
Network Simplification with Minimal Loss of Connectivity

Fang Zhou, Sébastien Mahler, Hannu Toivonen
Department of Computer Science and

Helsinki Institute for Information Technology HIIT
PO Box 68, FI-00014 University of Helsinki, Finland

Email: {fang.zhou, sebastien.mahler, hannu.toivonen}@cs.helsinki.fi

Abstract—We propose a novel problem to simplify weighted
graphs by pruning least important edges from them. Simplified
graphs can be used to improve visualization of a network, to
extract its main structure, or as a pre-processing step for other
data mining algorithms.

We define a graph connectivity function based on the best
paths between all pairs of nodes. Given the number of edges
to be pruned, the problem is then to select a subset of
edges that best maintains the overall graph connectivity. Our
model is applicable to a wide range of settings, including
probabilistic graphs, flow graphs and distance graphs, since
the path quality function that is used to find best paths can
be defined by the user. We analyze the problem, and give
lower bounds for the effect of individual edge removal in the
case where the path quality function has a natural recursive
property. We then propose a range of algorithms and report
on experimental results on real networks derived from public
biological databases.

The results show that a large fraction of edges can be
removed quite fast and with minimal effect on the overall graph
connectivity. A rough semantic analysis of the removed edges
indicates that few important edges were removed, and that the
proposed approach could be a valuable tool in aiding users to
view or explore weighted graphs.

Keywords-graph mining; network simplification; connectiv-
ity;

I. INTRODUCTION

Graphs are frequently used to represent information. Some
examples are social networks, biological networks and the
World Wide Web. Nodes usually represent objects, and edges
may have weights to indicate the strength of the associations
between objects. Graphs with a few dozens of nodes and
edges may already be difficult to visualize and understand.
Therefore, techniques to simplify graphs are needed.

In this paper, we propose a generic framework and
methods for simplification of weighted graphs by pruning
edges while keeping the graph maximally connected. In
addition to visualization of graphs, such techniques could
have applications in various network design or optimization
tasks, e.g., in data communications or traffic.

The framework is built on two assumptions: the connectiv-
ity between nodes is measured using the best path between
them, and the connectivity of the whole graph is measured
by the average connectivity over all pairs of nodes. We
significantly extend and generalize our previous work [1].

The previous work prunes edges while keeping the full
original connectivity of the graph, whereas here we propose
to relax this constraint and allow removing edges which
result in loss of connectivity. The intention is that the user
can flexibly choose a suitable trade-off between simplicity
and connectivity of the resulting network. The problem then
is to simplify the network structure while minimizing the
loss of connectivity.

We analyze the problem in this paper, and propose four
methods for the task. The methods can be applied to various
types of weighted graphs, where the weights can represent,
e.g., distances or probabilities. Depending on the application,
different definitions of the connectivity are possible, such as
the shortest path or the maximum probability.

The remainder of this article is organized as follows. We
first formalize the problem of lossy network simplification
in Section II, and then analyze the problem in Section III.
We present a range of algorithms to simplify a graph in
Section IV, and present experimental results in Section V.
We briefly review related work in Section VI, and finally
draw some conclusions in Section VII.

II. LOSSY NETWORK SIMPLIFICATION

Our goal is to simplify a given weighted graph by
removing some edges while still keeping a high level of con-
nectivity. In this section we define notations and concepts,
and also give some example instances of the framework.

A. Definitions

Let G = (V,E) be a weighted graph. We assume in the
rest of the paper that G is undirected, but the definitions and
methods can be easily generalized for directed graphs. An
edge e ∈ E is a pair e = {u, v} of nodes u, v ∈ V . Each
edge has a weight w(e) ∈ R. A path P is a set of edges
P = {{u1, u2}, {u2, u3}, . . . , {uk−1, uk}} ⊂ E. We use the

notation u1
P� uk to say that P is a path between u1 and

uk, or equivalently, to say that u1 and uk are the endvertices
of P . A path P can be regarded as the concatenation of
several sub-paths, i.e., P = P1 ∪ . . .∪Pn, where each Pi is
a path.

We parameterize our problem and methods with a path
quality function q(P) → R

+. The form of the path quality
function depends on the type of graph and the application

at hand. For example, in a probabilistic or random graph,
it can be the probability that a path exists. Without loss
of generality, we assume that the value of any path quality
function is positive, and that a larger value of q indicates
better quality.

Given two nodes u and v in a weighted graph, they
might be linked by a direct edge or a path, or none in a
disconnected graph. A simple way to quantify how strongly
they are connected is to examine the quality of the best path
between them [1]. Thus, the connectivity between two nodes
u and v in the set E of edges is defined as

C(u, v;E) =

{
max

P⊂E:u
P�v

q(P) if such P exists

−∞ otherwise.
(1)

A natural measure for the connectivity of a graph is then
the average connectivity over all pairs of nodes,

C(V,E) =
2

|V |(|V | − 1)

∑
u,v∈V,u�=v

C(u, v;E), (2)

where |V | is the number of nodes in the graph. Without loss
of generality, in the rest of the paper we assume the graph is
connected, so C(V,E) > 0. (If the graph is not connected,
we simplify each connected component separately, so the
assumption holds again.)

Suppose a set of edges ER ⊂ E is removed from the
graph. The connectivity of the resulting graph is C(V,E \
ER), and the ratio of connectivity kept after removing ER

is

rk(V,E,ER) =
C(V,E \ ER)

C(V,E)
. (3)

Clearly, connectivity can not increase when removing
edges. rk = 1 means the removal of edges does not affect
the graph’s connectivity. 0 < rk < 1 implies that the
removal of edges causes some loss of connectivity, while
rk = −∞ implies the graph has been cut into two or more
components.

Our goal is to remove a fixed number of edges while
minimizing the loss of connectivity. From the definitions
in Equations 1–3 it follows that cutting the input graph
drops the ratio to −∞. In this paper, we thus want to keep
the simplified graph connected (and leave simplification
methods that may cut the graph for future work). Under the
constraint of not cutting the input graph, possible numbers of
edges remaining in the simplified graph range from |V | − 1
to |E|. This follows from the observation that a maximally
pruned graph is a spanning tree, which has |V | − 1 edges.

In order to allow different simplification scales, we intro-
duce a parameter γ, with values in the range from 0 to 1,
to specify how close the result is to a spanning tree. Value
0 indicates no pruning, while γ = 1 specifies that the result
should be to a spanning tree. Thus, the number of edges
to be removed is |ER| = �γ(|E| − (|V | − 1))�. Based on

notations and concepts defined above, we can now present
the problem formally.

Given a weighted graph G = (V,E), a path quality func-
tion q, and a parameter γ, the lossy network simplification
task is to produce a simplified graph H = (V, F), where
F ⊂ E and |E \ F | = �γ(|E| − (|V | − 1))�, such that
rk(V,E,E \ F) is maximized. In other words, the task
is to prune the specified amount of edges while keeping
a maximal ratio of connectivity.

B. Example instances of the framework

Consider a random (or uncertain) graph where edge
weight w(e) gives the probability that edge e exists. A
natural quality of a path P is then its probability, i.e.,
the probability that all of its edges co-exist: q(P) =
Π{u,v}∈Pw({u, v}). Intuitively, the best path is the one
which has the highest probability.

If edge weights represent lengths of edges, then the
shortest path is often considered as the best path between
two given nodes. Since in this case smaller values (smaller
distances) indicate higher quality of paths, one can either
reverse the definitions where necessary, or simply define
the path quality as the inverse of the length, i.e., q(P) =
1/length(P).

A flow graph is a directed graph where each edge has a
capacity w(e) to transport a flow. The capacity c(P) of a
path is limited by the weakest edge along that path: c(P) =
min{u,v}∈P w({u, v}) = q(P). The best path is one that has
the maximal flow capacity. If the flow graph is undirected,
the graph can be simplified without any loss of quality to
a spanning tree that maximizes the smallest edge weight in
the tree.

III. ANALYSIS OF THE PROBLEM

In this section, we investigate some properties of the prob-
lem of lossy network simplification. We first note that the
ratio of connectivity kept rk(V,E,ER) is multiplicative in
a useful way. Based on this we then derive two increasingly
fast and approximate ways of bounding rk(V,E,ER). These
bounds will be used by algorithms we give in Section IV.

A. Multiplicativity of ratio of connectivity kept

Let ER be any set of edges to be removed. Consider an
arbitrary partition of ER into two sets E1

R and E2
R, such

that ER = E1
R ∪ E2

R and E1
R ∩ E2

R = ∅. Using Equation 2,
we can rewrite the ratio of connectivity kept by ER as

rk(V,E,E1
R ∪ E2

R)

=
C(V,E\(E1

R∪E2
R))

C(V,E)

=
C(V,E\E1

R)
C(V,E) · C(V,E\E1

R\E2
R)

C(V,E\E1
R)

= rk(V,E,E1
R) · rk(V,E \ E1

R, E
2
R).

In other words, the ratio of connectivity kept rk(·) is
multiplicative with respect to successive removals of sets
of edges.

An immediate consequence is that the ratio of connectivity
kept after removing set ER of edges can also be represented
as the product of ratios of connectivity kept for each edge,
in any permutation:

rk(V,E,ER) = Π
|ER|
i=1 rk(V,E \ Ei−1, ei),

where ei the ith edge in the chosen permutation and Ei =
{e1, . . . , ei} is the set of i first edges of ER.

Note that the ratio of connectivity kept is not multiplica-
tive for the ratios rk(V,E, {ei}) of connectivity kept with
respect to the original set E of edges. It is therefore not
straightforward to select an edge set whose removal keeps
the maximal rk(V,E,ER) value among all possible results.

The multiplicativity directly suggests, however, to greed-
ily select the edge maximizing rk(V,E \ Ei−1, ei) at each
step. The multiplicativity property tells that the exact ratio
of connectivity kept will be known throughout the process,
even if it is not guaranteed to be optimal. We will use
this approach in the brute force algorithm that we give in
Section IV. Two other algorithms will use the greedy search
too, but in a more refined form that uses results from the
next subsections.

B. A bound on the ratio of connectivity kept

Recall that the connectivity of a graph is the average
connectivity among all pairs of nodes. In principle, the
removal of an edge may cause the connectivity between any
arbitrary pair of nodes to decrease. We now derive a lower
bound for the connectivity kept, based on the effect of edge
removal only on the endpoints of the edge itself.

Many path quality functions are recursive in the sense that
sub-paths of a best path are also best paths between their
own endpoints. (This is similar to the property known as op-
timal substructure in dynamic programming.) Additionally,
a natural property for many quality functions q is that the
effect of a local change is at most as big for the whole path
P as it is for the modified segment R ⊂ P .

Formally, let P = argmax
P⊂E:u

P�v
q(P) be a best path

(between any pair of nodes u and v), let m ∈ P be a node
on the path, let R ⊂ P be a subpath (segment) of P and S
a path (not in P) with the same endvertices as R. Function
q is a local recursive path quality function if

q(P) = q(argmax

P1⊂E:u
P1�m

q(P1) ∪ argmax

P2⊂E:m
P2�v

q(P2))

and
q(P \R ∪ S)

q(P)
≥ q(S)

q(R)
.

Examples of local recursive quality functions include the
(inverse of the) length of a path (when edge weights are
distances), the probability of a path (when edge weights are
probabilities), and minimum edge weight on a path (when
edge weights are flow capacities). A negative example is
average edge weight.

The local recursive property allows to infer that over all
pairs of nodes, the biggest effect of removing a particular
edge will be seen on the connectivity of the edge’s own
endvertices. In other words, the ratio of connectivity kept
for any pair of nodes is at least as high as the ratio kept for
the edge’s endvertices.

To formalize this bound, we denote by κ(E, e) the ratio
of connectivity kept between the endvertices of an edge e =
{u, v} after removing it from the set E of edges:

κ(E, e) =

⎧⎨
⎩

−∞ if C(u, v;E \ {e}) = −∞;
C(u,v;E\{e})

q({e}) if C(u, v;E \ {e}) < q({e});
1 if C(u, v;E \ {e}) ≥ q({e}).

(4)
The first two cases directly reflect the definition of ratio of
connectivity kept (Equation 3) when edge e is the only path
(case one) or the best path (case two) between its endpoints.
The third case applies when {e} is not the best path between
between its endpoints. Then, its absence will not cause any
loss of connectivity between u and v, and κ(E, e) = 1.

Theorem 1: Let G = (V,E) be a graph and e ∈ E an
edge, and let q be a local recursive path quality function. The
ratio of connectivity kept if e is removed is lower bounded
by rk(V,E, e) ≥ κ(E, e).

Sketch of a proof The proof is based on showing that the
bound holds for the ratio of connectivity kept for any pair of
nodes. (1) Case one: κ(E, e) = −∞ clearly is a lower bound
for any ratio of connectivity kept. (2) Case two: Consider
any pair of nodes u and v. In the worst case the best path
between them contains e and, further, the best alternative
path between u and v is the one obtained by replacing e
by the best path between the endvertices of e. Since q is
local recursive, even in this case at least fraction κ(E, e) of
connectivity is kept beween u and v. (3) Case three: edge
e has no effect on the connectivity of its own endvertices,
nor on the connectivity of any other nodes.

Theorem 1 gives us a fast way to bound the effect of
removing an edge and suggests a greedy method to the lossy
network simplification problem by removing an edge with
the largest κ. Obviously, only based on κ(E, e) < 1, we
can not infer the exact effect of removing edge e, nor the
relative difference between removing two alternative edges.
However, computing κ is much faster than computing rk,
since only the best path between the edge’s endvertices needs
to be examined, not all-pairs best paths.

C. A further bound on the ratio of connectivity kept

Previously, we suggested two ways to compute or ap-
proximate the best alternative path for an edge [1]. The
global best path search finds the best path with unlimited
length and thus gives the exact C(u, v;E \ {e}) and κ
values. However, searching the best path globally takes
time. A faster alternative, called triangle search, is to find
the best path of length two, denoted by S2(e). That is,

let S2(e) = {{u,w}{w, v}} ⊂ E, e �∈ S2(e), be a
path between the endvertices u, v such that q(S2(e)) is
maximized. Obviously, path S2(e) may not be the best path
between the edge’s endvertices, and therefore q(S2(e)) is a
lower bound for the quality of the best path between the
endvertices of e.

To sum up the results from this section, we have two
increasingly loose lower bounds for the ratio of connectivity
kept for local recursive functions. The first one is based on
only looking at the best alternative path for an edge. The
second one is a further lower bound for the quality of this
alternative path. Denoting by S2(e) the best path of length
two as defined above, we have

rk(V,E, e) ≥ κ(E, e) ≥ min(
q(S2(e))

q({e}) , 1).

In the next section, we will give algorithms that use these
lower bounds to complete the simplification task with dif-
ferent trade-offs between connectivity kept and time com-
plexity.

IV. ALGORITHMS

We next present four algorithms to simplify a given graph
by pruning a fixed number of edges while aiming to keep
a high connectivity. All algorithms take as input a weighted
graph G, a path function q and a ratio γ. They prune n =
�γ(|E| − (|V | − 1))� edges. The first algorithm is a naive
approach, simply pruning a fraction of the weakest edges by
sorting edges according to the edge weight. The second one
is a computationally demanding brute-force approach, which
greedily removes an edge with the highest rk value in each
iteration. The third and fourth algorithms are compromises
between these extremes, aimed at a better trade-off between
quality and efficiency. The third one iteratively prunes the
edge which has the largest κ value through global search.
The fourth algorithm prunes edges with the combination of
triangle search and global search.

A. Naive approach

Among the four algorithms that we present, the simplest
approach is the naive approach (NA), outlined in Table I.
It first sorts edges by their weights in an ascending order
(Line 1). Then, it iteratively checks the edge from the top
of the sorted list (Line 7), and prunes the one whose removal
will not lead to disconnected components (Line 8). The
algorithm stops when the number of edges removed reaches
n, derived from G and γ.

The computational cost of sorting edges is O
(|E| log |E|)

(Line 1). On Line 7, we use Dijkstra’s algorithm with
a complexity of O

(
(|E| + |V |) log |V |) to check whether

there exists a path between the edge’s endvertices. So, the
total computational complexity of the naive approach is
O
(|E| log |E|+ n(|E|+ |V |) log |V |).

Table I
NA ALGORITHM

Input: A weighted graph G = (V,E), q and γ
Output: Subgraph H ⊂ G
1: Sort edges E by weights in an ascending order.
2: F ← E
3: n← γ(|E| − (|V | − 1))
4: { Iteratively prune the weakest edge which does not cut the graph
}

5: i← 1, j ← 1 { j is an index to the sorted list of edges }
6: while i ≤ n do
7: if C(u, v;F \ {ej}) is not −∞ then
8: F ← F \ {ej}
9: i← i+ 1

10: end if
11: j ← j + 1
12: end while
13: Return H = (V, F)

B. Brute force approach

The brute force approach (BF), outlined in Table II, prunes
edges in a greedy fashion. In each iteration, it picks the
edge whose removal best keeps the connectivities, i.e., has
the largest rk value. It first calculates the rk(V, F, e) value
for every edge e (Line 10), and then stores the information
of the edge whose rk(V, F, e) value is the highest at the
moment (Line 11), and finally prunes the one which has the
highest rk value among all existing edges (Line 19). As an
optimization, set M is used to store edges that are known to
cut the remaining graph (Lines 9 and 16), and the algorithm
only computes rk(V, F, e) for the edges which are not in M
(Line 8).

When computing rk(V, F, e) for an edge (Line 10),
all-pairs best paths need to be computed with a cost of
O
(|V |(|E|+ |V |) log |V |). (This dominates the connectivity

check on Line 9.) Inside the loop, rk(V, F, e) is computed
for all edges in each of n iterations, so the total time
complexity is O

(
n|E||V |(|E|+ |V |) log |V |).

C. Path simplification

The outline of the path simplification approach (PS) is in
Table III. The main difference to the brute force approach
is that PS calculates κ instead of rk(V, F, e) for each edge.

The method finds, for each edge, the best possible alter-
native path S globally (Line 9). It then prunes in each loop
the edge with the largest lower bound κ of connectivity kept.
As an efficient shortcut, as soon as we find an edge whose
κ is equal to 1, we remove it immediately. Again, list M
is used to store information of those edges whose removal
cuts the graph.

The complexity of the innermost loop is dominated by
finding the best path between the edge’s endvertices (Line 9),
which has time complexity O

(
(|E| + |V |) log |V |). This is

done n times for O(|E|) edges, so the total time complexity

Table II
BF ALGORITHM

Input: A weighted graph G = (V,E), q and γ
Output: Subgraph H ⊂ G
1: F ← E
2: n← γ(|E| − (|V | − 1))
3: { Iteratively prune the edge with the highest rk value. }
4: M ← ∅ { edges whose removal is known to cut the graph. }
5: for r = 1 to n do
6: rk largest← −∞
7: e largest← null
8: for e = {u, v} in F and e �∈M do
9: if graph (V, F \ {e}) is connected then

10: compute rk(V, F, e) = C(V,F\{e})
C(V,F)

11: if rk(V, F, e) > rk largest then
12: rk largest← rk(V, F, e)
13: e largest← e
14: end if
15: else
16: M ←M + e
17: end if
18: end for
19: F ← F \ {e largest}
20: end for
21: Return H = (V, F)

Table III
PS ALGORITHM

Input: A weighted graph G = (V,E), q and γ
Output: Subgraph H ⊂ G
1: F ← E
2: n← γ(|E| − (|V | − 1))
3: {Iteratively prune the edge with the largest κ value. }
4: M ← ∅
5: for r = 1 to n do
6: κ largest← −∞
7: e largest← null
8: for e = {u, v} in F and e �∈M do
9: Find path S such that q(S) = C(u, v;F \ {e})

10: if q(S) ≥ q({e}) then
11: κ← 1
12: F ← F \ {e}
13: break
14: else if 0 < q(S) < q({e}) then
15: κ← q(S)

q({e})
16: else
17: κ← −∞
18: M ←M + e
19: end if
20: if κ > κ largest then
21: κ largest← κ
22: e largest← e
23: end if
24: end for
25: F ← F \ {e largest}
26: end for
27: Return H = (V, F)

is O
(
n|E|(|E| + |V |) log |V |). While still quadratic in the

number of edges, this is a significant improvement over the

Table IV
CB ALGORITHM

Input: A weighted graph G = (V,E), q and γ
Output: Subgraph H ⊂ G
1: F ← E
2: n← γ(|E| − (|V | − 1))
3: { Iteratively prune the edge with the largest κ using triangle

search }
4: r ← 1
5: find← true
6: while r ≤ n and find = true do
7: κ largest← −∞
8: e largest← null
9: for e = {u, v} in F do

10: Find path S2(e) = {{u, w}{w, v}} ⊂ F \ {e} that
maximizes q(S2(e))

11: if q(S2(e)) ≥ q({e}) then
12: κ← 1
13: F ← F \ {e}
14: r ← r + 1
15: break
16: else if 0 < q(S2(e)) < q({e}) then
17: κ← q(S2(e))

q({e})
18: else
19: κ← −∞
20: end if
21: if κ > κ largest then
22: κ largest← κ
23: e largest← e
24: end if
25: end for
26: if κ largest > 0 then
27: F ← F \ {e largest}
28: r ← r + 1
29: else
30: find← false
31: end if
32: end while
33: if r < n then
34: apply the path simplification (PS) method in Table III to prune

n− r edges
35: end if
36: Return H = (V, F)

brute force method.

D. Combinational approach

The fourth and final algorithm we propose is the combi-
national approach (CB), outlined in Table IV. The difference
to the path simplification (PS) method above is that the
best path search is reduced to triangle search (Line 10).
However, triangle search is not always able to identify a
sufficient number of edges to be removed, depending on the
number and quality of triangles in the graph. Therefore the
combinational approach invokes the PS method to remove
additional edges if needed (Line 34).

The computational complexity of triangle search for a
single edge is O

(|V |) (Line 10). Thus, if we only apply
triangle search, the total cost is O

(
n|E||V |). However,

if additional edges need to be removed, the worst case

computational complexity equals the complexity of the path
simplification method (PS).

V. EXPERIMENTS

To assess the problem and methods proposed in this paper,
we carried out experiments on real graphs derived from
public biological databases. With the experiments, we want
to evaluate the trade-off between the size of the result and
the loss of connectivity, compare the performances of the
proposed algorithms, study the scalability of the methods,
and assess what the removed edges are like semantically in
the biological graphs.

A. Experimental setup

We have adopted the data and test settings from Toivonen
et al. [1]. The data source is the Biomine database [2]
which integrates information from twelve major biomedical
databases. Nodes are biological entities such as genes, pro-
teins, and biological processes. Edges correspond to known
or predicted relations between entities. Each edge weight is
between 0 and 1, and is interpreted as the probability that the
relation exists. The path quality function is the probability
of the path, i.e., the product of weights of the edges in the
path. This function is local recursive.

For most of the tests, we use 30 different graphs extracted
from Biomine. The number of nodes in each of them is
around 500, and the number of the edges ranges from around
600 to 900. The graphs contain some parallel edges that can
be trivially pruned. For more details, see reference [1]. For
scalability tests, we use a series of graphs with up to 2000
nodes, extracted from the same Biomine database.

The algorithms are coded in Java. All tests were run on
standard PCs with x86 64 architecture with Intel Core 2
Duo 3.16GHz, running Linux.

B. Results

1) Trade-off between size of the result and connectivity
kept: By construction, our methods work on a connected
graph and keep it connected. As described in Section II,
maximally simplified graphs are then spanning trees, with
|V | − 1 edges. The number of edges removed is algorithm
independent: they all remove fraction γ of the |E|−(|V |−1)
edges that can be removed. The distribution of the number of
edges to be removed in our test graphs, relative to the total
number of edges, are shown as a function of γ in Figure 1.
These graphs are relatively sparse, and approximately at
most 35% of edges can be removed without cutting the
graph.

In this paper, we extend a previous simplification task [1]
from lossless to lossy simplification (with respect to the
connectivity of the graph). In other words, in the previous
proposal the ratio of connectivity kept must always stay at 1.
We now look at how many more edges and with how little
loss of connectivity our new methods can prune. We use the

Figure 1. Fraction of edges removed by different γ value. Each boxplot
shows the distribution of results over 30 test graphs.

Figure 2. Ratio of connectivity kept by the four methods of Toivonen et
al. [1] and by the path simplification method for two graphs (green and red).
IG=Iterative Global, IT=Iterative Triangle, SG=Static Global, ST=Static
Triangle.

path simplification method as a representative here (and will
shortly compare the proposed methods).

In Figure 2, we plot the ratio of connectivity kept by the
four methods of Toivonen et al. [1] for two different graphs,
randomly selected from our 30 graphs. Four different types
of points are positioned horizontally according to n, the
number of edges pruned by the previous methods. The x-axis
shows the number of edges pruned in terms of γ, computed
as γ = n/(|E|−(|V |−1)). Results of the path simplification
method proposed in this paper are shown as lines. Among
the four previous methods, the Iterative Global (IG) method
prunes the maximal number of edges. Significantly more
edges can be pruned, with larger values of γ, while keeping
a very high ratio of connectivity. This indicates that the task
of lossy network compression is useful: significant pruning
can be achieved with little loss of connectivity.

2) Comparison of algorithms: Let us next compare the
algorithms proposed in this paper. Each of them prunes
edges in a somewhat different way, resulting in different
ratios of connectivity kept. These ratios with respect to
different γ are shown in Figure 3. For γ = 1 (Figure 3(e)),
where the result of all methods is a spanning tree, we

(a) γ = 0.2 (b) γ = 0.4

(c) γ = 0.6 (d) γ = 0.8

(e) γ = 1

Figure 3. Ratio of connectivity kept by each of the four algorithmic
variants. Each boxplot shows the distribution of results over 30 test graphs.
NA = Naive approach, BF = Brute Force, PS = Path Simplification, CB =
Combinational approach, MST = Maximum Spanning Tree.

also plot the results of a standard maximum spanning tree
method [3] that maximizes the sum of edge weights.

Among all methods, the brute force approach expectedly
always keeps the highest ratio of graph connectivity. When γ
is between 0.2 and 0.6, the brute force method can actually
keep the original connectivity, and even when γ = 1 it still
keeps around 93% connectivity.

Overall, the four proposed methods perform largely as
expected. The second best method is path simplification,
followed by the combinational approach. They both keep
high connectivities for a wide range of values for γ, still
approximately 90% with γ = 0.8. The naive approach is
clearly inferior, but it also produces useful results for smaller
values of γ.

An interesting observation can be made from Figure 3(e)

(a) (b)

(c) (d)

Figure 4. Two examples where the brute force and path simplification
methods remove different edges. In (a) and (c), dashed edges are removed
by the brute force method. In (b) and (d), dashed edges are removed by
the path simplification method.

where γ = 1. The maximum spanning tree has similar
ratios of connectivity kept with all methods except the brute
force method, which can produce significantly better results.
This illustrates how the problem of keeping maximum
connectivity in the limit (γ = 1) is different from finding
a maximum spanning tree. (Recall that the lossy network
compression problem is parameterized by the path quality
function q and can actually have quite different forms.)

Figure 4 shows two simple examples where the brute force
method removes different edges than the path simplification
method (or the maximum spanning tree method). The re-
moved edges are visualized with dotted lines; Figures 4(a)
and (c) are the results of the brute force method, and (b)
and (d) are the results of the path simplification method.
Consider the case in Figures 4(a) and (b). Since κ({b, c}) =
0.63∗0.78

0.7 = 0.7 and κ({a, c}) = 0.78∗0.7
0.63 = 0.91, edge {a, c}

is removed by the path simplification method. However,
when considering the connectivity between node c and
other nodes which are a’s neighbors, removing {b, c} keeps
connectivity better than removing edge {a, c}.

We notice that the brute force method has a clear advan-
tage from its more global viewpoint: it may select an edge
whose weight is higher than the weight of the edge removed
by the other methods that work more locally. We will next
address the computational costs of the different variants.

3) Running times: We next compare the running times
of the four algorithms. Running times as functions of γ are
shown in Figure 5. As we already know from the complexity
analysis, the brute force method is quite time consuming.
Even when γ is small, like 0.2, the brute force method still
needs nearly one hundred minutes to complete. With the
increase of γ, the time needed by the brute force increases
from 100 to more than 400 minutes, while the other three
methods only need a few seconds to complete. The second
slowest method is the path simplification, whose running

Figure 5. Mean running times (in logarithmic scale) of 30 runs as functions
of γ.

Figure 6. Fraction of edges removed by triangle search in the combina-
tional method.

time increases linearly with γ from 5 to 50 seconds. The
naive approach always needs less than 1 second to complete.

The combinational approach is the fastest one when γ
is very small, but it comes close to the time the path
simplification method needs when γ is larger. The reason
for this behavior is that the combinational approach removes
varying shares of edges using the computationally more
intensive global search: Figure 6 shows that, with small
values of γ, all or most edges are removed with the efficient
triangle search. When γ increases, the fraction of edges
removed by global search correspondingly increases.

In order to evaluate the scalability of the methods, we
ran experiments with a series of graphs with up to 2000
nodes. The node degree is around 2.5. The running times
as functions of graph size are shown in Figures 7 (with
γ = 0.4) and 8 (with γ = 0.8).

All methods have superlinear running times in the size of
the graph, as is expected by the time complexity analysis.
As such, these methods do not scale to very large graphs,
at least not with large values of γ.

4) A rough semantic analysis of removed edges: We
next try to do a rough analysis of what kind of edges are

Figure 7. Running times as functions of graph size (number of nodes)
with γ = 0.4. The running time of the brute force method for a graph of
500 nodes is 15 000 seconds.

Figure 8. Running times as functions of graph size (number of nodes)
with γ = 0.8. The running time of the brute force method for a graph of
500 nodes is 25 000 seconds.

pruned by the methods in the biological graphs of Biomine.
The methods themselves only consider edge weights, but
from Biomine we also have edges labels describing the
relationships. We classify edges to important and irrelevant
by the edge labels, as described below, and will then see
how the methods of this paper prune them.

In Biomine, certain edge types can be considered ele-
mentary: edges of an elementary type connect entities that
strongly belong together in biology, such as a protein and
the gene that codes for it. An expert would not like to prune
these links. On the other hand, if they are both connected to
a third node, such as a biological function, then one of these
edges could be considered redundant. Since the connection
between the protein and gene is so essential, any connections
to either one could be automatically considered to hold also
for the other one. An explicit representation of such an edge
would be considered “semantically irrelevant”.

Following the previous setting [1], we considered the
edge types codes for, is homologous to, subsumes, and has
synonym as “important.” Then, we computed the number of
those edges that are “semantically irrelevant.” Additionally,
we marked the edges which have the same endvertices as

(a) Important (b) Irrelevant

(c) Parallel (d) Other

Figure 9. Shares of different semantic categories among all removed edges
with γ = 0.8.

“Parallel” edges. For the sake of completeness, we also
counted the number of “other edges” that are neither im-
portant nor semantically irrelevant, nor parallel edges.

The semantic categories of the edges removed with γ =
0.8 are shown in Figure 9. Among edges removed by the
naive approach, 3% are important, 45% are irrelevant, 8%
are parallel and around 44% are other edges. The results
of the path simplification and the combinational approach
are quite similar: within edges removed by them there are
around 2% important edges, 60% irrelevant edges, around
8% parallel edges and 30% other edges. (We do not analyze
the semantic types of edges removed by the brute force
method due to its time complexity.)

We notice that the path simplification and the combina-
tional approach remove more irrelevant edges than the naive
approach does. The reason is that these irrelevant edges may
have a high weight, but they also have high κ value, in most
cases, κ = 1.

The results indicate that the path simplification and the
combinational approaches could considerably complement
and extend expert-based or semantic methods, while not
violating their principles.

VI. RELATED WORK

Network simplification has been addressed in several
variants and under different names. Simplification of flow
networks [4], [5] has focused on the detection of vertices
and edges that have no impact on source-to-sink flow in
the graph. Network scaling algorithms produce so-called

Pathfinder networks [6]–[8] by pruning edges for which
there is a better path of at most q edges, where q is a
parameter. Relative Neighborhood Graphs [9] only connect
relatively close pairs of nodes. They are usually constructed
from a distance matrix, but can also be used to simplify a
graph: indeed, relative neighborhood graphs use the triangle
test only.

The approach most closely related to ours is path-oriented
simplification [1], which removes edges that do not affect
the quality of best paths between any pair of nodes. An
extreme simplification that still keeps the graph connected,
can be obtained by Minimum Spanning Tree (MST) [3], [10]
algorithms. Our approach differs from all these methods in
an important aspect: we measure and allow loss of network
quality, and let the user choose a suitable trade-off.

There are numerous measures for edge importance. These
can be used to rank and prune edges with varying results.
Representative examples include edge betweenness [11],
which is measured as the number of paths that run along the
edge, and Birnbaum’s component importance [12], defined
as the probability that the edge is critical to maintain a
connected graph.

The goal of extracting a subgraph graph is similar to
the problem of reliable subgraph or connection subgraph
extraction [13]–[15]). Their problem is, however, related to
a set of (query) nodes, while our problem is independent of
query nodes. They also prune least useful nodes, while we
only prune edges.

VII. CONCLUSION

We have addressed the problem of network simplification
given that the loss of connectivity should be minimized.
We have introduced and formalized the task of selecting
an edge set whose removal keeps the maximal ratio of the
connectivity. Our framework is applicable to many different
types of networks and path qualities. We have demonstrated
the effect on random (or uncertain) graphs from a real-world
application.

Based on our definition of ratio of connectivity kept,
we have proposed a naive approach and a brute force
method. Moreover, we have shown that the property of local
recursive path quality functions allows to design a simpler
solution: when considering the removal of one edge, the
ratio of connectivity kept between the edge’s endvertices
can be used to bound the ratio for all pairs of nodes.
Based on this observation, we have proposed two other
efficient algorithms: the path simplification method and the
combinational approach.

We have conducted experiments with 30 real biological
networks to illustrate the behavior of the four methods.
The results show that the naive approach is in most cases
the fastest one, but it induces a large loss of connectivity.
The brute force approach is very slow in selecting the

best set of edges. The path simplification and the combi-
national approach were able to select a good set in few
seconds for graphs with some hundreds of nodes. A rough
semantic analysis of the simplification indicates that, in our
experimental setting, both the path simplification and the
combinational approach have removed very few important
edges, and a relatively high number of irrelevant edges.
We suggest those two approaches can well complement a
semantic-based simplification.

Future work includes development of more scalable algo-
rithms for the task of lossy network simplification. A further
extension of the simplification task to allow cutting the input
graph would likely be useful for some applications.

The problem and algorithms we proposed here are ob-
jective techniques: they do not take into account any user-
specific emphasis on any region of the network. Future work
may be to design query-based simplification techniques that
would take user’s interests into account when simplifying a
network. It would also be interesting to combine different
network abstraction techniques with network simplification,
such as a graph compression method to aggregate nodes and
edges.

ACKNOWLEDGMENT

We would like to thank Lauri Eronen and Michael Gut-
mann for their help. This work has been supported by the
Algorithmic Data Analysis (Algodan) Centre of Excellence
of the Academy of Finland and by the European Commis-
sion under the 7th Framework Programme FP7-ICT-2007-C
FET-Open, contract no. BISON-211898.

REFERENCES

[1] H. Toivonen, S. Mahler, and F. Zhou, “A framework for
path-oriented network simplification,” in Advances in Intel-
ligent Data Analysis IX, vol. 6065/2010. Berlin/Heidelberg:
Springer-Verlag, May 2010, pp. 220–231.

[2] P. Sevon, L. Eronen, P. Hintsanen, K. Kulovesi, and H. Toivo-
nen, “Link discovery in graphs derived from biologican
databases,” in 3rd International Workshop on Data Integra-
tion in the Life Sciences 2006 (DILS’06), U. Leser, F. Nau-
mann, and B. Eckmann, Eds. Berlin/Heidelberg: Springer-
Verlag, 2006, vol. LNBI 4705, pp. 35–49.

[3] J. Kruskal Jr, “On the shortest spanning subtree of a graph and
the traveling salesman problem,” Proceedings of the American
Mathematical society, vol. 7, no. 1, pp. 48–50, 1956.

[4] T. C. Biedl, B. Brejova, and T. Vinar, “Simplifying flow
networks,” in Mathematical Foundations of Computer Science
2000. Berlin/Heidelberg: Springer-Verlag, 2000, vol. LNCS
1893, pp. 192–201.

[5] E. Misiołek and D. Chen, “Efficient Algorithms for Simpli-
fying Flow Networks,” Computing and Combinatorics, pp.
737–746, 2005.

[6] R. Schvaneveldt, F. Durso, and D. Dearholt, “Network struc-
tures in proximity data,” in The Psychology of Learning and
Motivation: Advances in Research and Theory. New York:
Academic Press, 1989, vol. 24, pp. 249–284.

[7] A. Quirin, O. Cordon, J. Santamaria, B. Vargas-Quesada, and
F. Moya-Anegon, “A new variant of the pathfinder algorithm
to generate large visual science maps in cubic time,” Infor-
mation Processing and Management, vol. 44, pp. 1611–1623,
2008.

[8] S. Hauguel, C. Zhai, and J. Han, “Parallel PathFinder Al-
gorithms for Mining Structures from Graphs,” in 2009 Ninth
IEEE International Conference on Data Mining. IEEE, 2009,
pp. 812–817.

[9] G. T. Toussaint, “The relative neighbourhood graph of a finite
planar set,” Pattern Recognition, vol. 12, no. 4, pp. 261–268,
1980.

[10] V. Osipov, P. Sanders, and J. Singler, “The filter-kruskal
minimum spanning tree algorithm,” in ALENEX, I. Finocchi
and J. Hershberger, Eds. SIAM, 2009, pp. 52–61.

[11] M. Girvan and M. E. J. Newman, “Community structure in
social and biological networks.” Proc Natl Acad Sci U S A,
vol. 99, no. 12, pp. 7821–7826, June 2002.

[12] Z. W. Birnbaum, “On the importance of different components
in a multicomponent system,” in Multivariate Analysis - II,
1969, pp. 581–592.

[13] M. Grötschel, C. L. Monma, and M. Stoer, “Design of
survivable networks,” in Handbooks in Operations Research
and Management Science, 1993.

[14] C. Faloutsos, K. S. McCurley, and A. Tomkins, “Fast discov-
ery of connection subgraphs,” in KDD ’04: Proceedings of the
tenth ACM SIGKDD international conference on Knowledge
discovery and data mining. New York, NY, USA: ACM,
2004, pp. 118–127.

[15] P. Hintsanen and H. Toivonen, “Finding reliable subgraphs
from large probabilistic graphs,” Data Mining and Knowledge
Discovery, vol. 17, pp. 3–23, 2008.

