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Abstract—Wireless access networks are often characterized by the interaction of different end users, communication technologies,

and network operators. This paper analyzes the dynamics among these “actors” by focusing on the processes of wireless network

selection, where end users may choose among multiple available access networks to get connectivity, and resource allocation, where
network operators may set their radio resources to provide connectivity. The interaction among end users is modeled as a

noncooperative congestion game, where players (end users) selfishly select the access network that minimizes their perceived
selection cost. A method based on mathematical programming is proposed to find Nash equilibria and characterize their optimality

under three cost functions, which are representative of different technological scenarios. System level simulations are then used to
evaluate the actual throughput and fairness of the equilibrium points. The interaction among end users and network operators is then

assessed through a two-stage multileader/multifollower game, where network operators (leaders) play in the first stage by properly
setting the radio resources to maximize their users, and end users (followers) play in the second stage the aforementioned network

selection game. The existence of exact and approximated subgame perfect Nash equilibria of the two-stage game is thoroughly
assessed and numerical results are provided on the “quality” of such equilibria.

Index Terms—Wireless access networks, network selection, congestion games, price-of-stability, price-of-anarchy

Ç

1 INTRODUCTION

THE impressive growth of standards and technologies for
wireless communications has dramatically increased

the opportunities for mobile users to connect anytime
anywhere. End-user equipment often comes with multiple
radio interfaces featuring different communication stan-
dards, from short range (Zigbee, Bluetooth) to medium/
long range ones (WiFi, WiMAX, 2G, LTE). Moreover, a
given geographical area may be “covered” by multiple
access network/technologies with different characteristics
(bandwidth, access cost), even potentially run by different
operators. As an example, 2G/3G cellular systems owned
by big Tel-Co operators may provide geographical coverage
side by side with multidomain Wireless Local Area
Networks (WLANs), and Wireless Mesh Networks
(WMN) run by medium/small Wireless Internet Service
Providers (WISPs).

Different from the past when wireless connectivity was
monopolized by a single operator/technology, the over-
provisioning of access networks nowadays allows mobile
users to choose among multiple access opportunities on the
base of availability, cost and/or quality, eventually achiev-
ing a seamless, ubiquitous, and pervasive connectivity
experience. To reach this ambitious goal, however, many
technical challenges still have to be addressed in different
fields. On the network side, signaling architectures are
required to effectively support user’s mobility among
multiple networks and to manage the radio resource

allocation process; on the user’s side, effective techniques
are required to discover and classify the multiple con-
nectivity opportunities based on quality parameters (actual
throughput, access delay, wireless interference level) to
steer eventually the dynamic selection of the best con-
nectivity opportunity.

The basic problem of network selection refers to the
dynamic and automatic choice of the “best” wireless access
network to connect to. In classical cellular systems, the
network selection is mainly guided by physical layer
parameters, and the mobile terminal often associates to
the “best received” base station, i.e., the closest (in terms of
received signal strength) to the end-user equipment. Such
selection policy is obviously not suited for other wireless
access scenarios eventually featuring heterogeneous wire-
less access technologies. For instance, a WiFi user may favor
connecting to a less loaded access point (AP) at larger
distance, rather than to a very close, highly loaded one. The
specific parameters to drive the selection strategy itself are
highly dependent on the specific wireless access technol-
ogy, thus novel parameters must be accounted in the
selection procedure [1]. On the other hand, network
operators have to tackle a resource allocation problem that
requires the proper setting/planning of the available radio
resources (e.g., frequencies, time slots, spreading codes,
etc.) throughout their deployed access network infrastruc-
tures. The resource allocation driving criteria may include
the maximization of the overall revenues for the operator,
the maximization of the provided geographical coverage,
and/or the maximization of the network spectral efficiency,
under tight/loose constraints on the quality perceived by
the accessing users.

In this paper, we resort to noncooperative game theoretic
tools [2] to analyze the dynamics among users and
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operators by focusing on the processes of wireless network
selection, where end users may choose among multiple
available access networks to get connectivity, and resource
allocation, where network operators may set their radio
resources to provide connectivity.

The problem of wireless access network selection is cast
as a congestion game [3], where each user is selfish, rational,
and selects the access network that maximizes her per-
ceived quality of service. Even if the proposed model is
rather general and not dependent on the specific quality
measure, we introduce three approximate but consistent
measures for the perceived quality of the access process
which model realistic technological scenarios. More pre-
cisely, one function depends only on the users’ perceived
interference, whereas the other two also account for the
nominal achievable rate upon accessing the network. In this
paper, we do not consider connection fees in the game
models. This is consistent with network scenarios where,
for example, free WiFi access is available in urban areas
provided by multiple sources (e.g., FON APs) and/or
different operators offer the same service at the same price.
The extension to include connection fees is discussed
throughout the paper.

Under the assumption, customary in the literature [4],
that best response dynamics is much faster than users’
mobility dynamics, we can study any setting as a sequence
of games in which users are stationary. We prove that with
all the three cost functions (CF), we propose there is always
at least one pure Nash equilibrium (NE), further providing
practical solution algorithm to derive such equilibria which
leverages the mathematical programming formulation of
the network selection problem. The quality of the equilibria
is then characterized in terms of their associated price-of-
stability (PoS, see [5]) and price-of-anarchy (PoA, see [6]),
defined as the ratio between the best and worst equilibrium
(WE), respectively, and the optimal solution, i.e., the one
minimizing the social cost without equilibrium constraints.
The actual throughput and fairness degree of the equili-
brium situations are also assessed through system level
simulation using NS2 network simulator [7].

The problem of resource allocation is cast as a multi-
leader/multifollower two-stage game where in the first stage
the network operators (i.e., the leaders) play by choosing
their resource allocation strategies, while in the second
stage the users (i.e., the followers) play the aforemen-
tioned network selection game. The aim of the operators is
to capture the largest number of accessing users. We
formally prove that when the quality measure adopted by
the users only depends on the interference level, the two-
stage game always admits a pure strategy Subgame
Perfect Nash Equilibrium (SPE), whereas under the other
two quality measures it may not exist. In these latter cases,
we leverage the concept of !-SPE to find suboptimal
equilibrium situations.

The paper is organized as follows: in Section 2, we set
the background for our work by reviewing the literature in
the field of network selection. Section 3 defines the
network selection game model, while Section 4 provides
the mathematical programming formulation to compute
the NE. The numerical results on the evaluation of the NE
are reported in Section 5. Section 6 finally describes

the game model including the network operators. Con-
cluding remarks and comments on ongoing related
activities are reported in Section 7.1

2 BACKGROUND

Work related to the problem of network selection mainly
deals with two major aspects: the definition of novel metrics
aimed at measuring the perceived quality of accessing users
and steering the selection decisions, and the design of
communication protocols customized to the multinetwork
scenario. The works in [9], [10], and [11] fall in the former
research track, and examine quality functions based on
different parameters, such as transfer completion time,
download throughput, traffic load, and received signal
strength, to propose an intelligent strategy for network
selection in multiaccess network scenario. A mathematical
approach, based on the combination of gray Relational
Analysis (GRA) and Analytic Hierarchy Processing (AHP),
is adopted in [12] and in [13]. The authors tackle the
problem of network selection developing quality functions
to determine the user’s utility related to different selection
choices. A similar mathematical technique is used in [14].
The authors formulate the network selection problem as a
multiattribute decision making (MADM) problem that deals
with the evaluation of different networks, taking into
account many attributes, such as access technology,
supported services, and cost.

Research of the latter track usually focuses on specific
network scenarios/technologies. Bernaschi et al. [15] pro-
pose a vertical handover protocol to handle the user
mobility between WLAN and cellular systems. The problem
of load balancing in 802.11 WLAN is studied in [16] and
[17]. The former proposes an intelligent association control
to obtain the fairest solution, in terms of max-min fairness,
whereas the latter proposes a mechanism to drive mobile
users toward the most appropriate point of access to the
network, taking into account both user preferences and
network context.

Referring to IEEE 802.11-based networks, Lee and
Miller address in [18] the problem of selecting among
several 802.11-based APs, by proposing an effective
solution to distribute roaming information to the users,
which can be used to discriminate in the access phase. The
authors of [19] and [20] propose decentralized approaches
to choose among multiple APs aiming at achieving an
efficient and fair share of wireless-access resources. In [21],
the authors describe a methodology for evaluating the
potential bandwidth between a client and an AP based on
delays experienced by beacon frames. The potential
bandwidth is used as the metric adopted by users in the
association phase.

In this scenario, even if game theory provides effective
tools to evaluate the dynamics involved in the network
selection procedures, few works have appeared so far on
this specific topic. Interesting overviews on the potentials of
game theory in the field of network selection are provided
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in [22] and [23]. Mittal et al. [24] resort to a noncooperative
game to model the association process to WiFi-based APs.
The cost function each user aims at minimizing depends on
the access point load and on the distance the associating
device needs to travel to being actually able to associate
with the desired access point.

WiFi association is addressed through game theoretic
tools also in [25], [26], and [27]. All the three works consider
noncooperative game models with the users trying to
selfishly minimize a cost function that depends on the
current congestion of the WiFi access points. In [25] and
[26], the cost function depends only on the current
congestion level of the access points, whereas Chen [27]
introduces a cost function that includes also the association
fee each user has to pay to get access from a specific access
point. Besides analytical modeling of the network selection
game, Xu et al. [26] also introduce a practical association
protocol for Wireless LANs; namely, the authors propose to
let APs broadcast information on the current congestion
level such that the accessing user can dynamically play their
best reply strategies which are proven to converge to an
equilibrium. In [28], the authors model the interaction of
users and providers as a two-stage multi-leader-multi-
follower game. In particular, providers compete on the
prices and users choose the demand to maximize their
payoff. A common feature of the aforementioned works is
that they all consider the case of atomic players, with each
single player contributing to the costs/utilities of the others
in nonnegligible manner.

On the other hand, nonatomic games are considered in
[29], [30] and [31]. Namely, Shakkottai et al. [29] consider
the case of a single device that can split its traffic across
multiple access points it is associated with. Different from
the present work, the game model used in their work comes
from the family of population games, which are nonatomic,
that is, the contribution to the cost of each user is assumed
to be negligible. A similar population game model is
analyzed in [30] in case the actual throughput perceived by
the accessing user depends on transmission/scheduling
policies of the network operator. Nonatomic games are also
used in [31] to model the problem of selecting the best
network. The authors study the loss of efficiency of the user
equilibrium. In these games, the proposed cost function
depends on the content download delay.

Game theory has been widely used to address also
resource allocation problems. Niyato and Hossain propose
in [32] a game-theoretic approach for studying bandwidth
allocation in heterogeneous wireless networks. Different
from our work, the focus is on resource allocation only, and
the problem is cast as a bankruptcy (cooperative) game,
where different networks form a coalition to provide
bandwidth to the end users. The concepts of core and
Shapely value are used to determine the quality of the
bandwidth allocation. A cooperative game is used in [33] to
model the allocation of bandwidth within the several access
technologies further managing the distribution of excess
bandwidth among operators.

Noncooperative games are used in the field of resource
allocation in [32], [34], [35] and [36]. In [34], the focus is
on the problem of bandwidth allocation in 802.16-like

networks, whereas, Niyato and Hossain [32] introduce a
noncooperative game to model the interactions of different
access networks (WLAN, cellular systems, and WMAN). In
this work, the authors derive both long-term and short-term
criteria to allocate bandwidth within different technologies
to incoming users. A similar noncooperative scenario in the
field of resource allocation is addressed in [36], which
addresses the competition of WLANs sharing unlicensed
frequency bands. A stage-based noncooperative game is
proposed to analyze competition scenarios between two
wireless networks.

The aforementioned manuscripts either assume coopera-
tion among network operators, or only focus on the
resource allocation problem. Differently, in this paper, we
provide a comprehensive framework that models the
problem of network selection, investigating different
strategies (cost/utility functions) that may fit different
access technologies. We address the problem by resorting
to congestion games, which provide a powerful tool to
represent situations where resources are shared among/
congested by multiple players. Moreover, differently than
the reference literature, we extend the network selection
model to include operators in the competitive dynamics.
Preliminary work along these lines appears in [37] and [38].

3 THE NETWORK SELECTION GAME

3.1 The Reference Scenario

We consider a reference scenario composed of m access
points2 and n users, where each AP is tuned on a specific
radio resource and each user can choose the AP to connect
to. We denote an AP by a and the set of APs by A; we
denote a radio resource available to AP by f and the set of
radio resources by F ; we denote a user by u and the set of
users by U . Without loss of generality, we assume that the
available radio resources f at each AP a is one from a set F
of frequency channels. Each AP a uses a frequency f and is
characterized by a coverage area that depends on the
transmission range and propagation model. Frequency
reuse is allowed among different access points. The
network topology defines the APs’ number, positions,
frequencies, and coverage areas.

3.2 The Game Theoretic Model

We model this scenario as a noncooperative game in which
users are players and their action is the selection of an AP
among the available ones. The availability of an action for a
user is determined by the network topology and the user’s
position. More precisely, each user can select one AP among
all the ones whose coverage area includes the user’s
position. In the model, the coverage areas are arbitrary,
while in the experimental setting discussed in Section 5 we
will adopt a specific propagation model. We denote by
Af
u ! A the set of APs transmitting on frequency f and

available to user u. We report an example of network in
Fig. 1, where m ¼ 2, n ¼ 10. Black circles denote users, lines
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between users and access points denote associations, and
dashed lines delimit coverage areas.

Two users selecting different APs that operate on the
same frequency will interfere if they are in the range of
both APs. Each user u perceives a cost cuðf; zfuÞ that
depends on the congestion level zfu perceived by user u on
frequency f (three different expressions of cuðf; zfuÞ will be
proposed in the next section). We denote by Xf

u ! U the set
of users that use frequency f and interfere with user u. In
general, each user u can congest frequency f with a
specific weight !fu. For instance, the congestion weight of a
user can be a function of the distance between the user and
the AP or of the user’s traffic. The congestion level zfu
perceived by user u on frequency f is defined as
zfu ¼

P
u2Xf

u
!fu. Reasonably, we assume that the cost

increases as the congestion level increases, thus cuðf; zfuÞ
is strictly monotonically increasing in zfu.

The model drastically simplifies when all the users
congest the APs (and consequently the frequencies) with
the same weight !fu ¼ 1. We denote by xfu the cardinality of
Xf
u , formally, xfu ¼ jXf

u j, i.e., the number of users that
connect to frequency f and interfere with user u. When all
the users congest the APs with the same weight, we have
zfu ¼ xfu (the corresponding game is nonweighted).

Each user is rational and behaves selfishly trying to
minimize her cost. The solution concept we refer to is the
well-known (pure strategy) Nash equilibrium, i.e., an action
profile S% ¼ ðsu1 ; . . . ; sunÞ, where su is the action of user u,
such that no user can reduce her perceived cost by deviating
unilaterally from S% [2]. Given an action profile S, we denote
by na the number of users that connect to AP a.

We consider a congestion game [3] that is: asymmetric
(different users can have different available actions), single-
choice (each user can select only one AP), and with player-
specific cost functions (each user can have a different cost
function). It is worth noting that different users using the
same frequency may perceive different congestions.
Furthermore, the game defined above can be reduced to a
crowding game [39], i.e., a symmetric single-choice conges-
tion game with player-specific cost functions that are
monotonically increasing in the level of congestion. The
formal proof of the reduction is presented in [40] for a
similar game model. This equivalence leads to a prominent
property when the game is nonweighted: it is proved to
always admit a pure strategy NE [39]. The literature on
congestion games shows that best-response dynamics
surely converges to pure strategy NEs, in case NEs do exist
[3]. This allows us to study safely only situations where the
users’ actions are in equilibrium. Therefore, independently

of the specific definition of cuðf; zfuÞ, we can focus on
algorithms to find pure NEs. When instead the game is
weighted, the existence of pure NEs depends on the
definition of cuðf; zfuÞ. We discuss details in the section
where we study the weighted congestion game.

3.3 Cost Functions

We define three different cost functions, which approximate
the actual access cost under different wireless access
technologies. We summarize the cost functions in Table 1.
It is worth noting that, all throughout the paper, we will
refer to “nominal rate/bandwidth” as the rate assigned by
the network to the users (in 802.11 this is known as rate
adaptation mechanism [41] and usually depends on the
received signal strength). In contrast, we refer to “actual
throughput” as the actual rate perceived by the user that is
usually affected by the surrounding interference and
network conditions.

3.3.1 Cost Function 1: Interference Based

In general wireless access networks, the quality of service
obtained by each user strictly depends on the perceived
actual throughput. Since the nominal bandwidth is shared
among all connected users, the quality/cost perceived by
an accessing user depends on the number of competing
users sharing the very same resource. It is, thus, reasonable
to introduce a cost function that depends directly on the
cardinality of the interfering users. This may well represent
the case of access networks characterized by “soft”
capacity degradation like the uplink of CDMA-based
systems under open loop power control, where the
perceived quality of a transmission depends almost
exclusively on the interferers number and each transmis-
sion/user congests the shared resource evenly [42]. In this
case, for all u 2 U; f 2 F , we have

!fu ¼ 1; zfu ¼ x
f
u; cuðf; zfuÞ ¼ x

f
u:

The game is nonweighted. In particular, when frequency
reuse is not allowed, the game admits an exact potential
function. In this case, all the users perceive the same
congestion from f and the potential function is the one
provided by Rosenthal in [3], formally, !ðSÞ ¼

Pm
a¼1

Pna
k¼1 k,

where S is the users’ strategy profile. (We recall that in a
potential game every action profile that minimizes the
potential function is a NE.)

3.3.2 Cost Function 2: Weighted Interference-Rate

Wireless technologies used in access networks may feature
rate-adaptation mechanisms that dynamically adapt the
nominal rate to the received signal strength. Therefore, it is
worth considering a cost function that accounts both for
the number of interferers and for the nominal rate. We
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TABLE 1
Summary of the Cost Functions that Are Discussed in the Paper



denote byRa
u the rate perceived by user u connecting to a. We

denote by Tau the inverse of the rateRa
u perceived by user u to

connect to a, i.e., Tau ¼ 1
Ra
u

. Moreover, since the cost function is
defined with respect to the chosen frequency, we define

Tfu ¼ min
a2Af

u

T au ;

where Af
u is the set of APs available to u using f .

The accessing users may then congest the shared
resource in different ways. As an example, in IEEE 802.11
access networks, the highest interference is caused by users
with the lowest rate due to the well-known performance
“anomaly” [43]. Thus, it is reasonable to assume that each
user congests the resources with a specific weight that
depends on the inverse of the rate the user perceives.
Formally, defining !fu as the inverse of the rate, we have

!fu ¼ T
f
u ; z

f
u ¼

X

u02Xf
u

T fu0 ; cu
!
f; zfu

"
¼ Tfu & z

f
u:

Note the game is weighted and it does not admit any
potential function, and therefore, the results discussed at
the end of Section 3.2 cannot be applied, the results
discussed in [44] show that when the cost functions are
separable, i.e., when the cost is defined as the product of a
player-specific parameter and the congestion level, the
game always admits a pure NE.

3.3.3 Cost Function 3: Interference-Rate

We observe here that the practical implementation of the
cost function defined in Section 3.3.2 requires the knowl-
edge for a user of the rate values adopted by all the other
users in the network, which may be not feasible or too
expensive to achieve. We propose here an approximate cost
function that combines both interference and rate, but
requires more limited information to be distributed to the
users. In case the nominal rate and the number of
competing users are available, we may define a cost
function that captures the portion of bandwidth achievable
to each user, as the current nominal rate divided by the
number of interferers.

As done for the previous cost functions, we use the
inverse of the rate and we obtain the product between the
number of interferers and the inverse of the rate perceived by
the considered user. Formally, for all u 2 U; f 2 F , we have

!fu ¼ 1; zfu ¼ x
f
u; cu

!
f; zfu

"
¼ Tfu & x

f
u:

Since in this case the game is nonweighted, the existence of
at least one pure strategy NE is guaranteed, as mentioned at
the end of Section 3.2. However, the game does not admit
any potential function.

4 FINDING NASH EQUILIBRIA

The literature on congestion games generally resorts to the
minimization of potential functions to calculate Nash
equilibria. However, our games do not always admit any
potential function. Thus, we propose a solution approach
based on a mathematical programming formulation of the
network selection problem that can be used in realistic
scenario for all the cost functions.

To this end, we introduce the following parameters,
defined as 8u 2 U; f 2 F; a 2 A:

bua ¼
1; if user u can select access point a;

0; otherwise;

#

duf ¼
1; if user u can select frequency f;

0; otherwise;

#

taf ¼
1; if a transmits on frequency f;

0; otherwise;

#

iuvf ¼
1; if users u and v potentially

interfere on frequency f;

0; otherwise:

8
><

>:

Given a generic topology, bua is equal to 1 if user u is within
the coverage area of a. The value of each bua (and also the
reverse of the nominal rates Tau s) are computed once the
propagation model is chosen. Furthermore, duf is equal to 1
if user u is covered by at least one AP that is using
frequency f . Then, we define Fu as the set of frequencies
that user u can choose, i.e., such that duf ¼ 1.

We define the assignment of a user to a frequency by
introducing a binary decision variable, 8u 2 U; f 2 F :

yuf ¼
1; if user u chooses frequency f;
0; otherwise;

#

and similarly, we define a binary decision variable for the
association of each user to an AP, 8u 2 U; a 2 A:

sua ¼
1; if user u chooses AP a;
0; otherwise:

#

Note that the variable xfu introduced in Section 3 is

xfu ¼
X

v2U
yvf iuvf :

Recalling that !fu is the congestion weight of user u to
frequency f , the congestion level zfu of frequency f is

zfu ¼
X

v2U
!fvyvf iuvf :

With the social cost as the objective function, i.e.,
X

u2U

X

f2F
yufcu

!
f; zfu

"
; ð1Þ

the socially optimal network selection is a solution of the
following mathematical programming problem:

min
X

u2U

X

f2F
yufcu

!
f; zfu

"
; ð2Þ

s.t.
X

a2Au

sua ¼ 1 8u 2 U; ð3Þ

yuf ¼
X

a2Au

suataf 8u 2 U; f 2 F; ð4Þ

where constraints (3) ensure that each user chooses only one
AP among available ones, while (4) guarantees that the
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frequency assigned to user u is the frequency f used by AP
a if and only if sua is equal to one.

A (pure strategy) NE can be found by solving the
following feasibility problem:

constraints ð3Þ; ð4Þ

dukyufcu
!
f; zfu

"
' cu

!
k; zku þ !

k
u

" 8u 2 U; f;
k 6¼ f 2 F;

ð5Þ

where constraints (5) force each user u to select the access
point which minimizes u’s cost function, that is, they ensure
that if a user unilaterally changes her action, then she
cannot reduce her cost (i.e., definition of NE).

The selection of a specific NE can be easily addressed by
introducing an objective function. For instance, the worst
NE (needed for calculating PoA) can be obtained by
maximizing (1), whereas the best NE (needed for calculat-
ing PoS) can be obtained by using (2).

For the sake of readability, we present the model using
nonlinear constraints. A mixed-integer linear formulation
for all the cost functions can be easily obtained.

Finally, it is worth noting that the presented model can
be used for all the presented cost functions. Namely, it is
used to characterize the optimal allocation and the best/
worst equilibrium of the games.

5 EXPERIMENTAL EVALUATION

We report an experimental evaluation of the access
strategies associated with the three cost functions both in
terms of equilibrium inefficiency (i.e., PoA and PoS) and
average perceived throughput by the users. We denote by
1, 2, and 3 the cost functions presented in Sections 3.3.1,
3.3.2, and 3.3.3, respectively, as mentioned in Table 1.
Furthermore, we consider also the case in which users
select the nearest AP, i.e., cuðf; zfuÞ ¼ Tfu , regardless of the
number of interferers. We denote this cost function by
“nearest-AP.” Indeed, according to the propagation model
that we have assumed, this case represents the case in
which access points are selected on the basis of the received
signal strength only. Note that this is not a game anymore
(and then it is considered in the throughput evaluation
only), but it is relevant because it is the common association
policy in 802.11 networks.

5.1 Experimental Setting

We consider a multiaccess network deployed on a square
area with edge L and composed by n users and m APs with
a coverage range of r meters. We have implemented a
generator able to create synthetic instances representing the
simulated network scenarios. The generating tool randomly
draws the position of the m APs and the n users, so that
each user is covered by at least one AP. Moreover, in this
section, we assume that each AP uses a different frequency,
which is the “best” situation for the users because inter-AP
interference is null. We relax this assumption in the
following section.

For the sake of simulation, we refer to the standard
802.11g and we adopt the free space propagation model
in [45]:

SNR ¼ 10 log
Pr
N
; Pr ¼ Pt &Gt &Gr

"

4"d

$ %2

;

where Pt ¼ 0:01 W is the transmission power, Gt ¼ Gr ¼ 1
are the antenna gains, " is the wavelength and can be
derived by frequency that is set to 2.437 GHz and noise
power is N ¼ 3 & 10)11 W.

To have correct reception, the SNR threshold is set to
5.05 dB that corresponds to a circular coverage area of
radius r ¼ 100 meters. According to the distance d between
the user and the AP, when this is shorter than the radius,
the software assigns the largest nominal rate that the user
can obtain from that AP (rate adaptation scheme). Table 2
reports, for each distance and SNR, the nominal rate and the
corresponding value of T used in our simulations. We
assume that Tfu ¼ T; 8u 2 U; f 2 F .

The parameter T used in the model is a normalization
of the inverse of rate R, so that the number of interferers
and the inverse of rate are comparable. In this case, we
assume that T ¼ 108=R. This normalization could not
be effective if the number of users or APs increases.
Extensive simulations have shown that an effective normal-
ization should depend on n and m so that the worst case of
rate (that corresponds to the maximum value of T ) is
comparable with the average number of users per AP. For
this reason, we propose the normalization Tmax ¼ ðn=mÞ#,
where Tmax is the maximum value of T and # should be
chosen in the interval ½1; 4+ (in our simulations # ¼ 3:32).

5.2 Evaluating Equilibrium Inefficiency

To compare the three cost functions, we find the optimal
solution (without NE constraints) and best and worst
equilibria formalizing the mathematical models presented
in Section 4 with AMPL [46] and solving them with CPLEX
[47]. All the results reported in this section are averaged on
100 randomly generated instances, where APs are fixed,
varying the users’ position.

As shown in [37], we first point out that the case for
which the PoA assumes the largest values is the “corridor”
topology with m ¼ 3 APs and r ¼ 100 meters. We use the
name “corridor” to indicate that APs are placed along a line
(the presence of walls is not considered). Numerical results
show that the maximum value of PoA (over all instances)
using cost function 1 is 1:6 and it can be reached only with
three users. Differently from PoA, the PoS is always equal to
one with cost function 1, and therefore, the best equilibrium
(BE) always corresponds to the optimal solution. Numerical
results show that the dependency of PoA on n for cost
functions 2 and 3 is similar to the one of cost function 1. The
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only significant difference concerns the maximum values of
PoA at n ¼ 3: 1.43 for cost function 2, and 1.35 for cost
function 3 (for n > 6 PoA < 1:1 for all the cost functions).
Differently from what happens in the case with cost function
1, PoS with cost functions 2 and 3 can be larger than 1 and
then the optimal solution may not be an equilibrium.

Moving to the analysis of realistic scenarios, in case (a)
we consider a topology with L ¼ 500 m, r ¼ 100 m, m ¼ 10
APs, and n ¼ 50 users. Both users and APs are randomly
deployed with a uniform distribution. The user density
(measured in users/m2) is 2 & 10)4. In case (b), we consider
the same topology with users deployed using a nonuniform
distribution. Namely, the square arena is divided into
subareas and in each subarea users are deployed uniformly
with different densities. In particular, we consider four
quadrants with three different densities: high (4 & 10)4),
medium (1:6 & 10)4), and low (0:8 & 10)4). In the considered
scenario, users in the bottom-left quadrant are deployed
with high density, in the top-right with low density and in
the other two with medium density. Finally, topology (c) is
a “corridor” with L ¼ 600, m ¼ 5 APs, and n ¼ 50 uni-
formly distributed users (density is 1:38 & 10)4).

Table 3 reports PoS and PoA for the three different
topologies, varying the user cost function. The main result
coming from this analysis is that both PoS and PoA are very
close to one, regardless of the specific adopted cost
function. In other words, the quality of the equilibria is
very close to the optimal solution of the network selection
problem. This means that in realistic settings, there is no
significant difference, in terms of social cost, between the
optimal solution (achievable with a centralized coordina-
tion among the users) and any NE (achievable through best
response dynamics).

5.3 Evaluating Actual Throughput and Fairness
We provide a practical comparison of different selection
strategies, evaluating the actual throughput perceived by
users and the degree of fairness achievable with the
proposed cost functions. For this analysis, we have fed into
NS2 [7] the solutions obtained by the optimization model,
representing the association of users to APs at the
equilibrium. We have used NS2 version 2.33, supporting
rate adaptation. The interference distance has been set to
100 meters (as APs radius) and we have changed the
SNR table used for the rate adaptation, so that the
associations between rate and distance shown in Table 2
are verified. Moreover, in our settings each AP works on
a different frequency channel. Finally, users transmit
using UDP connections at the same rate in the range
[500 Kbit/s-6 Mbit/s]. Simulation results using TCP as
transport protocol are reported in the supplemental
material, available online [8]. Note that the case in which
users are transmitting all the same rate is consistent for two

reasons. First, because the goal of the analysis is to compare
the different cost functions in terms of throughput. Second,
because the considered case can be seen as the worst case
scenario, i.e., for a given (maximum) rate, we derive the
average throughput per user when all users are transmit-
ting at the same (maximum) rate.

To measure the degree of fairness, we consider Jain’s
fairness index [48], formally:

J ¼
!P

u2U $u
"2

n &
P

u2U $
2
u

;

where $u represents the throughput of user u.
Moving to the details of the simulation analysis, we

initially focus on realistic “strongly asymmetric settings.”
We consider a scenario with m ¼ 2 APs and n ¼ 20 users.
All users are in the range of both APs but they are very
close to one AP. We report in Fig. 2 the average throughput
per user in the best equilibrium, using different cost
functions and increasing the UDP load. Cost function 1
and nearest-AP lead to a lower throughput compared to the
other cost functions: )10 and )45 percent, respectively.
Cost functions 2 and 3 are almost equivalent in terms of
throughput. We report in Fig. 3 Jain’s fairness index. Cost
functions 3 and nearest-AP provide the best fairness index,
whereas cost function 2 leads to )23 percent and cost
function 1 to )9 percent.

Hereafter, we consider the three different topologies, (a),
(b), and (c), with n ¼ 50 users presented previously in
Section 5.2. Fig. 4 reports the average throughput per user
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TABLE 3
PoS and PoA in Different Topologies

Fig. 2. Average throughput (BE) per user in 2-AP strongly asymmetric
settings, increasing the UDP load.

Fig. 3. Jain’s fairness index (BE) in 2-AP strongly asymmetric settings,
increasing the UDP load.



in the uniform scenario (a). The statistical consistency of the
simulation results is evaluated in the supplemental materi-
al, available online [8]. We have observed by simulations
that best equilibrium and worst equilibrium are very close
in terms of actual throughput (sum over all users). This is
strictly related to the fact that PoS and PoA are also close to
each other (see Table 3). This confirms the goodness of the
game model and, hereafter, we consider the BE only. Fig. 5
reports Jain’s fairness index. We can observe that cost
function 1 reaches the lowest throughput among all the
function ()8 percent w.r.t. the best case). Nearest-AP
selection ensures the highest average throughput, especially
increasing the UDP load, but it has the lowest degree of
fairness ()8 percent). In contrast, we can observe that cost
functions 2 and 3 ensure a throughput very close to the
maximum (provided by the nearest-AP selection) and, at
the same time, guarantee the highest fairness.

Figs. 6 and 7 report, respectively, the average actual
throughput and the Jain’s fairness index under nonuniform
topologies (b). Also in this case, cost functions 2 and 3
provide the highest level of fairness and the largest
throughput, whereas the nearest-AP selection has the lowest
fairness degree ()6 percent from the best). The same
performance curves have been obtained per user
type with similar behavior (see supplemental material,
available online [8]).

Finally, we consider the “corridor” topology (c) and we
report in Figs. 8 and 9 the throughput and the Jain’s
fairness index, respectively. As in the previous cases, cost
functions 2 and 3 provide the best performance. Cost
function 1 leads to the lowest throughput ()20 percent) and
to the lowest fairness ()5 percent).

Summarizing, the main outcomes of the simulation
analysis are the following: 1) cost functions 2 and 3 provide
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Fig. 4. Average throughput (BE) per user in uniform topologies,
increasing the UDP load.

Fig. 5. Jain’s fairness index (BE) in uniform topologies, increasing the
UDP load.

Fig. 6. Average throughput (BE) per user in nonuniform topologies,
increasing the UDP load.

Fig. 7. Jain’s fairness index (BE) in nonuniform topologies, increasing
the UDP load.

Fig. 8. Average throughput (BE) per user in corridor topologies,
increasing the UDP load.

Fig. 9. Jain’s fairness index (BE) in corridor topologies, increasing the
UDP load.



the highest throughput and the highest fairness among
all the considered functions; 2) nearest-AP selection leads to
the lowest actual throughput in “strongly asymmetric
settings” and the lowest fairness in the other tested
scenarios; and 3) cost function 1 generally leads to both
actual throughput and fairness lower than the ones
obtained under cost function 3. The fact that cost functions
2 and 3 provide the highest throughput and fairness mean
that they better reflect the quality perceived by the users, in
particular with respect to common nearest-AP policy.
Therefore, the implementation of these selection mechan-
isms in real system will lead to better performance for the
users, in terms of both throughput and fairness. We finally
point out that the same conclusions hold true if changing
the reference propagation model, as cost functions 2 and 3
directly take into account the nominal rate assigned by the
AP, which in turn depends on the propagation model.

5.4 Discussion on the Implementation

It is worth analyzing the applicability of the proposed cost
functions (and selection strategies) in terms of required
signaling overhead. Users playing according to cost
function 1 only require the information on the number of
users associated with each AP, while under cost function 3
also the user’s nominal rate is needed. The information of
the current nominal rate can be easily available locally.
Indeed, referring to IEEE 802.11 access networks, the
drivers of commercial cards do provide hooks to monitor
the current rate adopted for transmissions. The information
on the current number of interferers should be provided
by the AP itself through beaconing messages,3 or locally
estimated by the users.

The calculation of cost function 2 requires each user to
know also the current nominal rate adopted by all the other
users associated with the same AP which would require a
higher signaling overhead to be actually implemented.
Therefore, even if the performance of cost functions 2 and 3
are close, cost function 2 requires the implementation of
new features in real systems to provide users with the
needed information. This makes cost function 3 more
suitable for existing systems.

Finally, it is also worth analyzing the convergence time of
the best response dynamics under the three cost functions.
Such performance measure reflects the promptness of the
distributed system to settle to an equilibrium. Available
results for generic congestion games show that the con-
vergence time is Oðn2mÞwhere n is the number of users and
m is the number of resources [49], [50] when users cannot
act simultaneously. To further assess the convergence time
in our game model, we developed a best response simulator.
The initial assignment of users to access points and the user
that acts at each time point are chosen randomly. We
generated settings as described in Section 5.2 with n 2
½10; 200+ with a step of 10, m 2 ½3; 12+ with a step of 3. For
each parameter configuration, we generated 100 settings
and we solved each setting 100 times. The convergence time
(measured in number of iterations) for cost function 1 is
reported in Fig. 10 (the other cost functions feature similar

behavior). The convergence time increases linearly in the
number of users and it is smaller than n for everym. Exactly,
the convergence time increases in m and asymptotically
saturates to , 4

5n, as m! þ1.

6 THE NETWORK SELECTION RESOURCE

ALLOCATION GAME

In the previous section, we have considered the user
competition, assuming the resource allocation (i.e., fre-
quency assignment) as fixed. Hereafter, we drop the
assumption of a fixed frequency assignment, bringing the
operators into the competition. In fact, in practical settings,
it is reasonable to assume that each operator tries to
maximize her own revenue defined, in our case, as the
number of connected customers. In general, an operator
may own and run several network devices (APs) to cover
different-sized areas. Hereafter, we start off by considering
a simplified case where a network operator only owns a
single AP,4 which may well represent those cases where the
area to be covered is limited (conference rooms, hotel
lounges, etc.) and multiple APs (belonging to multiple
operators) may be concurrently deployed to provide
connectivity. Furthermore, for simplicity we assume that
operators have complete information about the network
topology. This slightly simplified but consistent scenario
allows us to get insightful results on the dynamics of the
competition among operators. To this end, we introduce a
two-stage game model capturing also the competition
among the operators. We further provide the mathematical
model to solve the game, and finally discuss some
numerical results, considering the different cost functions
from the user side.

6.1 Network Selection Resource Allocation Game

The game we consider has two groups of players: users and
operators. We assume that the two groups of players do not
“play” simultaneously and decisions times are decoupled.
Therefore, we are dealing with a (multileader/multifol-
lower) two-stage game. First, operators (i.e., the leaders)
compete selecting the most convenient frequency. Then,
users (i.e., the followers) react to the APs’ actions, selecting
the best AP. The user game, once the frequencies have been
fixed, is the same as described in previous sections. Each
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3. For example, in the field of IEEE 802.11 networks, the IEEE 802.11k
standard could be used to support the exchange of additional information.

Fig. 10. Length of the dynamics with cost function 1.

4. We refer to network “operator” and “AP” indifferently.



user tries to minimize a given cost function, cuðf; xfuÞ,
selecting the “best” operators. In contrast, APs try to
maximize the number of connected users by operating at
the most convenient frequency.

The equilibrium concept adopted for multistage games is
the subgame perfect equilibrium, which is defined as a strategy
profile which is a NE for every subgame [2].

In Section 3, we proved that a pure strategy equilibrium
for the user game always exists, regardless of the specific
cost function. In contrast, the existence of a pure strategy
SPE for the two-stage game is guaranteed only when users
adopt cost function 1. In particular, the following proposi-
tions hold true. Complete proofs are reported in the
supplemental material, available online [8].

Proposition 6.1. The two-stage game with users’ cost function 1
always admits a pure strategy SPE.

Proposition 6.2. The two-stage game with users’ cost function 2
may not admit any pure strategy SPE.

Proposition 6.3. The two-stage game with users’ cost function 3
may not admit any pure strategy SPE.

Therefore, for the two-stage game, with cost functions 2
and 3, the equilibrium is not guaranteed to always exist.
However, we have shown in previous sections, that from
the user side, these two functions lead to better perfor-
mance, in terms of both throughput and fairness. To
characterize stable states for the two-stage game even when
users adopt functions 2 and 3, we introduce the concept of
(pure strategy) !-NE and (pure strategy) !-SPE. An !-NE is a
strategy profile that approximately satisfies the condition of
NE. Namely, given a real nonnegative parameter !, a
strategy profile is said to be an !-NE if it is not possible for
any player to gain more than ! by unilaterally deviating
from her strategy. Note that every (pure strategy) NE is an
(pure strategy) !-NE in which ! ¼ 0. The concept of !-SPE is
defined similarly, allowing some player in some decision
point of the game tree to play a strategy that is worse no
more than ! with respect to the best response action. In our
two-stage game, the equilibrium nonexistence problem is at
the first stage game. Therefore, we allow operators to play
in the first stage an !-NE, while we force users to play in the
second stage a pure strategy NE.

6.2 Mathematical Programming Model

We extend the mathematical programming formulation
presented in Section 4 to solve the two-stage game. The
computation of an SPE requires the computation of the NEs
of all the possible subgames. We denote by % a single
subgame and by # the set of all the subgames. With a slight
abuse of notation, we denote by %ðsa1 ; . . . ; samÞ the specific
subgame induced by operators’ action profile ðsa1 ; . . . ; samÞ.
Note that in each subgame % the frequency assignment
is fixed, then the problem is the same as described in
Sections 3 and 4. For the case of two operators, i.e., A ¼
fa1; a2g and two frequencies, i.e., F ¼ ff1; f2g, it is possible
to identify four different subgames. Namely, at the stage of
the operators, we can have the following cases: a1 and a2

choose the same frequency, either f1 or f2, or the two
operators choose different frequencies (a1 selects f1 and a2

selects f2 or the opposite).

We can state the extended mathematical programming
formulation. Parameter bua remains unchanged, instead the
other parameters depend also on subgame % as

d%uf ¼
1; if u can select f in %;

0; otherwise;

#

t%af ¼
1; if a transmits on f in %;

0; otherwise;

#

i%uu0f ¼
1; if u and u0 interfere on f in %;

0; otherwise:

#

Indeed, these parameters have the same meaning as
the corresponding parameters previously introduced in
Section 4, with the exception that in this case they are valid
only for the specific subgame %. With the same approach,
we extend the variables on the basis of % as

y%uf ¼
1; if u chooses f in %;

0; otherwise;

#

s%ua ¼
1; if u chooses a in %;

0; otherwise:

#

For each user u, we define the congestion level:

!
zfu
"% ¼

X

v2U
!fvy

%
vf i

%;
uvf

that is, the congestion level perceived by u when selects f in
%. Similarly, we define the number of users associated with
each AP, corresponding in this case to the variable that each
AP a wants to maximize:

n%a ¼
X

u2U
s%ua:

Furthermore, we introduce a binary variable for every
subgame % that assumes a value of one only when % is on
the SPE path as

h% ¼ 1; if % is on the equilibrium path;
0; otherwise:

#

We now describe the constraints of the model. A subset of
the constraints is the same as those of the users’ game
described in Sections 3 and 4. In particular, the following
feasibility constraints guarantee that each user selects only
one network per subgame %:

X

a2Au

s%ua ¼ 1 8u 2 U; % 2 #; ð6Þ

y%uf ¼
X

a2Au

s%uat
%
af 8u 2 U; f 2 F; % 2 #: ð7Þ

And similarly, we define the NE constraints for the users,
for each subgame %:

d%uky
%
ufcu

!
f;
!
zfu
"%" ' cu

!
k;
!
zku
"%"

8u 2 U; f; k 6¼ f 2 F; % 2 #:
ð8Þ

We need now to define the equilibrium constraints of the
operators on the basis of the users’ actions in all the
subgames. Since, as shown in the previous section, a two-
stage game may not admit any SPE in pure strategies, we
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need to search for the best !-NE (i.e., with the minimum
value of !) for the first-stage game, obtaining thus an !-SPE
for the whole game. Given a value of !, the !-Nash
constraints for the operators are

n%a þ ! - n
%0

a h
% 8a 2 A; %ðsa; s)aÞ 2 #;

%0ðs0a; s)aÞ 2 #;
ð9Þ

that is, at the (approximate) equilibrium (identified by
h% ¼ 1) operator a cannot gain more than ! by (unilaterally)
changing her action. We need to force that there is only one
subgame on the equilibrium path:

X

%2#

h% ¼ 1: ð10Þ

Finally, we want to select the best approximate equilibrium
by minimizing the value of ! under the constraint that it is
nonnegative. Therefore, we obtain

min !

s:t: ! - 0

constraints ð6Þ; ð7Þ; ð8Þ; ð9Þ; ð10Þ:

Although the above formulation has nonlinear con-
straints, it can be cast as a mixed-integer linear formulation,
resorting to simple mathematical tricks.

6.3 Experimental Evaluation

We evaluate hereafter the two-stage game. In particular, we
first study the existence of SPEs and the ! value of !-SPEs,
then we quantify the impact of the competition among
networks onto the users’ perceived access costs.

6.3.1 Existence of SPEs and Approximation Degree

We focus on the existence of (pure strategy) SPEs with
cost functions 2 and 3 and on the characterization of the
best !-Nash approximation degree we can obtain. Cost
function 1 is not considered in this analysis, since
Proposition 6.1 assures the existence of SPEs. To derive
SPEs and approximated SPEs, the linear model discussed in
Section 6.2 is formalized in AMPL and solved using
CPLEX. We generate uniform topologies, as described in
Section 5.2, where the number of networks m equals the
number of available frequencies jF j and goes from
m ¼ jF j ¼ 2; . . . ; 5. Furthermore, we let the number of users

go from n ¼ 5; . . . ; 100. All the results are averaged on 200
randomly generated instances.

First, we evaluate the average probability of nonexis-
tence of any pure-strategy SPE, i.e., fraction of games not
admitting any pure-strategy SPE. Results for cost functions 2
and 3 are reported in Figs. 11 and 12. The numerical
variance can be derived by observing that the curve refers
to a Binomial experiment whose variance is p & ð1) pÞ,
where p is the probability of nonexistence. The nonexistence
fraction may be significative (>40 percent with 100 users)
under both cost functions, and generally increases with the
number of users. Cost function 3 grants better results than
cost function 2. As clear from the proof of Proposition 6.2,
the nonexistence is due to the relative positions of APs and
users. We conjecture that cost function 2 presents a space of
relative positions (for which equilibrium does not exist)
wider than cost function 3. Furthermore, we can observe
that increasing the number of networks (and available
frequencies), the probability of nonexistence increases. As
done before, we conjecture that increasing the number of
competitors, the strategy space for the users increases, and
then also the space of relative positions increases.

Second, it is worth studying the approximation degree of
!-SPE equilibria. To this end, we are interested in the !-SPEs
with minimum !. For both cost functions, we evaluate the
average minimum !. Figs. 13 and 14 report the average
! using cost functions 2 and 3, respectively. We report
the statistical property of the simulation results in the
supplemental material, available online [8]. The two cost
functions provide very similar results. We observe that
increasing the number of users, ! increases. This reflects the
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Fig. 11. Probability of nonexistence of any pure-strategy SPE when
users play using cost function 2.

Fig. 12. Probability of nonexistence of any pure-strategy SPE when
users play using cost function 3.

Fig. 13. Average ! when users play using cost function 2.



fact that each network loses a larger number of users at the
!-SPE as the number of users increases. However, when the
number of available networks and frequencies increases,
the average ! decreases. This highlights the fact that with a
larger number of available networks, the average number of
users per network decreases, and so does the average !.
However, the loss of users for each network at the !-SPE is
always small compared to n ('3 percent). Note that for the
sake of completeness, we have also run simulations on cases
in which the number of available frequencies is less than the
number of operators. Namely, given m, we have evaluated
all the cases for jF j ¼ 2; . . . ;m (see supplemental material,
available online [8]). We observed that the average !
decreases when the number of available frequencies
reduces. This can be explained by the fact that in this case
the space of relative positions decreases.

6.3.2 Quality of the !-SPEs for the Users

We evaluate the efficiency of (approximate) equilibria in
terms of users’ social costs to understand how the
competition between operators affects the quality perceived
by the users. In our analysis, we do not consider the
operators’ utility, because every equilibrium is Pareto
efficient for the operators (their utilities sum up to the total
number of users).

Under the same settings as in the previous section, we
find the optimal (approximate) equilibrium for the users
among those that minimize !. In addition, we find the
equilibria of the users’ game when operators are forced to
play different frequencies (corresponding to the case in
which the users’ cost is minimum) and the same frequency
(corresponding to the case in which the users’ cost is
maximum), respectively.

Fig. 15 shows the average cost per user calculated
according to cost functions 2 and 3 for the equilibria of
games played according to cost functions 2 and 3, when the
number of operators and the number of frequencies are
both equal to 2. Two different scales are used for the values
of the two different cost functions. The results have been
scaled such that the lines corresponding to the situations
in which operators use the same frequency with cost
functions 2 and 3 overlap and the same when operators use
different frequencies. Increasing the number of networks/
frequencies, we obtained similar results.

The main result is that the competition among operators
affects the cost of the users. In fact, even if the rate is close to
the case where different frequencies are used, the number of

interferers increases. This leads to an increase in the users-
perceived cost for both cost functions 2 and 3. This result is
confirmed by the evaluation of the actual throughput (by
NS2 based simulations) that shows a behavior similar to the
curves in Fig. 15.

7 CONCLUDING REMARKS

Motivated by the heterogeneity of modern wireless access
networks, we proposed in this paper a study to capture
the dynamics among end users and network operators in
the processes of network selection and resource allocation.
We resorted to noncooperative game theory to model the
competition among multiple end users in accessing shared
wireless networks. We analyzed three game models that
differ in the access cost functions, each end user tends to
minimize and reasonably represent three realistic cases of
wireless access technologies. To solve the games, we
proposed a mathematical programming formulation for
the network selection problem, which is able to return the
best and worst equilibria for a thorough evaluation of the
equilibria quality in terms of Price of Anarchy and Price
of Stability.

We have then included the operators in the network
selection process by letting each operator dynamically plan
its radio resources. Namely, we proposed a two-stage game
model where operators play first by competitively setting
their operating frequencies to capture the highest number of
end users, which, in turn, play the aforementioned network
selection games in the second stage of the game. Formal
results on the existence of subgame perfect equilibria have
been derived for all the game instances. Even if the
proposed two-stage game may not always admit any pure
strategy equilibrium, it is possible to enforce approximated
equilibria with a reasonably small quality loss. Thus, the
proposed game model can be suitably adopted to represent
and drive the dynamics of practical network scenarios.

The main results of the analysis are as follows:

. best response dynamics in the network selection
based on the perceived interference and nominal
rate tend to converge to socially optimal solution;

. the equilibria obtained playing with a multipara-
meter cost function (perceived interference and
nominal rate) feature better performance (actual
throughput and fairness) than if playing with single
parameter cost functions (either rate or interference)
especially under asymmetric network scenarios;
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Fig. 14. Average ! when users play using cost function 3. Fig. 15. Average cost per user when m ¼ jF j ¼ 2.



. cost function 3 is the best tradeoff between perfor-
mance and implementability to develop protocols
for users’ network selection;

. competition among operators may be dangerous for
two reasons: first, the two-stage game may not admit
any (pure-strategy) equilibrium, second, it leads, in
general, to worse performance for the users.

Natural follow up of this work includes the extension to
the case in which the network selection process accounts
also for information on the type of traffic required by
the users, each operator owns multiple access points and/
or has statistical information on the users’ distribution, the
impact of connection fees onto the game theoretic
model and the implementation of network selection/
association and resource allocation protocols to enforce
best response dynamics.

REFERENCES

[1] E. Gustafsson and A. Jonsson, “Always Best Connected,” IEEE
Wireless Comm., vol. 10, no. 1, pp. 49-55, Feb. 2003.

[2] D. Fudenberg and J. Tirole, Game Theory. MIT, 1991.
[3] R.W. Rosenthal, “A Class of Games Possessing Pure-Strategy

Nash Equilibria,” Int’l J. Game Theory, vol. 2, no. 1, pp. 65-67, 1973.
[4] N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani,

Algorithmic Game Theory. Cambridge Univ., 2007.
[5] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler,

and T. Roughgarden, “The Price of Stability for Network Design
with Fair Cost Allocation,” Proc. IEEE 45th Ann. Symp. Foundations
Computer Science (FOCS), pp. 59-73, 2004.

[6] E. Koutsoupias and C. Papadimitriou, “Worst-Case Equilibria,”
Proc. 16th Ann. Conf. Theoretical Aspects Computer Science (STACS),
pp. 404-413, 1999.

[7] “The Network Simulator - ns-2,” http://www.isi.edu/nsnam/ns,
2013.

[8] M. Cesana, N. Gatti, and I. Malanchini, “Network Selection and
Resource Allocation Games for Wireless Access Networks,” IEEE
Trans. Mobile Computing, supplemental material, doi:10.1109/
TMC.2012.207, Nov. 2012.

[9] O. Ormond, J. Murphy, and G. Muntean, “Utility-Based Intelligent
Network Selection in Beyond 3G Systems,” Proc. IEEE Int’l Conf.
Comm. (ICC), pp. 1831-1836, 2006.

[10] K. Premkumar and A. Kumar, “Optimum Association of Mobile
Wireless Devices with a WLAN-3G Access Network,” Proc. IEEE
Int’l Conf. Comm. (ICC), pp. 2002-2008, 2006.

[11] W. Shen and Q.-A. Zeng, “Cost-Function-Based Network Selection
Strategy in Integrated Wireless and Mobile Networks,” IEEE
Trans. Vehicular Technology, vol. 57, no. 6, pp. 3778-3788, Nov. 2008.

[12] Q. Song and A. Jamalipour, “Network Selection in an Integrated
Wireless LAN and UMTS Environment Using Mathematical
Modelling and Computing Techniques,” IEEE Wireless Comm.,
vol. 12, no. 3, pp. 42-48, June 2005.

[13] D. Charilas, O. Markaki, D. Nikitopoulos, and M. Theologou,
“Packet-Switched Network Selection with the Highest QoS in 4G
Networks,” Computer Networks, vol. 52, no. 1, pp. 248-258, 2008.

[14] F. Bari and V. Leung, “Automated Network Selection in a
Heterogeneous Wireless Network Environment,” IEEE Network,
vol. 21, no. 1, pp. 34-40, Jan./Feb. 2007.

[15] M. Bernaschi, F. Cacace, G. Iannello, S. Za, and A. Pescape,
“Seamless Internetworking of WLANs and Cellular Networks:
Architecture and Performance Issues in a Mobile IPv6 Scenario,”
IEEE Wireless Comm., vol. 12, no. 3, pp. 73-80, June 2005.

[16] Y. Bejerano, S.-J. Han, and L. Li, “Fairness and Load Balancing in
Wireless LANs Using Association Control,” IEEE ACM Trans.
Network, vol. 15, no. 3, pp. 560-573, June 2007.

[17] N. Blefari-Melazzi, D.D. Sorte, M. Femminella, and G. Reali,
“Autonomic Control and Personalization of a Wireless Access
Network,” Computer Network, vol. 51, no. 10, pp. 2645-2676, 2007.

[18] Y. Lee and S.C. Miller, “Network Selection and Discovery of
Service Information in Public WLAN Hotspots,” Proc. ACM Int’l
Workshop Wireless Mobile Applications and Services WLAN Hotspots
(WMASH), pp. 81-92, 2004.

[19] Y. Fukuda and Y. Oie, “Decentralized Access Point Selection
Architecture for Wireless LANs,” IEICE Trans. Comm., vol. E90-B,
no. 9, pp. 2513-2523, Sept. 2007.

[20] H. Gong, K. Nahm, and J. Kim, “Distributed Fair Access Point
Selection for Multi-Rate IEEE 802.11 WLANs,” IEICE Trans.
Information and Systems, vol. E91-D, no. 4, pp. 1193-1196, Apr. 2008.

[21] S. Vasudevan, K. Papagiannaki, C. Diot, J. Kurose, and D.
Towsley, “Facilitating Access Point Selection in IEEE 802.11
Wireless Networks,” Proc. ACM Fifth SIGCOMM Conf. Internet
Measurement (IMC), pp. 293-298, 2005.

[22] J. Antoniou, V. Papadopoulou, and A. Pitsillides, “A Game
Theoretic Approach for Network Selection,” technical report,
2008.

[23] R. Trestian, O. Ormond, and G.-M. Muntean, “Game Theory -
Based Network Selection: Solutions and Challenges,” IEEE Comm.
Surveys and Tutorials, vol. 14, no. 4, pp. 1212-1231, Fourth Quarter
2012.

[24] K. Mittal, E.M. Belding, and S. Suri, “A Game-Theoretic Analysis
of Wireless Access Point Selection by Mobile Users,” Computer
Networks, vol. 31, no. 10, pp. 2049-2062, 2008.

[25] L.-H. Yen, J.-J. Li, and C.-M. Lin, “Stability and Fairness of AP
Selection Games in IEEE 802.11 Access Networks,” IEEE Trans.
Vehicular Technology, vol. 60, no. 3, pp. 1150-1160, Mar. 2011.

[26] F. Xu, C. Tan, Q. Li, G. Yan, and J. Wu, “Designing a Practical
Access Point Association Protocol,” Proc. IEEE INFOCOM, pp. 1-9,
2010.

[27] L. Chen, “A Distributed Access Point Selection Algorithm Based
on No-Regret Learning for Wireless Access Networks,” Proc. IEEE
71st Vehicular Technology (VTC), pp. 1-5, 2010.

[28] V. Gajic, H. Jianwei, and B. Rimoldi, “Competition of Wireless
Providers for Atomic Users: Equilibrium and Social Optimality,”
Proc. 47th Ann. Allerton Conf. Comm., Control, and Computing
(Allerton ’09), pp. 1203-1210, 2009.

[29] S. Shakkottai, E. Altman, and A. Kumar, “Multihoming of Users to
Access Points in WLANs: A Population Game Perspective,” IEEE
J. Selected Areas in Comm., vol. 25, no. 6, pp. 1207-1215, Aug. 2007.

[30] L. Jiang, S. Parekh, and J. Walrand, “Base Station Association
Game in Multi-Cell Wireless Networks (Special Paper),” Proc.
IEEE Wireless Comm. Networking Conf. (WCNC), pp. 1616-1621,
2008.

[31] N. Kaci, P. Maille, and J.-M. Bonnin, “Performance of Wireless
Heterogeneous Networks with Always-Best-Connected Users,”
Proc. Euro-NGI Conf. Next Generation Internet (NGI) Networks, pp. 1-
8, 2009.

[32] D. Niyato and E. Hossain, “A Noncooperative Game-Theoretic
Framework for Radio Resource Management in 4G Heteroge-
neous Wireless Access Networks,” IEEE Trans. Mobile Computing,
vol. 7, no. 3, pp. 332-345, Mar. 2008.

[33] M. Khan, A. Toker, C. Troung, F. Sivrikaya, and S. Albayrak,
“Cooperative Game Theoretic Approach to Integrated Bandwidth
Sharing and Allocation,” Proc. Int’l Conf. Game Theory Networks
(GameNet), pp. 1-9, May 2009.

[34] D. Niyato and E. Hossain, “QoS-Aware Bandwidth Allocation and
Admission Control in IEEE 802.16 Broadband Wireless Access
Networks: A Non-Cooperative Game Theoretic Approach,”
Computer Networks, vol. 51, no. 7, pp. 3305-3321, Aug. 2007.

[35] J. Antoniou and A. Pitsillides, “4G Converged Environment:
Modeling Network Selection as a Game,” Proc. 16th ICT Mobile
Wireless Comm. Summit, pp. 1-5, 2007.

[36] L. Berlemann, G. Hiertz, B. Walke, and S. Mangold, “Radio
Resource Sharing Games: Enabling QoS Support in Unlicensed
Bands,” IEEE Network, vol. 19, no. 4, pp. 59-65, July/Aug. 2005.

[37] M. Cesana, N. Gatti, and I. Malanchini, “Game Theoretic Analysis
of Wireless Access Network Selection: Models, Inefficiency
Bounds, and Algorithms,” Proc. Workshop Game Theory and Comm.
Networks (GAMECOMM), 2008.

[38] M. Cesana, I. Malanchini, and A. Capone, “Modelling Network
Selection and Resource Allocation in Wireless Access Networks
with Non-Cooperative Games,” Proc. IEEE Fifth Int’l Conf. Mobile
Ad Hoc and Sensor Systems (MASS), pp. 404-409, 2008.

[39] I. Milchtaich, “Congestion Games with Player-Specfic Payoff
Functions,” Games Economic Behavior, vol. 13, no. 1, pp. 111-124,
1996.

[40] I. Malanchini, M. Cesana, and N. Gatti, “On Spectrum Selection
Games in Cognitive Radio Networks,” Proc. IEEE Global Comm
Conf. (GlobeCom), pp. 1-7, 2009.

MALANCHINI ET AL.: NETWORK SELECTION AND RESOURCE ALLOCATION GAMES FOR WIRELESS ACCESS NETWORKS 2439



[41] G. Judd, X. Wang, and P. Steenkiste, “Efficient Channel-Aware
Rate Adaptation in Dynamic Environments,” Proc. Sixth ACM Int’l
Conf. Mobile Systems, Applications, and Services (MobiSys ’08),
pp. 118-131, http://doi.acm.org/10.1145/1378600.1378615, 2008.

[42] K. Gilhousen, I. Jacobs, R. Padovani, A.J. Viterbi, L.A. Weaver, and
C.E. Wheatley, “On the Capacity of a Cellular CDMA System,”
IEEE Trans. Vehicular Technology, vol. 40, no. 2, pp. 303-312, May
1991.

[43] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda,
“Performance Anomaly of 802.11b,” Proc. IEEE INFOCOM,
vol. 2, pp. 836-843, 2003.

[44] I. Milchtaich, “Weighted Congestion Games with Separable
Preferences,” Games Economic Behavior, vol. 67, no. 2, pp. 750-
757, 2009.

[45] D.M. Pozar, Microwave Engineering, fourth ed. John Wiley & Sons,
2004.

[46] R. Fourer, D. Gay, and B. Kernighan, AMPL: A Modeling Language
for Mathematical Programming. Thomson/Brooks/Cole, 1993.

[47] ILOG CPLEX 10.0 User’s Manual, http://www.ilog.com/
products/cplex, 2013.

[48] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure of
Fairness and Discrimination for Resource Allocation in Shared
Computer Systems,” Technical Report TR-301, DEC Research
Report, 1984.

[49] S. Ieong, R. McGrew, E. Nudelman, Y. Shoham, and Q. Sun, “Fast
and Compact: A Simple Class of Congestion Games,” Proc. 20th
Nat’l Conf. Artificial Intelligence (AAAI), 2005.

[50] H. Ackermann, H. Roglin, and B. Vocking, “On the Impact of
Combinatorial Structure on Congestion Games,” J. ACM, vol. 22,
no. 6, article 25, 2008.

Ilaria Malanchini received the BS and MS
degrees in telecommunications engineering from
Politecnico di Milano, Italy, in 2005 and 2007,
respectively. In December 2011, she received
the PhD degree in electrical engineering from
both Drexel University and Politecnico di Milano.
Currently, she is a postdoctoral researcher at
Politecnico di Milano. Her research interests
focus on optimization models, mathematical
programming, game theory, and stochastic geo-

metry, with the application of these techniques to wireless network
problems. She is a member of the IEEE and the IEEE Computer Society.

Matteo Cesana received the MS degree in
telecommunications engineering and the PhD
degree in information engineering from the
Politecnico di Milano in 2000 and 2004,
respectively. From 2002 to 2003, he was a
visiting researcher with the Computer Science
Department at the University of California, Los
Angeles. He is currently an assistant professor
with the Dipartimento di Elettronica e Informa-
zione, Politecnico di Milano. His research

activities are in the field of performance evaluation of cellular systems,
ad hoc networks protocol design and evaluation, and wireless
networks optimization. He is a member of the IEEE and the IEEE
Computer Society.

Nicola Gatti received the MS degree in biome-
dical engineering and the PhD degree in
information engineering from Politecnico di
Milano, Italy, in 2001 and 2005, respectively.
Since 2006, he has been an assistant professor
in computer science at the Politecnico di Milano.
His research interests include algorithmic game
theory, computational microeconomics, artificial
intelligence, and operations research. In 2011,
he received the AIxIA award as a best young

Italian researcher in artificial intelligence.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2440 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 12, DECEMBER 2013


