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Network Slice Reconfiguration by Exploiting Deep

Reinforcement Learning with Large Action Space
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Ying-Chang Liang, Fellow, IEEE

Abstract—It is widely acknowledged that network slicing can
tackle the diverse usage scenarios and connectivity services that
the 5G-and-beyond system needs to support. To guarantee per-
formance isolation while maximizing network resource utilization
under dynamic traffic load, network slice needs to be reconfigured
adaptively. However, it is commonly believed that the fine-
grained resource reconfiguration problem is intractable due to the
extremely high computational complexity caused by numerous
variables. In this paper, we investigate the reconfiguration within
a core network slice with aim of minimizing long-term resource
consumption by exploiting Deep Reinforcement Learning (DRL).
This problem is also intractable by using conventional Deep Q
Network (DQN), as it has a multi-dimensional discrete action
space which is difficult to explore efficiently. To address the curse
of dimensionality, we propose a discrete Branching Dueling Q-
network (discrete BDQ) by incorporating the action branching
architecture into DQN, for drastically decreasing the number
of estimated actions. Based on the discrete BDQ network, we
develop an intelligent network slice reconfiguration algorithm
(INSRA). Extensive simulation experiments are conducted to
evaluate the performance of INSRA and the numerical results
reveal that INSRA can minimize the long-term resource con-
sumption and achieve high resource efficiency compared with
several benchmark algorithms.

Index Terms—network slice reconfiguration, deep reinforce-
ment learning, core network slicing, Branch Dueling Q-network

I. INTRODUCTION

THE next generation mobile network is envisioned to meet

diversified service requirements for various scenarios,

including enhanced Mobile BroadBand (eMBB), ultra Reliable

Low Latency Communications (uRLLC), massive Machine

Type Communication (mMTC) and other forthcoming ap-

plications. Such diverse applications have different or even

contradictory requirements in terms of bandwidth, latency,

energy efficiency, mobility, etc. For instance, mMTC supports

a massive number of Internet of Things (IoT) devices which

only send small data payloads sporadically [1], while eMBB

devices are characterized by large steady payloads. Conse-

quently, it is unreasonable to devise a one-size-fits-all network

architecture to fulfill the diverging requirements. Benefiting
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from the development of Network Function Virtualization

(NFV) and Software Defined Network (SDN) technologies,

network slicing has been proposed as a key architectural

technology to solve this problem [2]. As defined by the Next

Generation Mobile Network Alliance (NGMN) [3], network

slicing refers to a virtualization paradigm that enables multiple

customized logical networks, i.e., network slices, to operate

independently on top of the underlying physical network. A

network slice can be viewed as a pre-defined virtual network

through which its users can communicate with each other

transparently as if they are using a physical network.
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Fig. 1. The reconfiguration process of a network slice

A network slice consists of virtual nodes and virtual links,

where virtual nodes can be implemented by NFV through

virtual machines or containers running on general-purpose

hardware [4]. A virtual link between a pair of virtual nodes

can be established by SDN routers as interconnected physical

links which may transverse several physical nodes. When

a slice request is received, a network slice is initiated and

configured by the management and orchestration (MANO)

layer of network slicing. Unfortunately, the traffic carried by

a network slice is inherently dynamic [5], [6]. An intuitive

example is that network flow fluctuates following people’s

daily activities. Events like festival celebrations and sports

events will incur a higher traffic demand compared to normal

situations due to a large number of users simultaneously

accessing the network slice.

Traffic load variations or traffic uncertainty in network slice

may degrade resource utilization and deteriorate the Quality

of Service (QoS). On the one hand, fluctuations in traffic

demands will cause the optimal resource allocation to lose

its optimality, thereby degrading resource utilization. On the

other hand, it can also cause Service Level Agreement (SLA)

violation and degrade the QoS of the slice. Consequently,

it is necessary to perform slice reconfiguration that adjusts

the resource allocation for a slice according to the variations

of traffic demand, so as to maintain high resource efficiency
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while meeting SLA. We refer to this problem as the Network

Slice Reconfiguration Problem (NSRP). Let us use an example

of Fig. 1 to illustrate the NSRP. The substrate network that

serves a network slice is composed of five physical nodes and

five physical links. All data flows in the network should be

processed by the Service Function Chain (SFC) of the slice,

which is an ordered sequence of Virtual Network Functions

(VNFs) [7]. There are two physical paths that can serve the

SFC of nf1 ! nf2. We assume that the capacity of the

two paths (p1: 1 ! 2 and p2: 3 ! 4 ! 5) are both

3Mbps. Initially, flow f1 (3Mbps, indicated by solid arrow) is

routed on path p1, and flow f2 (1Mbps, indicated by dashed

arrow) is routed on path p2. As the demand of f1 varies from

3Mbps to 2Mbps, it is possible to reconfigure the network

slice by rerouting f2 onto p1 as in Fig. 1(b) so as to minimize

resource consumption. We assume that after this operation, the

demand of f2 becomes 3Mbps at some time later. Therefore,

the network slice needs another reconfiguration which reroutes

f2 onto p2 to avoid SLA violation.

As shown in this example, reconfiguring network slice fre-

quently is not always the best choice because the reconfigura-

tion itself incurs certain resource overhead, such as control and

management overhead in establishing and adjusting the links,

rerouting overhead in routing disturbance, and retransmission

overhead due to data loss [8], etc. Indeed, periodically solving

the optimization problem instances to meet the instantaneous

traffic demands may cause frequent reconfigurations to main-

tain the optimality of resource allocation, due to the lack of

a prediction mechanism of future traffic requirements. Thus,

an intelligent reconfiguration policy is urgently desired for

network slicing to tackle the traffic uncertainties.

In this paper, we resort to Deep Reinforcement Learning

(DRL) to solve NSRP. NSRP with long-term optimization

objective is essentially a sequential decision problem, which

is formulated as a Markov Decision Process (MDP) and

can be solved by Reinforcement Learning (RL). However,

for NSRP in a substrate network with non-trivial network

slice, it is difficult to extract a set of effective features to

represent the environment [9]. Moreover, traditional table-

based RL is infeasible in solving NSRP due to its huge state

space and the multi-dimensional discrete action space. To

overcome these difficulties, we first simplify the representation

of the environment based on the problem properties rather

than directly representing the networks. Particularly, we use

depth-first-search (DFS) algorithm to identify all the physical

paths that can serve the SFC and use their capacities together

with flow rates and history information of reconfiguration to

represent the state of the environment. Second, we incorporate

the action branching architecture into Dueling Double Deep Q-

Network (Dueling DDQN) to address the large state space as

well as the multi-dimensional discrete action space. Finally,

we propose an intra-slice reconfiguration algorithm named In-

telligent Network Slicing Reconfiguration Algorithm (INSRA)

by combining the aforementioned algorithms.

The main contributions of this paper can be summarized as

follows.

1) We formulate the NSRP as an Integer Linear Program-

ming (ILP) with aim of minimizing the long-term re-

source consumption and its NP-hardness is proved. To

facilitate the representation of complex substrate network,

we simplify its representation based on the problem

properties and reformulate it as an MDP, thereby making

it possible to use DRL to solve the NSRP.

2) We propose an intra-slice reconfiguration algorithm

named INSRA to agilely reconfigure the core network

slices. Specifically, we utilize a state-of-the-art neural

network, i.e. the BDQ network to tackle the curse of

dimensionality caused by the multi-dimensional discrete

space. Simulation results demonstrate that BDQ can help

compress the action space efficiently.

3) Simulation results reveal that the long-term cost of the

network slice can be minimized compared with the

benchmark algorithms. Meanwhile, the proposed algo-

rithm can achieve a fairly stable performance under

different network slice implementations and growing slice

scales.

The remainder of the paper is organized as follows: Section

II reviews the related work on network slice reconfiguration,

highlighting the novelty of our contribution. In Section III and

Section IV, we present the system model and the formulation

of NSRP. We present the MDP modeling for the NSRP and

elaborate our proposed INSRA in Section V. In Section VI,

we present the numerical results, and finally we conclude the

paper in Section VII.

II. RELATED WORK

A body of related work has recently addressed the prob-

lem of traffic uncertainty in network slicing. Basically, these

investigations fall into two categories, i.e., optimization-based

and machine learning-based approaches. Since network slicing

problem is a special case of virtual network embedding (VNE),

which is NP-hard due to the capacity constraints [10], NSRP

is generally formulated as an NP-hard problem. Therefore,

most optimization-based solutions are carried out through

approximate algorithms. On the other hand, to overcome the

NP-hardness, explicit traffic prediction based on deep learning

(DL) as well as implicit traffic prediction based on RL were

exploited prevalently. In the following, we review the major

related work on network slicing under traffic uncertainty.

A. Optimization-Based Approaches

NSRP is also called dynamic network slicing problem in

the literature [11], [12]. The authors of [11] modeled the

dynamic network slicing problem as a Mixed Integer Lin-

ear Programming (MILP) and solved it by using heuristic

method. The authors of [13] formulated the network slicing

problem as a mixed binary linear programming and proposed

the penalty successive upper bound minimization algorithm.

Wang et al. [14] modeled the network slice reconfiguration

as a profit optimization problem and addressed it with a L1-

norm approximation method to maximize the profit of slice

customers while reducing the reconfiguration cost.

Robust optimization is an effective tool to optimize prob-

lems with uncertainty constraints and objectives. Therefore,

it is widely used in addressing the traffic uncertainty in
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network slicing [15]–[17]. The authors of [15] designed a joint

recovery and reconfiguration framework for network slicing

by exploiting robust optimization. In addition, the authors of

[16] addressed the traffic uncertainties in network slicing by

employing Γ-robust uncertainty set. Similarly, the authors of

[17] proposed a light-robustness optimization model for the

network design and embedding problem considering the traffic

uncertainties as well as the physical network failures.

Some researchers consider the network slicing problem as

a VNF Forward Graph (VNF-FG) embedding problem. The

authors of [18] formulated the network slicing problem based

on queuing theory and a near-optimal heuristic algorithm

was proposed to optimize the service delay. The authors of

[19] investigated the network slicing problem with aim of

optimizing the end-to-end throughput. Their model captures

the key features in the 5G network, such as VNF interference,

complex VNF-FGs, and the difference between edge cloud

and core cloud. The authors of [20] proposed a two-step

method for solving the VNF-FG design and VNF placement

for 5G mobile networks, aiming at minimizing bandwidth

consumption. In [21], the authors presented a methodology

to make joint VNF placement and CPU allocation decisions

in 5G.

These approaches are subject to some limitations. On the

one hand, as we discussed earlier, these approaches may

cause frequent reconfigurations due to the lack of prediction

mechanism on the future traffic demands. On the other hand,

some parameters can only be obtained during run-time, and

thus the reconfiguration decisions are made after the traffic

variations take place. Our proposed method can autonomously

learn the future traffic demands and thus can proactively

reconfigure the network slice.

B. Machine Learning-Based Approaches

To tackle the traffic dynamics due to user behaviors, a wide

range of prediction mechanisms are adopted to predict the user

behaviors as well as the resource demands. The authors of

[22] used a neural-network to predict the number of instances

of VNF thus to proactively perform the scaling and then an

ILP was formulated to place these VNFs in the edge network.

However, due to the limited bandwidth of the edge network,

such a centralized learning mechanism is not practical since it

needs to send numerous training data to the central controller.

The authors of [23] proposed a VNF-FG embedding algorithm

to meet the ever-changing resource availability of the physical

servers and the continuous mobility of the users. To reduce

the problem complexity, an optimized k-medoids clustering

approach was applied to proactively partition the substrate

network.

Network slice reconfiguration under traffic uncertainties

is inherently a sequential decision problem which can be

potentially solved by using RL. Recently, with the advances

in computing power, RL is commonly used to automate

the resource management in network slicing [24]–[29]. The

authors of [24] proposed a learning-based framework for RAN

slicing by jointly using Deep Learning (DL) and DRL. The

authors of [25] proposed an online adaptive DRL approach to

automatically embed the stochastically arrived SFC requests.

However, their solutions perform poorly because the sequential

processing of the VNF in a flow by flow fashion may reduce

its optimality dramatically. The authors of [26] proposed an

accelerated RL method that can learn proper VNF sizing

and placement under various environments. However, these

algorithms are inappropriate for the problem where the action

space is naturally discrete [30]. To deal with the problem with

large-scale discrete space, the authors of [28] modified the

Deep Deterministic Policy Gradient (DDPG) with a heuristic

algorithm to convert the continuous action to discrete feasible

actions in VNF-FG embedding problem. However, this method

is essentially a static solution to the optimization problem,

disregarding the traffic dynamics. On the other hand, to the

best of our knowledge, there is no prior work that addresses

the fine-grained network slice reconfiguration with naturally

discrete action space which is just the focus of our work in

this paper.

III. SYSTEM MODEL

In this paper, we consider the intra-slice reconfiguration

problem for a specific slice, in which fine-grained reconfig-

uration of route paths, bandwidth, and the association of VNF

instances are involved. Due to the nature of performance and

resource isolation between slices [31], intra-slice reconfigura-

tions can be performed for individual slices.

A sliced network consists of two logical parts, namely

substrate network and network slice. The substrate network

is an underlying physical network which is composed of

forwarding servers and servers with specific VNF. A network

slice can be fundamentally described as a set of traffic flows

that traverse an SFC consisting of VNFs. Fig. 2 shows a

substrate network and one service flow. In the following, we

provide the substrate network model as well as the network

slice model in the considered system. For ease of reference,

the notations used in this paper are summarized in Table I.

Substrate Network: We model the substrate network as

a weighted directed graph G = (V, E), where V and E
denote the sets of nodes and links respectively. The physical

nodes, denoted by V = {1, 2, · · · , N}, can be classified

into two types: VNF-capable nodes and common nodes. The

VNF-capable node can provide certain types of VNFs such

as Mobility Management Entity (MME), Network Address

Translation (NAT), Firewall, etc [32]. The common nodes have

no VNF capability and are used only for packet forwarding. In

addition, we denote the set of VNFs of the system by F and

use the binary indicator hi(⇡) 2 {0, 1} to indicate whether

node i 2 V is capable of VNF ⇡ 2 F .

Network Flows: There are M service flows in the system

and the set of flows is denoted by K. The kth flow is

denoted by (sk, dk, µk(t)), which represent the source node,

destination node, and the rate of flow k at time t, respectively.

Note that we use subscript t to denote the time throughout

the paper. Different from the works [13], [14], [33] which

allow flow splitting through physical nodes and/or physical

links, we assume that each flow is mapped exactly onto one

physical path in order to avoid coordination overhead caused
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TABLE I
SUMMARY OF NOTATIONS

Notation Definition

V, E the physical nodes and physical links, respec-

tively

sk, dk, µk(t) the source node, destination node, and the rate

of flow k, respectively

Fk the SFC of flow k

⇡k
m the mth VNF of flow k

(k,⇡k
m) the virtual flow between virtual node ⇡k

m to

⇡k
m+1 of flow k

hi(⇡) indicator variable that indicates whether or not

node i is capable of VNF ⇡

xi,k(⇡
k
m) node mapping variable indicating whether or

not node i provides function ⇡k
m for flow k

zij(k,⇡
k
m) link mapping variable indicating whether or not

virtual flow (k,⇡k
m) is mapped onto physical

link (i, j)
↵(⇡k

m) unit computational resource consumption for

VNF ⇡k
m

� unit bandwidth consumption

δx, δz cost coefficients of the reconfiguration on

nodes and links, respectively

Substrate network

VNF1

VNF2

VNF3

VNF4
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Fig. 2. System model

by flow splitting. Moreover, our model considers the dynamic

traffic requirement instead of fixed flow rate. We assume

that the SFCs of the flows in the considered network slice

are the same, while the deployed nodes of VNFs could be

different for each flow. Hence, we define the SFC of flow k

as Fk = (⇡k
1 ! · · · ! ⇡k

Lk
). For ease of presentation, we

define VNF ⇡k
m of flow k to be its virtual node. Accordingly,

we define the flow segment between ⇡k
m and ⇡k

m+1 to be its

virtual link, which is denoted by (k,⇡k
m).

Flow mapping: To model the virtual node mapping for

flow k, we use the binary variable xi,k(⇡
k
m) 2 {0, 1} to

denote whether node i provides function ⇡k
m for flow k (i.e.,

xi,k(⇡
k
m) = 1 if node i provides function ⇡k

m for flow k,

otherwise xi,k(⇡
k
m) = 0. For virtual node ⇡k

m, only the

physical node which is capable of ⇡k
m can be its mapping

target. Therefore, we have

xi,k(⇡
k
m)  hi(⇡

k
m), 8i 2 V, 8k 2 K,⇡k

m 2 Fk. (1)

As mentioned above, we present our model in the case

where only one physical node serves VNF ⇡k
m for flow k.

This translates into:
X

i

xi,k(⇡
k
m) = 1, 8k 2 K,⇡k

m 2 Fk. (2)

In addition, we require each substrate node provides at most

one VNF for each SFC [13], i.e.,
X

πk
m2Fk

xi,k(⇡
k
m)  1, 8i 2 V, k 2 K. (3)

To model the virtual link mapping for flow k, we propose

to map its virtual links sequentially. In particular, the virtual

link (k,⇡k
m) is mapped to physical link (i, j) if zij(k,⇡

k
m) =

1, otherwise zij(k,⇡
k
m) = 0, where zij(k,⇡

k
m) is a binary

variable indicating the virtual link mapping. Please note that

the binary variable zij(k,⇡
k
m) ensures that flow k is not split

by physical links. On the other hand, zij(k,⇡
k
m) should satisfy

the flow conservation law on all nodes. Since the placement of

the source node sk and the destination node dk have specified

by flow k, we only need to consider the mapping of the other

VNFs of flow k. For sk and dk, we have
X

j

zsk,j(k,⇡
k
m) = 1, 8k 2 K,m = 0 (4)

and X

j

zj,dk
(k,⇡k

m) = 1, 8k 2 K,m = Lk (5)

respectively, where ⇡k
0 is a dummy VNF which is indeed sk.

For other nodes, the flow conversation constraints are related

to the node mapping variables xi,k(⇡
k
m). In particular, if the

virtual node ⇡k
m is mapped onto node i, there must exist a

link incoming to node i to which the virtual link (k,⇡k
m�1) is

mapped and a link outgoing from node i to which the virtual

link (k,⇡k
m) is mapped, otherwise not. Therefore, we have the

following constraints for all (i, k,⇡k
m) 2 V⇥K⇥(Fk[{⇡

k
0}):

xi,k(⇡
k
m)� xi,k(⇡

k
m+1) =

X

j

zij(k,⇡
k
m)�

X

j

zji(k,⇡
k
m).

(6)

Capacity constraints: It is commonly assumed that the

computational resource consumption of VNF is proportional

to the flow rate [13], [34]. Therefore, we assume one unit data

flow consumes ↵(⇡) units of computational resources for VNF

type ⇡. Specifically, the forwarding function can be seen as a

special network function and its unit computational resource

consumption is ↵(⇡f ). Similarly, we assume the unit band-

width consumption is �. Thus, the amount of computational

resources consumed on node i is

Rc
i (t) =

X

k

X

πk
m

xi,k(⇡
k
m)µk(t)↵(⇡

k
m)

+
X

k

X

j

X

πk
m

zij(k,⇡
k
m)µk(t)↵(⇡f ).

(7)

The bandwidth consumption on link (i, j) can be computed
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as

Rb
ij(t) =

X

k

X

πk
m

zij(k,⇡
k
m)µk(t)�. (8)

The computational capacity of node i and the bandwidth ca-

pacity of link (i, j) is assumed to be Ci and Bij , respectively.

Thus, we have the following two capacity constraints for node

i and link (i, j)
Rc

i (t)  Ci, 8i 2 V (9)

and

Rb
ij(t)  Bij , 8(i, j) 2 E , (10)

respectively.

IV. PROBLEM FORMULATION AND DISCUSSION

To accommodate the traffic dynamics of flows in a network

slice, we need to adaptively reconfigure the network slice

with aim of minimizing the long-term resource consumption.

The resource consumption consists of two parts: the resource

for embedding the network slice and that for reconfiguring

the network slice. To formulate the NSRP, we define the

embedding cost and the reconfiguration cost for resource

provisioning of embedding the network slice and reconfiguring

the network slice, respectively.

The resource for embedding the network slice is the sum

of resources consumed by all flows in the network slice. To

define the embedding cost, we assume the pricing functions for

computational and bandwidth resources are 'c(·) and 'b(·),
respectively [14]. Accordingly, the cost of embedding the

network slice, i.e., the embedding cost is defined as:

Cres(t) = 'c(
X

i

Rc
i (t)) + 'b(

X

ij

Rb
ij(t)). (11)

Slice reconfiguration itself incurs certain resource consump-

tion because it may cause various overheads such as signal-

ing and retransmission overhead. Thus, the reconfiguration

resource is quantified as a function of the state difference of a

slice before and after reconfiguration [14]. The state of a net-

work slice is reflected by the node mapping variable x and link

mapping variable z. To reflect the resource consumption for

reconfiguring the network slice, we define the reconfiguration

cost as

Cconf (t) = δ
T
x · I(x(t)�x(t� 1))+ δ

T
z · I(z(t)� z(t� 1)),

(12)

where x(t � 1), z(t � 1) are the decision variables at the

previous time, δTx and δTz respectively are cost coefficients of

the reconfiguration on nodes and links, and I(·) is an indicator

function, i.e., if x 6= 0, I(x) = 1; otherwise I(x) = 0.

Therefore, the total cost for an operation of reconfiguring the

network slice at time t is:

C(t) = Cres(t) + Cconf (t). (13)

Next, we formulate the NSRP as:

min
x,z

lim
T!1

1

T

TX

t=0

C(t) (14)

s.t. (1)� (6), (9)� (10) (14.1)

xi,k(⇡
k
m) 2 {0, 1}, 8i 2 V, k 2 K,⇡k

m 2 Fk. (14.2)

zij(k,⇡
k
m) 2 {0, 1}, 8(i, j) 2 E , k 2 K,⇡k

m 2 Fk. (14.3)

Since NSRP is indeed a sequential decision problem, we

use the long-term average cost as the optimization objective

in (14). Constraint (1) to (2) ensure that one VNF of a flow

is served by at most one physical node. Constraints (4) to (6)

are flow conservation constraints. Constraints (9) and (10) are

capacity constraints of node and link respectively. Constraints

(14.2) to (14.3) are the binary constraints on xi,k(⇡
k
m) and

zij(k,⇡
k
m), respectively.

Importantly, the constraints of NSRP can guarantee that

each flow is processed by the VNFs consistent with the order

in its SFC. More formally:

Theorem 1. If there is a non-empty set Sf of feasible solutions

that meet the constraints of NSRP, then for 8(x, z) 2 Sf

and 8k 2 K, flow k is processed exactly in the order of the

functions in Fk by the physical path pk, where pk is defined

by the variables x = {xi,k(⇡
k
m)} and z = {zij(k,⇡

k
m)}.

Due to space limit, we give the proof of Theorem 1 in

Appendix A.

NSRP is an ILP which turns out to be NP-hard. The proof

is based on a polynomial time reduction from the Generalized

Assignment Problem (GAP) to NSRP.

Theorem 2. Checking the feasibility of NSRP is NP-hard, and

thus solving NSRP is NP-hard, too.

Proof: We first construct an instance of NSRP as follows:

• We set the reconfiguration cost coefficients δx and δz

both to 0.

• The traffic rates of each flow remain the same as their

nominal rates all the time.

• The substrate network is composed of J independent

simple paths {pi}
J
i=1 (i.e., G =

SJ

i=1, and
TJ

i=1 = ∅),

and all paths can provide the SFC of the slice.

The above instance of NSRP will reduce to a static integer

linear programming with aim of minimizing the Cres(t) under

constraints (14.1) to (14.3). We refer this problem to P2 and

will show its NP-hardness by a polynomial reduction from the

GAP to P2.

GAP instance: In P2, the items and bins in GAP correspond

to flows and candidate paths respectively. The size of bin pi,

denoted by ⇣i, is the maximal flow rate it can provide. The

weight of item k is the rate of flow k, i.e., µk(t). Placing

item k at bin pi yields a cost cik, which is the embedding

cost of placing flow k onto path pi; also, each item shall be

assigned to exactly one bin. The decision variables are binary

flags ⇠ik indicating whether item k shall be assigned to bin i.

The objective is to minimize the total cost.

Reduction: If there is a solution {⇠ik} of GAP that mini-

mizes the total cost, we can construct a solution of P2 from

{⇠ik} directly. On the other hand, if there is a solution of P2

defined by {xi,k(⇡
k
m)} and {zij(k,⇡

k
m)}, from Theorem 1,

we can find a physical path pk to which flow k is mapped.

Since the substrate network consists of independent paths, pk



6

1. Select action 4.State transits to 

3. Flow in service

0
t t+

2. Proactive slice reconfiguration

Traffic variations

0
t

0t
a

0 tt
s +

Fig. 3. The procedure of proactive slice reconfiguration

is therefore a solution of GAP. Thus, GAP has a solution if and

only if P2 has a solution. In other words, GAP is reducible to

P2. From the above analysis, the time complexity of the above

reduction is polynomial. Since GAP is NP-hard, P2 and NSRP

are NP-hard too.

It is interesting to notice that, in the proof of Theorem 2,

we obtain a simplified description on the process of network

slicing. Instead of mapping the virtual nodes and the virtual

links of the flow separately, we simplified this process by

directly mapping the entire flow onto the candidate path,

which is a simple physical path onto which a flow can be

mapped. Moreover, considering its long-term objective and

to further take advantage of prediction information, NSRP is

well suited to the RL framework. In the next section, we will

reformulate it to an MDP and solve it by using DRL.

V. INSRA POLICY

In this section, we use MDP to model the long-term

decision-making problem NSRP, and then solve it by using

DRL.

A. Markov Decision Process

MDP is a framework that can be used to learn an optimal

policy by interacting with the environment [35]. An MDP

is defined as hS,A, T,R, ⌧i, where S,A, T,R, ⌧ denote the

state space, action space, state transition, reward function

and discount factor, respectively. The agent interacts with the

environment at each of discrete time steps. At each time step t,

the agent receives the environment’s state s(t), and selects an

action a(t) based on that state. As a consequence of this action,

the agent receives a numerical reward r(t) and transits to a new

state s(t+ 1). Through these interactions, the agent can lean

to achieve a goal by maximizing its long-term reward. In the

following, we will present the definitions of each component

of our MDP model.

B. Markov Decision Process Modeling for NSRP

In this paper, the agent corresponds to the MANO layer

entity of the network slicing architecture [5]. The environment

is comprised of the network flows and the substrate network.

The rest components of our MDP model for NSRP are defined

as follows.

Decision Epoch: Under our MDP model, the agent needs to

proactively reconfigure the network slice upon traffic demand

variations of the flows. To this end, the agent reconfigures the

network slice for the future based on the historical traffic of

the flows. The procedure of the network slice reconfiguration

is shown as in Fig. 3.

The decision epoch (or time step [35]) is defined on a event-

driven basis rather than fixed intervals of real-world time. At

time t0, a reconfiguration is made before the subsequent traffic

variations. Since then, as the traffic variations accumulated

up to a certain level, the previous reconfiguration may cause

degradation on resource utilization or QoS in the forthcoming

period. At this moment, a new reconfiguration is required. The

next reconfiguration time, i.e., the decision epoch is define as:

t = inf
τ
{⌧ |

ˆ τ

t0

[
X

k2K

|µk( )� µk(t0)|]d  (⌧ � t0)#th}

(15)

where, #th = # ·
P

k µk(t0). The intuition behind this

definition is as follows. Since the fluctuations of traffic reflects

the change in resource demand, thus the accumulated traffic

variations indicate the degree of resource over-provisioning or

under-provisioning. When the accumulated traffic variations

exceed the traffic fluctuation threshold #th, it indicates that

there is a trend of imbalance between resource supply and

demand. Therefore, a new reconfiguration is needed to avoid

the forthcoming imbalance. In addition, the traffic threshold

#th is the sum of the nominal flow rates multiplied by a

coefficient #.

State Space: We represent the state of NSRP by M+N+1
features, i.e.,

s(t) = {c1, · · · cM ;µ1, · · · , µN ;Cconf (t�1)}. (16)

The state contains three types of information. The first M

elements {c1, · · · cM} represent the capacities of the candidate

paths, and the subsequent N elements {µ1, · · · , µN} represent

the traffic demands of the N flows in the network slice. The

last element, i.e., Cconf (t�1) is the reconfiguration cost at

t� 1. Our motivations for constructing such a state for NSRP

are as follows.

First, the state space must contain the information about

the substrate network. However, the number of features used to

represent the substrate network is extremely large and the time

complexity of constructing a single feature of the substrate

network is as high as O(n3) [9]. As a result, representing

the substrate network directly will lead to slow convergence

of the feature construction process, not to mention solving

NSRP by RL. Therefore, we propose a novel approach to

simplify the complex representation of the substrate network

by exploiting the properties of NSRP. Our approach is based

on the following observations:

• The number of candidate paths that can serve the network

slice is not too large, especially for the network slice

which is based on coarse-grained NFV implementation

[2].

• The essence of network slice reconfiguration is to find

an optimal mapping from the candidate paths for all the

flows.

We can find out all the candidate paths by DFS in polynomial

time. Suppose that all the M candidate paths have been found

by DFS. Then the substrate network can be represented by the

capacity of these paths, i.e., {c1, · · · cM}. In this way, NSRP is
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equivalent to finding the optimal mapping from the candidate

paths for all the flows with the aim to minimize the long-term

cost.

Second, the information about the network slice is of vital

importance to make reconfiguration decisions. Because the

flow variation does not change the source and the destination

of the flow, we only need to use the flow rate µk to represent

a flow. Therefore, the features that represent the network slice

are set as {µ1, · · · , µN}.

Third, the historical reconfiguration cost Cconf (t�1) reflects

the number of traffic variations between two successive time

steps. This information is important for predicting future slice

changes and can help to reduce the future reconfiguration cost.

For this reason, it is part of the state as well.

Action Space: Note that the agent aims to select the optimal

mapping from the candidate paths for the N flows carried by

the network slice. Therefore, the action is an N -dimensional

vector, i.e.,

a(t) = (p1, p2, · · · , pN ), (17)

where pi is the path onto which flow i is mapped. Since there

are N flows in the underlying model, thus the action space is

an N-dimensional discrete space.

State Transitions: The state transition is considered to be

stochastic because the next state depends on not only the

selected action but also the external factors which are not

controlled by the agent, such as stochastic traffic demand

variations.

Reward Function: The reward is defined as:

r(t) =

(
� C(t), mapping succeeds

� �, otherwise
(18)

We state that a mapping is successful if it does not violate

constraints (14.1) to (14.3). Recall that in NSRP, our objective

is to minimize the total resource consumption. However, in

the general case, the objective of the agent is to maximize

long-term reward. For this reason, we define the reward as

the negative of the long-term total cost. In addition, to avoid

constraint violation, we set the reward to ��, where � is a

large penalty for the violation of the constraints.

According to the above analysis, the state space of this MDP

is a continuous space with M +N +1 dimensions. Moreover,

its action space is an N-dimensional discrete space, and the

sub-action of each dimension takes values in {1, · · · ,M}.

Consequently, the discrete-action RL algorithm, the Dueling

DDQN, is very suitable to address this problem. However,

Dueling DDQN becomes ineffective in solving NSRP as the

number of flows increases. This is because the size of the

action space is exponentially related to the number of the

flows, i.e., |A| = MN . Accordingly, the time complexity of

the neural network increases exponentially with N , making

it difficult for the neural network to converge. Thus, we

propose to incorporate the action branching architecture into

Dueling DDQN to compress the multi-dimensional discrete

action space of the MDP and propose our intelligent network

slice reconfiguration algorithm.

C. Handling the Large State Space with Dueling DDQN

We use Dueling DDQN as our learning algorithm because it

can address MDP with large state space and naturally discrete

action space. In addition, Dueling DDQN has a high sample

efficiency and can acquire a good policy because it jointly

utilizes the dueling architecture, Double DQN and prioritized

experience replay to improve its performance on the basis of

DQN.

General framework of DRL: DRL is a nonlinear value

function based RL algorithm. It employs deep Q-network

(DQN) as its value function approximator [36]. In particular,

DQN exploits deep neural network to approximate the pa-

rameterized value function Q(s, a;θ). It uses the environment

state s as its inputs and outputs the state-action values of each

action a under current state s.

Like other value function approximation based RL al-

gorithms, the training of DQN is essentially a process of

supervised learning. DQN uses transition hs, a, r, s0i, which

is called experience, as its training sample. Experiences are

obtained by iteratively interacting with the environment. The

agent selects actions based on an ✏-greedy policy, i.e., selecting

a random action with probability ✏ and with probability (1�✏)
to select

a = argmax
a0

Q(s, a0;θ). (19)

Then action a is executed and the agent gets reward r and

the state transits to s0. Through this interaction, an experience

hs, a, r, s0i is produced and is stored in the replay memory

Z . DQN uses experience replay, which randomly selects a

batch of experiences to train the DQN, to stabilize the training

process.

The objective of the training is to minimize the gap between

the output of the DQN, i.e., the estimated Q-value Q(s, a;θ),
and the target value which represents the real value of selecting

action a under state s. To avoid the correlation between the

estimated value and the target value, DQN uses two networks,

i.e., Q-network with weights θ and Q̂-network with weights

θ−. The Temporal Difference (TD)-target, which can be seen

as the real value that DQN aims to approximate, is computed

as:

yDQN = r + �max
a0

Q̂(s0, a0;θ−). (20)

The loss function is defined as the mean squared error

between yDQN and the estimated Q-value, i.e.,

L(θ) = E(s,a,r,s0)∼Z [y
DQN �Q(s, a;θ)]2. (21)

In general, DQN utilizes gradient descent to minimize the

loss function in (21). Formally, the update rule of θ is:

θ  θ � [yDQN �Q(s, a;θ)]rθQ(s, a;θ). (22)

On the basis of DQN, Dueling DDQN leverages the follow-

ing three techniques to improve its sample efficiency and the

quality of the learned policy.

Double DQN: In DQN, the TD-target in (20) is the sum

of the immediate reward and a discounted evaluation of the

Q-value. The latter simply takes the maximum over the Q-

values for all possible actions. However, such a TD-target

may lead to overestimation of the actual Q-value [37]. Thus,
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DDQN is applied to eliminate this overestimation. Similar with

DQN, DDQN also uses two value functions with weights ✓

and ✓� respectively. But DDQN exploits a different method

to evaluate the TD-target. In DDQN, the value function with

weight ✓ is used to determine the greedy policy and the other

is used to determine the Q-value. Formally, the TD-target of

DDQN is computed as

yDDQN = r + �Q̂(s0, argmax
a0

Q(s0, a0;θ);θ−). (23)

Prioritized Experience Replay: Because of the large state

space and action space of NSRP, numerous experiences should

be stored in the replay memory to train the DQN. However,

DQN tends to have a low sample efficiency since it samples

the replay memory uniformly without differentiating the im-

portance of individual experiences. Experiences with high TD-

errors are indeed more important because they can speed up

the learning progress and thus can make experience replay

more efficient. Dueling DDQN employs prioritized experience

replay (PER) [38] because it increases the replay probability

of the experiences that have a high value of TD-error and thus

leads to a high sample efficiency as well as a better policy.

In PER, the importance of the ith experience is measured

by the absolute TD-error, which is given by:

�i(s, a, r, s
0) = |yDDQN �Q(s, a;θ)|. (24)

The larger this value is, the greater the probability that the

experience will be replayed. Specifically, the probability of

replaying experience i is defined as [38]:

P (i) =
pαiP
k p

α
k

, (25)

where ↵ determines how much prioritization is performed. We

use proportional prioritization where pi = |�i|+ ⇣ and ⇣ is a

small positive value that prevents the edge-case of transitions

not being replayed once �i is zero.

Since prioritized experience replay introduces a bias in

estimating the Q-function [38], we compensate this bias by

using weighted importance sampling (IS) weights:

!i = (N · P (i))�β . (26)

In practice, we do not use a fixed value of the exponent � but

rather exploit a linear scheduler that anneals the exponent �

from �0 to 1.

Dueling Network Architecture: In problems with large

action space such as NSRP, it is unnecessary to estimate

the value of every action for certain states. The dueling

network [39] separates the original DQN into value branch

and advantage branch to avoid unnecessary estimation of the

redundant and low-valued actions. These two branches are

trained simultaneously by experience replay to get estima-

tions of the state value V (s;θ) and the advantage function

A(s, a;θ). At the output layer, the state-action value function

Q(s, a) is produced by an aggregation layer which combines

the outputs of the value branch V (s;θ) and the advantage

path 
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Fig. 4. The BDQ network architecture used in solving NSRP

branch A(s, a;θ) as

Q(s, a;θ) = V (s;θ) +A(s, a;θ)�
1

|A(s)|

X

a0

A(s, a0;θ),

(27)

where A(s) is the available action set under state s. This

architecture can discern valuable states without having to learn

the value of each action under each state. Accordingly, it is

employed to achieve a high-quality policy in Dueling-DDQN.

As discussed earlier, although Dueling DDQN can tackle MDP

with a large state space, it becomes ineffective to converge

in the face of large discrete action space. Therefore, we

incorporate action branching architecture into Dueling DDQN

to address this issue in the following subsection.

D. Compression of Action Space with BDQ

The action branching architecture proposed in [30] provides

an effective framework to solve MDPs with multi-dimensional

discrete action space. The core notion of the architecture

is to give a certain freedom of individual action dimension

while sharing a common state-value estimator between these

dimensions. Based on Dueling DDQN, the authors of [30]

proposed a novel agent, called BDQ as an implementation of

the action branching architecture. They verified the effective-

ness of BDQ in problems with action spaces that contain as

many as 6.5⇥1025 actions. However, the large discrete action

spaces of these problems are discretized from the original

continuous action spaces. The efficacy of the action branching

architecture is not verified in problems with multi-dimensional

action spaces which are inherently discrete. In this section, we

incorporate the action branch architecture to Dueling DDQN

to derive a discrete BDQ which can be used to compress the

naturally multi-dimensional action space of NSRP.

The architecture of BDQ is illustrated in Fig. 4. Based on

Dueling DDQN, BDQ further splits the advantage branch into

N advantage branches while keeping a shared representation

of the input state. In this way, the BDQ gives a certain degree

of autonomy to each sub-action. Specifically, the action a of

dimension N is split into N sub-actions and treated separately.

The advantage of each sub-action, i.e., Ad(s, ad), is trained

with the common state value V (s) by experience replay.

Similar with that in Dueling DDQN, the Q-value of each sub-

action, Qd(s, ad), is derived by aggregating the value branch

and the corresponding advantage branch.
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Formally, the action a(t) = (a1, a2, · · · , aN ) is split into

N sub-actions, and each sub-action has |Ad| = n discrete

choices. According to [30], the value of the dth sub-action

ad 2 Ad at state s is expressed in terms of the common

state value V (s) and the corresponding sub-action advantage

Ad(s, ad) as:

Qd(s, ad) = V (s) + (Ad(s, ad))�
1

n

X

a0

d
2Ad

Ad(s, a
0

d)). (28)

Alternatively, the ✏-greedy policy of BDQ is to select a

random action with probability ✏ and with probability (1� ✏)
to select:

a = (argmax
a0

d1

Qd1(s, a
0

d1;θ), · · · , argmax
a0

dN

QdN (s, a0dN ;θ)).

(29)

BDQ exploits a TD-target similar as that in Dueling DDQN

to avoid maximization bias, except that it is averaged across

all the dimensions of the action:

y = r + �
1

N

X

d

Q̂d(s
0, argmax

a0

d
2Ad

Qd(s
0, a0d)). (30)

The loss is the expected value of the mean squared error

across the branches, i.e.,

L(θ) = E(s,a,r,s0)∼D[
1

N

X

d

[yd �Qd(s, ad;θ)]
2]. (31)

To incorporate prioritized experience replay, the prioriti-

zation error is set to the sum across a transition’s absolute,

distributed TD-errors [30]:

�i(s, a, r, s
0) =

X

d

|yd �Qd(s, ad)|, (32)

where �i(s, a, r, s
0) denotes the TD-error used to prioritize

replay for experience (s, a, r, s0).
BDQ achieves a linear increase of the number of estimated

actions with the number of dimensions of the action space. In

NSRP, the number of the actions that need to be evaluated is

reduced from MN to N · M by BDQ. As a result, the time

complexity of the training increases linearly with N , making

it effective in solving NSRP. By using BDQ, NSRP can be

addressed in a large-scale network slice.

From the above analysis, we incorporate action branching

architecture into Dueling DDQN to derive the BDQ network

to solve NSRP and give our INSRA in Algorithm 1.

Remark 1: The equivalence between the MDP and NSRP

should be clarified. Indeed,

• Each feasible solution of NSRP corresponds to an action

of our MDP;

• Each action chosen by the agent corresponds to a feasible

solution of the NSRP after INSRA converges.

Please refer to Appendix B for proof.

Remark 2: Some implementation issues should be clarified.

First, the agent in INSRA is the MANO layer which has the

information about the substrate network and network slice.

Second, the actions performed by the agent are accomplished

before the traffic variations of the flows take place. Because the

mappings of the nodes and links are accomplished by SDN and

Algorithm 1 Intelligent network slice reconfiguration algo-

rithm (INSRA)

Input: N , ✏, �, ↵, �0
Output: Desirable a(t)

Establish two BDQ networks: trained network and target

network with weights θ and θ−, respectively. Initialize θ

and θ− randomly and enable θ−=θ, Cconf (0) = 0
2: for t = 1, 2, · · · do

Construct s(t): Run DFS to get (c1, · · · , cM ). Construct

s(t) as in (16)

4: if t <= |Z| then

Randomly select an action a(t) to execute.

6: else

Choose an action a(t) with ✏-greedy policy as in (29).

The agent gets its reward r(t) and the state of the

environment transit to a new state s(t+1). The agent

stores the corresponding experience in the memory

Z .

8: Perform prioritized experience replay according to

(25) and (26). The prioritization error is computed

as in (32).

Compute the TD-target as in (30). Perform a gradient

descent step on (31) w.r.t. θ.

10: Every Y steps set θ− = θ.

end if

12: end for

NFV techniques, there is little signaling overhead [40]. Third,

as shown in the next section, the number of reconfigurations

and thus the signaling overhead can be significantly decreased

by using INSRA compared with benchmark algorithms. Note

that by exploiting a diminishing rule of ✏ in INSRA, an action

chosen by the DRL agent corresponds to a feasible solution

of the ILP.

VI. NUMERICAL RESULTS

In this section, we conduct simulation experiments based

on TensorFlow to evaluate the performance of our proposed

INSRA. We first examine the convergence performance of

INSRA. Then we demonstrate the effectiveness of INSRA

in minimizing long-term resource consumption by comparing

its long-term performance with the other three benchmark

algorithms. Finally, we show the performance of INSRA under

different network slice implementations as well as different

scales of network slice.

A. Simulation Settings

For simulation experiments, we construct a substrate net-

work as illustrated in Fig. 5 which is widely used for per-

formance evaluation of network slicing, such as that in [14],

[41]. The parameters of the substrate network are listed in

Table II. Seven kinds of VNFs are provided by the substrate

network, i.e., F = {Proxy, IPS, Optimizer, Firewall, Billing,

NAT, Transcoder}. And 7 among 15 nodes are VNF-capable.

Each VNF-capable node can randomly provide 3 VNFs in

F . The computing capacity of each node is randomly set
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in [10, 20] units and the bandwidth capacity of each link is

uniformly distributed in [5, 50] units.

In the simulations, we consider the scenarios with 5 slices

over the substrate network. We run the slice reconfiguration

algorithms for individual slices. The SFCs of these slices are

defined in Table III [14], [18]. Each network slice carries 20

flows with varying traffic rates. The nominal traffic rate (i.e.,

µ̄k,t) of the flows is uniformly generated in [0.5, 3] units. We

use the widely used Gaussian distributed variable ⌘ ⇠ N(0, 1)
to represent the perturbation of the traffic [16], [42], [43].

Since ⌘ may approaches to 1, we use a truncated version

of ⌘ to simulate the traffic variation by confining its value to

[0, 5]. In other words, the rate of the kth flow is set as µk,t · e⌘,

where e⌘ is a truncated standard Gaussian random variable. We

set the penalty parameter as � = 50 when the constraints are

violated. In addition, we set ↵(⇡k
m) = 0.5, ↵(⇡f ) = 0.1, and

� = 1. The pricing functions for computational and bandwidth

resources are both linear functions. We set the cost coefficient

parameter both to 2 and the traffic fluctuation threshold to 0.5.

TABLE II
NETWORK PARAMETERS

parameter Value

number of nodes 15

number of links 27

number of VNFs 7

↵(⇡k
m),↵(⇡f ) 0.5, 0.1

� 1

nominal traffic rate U [0.5, 3]
flow rate variations truncated standard Gaussian dis-

tribution

node capacity U [10, 20]
link capacity U [5, 50]
cost coefficient δx = 2, δz = 2
fluctuation threshold # = 0.5

We use TensorFlow to build a BDQ. The architecture of

the BDQ is illustrated in Fig. 4. We summarize the main

parameters of the BDQ in Table IV. The front end of the

network has two fully connected layers, each with 512 and

256 neurons respectively. The value branch consists of a fully

connected layer with 128 neurons and outputs the state value.

TABLE III
SFC OF THE SLICES

Service SFC

VoD (UE)–Proxy–IPS–Optimizer–(Server)
Gaming (UE)–Firewall–Billing–(Server)
Content Cache (Cache)–Firewall–NAT–(Content)
VPN Access (UE)–Firewall–IPS–NAT–(Server)
Video Chat (UE)–Firewall–IPS–Transcoder–(UE)

Each advantage branch has one fully connected layer with 128

neurons. Note that all the neurons use Rectified Linear Unit

(ReLU) as their activation functions. To balance exploration

and exploitation, we apply an adaptive ✏-greedy policy. The

ratio of exploration, i.e. ✏, is initialized as 0.5 and decreases

as ✏(t+1) = max{0.05, (1� 0.0001)✏(t)}. We use the Adam

optimizer with a learning rate ↵ = 10�4 and �1 = 0.9,

�2 = 0.999 to update θ. To avoid the correlation between

the action-values and target values, we copy the weights of

the evaluation network θ to the weights of the target network

θ− every 500 training steps. In addition, we set the memory

size as |Z| = 104 and the batch size of gradient descent to

64. Furthermore, we use prioritized replay with ↵ = 0.6 and

� annealed from �0 = 0.4 to 1 in 105 time steps.

TABLE IV
HYPER PARAMETERS OF BDQ

parameter Value

decision time parameter W = 5,  = 0.1
penalty parameter � 50

initial exploration ratio ✏(t) 10�2

input layer M +N + 1
minibatch size 64

discount factor � 0.99

replay memory size |Z| 1000

prioritized replay parameter ↵ = 0.6, �0 = 0.4
optimizer Adam with learning rate

10�4, �1 = 0.9,�2 = 0.999
target network update period Y 500

Because the models of existing research differ from NSRP

in many aspects such as optimization objectives and con-

straints, it is unfair to compare their solutions with INSRA.

Instead, we design the following three benchmark algorithms

as comparison references for comprehensive performance eval-

uations:

1) Multi-Agent Reinforcement Learning based reconfigura-

tion algorithm (MARL): In this algorithm, the learning model

is a multi-agent system, where each flow acts as an agent to

make decisions independently, and both the reward and state

space remain the same as those in our proposed learning model

of INSRA. By exploiting the idea of distributed reinforcement

learning [44], these agents learn cooperatively to maximize the

global reward.

2) Instantaneous Optimal Slice Reconfiguration (IOSR):

In this algorithm, we exploit the Gurobi MIP solver to pe-

riodically solve NSRP instances to meet the instantaneous

traffic demands. Due to the NP-hardness of NSRP, it is rather
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time-consuming to obtain the optimal solution. Thus, we set

the optimality gap to 0.05% to make a tradeoff between the

optimality of the solution and the computation time.

3) Cheapest path first (CPF): In this algorithm, the flows

are successively mapped to the least expensive candidate path

to meet their instantaneous traffic demands without constraint

violations.

After the slice is initialized, the traffic demands of the flows

will be monitored and the reconfiguration algorithms will be

executed to map the flows onto the candidate paths.

B. Numerical Results

Fig. 6. Convergence of INSRA

1) Experiment 1 - Convergence performance: We verify the

convergence properties of our proposed INSRA by depicting

its learning curve (the curve of the reward vs. the learning

time steps). As shown in Fig. 6, INSRA converges to the

optimal policy within 105 scheduling time steps. Since intra-

slice reconfiguration is performed at small time-scale [14], thus

INSRA can be effectively realized as an online network slice

reconfiguration algorithm.

2) Experiment 2 - Long-term Performance of INSRA:

First, we compare the long-term total cost of INSRA, MARL,

IOSR and CPF in Fig. 7. We can observe that our proposed

INSRA can maintain a fairly low total cost compared with

the benchmark algorithms. This indicates that INSRA can

minimize long-term resource consumption effectively. Fur-

thermore, we can also observe that the curve of INSRA is

relatively stable compared with that of the other algorithms.

This result demonstrates that INSRA can effectively predict

the future traffic demands of the flows in the network slices,

thereby avoiding frequent reconfigurations.

Next, we compare the reconfiguration cost as well as

embedding cost of INSRA, MARL, IOSR and CPF in Fig. 8

and Fig. 9 respectively. We can observe that the reconfiguration

cost of INSRA is the lowest. On the other hand, we can see

the embedding cost of INSRA is slightly higher than that

of CPF and IOSR. This is because the main objective of

IOSR is to minimize the instantaneous embedding cost without

considering the reconfiguration cost.

Fig. 7. Comparison of the total cost for 5 network slices in 100 time steps.

Fig. 8. Comparison of the reconfiguration cost for 5 network slices in 100
time steps.

Fig. 9. Comparison of the embedding cost for 5 network slices in 100 time
steps.

Finally, we compare the resource efficiency of these algo-

rithms, which is defined as the ratio of accumulated embedding

cost to the long-term total cost:

reff (t) =

Pt

τ=0 Cres(⌧)Pt

τ=0 C(⌧)
. (33)

As illustrated in Fig. 10, the resource efficiency of INSRA can

be up to 80%, which is much higher than that of the benchmark

algorithms. Moreover, we find that although the embedding

cost of IOSR is the lowest, its resource efficiency is also low.

Consequently, static optimization based slice reconfiguration
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Fig. 10. Comparison of the resource efficiency of the system in 100 time
steps.

algorithms without considering future traffic demands perform

poorly. In contrast, the resource efficiency of INSRA is much

better as it can predict the traffic variations by learning and

can intelligently reconfigure the slices.

Fig. 11. Total cost vs. the reconfiguration cost coefficient with 95% confidence
interval.

Fig. 12. Resource efficiency vs. the reconfiguration cost coefficient with 95%
confidence interval.

3) Experiment 3 - Performance with different reconfigu-

ration cost coefficient: This experiment primarily aims to

demonstrate INSRA’s performance in terms of reconfiguration

cost coefficient. Similar with that in [14], we assume there are

20 flows in each network slice and we set the reconfiguration

cost coefficient as one of the values in { 1
32 ,

1
16 ,

1
8 , · · · , 2, 4, 8}.

The results are exhibited in Fig. 11 and Fig. 12. Each figure

compares the performance of INSRA with three benchmark

algorithms. We use the trained model to reconfigure the

network slices in 2000 time steps. Both the mean and the

95% confidence interval of the results are plotted. Please note

that in Fig. 11, the confidence interval of INSRA is almost

invisible since the total cost of INSRA is too small. Thus, we

magnify the curve of INSRA and attached it to the side of the

main figure.

From Fig. 11, we can observe that the total cost of the

three benchmark algorithms increases dramatically with the

reconfiguration cost coefficient. In contrast, the reconfiguration

cost coefficient has little impact on the total cost of INSRA.

Therefore, this result suggests that INSRA can effectively

avoid excessive reconfigurations in the long run. From Fig.

12, we can conclude that as the reconfiguration cost coefficient

increases, the proportion of the resource that is used to embed

the flows decrease moderately compared with the benchmark

algorithms. Since different cost coefficients reflect different

implementations of the network slice [14], these results in-

dicate that our proposed INSRA can provide competitive

performance under different network slice implementations.

4) Experiment 4 - Performance with different number of

flows: In this experiment, we compare the performance of

INSRA with the benchmark algorithms for different number

of flows. The reconfiguration cost coefficient is set to 2 and

the number of the flows in each network slice takes values in

{10, 20, · · · , 60}. Similar with that of the previous experiment,

we simulate 2000 time steps to plot the mean and the 95%

confidence interval of the results, which are shown in Fig. 13

and Fig. 14. Note that the curve of INSRA is magnified and

attached to the side of the main figure since its value is too

small.

In Fig. 13, we can see the total cost increases with the num-

ber of flows. Notably, the slope of the curve of INSRA is the

lowest compared with the benchmark algorithms. This result

suggests INSRA can effectively minimize the total resource

consumption even in a slice with a large number of flows. In

Fig. 14, it can be observed that INSRA can keep high resource

efficiency as the number of flows increases. Moreover, these

results indicate that our proposed INSRA can effectively tackle

the system with more than 10 candidate paths (found by DFS)

and 60 network flows, leading to an action space as large

as MN = 1060. In short, this experiment demonstrates the

effectiveness of INSRA in large-scale network slice.

VII. CONCLUSION

Network slicing is one of the most promising architectural

technologies to meet the diversified requirements in future

wireless networks. Intelligently reconfiguring the network slice

is one of the most urgent problems in network slicing. In

this paper, we model the intra-slice reconfiguration problem

as an MDP and solve it through DRL. To address the large

state space and the multi-dimensional discrete action space, we

incorporate BDQ network to decrease the number of actions

need to be evaluated in our proposed INSRA. Numerical

results show that INSRA can minimize the long-term resource
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Fig. 13. Total cost vs. the number of flows with 95% confidence interval.

Fig. 14. Resource efficiency vs. the number of flows with 95% confidence
interval.

consumption as well as predicting the future requirement of

the slice thus to avoid unnecessary reconfigurations.

In this paper, we have investigated the resource reconfig-

uration under flow fluctuation within a network slice. In the

future, it is interesting to investigate the automation of inter-

slice reconfiguration. In addition, the hybrid slice reconfigura-

tion which combines inter-slice and intra-slice reconfiguration

could be considered. For example, we can first predict the

slice traffic through deep learning (such as RNN), and then

exploit robust optimization or stochastic programming to op-

timally perform the inter-slice reconfiguration as well as to

compensate the prediction error.

APPENDIX A

PROOF OF THEOREM 1

Proof: Equivalently, we should prove the following two

statements:

• For flow k, we have
P

πk
m
xi,k(⇡

k
m) = Lk, and

• If flow k is processed by VNF ⇡k
m on node is (i.e., if

xis,k(⇡
k
m) = 1), it will be processed by VNF ⇡k

m+1 on

node it (i.e., to prove xit,k(⇡
k
m+1) = 1), where is 6= it.

a) The first statement is a direct result of Constraint (2).

b) To prove the second statement, we need to prove that

there exists a path p = (is(v0), v1, · · · , vd, it(vd+1)) such that

zvj ,vj+1
(k,⇡k

m) = 1, 8j 2 {0, · · · , d}, (34)

and xit,k(⇡
k
m+1) = 1.

First, there must exist at least one physical path from is
to it. Otherwise, there will be no feasible solution since no

solution can meet the flow conservation law on node is and

node it since is 6= it. Second, since xis,k(⇡
k
m) = 1, according

to (2), there must be xis,k(⇡
k
m) = 0. Therefore, we can getP

j zis,j(k,⇡
k
m) �

P
j zj,is(k,⇡

k
m) = 1 according to (6). As

a result, we can deduce that there must exist a link outgoing

node is, say (is, v1), such that zis,v1(k,⇡
k
m) = 1. Then if

xv1,k(⇡
k
m+1) = 1, the path is found. Otherwise, by applying

Constraint (6) on node v1 (set i = v1 in (6)), we reach a new

node, say v2, such that zv1,v2(k,⇡
k
m) = 1. If xv2,k(⇡

k
m+1) =

1, then we have found the path. Otherwise, we repeat this

process until we reach node vt such that xvt,k(⇡
k
m+1) = 1.

This process will terminate in finite steps since the objective

function (14) can avoid cycles in the mapped paths. Refer to

Fig. 2 for an illustration. In this way, we have found a path

that satisfies (34).

APPENDIX B

PROOF OF REMARK 1

Proof: To prove the first statement, we assume that (x, z)
is a feasible solution of NSRP. From the definition of candidate

path and Theorem 1, we know (x, z) defines candidate path

pk for all k 2 K, which constitute an action of the MDP

according to (17).

To prove the second statement, we assume that a(t) is an

action chosen by the agent after INSRA converges. From the

definition of a(t) in (17), each path pk in action a(t) is a

candidate path onto which the flows can be mapped. Equiv-

alently, pk is a simple path that can process flow k exactly

in the order of the functions in Fk. Let pk = (vk0 , · · · , v
k
r ).

Without loss of generality, we assume that VNF ⇡k
m of flow

k is instantiated on node vkm of pk. For all ⇡k
m 2 Fk, by

setting xvk
m,k(⇡

k
m) = 1 and zi,j(k,⇡

k
m) = 1, 8(i, j) 2 pk,

we get the variables x and z. From the above process, we

see that x together with z satisfies constraint (1) - (6) and

(14.2) - (14.3). For constraint (9) - (10), we see that after

INSRA converges, the agent is impossible to chose an action

that leads to unsuccessful mapping to get an �� reward. This

is because that the agent chooses actions according to ✏-greedy

mechanism. By exploiting a diminishing ✏ implementation as

in INSRA (i.e., ✏!0), the agent will choose an action without

violating the resource capacity constraint (9) - (10) since

such actions have larger Q-values. Therefore, we conclude

that after INSRA converges, each action chosen by the agent

corresponds to a feasible solution of the NSRP.
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