

being a local-optimal-path with respect to Vui(Td). In con-
clusion, Td is an optimal-paths in-tree.
We show the converse statement with the help of Fig-

ure 2. If the algebra is not isotone, then there are l ∈ L and
α, β ∈ Σ such that f(α) � f(β) but f(l ⊕ α) � f(l ⊕ β). In
Figure 2, path P has signature α, path Q has signature β,
and link (u, v) has label l. The in-tree that contains path
P to the disadvantage of path Q is a local-optimal-paths
in-tree because f(s(P )) = f(α) � f(β) = f(s(Q)). As
a consequence, the path in the local-optimal-paths in-tree
from u to d is path uv ◦ P , if any. However, that is not an
optimal path from u to d, since f(s(uv ◦ P )) = f(l ⊕ α) �
f(l ⊕ β) = f(s(uv ◦Q)).
In Section 7, we will present examples of algebras which

are monotone but not isotone, for which local-optimal-paths
in-trees are not necessarily optimal-paths in-trees.

5. PATH VECTOR PROTOCOL
Given a destination, each node participating in a path

vector protocol chooses, at any given time, a local-optimal
path with respect to the paths last learned from each of its
out-neighbors to reach the destination. If there is more than
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l(u,v)=l       s(P)=        s(Q)=

Figure 2: Thick lines represent paths and thin lines
represent links. Suppose that f(α) � f(β), but f(l ⊕
α) � f(l ⊕ β). Then, the local-optimal-paths in-tree
rooted at d that contains path P , and not path Q, is
not an optimal-paths in-tree rooted at d.

one local-optimal path, the node deterministically chooses
one of them. We assume that the relative preference given to
paths with the same origin, destination, and weight totally
orders those paths.
Algorithm 1 presents representative path vector protocol

code for node u to reach destination d. This code is executed
atomically when node u receives a signaling routing message
from its out-neighbor v′. A signaling routing message is of
the form 〈P, s〉: if P is a path, then s is its signature; oth-
erwise, if P = none , then s is equal to φ. The symbol none
denotes the absence of a path. The variable pathu holds
the path currently chosen at node u to reach node d, and
the variable ptabu[v] holds the chosen path with origin at v
and destination at d last learned from out-neighbor v. The
variables signu and signu[v] hold the signatures of paths
pathu and ptabu[v], respectively. Algorithm 1 states simply
that when node u receives a signaling routing message from
its out-neighbor v′, it updates its chosen path to the des-
tination to become the most preferred of the local-optimal
paths with respect to the paths ptabu[v], and it advertises
the new chosen path to all in-neighbors, if the chosen path
has changed as a result of the update. Similar code exists
to deal with the failure, addition, or change of label of a
link. We assume that for each pair of nodes u and v such
that v is a out-neighbor of u there is a signaling queue to
hold the signaling routing messages in transit from v to u.
This signaling queue is lossless and behaves according to a
first-in-first-out service discipline.
Some variations of Algorithm 1 can be found in implemen-

tations. For example, in the last two lines of code, if node
u can determine that node v is already part of path pathu,
or that vu ◦ pathu is not a usable path, it may send routing
message 〈none, φ〉 to in-neighbor v, instead of routing mes-
sage 〈pathu, signu〉. Also, the signature of a path may be
omitted from the signaling routing messages if it can be in-
ferred from the enumeration of the nodes that make up the
path and the label of the link joining the recipient to the
sender of the signaling routing message. These variations
do not alter our main conclusions.

6. PROTOCOL CONVERGENCE

6.1 Specification
The specification of every path vector protocol contains

at the very least the convergence requirement. This require-
ment imposes that some time after links stop failing and
being added between nodes no more signaling routing mes-
sages are to be found in transit in signaling queues. Further

Algorithm 1 Protocol code when node u receives signaling
routing message 〈P, s〉 from out-neighbor v′.

ptabu[v
′] := P

signu[v
′] := s

if there is a local-optimal path with respect to the paths
ptabu[v] then
let uv∗ ◦ ptabu[v

∗] be the preferred local-optimal path
with respect to the paths ptabu[v]
pathu := uv∗ ◦ ptabu[v

∗]
signu := l(u, v∗)⊕ ptabu[v

∗]
else

pathu := none
signu := φ

if pathu has changed then
for all v in-neighbor of u do
send 〈pathu, signu〉 to v

requirements in the specification of a path vector protocol
care to the properties of the paths chosen by the nodes once
the protocol has converged, and these requirements depend
on the particular routing strategies one wishes to imple-
ment. A generic requirement usually found in performance-
oriented routing strategies is the optimality requirement,
which states that the union of all paths chosen by the nodes
to reach any given destination should form an optimal-paths
in-tree rooted at that destination.

6.2 Main convergence results
It is easy to show that if the protocol converges, then,

once it has converged, the path choices at the nodes yield
local-optimal-paths in-trees rooted at the various destina-
tions. We omit the proof because it does not depend on
the monotonicity and isotonicity properties of the algebra,
and because it can be adapted from a similar proof in [7].
From Proposition 2, we already know that if the algebra
is monotone, then local-optimal-path in-trees are optimal-
path in-trees if and only if the algebra is isotone as well.
It is the relationship between convergence and monotonicity
that remains to be established.
The necessity of monotonicity for protocol convergence

can be shown with an example. If the algebra is not mono-
tone, then there are l ∈ L and α ∈ Σ such that f(l ⊕
α) ≺ f(α). From the absorptive property, we conclude that
α �= φ. In the network of Figure 3, node d is the desti-
nation. Suppose that signaling routing messages incur a
delay of exactly one unit of time travelling either from u
to v or from v to u. At time zero, nodes u and v have
just chosen paths Pu and Pv to reach node d, respectively,
and advertised these choices to each other. After one unit
of time as elapsed, node u learns of path Pv and, because
f(s(uv ◦ Pv)) = f(l ⊕ α) ≺ f(α) = f(s(Pu)), it changes it
chosen path to uv ◦ Pv; ditto for node v which changes its
chosen path to reach d to vu ◦ Pu. After one more unit of
time has elapsed, node u learns that node v has chosen path
vu ◦Pu to reach d. Since this path contains node u it is not
an option for node u: node u reverts its path choice to Pu.
Similarly, node v reverts its path choice to Pv. We are back
at the initial conditions, the described sequence of events re-
peats itself, and the protocol never converges. Note that, in
this particular example, there are two local-optimal-paths
in-trees rooted at d, despite non-convergence of the path
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l(u,v)=l(v,u)=l     s(Pu)= s(Pv)=

Figure 3: Thick lines represent paths and thin lines
represent links. Suppose that f(α) � f(l ⊕ α). Then,
paths uv◦Pv and vu◦Pu weigh less than paths Pu and
Pv, respectively. If signaling routing messages are
exchanged synchronously, then the path vector pro-
tocol never converges. The same conclusion holds if
f(α) = f(l⊕α), but nodes u and v prefer paths uv ◦Pv

and vu◦Pu to paths Pu and Pv, respectively, to reach
node d.

vector protocol to either of them. One is the in-tree that
contains link (u, v) and path Pv, and the other is the in-tree
that contains link (v, u) and path Pu.
Even if the algebra is monotone, protocol convergence de-

pends on the relative path preferences assigned by the nodes
to paths with the same weight. Suppose that the algebra is
not strict monotone. Then there are l ∈ L and α ∈ Σ−{φ}
such that f(l ⊕ α) = f(α). Let us go back to Figure 3, now
with the understanding that f(l ⊕ α) = f(α). Since paths
uv ◦ Pv and Pu have the same weight, we may assume that
node u preferes the former path to the latter to reach desti-
nation d. Likewise, we may assume that node v prefers path
vu ◦Pu to path Pv to reach node d. With these preferences,
the path choices at nodes u and v oscillate as before and the
protocol never converges.
The relative preferences given to paths with the same

weight become irrelevant, as far as convergence is concerned,
in networks which we call free:

Freeness ∀cycle un···u1u0
∀w∈W−{f(φ)}∃0<i≤n∀α∈Σ

f(α) = w ⇒ f(l(ui, ui−1)⊕ α) �= w.

Taken together with monotonicity, freeness implies that given
a cycle and a set of paths with origins at the nodes of the cy-
cle, all with the same weight, at least one of these paths will
see its weight increase as it extends into the cycle. Clearly,
if the algebra is strict monotone, then every network is free.

Proposition 3. If the algebra is monotone and the net-
work is free, then, whatever the relative preference given to
paths with the same weight, the path vector protocol con-
verges.

Proposition 3 is proven in Section 8.
The question we address now is whether we can raise the

condition of the network being free accepting, on the other
hand, constraints on the relative path preferences given to
paths with the same weight. In this regard, we have the
following proposition.

Proposition 4. If the algebra is monotone and nodes
prefer paths with minimum number of links among those with
the same weight, then, whatever the network, the path vector
protocol converges.

Proof. We only sketch the proof. From the algebra
(W,�, L,Σ, φ,⊕, f), we can construct another where the
number of links in a path becomes part of its signature and
weight. In the new algebra, a path weighs less than another
if the former weighs less than the latter in the primitive al-
gebra or, the paths having the same weight in the primitive
algebra, it comprises a smaller number of links. The new al-
gebra is strict monotone, every network is free with respect
to it, and so the path vector protocol converges.

Proposition 4 does not prescribe any specific order for paths
with the same origin, destination, weight, and number of
links—any such order implies convergence.
Combining the necessity of monotonicity with Proposi-

tion 4 yields the following conclusion:

Proposition 5. The algebra is monotone if and only if
there are relative path preferences for paths with the same
weight that guarantee convergence of the path vector protocol
in every network.

From Proposition 5, we conclude that a path vector protocol
converges to local-optimal-paths in-trees if and only if the
algebra is monotone, and bearing on Proposition 2, that it
converges to optimal-path in-trees if and only if the algebra
is both monotone and isotone.

6.3 Checking convergence
In the previous section, we concluded that the conver-

gence of path vector protocols hinges on the monotonicity
and isotonicity of the underlying algebra and the freeness of
the associated networks. In some cases, we will be able to
exploit characteristics of the labels, signatures, and weights
of the algebra to show those properties. In general, how-
ever, if there are |L| labels and |Σ| signatures, we need to
perform |L|×(|Σ|−1) compositions with the operation ⊕ and
that same number of comparisons via the order � to verify
monotonicity. As we do this, we should keep track, for every
weight w, w �= f(φ), of the set Lw of labels l for which there
is at least one signature α such that w = f(α) = f(l⊕α). A
free network is then a network where no cycle has links with
labels taken exclusively from any one of the sets Lw. Verify-
ing isotonicity, if needed, entails |L|×(|Σ|−1)×(|Σ|−2) com-
positional operations and that same number of comparisons.
By contrast, in combinatorial approaches the computational
complexity of checking for convergence is a function of the
number of possible paths in the network, which number is,
in general, exponential in the size of the network.

7. EXAMPLES AND COUNTER-
EXAMPLES

7.1 Roadmap
We now provide applications of the algebra. In Section 7.2,

we deal with standard optimal path routing. Section 7.3
presents an example of an algebra that is monotone but not
isotone. This is the composite metric of IGRP which, con-
trary to what one would expect, does not result in optimal
path routing. Sections 7.4 and 7.5 formulate existing guide-
lines for policy-based routing with BGP in algebraic terms.
These sections show that some guidelines comply with the
concept of optimal paths, but more often, they only comply
with the concept of local-optimal paths. Section 7.6 gives
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Table 1: Example algebras for optimal path routing. We have W = L = Σ and f is the identity mapping.
W ⊕ φ � Optimal path

R+
0 ∪ {+∞} + +∞ ≤ Shortest

R+
0 ∪ {+∞} min 0 ≥ Widest
[0, 1] × 1 ≥ Most reliable

{(d, b)|d ∈ R+
0 , d1 < d2 ou

b ∈ R+
0 ∪ {+∞}} ∪ {φ} (d1 + d2,min(b1, b2)) φ

d1 = d2 e b1 ≥ b2
Widest-shortest

an example of an algebra that is not monotone. Section 7.7
discusses performance-oriented extensions to BGP, and Sec-
tion 7.8 gives alternative guidelines for policy-based routing.
Last, in Section 7.9, the algebraic framework is used to de-
rive a sufficient condition for signaling correctness of iBGP
in domains that use route reflection.

7.2 Standard optimal paths
Table 1, borrowed from [15], presents instances of the al-

gebra that are relevant to performance-oriented routing. In
performance-oriented routing one is interested not only in
the convergence of the routing protocol, but also on the
quality of the paths the protocol has converged to. For all
the examples of Table 1, the algebra is both monotone and
isotone, so a path vector protocol can always be made to
converge to optimal paths. The usual name of an optimal
path is given in the last column. The first row corresponds to
conventional shortest paths. The second, to widest paths. A
widest path is a path of maximum width, where the width of
a path is its capacity, which equals the capacity of its bottle-
neck link. The third row corresponds to most-reliable paths.
The reliability of a path is the product of the non-failure
probabilities of its constituent links. The fourth row corre-
sponds to widest-shortest paths. A widest-shortest path is a
widest path among the set of shortest paths from one node
to another.
In the shortest path problem, a free network is a net-

work in which every cycle has at least one link with length
greater than zero. We can, for instance, conclude that if
every link in a network has length greater than zero, then a
path vector protocol always converges to shortest paths or
to widest-shortest paths no matter the relative preferences
given to paths with the same length or the same combina-
tion of length and width. In the widest path problem, every
cycle makes a network non-free. In order for a path vector
protocol to converge to widest paths, each node should pre-
fer paths with the minimum number of links, among paths
of the same width.

7.3 Non-isotonic algebra
IGRP [2] is a distance vector protocol and not a path vec-

tor protocol. We use its composite metric as an example of
an algebra that is monotone but not isotone, against what
one would expect to find in a performance-oriented environ-
ment. The conclusion that this composite metric does not
make packets travel over optimal paths holds for both path
vector and distance vector protocols.
In its most basic form, the composite metric of IGRP

can be described by an algebra with L = R+ × R+, Σ =
L ∪ {ε, φ}, W = R+

0 ∪ {+∞}. The first component of a
label represents length, and the second represents capacity.
Accordingly, (d1, b1)⊕ (d2, b2) = (d1 + d2,min(b1, b2)). The

order � is ≤, and the function f is given by

f((d, b)) = d+
k

b
,

where k is a positive constant. It is easy to verify that
the algebra is monotone. The failure of isotonicity can
be exemplified with the inequalities f((2, k)) = 3 < 5 =
f((1, k/4)), and f((1, k/4)⊕ (2, k)) = f((3, k/4)) = 7 > 6 =
f((2, k/4)) = f((1, k/4)⊕ (1, k/4)).
7.4 Customer-provider and peer-peer relation-

ships
We now turn to policy-based routing and BGP. In policy-

based routing, the main goal is to make the path vector
protocol converge. If and when it does converge, it converges
to local-optimal paths, which may or may not be optimal
paths.
The system in this section is taken from Guideline A in [4],

and rests on the customer-provider and peer-peer relation-
ships established between Internet domains [10]. We have
L = {c, r, p}, Σ = L ∪ {ε, φ}, and W = {0, 1, 2,+∞}. The
linear order � is ≤. Links joining providers to customers
are called customer links, and have label c; links joining
customers to providers are called provider links, and have
label p; and links joining peers to other peers are called peer
links, and have label r. We will call primary paths to the
usable paths obtained with the guidelines of this section.
Primary paths are subdivided by their signatures into four
classes: trivial paths, comprised of a single node, have sig-
nature ε; customer paths, whose first link is a customer link,
have signature c; peer paths, whose first link is a peer link,
have signature r; and provider paths, whose first link is a
provider link, have signature p. The ⊕ operation is given
in the next chart, where the first operand, a label, appears
in the first column and the second operand, a signature,
appears in the first row.

label

signature
⊕ ε c r p
c c c φ φ
r r r φ φ
p p p p p

For example, c ⊕ r = φ means that a peer path cannot be
extended to become a customer path. In other words, a
node does not export to a provider a path that it learned
from a peer.
From the definition of operation ⊕, we deduce that any

primary path is of the form P ◦ R ◦ C, where path P con-
tains only provider links, path R is either a trivial path or
a path formed by a single peer link, and path C contains
only customer links. Any of the paths P , R, and C can be
a trivial path. Figure 4 depicts a network where links have
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Figure 4: Network with customer-provider and
peer-peer relationships. Labels are taken from the
set {c, r, p}, where c, r, and p, identify customer, peer,
and provider links, respectively. Peer links are rep-
resented with dashed lines as a visualization aid.

labels taken from set L. Node 5 is a provider of node 2, and
consequently, node 2 is a customer of node 5. Nodes 2 and
3 are peers. Link (5, 2) is a customer link; link (2, 5) is a
provider link; and links (2, 3) and (3, 2) are peer links. Path
5 2 0 is a customer path; path 3 6 5 2 0 is a provider path;
and path 3 2 0 is a peer path. Paths 5 2 3 0 and 2 0 3, for
example, are not primary paths.
The function f is given by

f(ε) = 0

f(c) = 1

f(r) = f(p) = 2

f(φ) = +∞.

The inequality f(c) = 1 < 2 = f(r) = f(p) means that a
node always prefers a customer path to either a peer path
or a provider path. It turns out that this algebra is both
monotone and isotone, so that the path vector protocol can
always be made to converge, and when it does, it converges
to optimal paths, although that was not a requirement in
the first place.
We use the procedure of Section 6.3 to identify the free

networks associated with this algebra. Scanning the pairs
label-signature, we obtain: L0 is the empty set, since 0 =
f(ε) ≺ f(l ⊕ ε) for every l ∈ L; L1 = {c}, since 1 = f(c) =
f(c⊕ c); and L2 = {p}, since 2 = f(r) = f(p⊕ r) = f(p) =
f(p⊕ p). In conclusion, a free network is a network without
cycles where all links have label c or all links have label p.
In terms of the relationships established between Internet
domains, a free Internet is a network where no domain is a
provider of one of its direct or indirect providers. If we want
to guarantee convergence of the path vector protocol with-
out restricting the relationships between domains, it suffices
to have each domain break ties within paths of same class,
customer, provider, or peer, with the number of links in the
path.

7.5 Backup paths
The system is taken from [3], and is an upgrowth of the

system of the previous section that contemplates backup re-
lationships between Internet domains. Backup relationships
expand the set of usable paths to reach any particular desti-

nation, thus conferring robustness to the system in the pres-
ence of link failures. For example, if links (6, 5) and (3, 0)
are down in the network of Figure 4, then the parsimonious
relationships of the previous section would isolate node 6
from node 0. With the backup relationships of this section,
node 6 could still reach node 0 over paths 6 3 2 0 and 6 4 1 0
for instance. We will call backup paths to the usable paths
that are not primary paths. Every backup path contains at
least one step as subpath. A step is a three-node path such
that: the first link is a customer link and the second link
is a peer link; both the first and the second links are peer
links; or the first link is a peer link and the second link is a
provider link.
We have L = R+×{c, r}∪{p}, Σ = R+

0 ×{c, r, p}∪{ε, φ},
and W = R+

0 ×{1, 2}∪{0,+∞}. The set W is lexicograph-
ically ordered based on the order ≤. Trivial paths have
signature ε. The signatures of non-trivial paths have two
components. The first is called avoidance level and is such
that the lower its value the most preferred the path. The
second component is the class of the path, defined as in
the previous section as a function of its first link: customer
paths are marked with letter c; peer paths are marked with
letter r; and provider paths are marked with letter p. As for
labels, the letters c, r, and p identify customer, peer, and
provider links, respectively. In a label of the form (y, c) or
(y, r), the value y is positive and corresponds to the amount
that the avoidance level of a path must increase when a step
is found. The ⊕ operation is given in the next chart.

⊕ ε (x, c) (x, r) (x, p)
(y, c) (0, c) (x, c) (x+ y, c) φ
(y, r) (0, r) (x, r) (x+ y, r) (x+ y, r)
p (0, p) (x, p) (x, p) (x, p)

For example, (y, c) ⊕ (x, p) = φ means that a node does
not export a path learned from one provider to a different
provider. In this system, this is the only restriction in ex-
porting paths. As another example, (y, c)⊕(x, r) = (x+y, c)
means that a customer can export a peer path to one of its
providers, thus creating a step, but the avoidance level of
the extended path must increase. In Figure 4, path 5 2 3 0
is a customer path containing step 5 2 3; path 0 3 2 5 is
a provider path containing step 3 2 5; and path 4 3 2 0
is a peer path containing step 4 3 2. All these paths are
backup paths. Path 2 0 3, for example, is neither primary
nor backup, that is, it is not usable.
The function f is given next.

f(ε) = 0

f((x, c)) = (x, 1)

f((x, r)) = f((x, p)) = (x, 2)

f(φ) = +∞
Note that the function f together with the order relation
� gives predominance to the avoidance level of a path over
its class, and that primary paths have an avoidance level of
0, meaning that they are always preferred to backup paths.
The algebra is monotone but not isotone. The freeness con-
dition is equivalent to the statement that there is no cycle
where all links have labels taken from R+ × {c}, or all links
have label p.
The system in [3] is more general than presented here in

that the avoidance level of a path may also increase when
there is no step, and the increase in avoidance level may
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depend on properties of the path, other than its class. It
is possible to account for the more general system with an
expanded algebra.

7.6 Non-monotonic algebra
As an example of an algebra that is not monotone consider

the algebra of the previous section but with the ordering
of the set W being inverse-lexicographic, instead of lexico-
graphic. That is, (x1, n1) � (x2, n2) if and only if n1 < n2,
or n1 = n2 and x1 ≤ x2. In this algebra, the class of the path
has predominance over its avoidance level: a node always
prefers customer paths to peer or provider paths; among
customer paths, or among peer and provider paths, it pref-
eres those with the smallest avoidance level. However, this
algebra is not monotone, for f((3, r)) = (3, 2) � (4, 1) =
f((3 + 1, c)) = f((1, c)⊕ (3, r)). With this algebra there are
networks in which a path vector may never converge.

7.7 Performance extensions
There has been some interest in extending BGP to ac-

commodate performance-aware parameters on top of policy
guidelines [17]. Here, we take the simple case where the
performance of a path is gauged only by its width to illus-
trate the general principle that compounding a monotonic
algebra with another yields a monotonic algebra, but that
compounding a isotonic algebra with another may not yield
an isotonic algebra.
Let (W ′,�′, L′,Σ′, φ′,⊕′, f ′) be the algebra that describes

the policy guidelines of Section 7.4, and let (W ′′,≥,W ′′,W ′′

, 0,min, f ′′), with W ′′ = R+
0 ∪ {+∞} and f ′′ the identity

mapping, be the algebra of widest paths (see Section 7.2).
Both these algebras are isotonic. The compounded alge-
bra that gives predominance to policy-based routing is the
algebra with W = W ′ × W ′′, L = L′ × L′′, and Σ =
Σ′ × Σ′′. The ⊕ operation is given by (α1, b1) ⊕ (α2, b2) =
(α1 ⊕′α2,min(b1, b2)), the function f is given by f((α, b)) =
(f ′(α), b), and the order � is such that (n1, b1) � (n2, b2) if
n1 < n2 or n1 = n2 and b1 ≥ b2. This algebra is monotone
but not isotone. For example, f((c, 5)) = (1, 5) ≺ (2, 10) =
f((p, 10)) whereas f((p, 10) ⊕ (c, 5)) = (2, 5) � (2, 10) =
f((p, 10) ⊕ (p, 10)).
The practical conclusion to be taken from this discussion

is that the performance-aware paths chosen by the nodes
lack global significance in general: they are local-optimal
paths, not optimal-paths. For instance, the provider path
chosen by a node upon convergence of the protocol is not
necessarily the widest among the provider paths that are
usable at the node. In Figure 5, the numbers by the links
represent their capacities. Upon convergence of the protocol,
node 2 chooses path 2 1 to reach node 1, because it is the
only customer path from node 2 to node 1, and customer
paths are preferred to both peer and provider paths. This
choice forces node 0 to choose provider path 0 2 1 to reach
node 1. But provider path 0 2 1, of capacity 5, is not the
widest provider path from node 0 to node 1: that distinction
belongs to provider path 0 2 3 1 which has capacity 10.

7.8 Alternative guidelines
The approach described in Section 7.5 to include backup

paths has two limitations. First, it allows valleys, if they
cross peer links. A valley is a path that starts with a cus-
tomer link and ends with a provider link, implying that a
node may provide transit service to a provider. For exam-

p, 10

p, 5
p, 10c, 10

c, 5 c, 10

r, 10

r, 10

r, 4

r, 4
0 1

2 3

Figure 5: Network with customer-provider and
peer-peer relationships. The numbers by the links
represent their capacities.

ple, with the algebra of Section 7.5, paths 3 0 1 4 and 4 1 0 3
would be allowed in the network of Figure 4, meaning that
nodes 0 and 1 would provide transit service to their respec-
tive providers 3 and 4. Second, a node may prefer a backup
path with provider links to one without provider links, be-
cause, as we have seen in Section 7.6, monotonicity would
fail otherwise. For example, with the algebra of Section 7.5,
and despite having a provider link, path 2 3 6 4 1 is preferred
to path 2 0 1 if its avoidance level is lower.
We present alternative guidelines with the following four

characteristics:

• primary paths are always preferred to backup paths;

• valleys are not allowed;

• backup paths without provider links are always pre-
ferred to those that have them;

• the avoidance level of a backup path increases with
every peer link that it contains.

We have L = {c, p}∪{r}×R+, Σ = {ε, c, p, φ}∪{r, ĉ, p̂}×
R+, and W = {0, 1, 2, 3, 4} × R+

0 ∪ {+∞}. The set W is
lexicographically ordered based on the order ≤. In labels,
the letters c, r, and p, again identify customer, peer, and
provider links, respectively. The value x in a label of the
form (r, x) is positive and corresponds to the contribution
of a peer link to the avoidance level of a backup path. In
signatures, the letters c, r, and p identify customer, peer,
and provider paths, respectively, and the accented letters ĉ
and p̂ identify backup paths without and with provider links,
respectively. The value x in signatures of the form (ĉ, x)
and (p̂, x) indicates the avoidance level of a backup path.
The signature of a peer path, of the form (r, x), inherits the
value x from the label of its first link. Every trivial path has
signature ε. The ⊕ operation is given next (the column for
signature ε equals the one for signature c and is omitted).

⊕ c (r, x) p (ĉ, x) (p̂, x)
c c (ĉ, x) φ (ĉ, x) φ

(r, y) (r, y) (ĉ, x+ y) (p̂, y) (ĉ, x+ y) (p̂, x+ y)
p p p p (p̂, x) (p̂, x)

For example, c⊕ p = c ⊕ (p̂, x) = φ means that a customer
link can never be prefixed to a path that contains provider
links, thereby implying that valleys are not allowed. The
equality (r, y) ⊕ (p̂, x) = (p̂, x + y) means that a backup
path with provider links sees its avoidance level increase as
it crosses a peer link.
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The function f is given by

f(ε) = (0, 0)

f(c) = (1, 0)

f((r, x)) = f(p) = (2, 0)

f((ĉ, x)) = (3, x)

f((p̂, x)) = (4, x)

f(φ) = +∞.

Note that in selecting a backup path, whether or not the
path contains provider links takes precedence over its avoid-
ance level. The freeness condition is equivalent to the state-
ment that there is no cycle where all links have label c or
all links have label p.

7.9 Route reflection
We now apply the concepts developed to study conver-

gence of BGP inside an Internet domain (Autonomous Sys-
tem, AS) that employs route reflection [9, 8]. The routers
inside an AS are partitioned into clusters. Each cluster con-
tains a number of route reflectors, at least one, and their
clients. For simplicity, we assume only one route reflector
per cluster. iBGP sessions are established between every
pair of route reflectors, and between a route reflector and
every one of its clients. They may also be established be-
tween two clients in the same cluster. Given an IP prefix,
external to the AS, the BGP route selection process prefers
routes with the highest value of LOCAL-PREF attribute,
and among these, it prefers routes with the lowest length
of the AS-PATH attribute. We neglect the MED attribute,
and from now on, we consider only the routes with highest
LOCAL-PREF, and among these, only the ones with the
lowest AS-PATH length. A router that learned at least one
of these remaining routes from an eBGP (external BGP)
session is called a border router for that IP prefix. The bor-
der routers are destinations as far as routing inside the AS
is concerned.
We first identify the algebra that emerges from the route

selection rules and export rules that are applied inside an
AS that uses route reflection. The best of a set of available
routes at a router is selected as follows: prefer the route
with the shortest Interior Gateway Protocol (IGP) path dis-
tance to a border router, breaking ties with the identities of
the border routers. The export rules are as follows: border
routers export eBGP routes to all routers with which they
have iBGP sessions; a route reflector exports routes learned
from another route reflector only to all clients in its cluster;
a route reflector exports routes learned from a client in the
same cluster to all other clients in the cluster and all other
route reflectors.
In the model, routers have identifiers taken from the set

N of positive integers. We have L = {d, o, u} × N , Σ =
({d, o} ×N ×N) ∪ ({0,+∞} × N) ∪ {φ}, and W = (R+

0 ∪
{+∞}) × (N ∪ {+∞}), lexicographically ordered based on
the order ≤. The second component in the label of each
link is always the identity of the node at the head of the
link. A link that joins a route reflector to a client has d for
first label component; a link that joins a route reflector to
another route reflector has o for first label component; and a
link with a client at its head has u for first label component.
The last component in the signature of a path is always the
identity of its border router. Trivial paths, those consisting
of a border router alone, have signatures of the form (0, k);
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(u,1) (u,0)
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Figure 6: AS with three clusters. Clusters are en-
closed in ovals. Route reflectors are represented
with diamonds, clients are represented with circles,
and border routers (for an unspecified IP prefix) are
shaded.

non-trivial paths with origin at a client have signatures of
the form (+∞, k); non-trivial paths with origin at a route
reflector have signatures either of the form (d, i, k) or of the
form (o, i, k), where i is the identity of the route reflector.
Figure 6 depicts an AS that uses route reflection, and where
the border routers, for an unspecified IP prefix, are shaded.
Path 0 is a trivial path and has signature (0, 0); path 6 7 2 0
has signature (+∞, 0); path 2 0 has signature (d, 2, 0); path
4 2 0 has signature (o, 4, 0); and path 7 4 2 0 is not usable.
The ⊕ operation is given next.

⊕ (0, k) (d, i, k) (o, i, k) (+∞, k)
(d, j) (d, j, k) φ φ φ
(o, j) (o, j, k) (o, j, k) φ φ
(u, j) (+∞, k) (+∞, k) (+∞, k) φ

We look into some examples: (o, j)⊕(o, i, k) = φ means that
a route reflector does not export paths learned from route
reflectors to other route reflectors; (o, j)⊕ (d, i, k) = (o, j, k)
means that route reflector i exports to route reflector j paths
learned from its client k, which is an border router, and the
resulting path keeps the identity of the border router but
sees the origin of the path updated from i to j.
The function f is given next.

f((0, k)) = (0, k)

f((d, i, k)) = f((o, i, k)) = (dist(i, k), k)

f((+∞, k)) = (+∞, k)

f(φ) = (+∞,+∞)
where dist(i, k) is the IGP path distance from router i to
router k. With this algebra all networks are free, because
the antecedent of the freeness condition is never true. We
are left to verify monotonicity. Monotonicity clearly holds
when a trivial path is extended to any router and when any
path is extended to a client. The interesting case is when
a path consisting of a route reflector followed by a client
border router is extended to another route reflector. The
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weight of the original path is (dist(i, k), k), where i is the
identity of the route reflector and k is the identity of its
client border router. The weight of the extended path is
(dist(j, k), k), where j is the identity of the route reflector
to which the original path has been extended. Therefore, for
monotonicity to hold, we must have dist(i, k) ≤ dist(j, k).
We can then conclude with generality that the path vector

protocol converges within an AS if for every client k and
every route reflector j we have

dist(reflect(k), k) ≤ dist(j, k),

where reflect(k) is the identity of the route reflector that be-
longs to the same cluster as client k. In words, client k must
not be farther from its route reflector reflect(k) than from
any other route reflector, in terms of IGP path distances.
The contrapositive states that for the path vector protocol
not to converge within an AS at least one client must be
closer to a router reflector other than the one in its cluster;
examples of non-convergence can be found in [8].

8. PROOF OF CONVERGENCE
In this section, we present a semi-formal temporal-logic

proof of Proposition 3. Specifically, we fix a destination and
prove convergence of the protocol for that destination.
Let P be the set of all usable paths in the network through

which the destination can be reached, and let the strict par-
tial order ✁ be defined such that P ✁Q if P and Q have the
same origin and P weighs less that Q or, having the same
weight as Q, is preferred to it. Define the paths digraph to
be the digraph that has P for vertex set and where there is
an edge from path P to path Q if any one of the next two
conditions is verified:

• Q is an extension of P , that is, Q = uv ◦ P for some
node u in the network;

• P and Q have the same origin, and either P weighs less
than Q or, their weights being equal, P is preferred to
Q, that is, P ✁ Q.

We remark that the use of the paths digraph is confined to
the proof of Proposition 3, not being needed thereafter to
prove convergence of specific path vector protocols. Figure 7
shows the paths digraph for the network of Figure 4, taking
0 for destination node. At the top part of the figure, the
usable paths are depicted next to the nodes at their origin.
The higher a path in a list the smaller it is with respect
to the order ✁. The bottom part of the figure shows the
corresponding paths digraph.

Proposition 6. If the algebra is monotone and the net-
work is free, then the paths digraph is acyclic.

Proof. The proof is by contradiction and comprises three
stages. Assume that the paths digraph contains a cycle, and
let C = P0 · · ·Pn−1Pn (Pn = P0) be a cycle of minimum
length. Since the paths usable at a node are totally ordered,
and a path and any of its extensions have different origins,
we must have n ≥ 4. The origin of path Pi is denoted as ui,
0 ≤ i ≤ n.
In the first stage, we show that any repeated nodes in

the sequence u0 · · ·un−1un (un = u0) must appear consecu-
tively. Suppose otherwise. Then there is i, 0 ≤ i < n, and k,
1 < k < n−1, such that ui = ui +n k and Pi✁Pi +n k, where
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Figure 7: Example paths digraph for the customer-
provider and peer-peer algebra of Section 7.4, and
network of Figure 4.

+n denotes addition modulus n. If i < i +n k, then the
sequence P0 · · ·PiPi +n k · · ·Pn is also a cycle in the paths
digraph, and has length n − k < n, contradicting the min-
imality of C. On the other hand, if i +n k < i, then the
sequence Pi +n k · · ·PiPi +n k is a cycle in the paths digraph
and has length k+1 < n, again contradicting the minimality
of C.
In the second stage, we show that there is w ∈ W −

{f(φ)} such that w = f(s(Pi)) for 0 ≤ i ≤ n. This follows
easily from monotonicity. Let w = f(s(P0)). Since P0 is
usable at node u0, w is different from f(φ). Each edge of
the paths digraph either joins a path to one of its extensions
or joins a path to another that does not weigh less. Hence,
f(s(Pi−1)) � f(s(Pi)), for 0 < i ≤ n. Because Pn = P0,
this set of inequalities can only be satisfied if w = f(s(Pi)),
for 0 ≤ i ≤ n.
In the third and final stage, we use freeness to arrive at the

contradiction. First, we observe that the sequence of nodes
obtained from u0 · · ·un−1un by skipping over repeated nodes
and reversing their order is a cycle in the network. Formally,
let m be the number of distinct nodes of u0 · · · un−1un. De-
fine the function a from {0, · · · , m} to {0, · · · , n} as follows:

a(j) =

8>>><
>>>:

0 : if j = 0
a(j − 1) + 1 : if 1 < j ≤ m and

ua(j−1)+1 �= ua(j−1)

a(j − 1) + 2 : if 1 < j ≤ m and
ua(j−1)+1 = ua(j−1).
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Because only consecutive nodes of u0 · · ·un−1un can be re-
peated, the sequence ua(m) · · ·ua(1)ua(0) (ua(0) = ua(m)) is
a cycle in the network. Moreover, Pa(j) = ua(j)Pa(j)−1, for
0 < j ≤ m. Letting αi = s(Pi) and using the result from
the second stage, we conclude that for every 0 < j ≤ m,
we have f(αa(j)−1) = w and f(l(ua(j), ua(j)−1)⊕αa(j)−1) =
w, contradicting the freeness condition, and concluding the
proof.

We are now ready to present the semi-formal temporal-
logic proof of Proposition 3. See [12] for background on
temporal logics, and [11] for a temporal-logic proof of the
convergence of conventional distance vector protocols.

Proposition 3: If the algebra is monotone and the network
is free, then, whatever the relative preference given to paths
with the same weight, the path vector protocol converges.

Proof. Let G denote the paths digraph and d denote the
trivial path consisting of the destination node alone. The
rank of usable path P is defined to be one plus the number
of edges in the longest path in G from vertex d to vertex
P . In particular, the rank of path d is one. Because G is
an acyclic graph, if there is an edge from P to Q, then Q
is ranked higher than P . In other words, if Q is either an
extension of P to some node, or has the same origin as P but
more weight, or, having the same weight, is less preferred,
then Q is ranked higher than P . The ranks of paths of G
can be determined recursively, noting that the paths of rank
j are those that have no edge pointing to them in the graph
obtained from G by withdrawing all paths with rank less
than j. Table 2 shows the ranking of the usable paths of
Figure 7. Let M be the rank of the highest rank path in G.
We slightly abuse terminology to call none a path, to which
we assign rank M + 1.
Suppose that the network topology has settled down. There

will be a time when all state information related to paths
that are not part of the network vanishes. We want to
show that there will be a subsequent time when all signal-
ing queues become empty: the path vector protocol will
have converged when this happens. For this purpose, we
present a function F from the state of the protocol to the
well-founded set of M + 1 tuples of non-negative integers
ordered lexicographically. We show that the value assumed
by F decreases lexicographically with the reception of ev-
ery signaling routing message, and this is sufficient to prove
termination of the protocol [12, 11]. At any given time, the
value assumed by the jth coordinate of the function F is
denoted by fj and is defined as:

fj = number of routing messages that announce a path of
rank j in transit in signaling queues plus number of
nodes that have chosen a path of rank j.

Now, assume that a signaling routing message announcing
path P , of rank j, arrives at node u coming from its out-
neighbor v. Let Q, a path of rank k, be the chosen path
at node u before the routing message was received, and let
R, a path of rank l, be the chosen path at node u after the
routing message is received. Four cases are distinguished.

1. R = Q: The coordinate fj decreases by one. The
function F decreases.

2. R �= Q and R = uv ◦ P : The coordinate fj decreases
by one, the coordinate fk decreases by one, and the

coordinate fl increases. Because R is the extension of
P to node u, we have l > j and, therefore, the function
F decreases.

3. R �= Q andR = none : The coordinate fj may decrease
by one, the coordinate fk decreases by one, and the
coordinate fM+1 may increase. Because R �= Q and
R = none, we have k < M + 1, and the function F
decreases.

4. R �= Q and R �= none and R �= uv ◦P : The coordinate
fj decreases by one, the coordinate fk decreases by
one, and the coordinate fl increases. Because R �= uv◦
P , path R was available for selection at node u before
the signaling routing message was received. Since, in
addition, R �= Q and path Q was the path chosen by u
before the signaling routing message was received, Q
weighs less than R or has the same weight as R but
is preferred to it at node u. Hence, k < l and the
function F decreases.

9. ALGEBRA AND BGP
We now discuss the use of the algebraic framework in the

design and implementation of policy guidelines for BGP. The
ideas expressed in this section are preliminary and their mer-
its need to be assessed by actual implementations. We view
the algebraic framework as a mathematical template for set-
ting up policy guidelines, expecting its semantic value to
help in their translation to and from some router configura-
tion language [5]. The set of labels corresponds to the class
of possible types of relationships between pairs of nodes to-
gether with the relevant properties of the links joining them.
The set of signatures reflects properties of paths that nodes
are willing to keep and share with their neighbors. The
mapping of signatures into weights and the translation of
a signature to another via a label are such as to make the
path vector protocol converge and satisfy any additional re-
quirements that may be desired from the policy guidelines.
Once a set of policy guidelines is represented by an alge-

bra, mapping its elements into BGP mechanisms comprises
two main aspects. First, there must be some way to asso-
ciate a signature with a BGP route. This can be achieved
with the Community attribute. Second, we must be able
to assign a weight to each Community value representing
a signature. The set of weights can be created with the
LOCAL-PREF attribute. However, if a weight corresponds
to exactly one value of LOCAL-PREF, no margin is left for
the ASes to individually apply routing policies that they do
not wish to disclose to their neighboring ASes. A better
solution is to let each weight correspond to a range of con-
tiguous LOCAL-PREF values, with different weights hav-
ing non-overlapping ranges. A router holding a route with a
given Community value can choose any one of the LOCAL-
PREF values associated with that Community value, the
exact choice being outside the scope of the guidelines.
Routers need to be configured to respect the correspon-

dence between Community values and ranges of LOCAL-
PREF values and to convert among Community values rep-
resenting signatures. External to the algebra is the decision
of which router performs which conversions. For example,
suppose that u and v are two routers in different ASes with
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Table 2: Ranking of usable paths for the paths digraph of Figure 7.
rank 1 rank 2 rank 3 rank 4 rank 5 rank 6 rank 7 rank 8
0 2 0 3 2 0 4 6 3 0 4 3 0 1 0 1 4 3 0 1 4 6 5 2 0

3 0 5 2 0 5 6 3 0 1 4 6 3 0 2 3 0
6 3 0 6 5 2 0 2 5 6 3 0 4 6 5 2 0

3 6 5 2 0

a relationship described by label l, and that α is the Com-
munity value (signature) of a route hold by v. After the
route is advertised to u its Community value becomes l⊕α.
The algebra is the same whether the new Community value
is computed at v before the route is advertised to u, or is
computed at u after the route is received at u, or the com-
putation is shared between u and v.

10. CONCLUSIONS
We have brought modern algebraic concepts to the design

and study of routing strategies supported on path vector
protocols. The convergence properties of path vector proto-
cols are related with the monotonicity and isotonicity of the
underlying algebra. Monotonicity is necessary and sufficient
to make a path vector protocol converge, and monotonicity
together with isotonicity are necessary and sufficient for con-
vergence to optimal paths. We have also identified freeness
as the property that a network must have for guaranteed
convergence of path vector protocols independently of the
relative preference given by the nodes to paths with the
same weight.
The algebraic approach unites in a common framework

previous results on optimal path routing and various guide-
lines for policy-based routing, and makes it easy to check
the validity of new routing strategies. As examples of new
applications, we have given guidelines for policy-based rout-
ing that contemplate backup relationships while rendering
paths with valleys unusable, and we have derived a sufficient
condition for convergence of iBGP in Internet domains that
use route reflection. Last, we have used the framework to
gain insight into the provision of QoS extensions to BGP.
As a final note, we remark that most of the theory devel-

oped here can be adapted to distance vector protocols, pro-
vided that we supplement these protocols with a mechanism
to deal with the count-to-infinity problem. This is readily
accomplished by endowing signaling routing messages with
a counter that is incremented every time it its passed from
one node to another. Limiting the value of this counter stops
the counting to infinity.

11. ACKNOWLEDGEMENTS
I am grateful to Tim Griffin for the incitement to submit

this work to SIGCOMM. I am also thankful to José Brázio,
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