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Network Slicing for Guaranteed Rate Services:
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Abstract—Technologies to enable network slicing are expected
to be a key component of next generation mobile networks.
Their promise lies in enabling tenants (such as mobile operators
and/or services) to reap the cost and performance benefits of
sharing resources while retaining the ability to customize their
own allocations. When employing dynamic sharing mechanisms,
tenants may exhibit strategic behavior, optimizing their choices in
response to those of other tenants. This paper analyzes dynamic
sharing in network slicing when tenants support inelastic users
with minimum rate requirements. We propose a NEtwork Slicing
(NES) framework combining (i) admission control, (ii) resource
allocation and (iii) user dropping. We model the network slicing
system with admitted users as a network slicing game; this is
a new class of game where the inelastic nature of the traffic
may lead to dropping users whose requirements cannot be
met. We show that, as long as admission control guarantees
that slices can satisfy the rate requirements of all their users,
this game possesses a Nash Equilibrium. Admission control
policies (a conservative and an aggressive one) are considered,
along with a resource allocation scheme and a user dropping
algorithm, geared at maintaining the system in Nash Equilibria.
We analyze our NES framework’s performance in equilibrium,
showing that it achieves the same or better utility than static
resource partitioning, and bound the difference between NES and
the socially optimal performance. Simulation results confirm the
effectiveness of the proposed approach.

Index Terms—Wireless networks, Network slicing, Multi-
tenant networks, Resource allocation, Guaranteed rate services,
Inelastic Traffic.

I. INTRODUCTION

It is widely agreed among the relevant industrial commu-
nity [1] and ongoing standardization efforts [2] that enabling
network slicing is a key technological requirement for 5G mo-
bile networks. Such technology enables wireless infrastructure
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to be “sliced” into logical networks, which may be customized
to support one or more specific services. This provides a
basis for efficient infrastructure sharing among diverse entities,
so-called tenants, each owning a slice. Tenants could be
traditional or virtual mobile network operators acquiring a
network slice from an infrastructure operator to support their
business, as well as new players that simply view connectivity
as a service, such as Over-The-Top (OTT) service providers
which provision network slices to ensure quality of service to
their end-customers.

A major element underlying network slicing is a mechanism
for resource allocation amongst slices. One of the approaches
considered in 3GPP suggests that base station resources could
be statically partitioned based on fixed ‘network shares’ [3].
However, given that slices’ loads may be non-uniform accross
space and varying in time, sharing gains can be achieved
by dynamically allocating resources to slices based on their
current needs (while respecting their overall network shares).
At the same time, tenants should retain the ability to operate
their slices autonomously and, in particular, to customize the
allocation of resources to their users. This suggests the need
for a flexible framework for resource sharing, wherein (i)
tenants indicate their preferences to the infrastructure (e.g.,
by dynamically subdividing their network share amongst their
users), and (ii) base station resources are allocated to slices
according to such preferences (e.g., proportionally to the
shares assigned to the users).

Under such a resource allocation model, it is to be expected
that tenants might exhibit strategic behavior, adjusting their
preferences to current demands at the different base stations
so as to maximize their performance (subject to their share of
the network). This could potentially have adverse effects on the
network; e.g., the overall network efficiency might be harmed,
or tenants’ preferences (and the corresponding requests) might
exhibit oscillations. While this problem has been studied in [4]
for the case of elastic users, in many cases tenants’ traffic
will be inelastic in nature, wherein a user must either be
guaranteed a minimum rate or her utility decreases sharply.
When attempting to satisfy such user requirements, tenants’
behavior may differ substantially from that in [4], affecting
both network efficiency and stability. The focus of this paper is
thus on the analysis of resource allocation for network slicing
when tenants support inelastic users.

Related work: The resource allocation mechanism analyzed
in this paper corresponds to a Fisher market, which is a
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standard framework in economics. In such markets, buyers (in
our case slices) have fixed budgets (in our case corresponding
to pre-agreed network shares) and bid for resources within
their budget (according to their preferences), which are then
allocated to buyers proportionally to their bids [5]. Within the
Fisher Market framework, our model falls in the category of
buyers that anticipate the impact of their bids [6]. The analysis
of Fisher markets under such price-anticipating buyers has
been limited, so far, to the case of buyers with linear [6] or
concave [4], [7] utility functions.

A related resource allocation model often considered in the
networking field is the so-called ‘Kelly’s mechanism’, which
allocates resources to players proportionally to their bids
[8]. This model has also been analyzed for price-anticipating
players [9]. However, in Kelly’s mechanism players respond
to their payoff (given by the utility minus cost) whereas in our
model tenants’ behavior is only driven by their utilities (since
they have a fixed budget, i.e., the network share). Moreover,
Kelly’s model has mainly been studied for concave utility
functions.

The topic of network slicing is currently attracting substan-
tial attention from the research community. One of the main
issues investigated is the resource allocation across different
slices, which is the focus of this paper. A number of works
have been devoted to the resource allocation among different
operators or tenants sharing the same wireless infrastructure
(see e.g. [10]–[12]), and in [13], the authors focus on resource
allocation of processing resources in network slicing in the
context of C-RAN; see [14] for a survey on resource slicing
in virtual wireless networks. In contrast to our paper, all these
works have focused on elastic traffic.

In the context of network slicing, there are some works
which have considered inelastic traffic. The algorithm pro-
posed in [15] attempts to satisfy the demands of all slices
but does not account for the resources each slice is entitled to.
Similarly, [16]–[18] propose algorithms to meet requests from
all tenants, but do not account for elastic demands and do not
consider budget constraints. In [19], the authors propose an
algorithm to trade resources among tenants, but their approach
involves complex negotiations and relies on heuristic consid-
erations rather than a well-established analytical framework.
In contrast to all these works, our approach supports both
elastic and inelastic services and is based on fixed budgets,
corresponding to the network shares; this is in line with one
of the scenarios considered in 3GPP [3] and does not involve
pricing individual requests, which may represent an advantage
in practical deployments.

In this work, we build on the Fisher Market mechanism
for resource allocation across slices and analyze the game
resulting from the interaction of several non-cooperative slices
aiming to maximize their own network utility given a fixed
budget. This problem has been addressed in the context of
concave utility functions: [7] ensures the existence of Nash
Equilibria (NE) for this type of utility functions, [20] proves
the existence of a NE for price-taking players, [4] shows the
convergence of Best Response Dynamics for certain classes
of concave functions and [6] shows they may not converge
for linear utilities. Much less attention has been paid to non-

concave utility functions; among the few works on this topic it
is worth mentioning [21], which uses potential games to prove
convergence of Best Response Dynamics to a region around
the NE for finite strategy games [22].

In the specific context of Fisher market-like frameworks,
to the best of our knowledge our work is the first attempt to
analyze resource allocation for inelastic traffic. In particular,
this work addresses the following gap in the literature of
resource allocation models: the analysis of budget-constrained
resource allocation under price-anticipating users with inelas-
tic utilities. The nature of inelastic utility functions leads to
a new class of non-cooperative games, where a slice prefers
to drop users whose rate requirements cannot be met, rather
than allocating them insufficient resources. The nature of such
games differs substantially from the ones previously analyzed
in the literature for elastic traffic.

On the 5G standardization front, network slicing is currently
being specified by 3GPP [2]. In particular, 3GPP’s SA5 is
working on the definition of a management and orchestration
framework to support network slicing [23], [24]. While these
efforts do not specifically address dynamic resource allocation,
which is our focus here, the algorithms we propose are in line
with this framework. One of the key features of our approach
is the ability of tenants to customize their allocations; there
is wide consensus in the standardization community that this
is needed to efficiently satisfy their very diverse requirements
(see, e.g., [25] for examples of possible vertical tenants).

Key contributions: The rest of the paper is organized as
follows. In Section II we present our system model, and
propose the Network Slicing (NES) framework to address
resource allocation in such system. NES consists of three mod-
ules: admission control, weight allocation and user dropping.
Section III focuses on the admission control module: it finds
the requirements to ensure stability and proposes two policies,
a conservative and an aggressive one, to perform admission
control. Section IV presents the other two modules: a resource
allocation mechanism and a strategy to drop users when
rate guarantees are infeasible, and analyzes the convergence
of the resulting dynamics. We then study in Section V the
performance of NES versus two benchmark allocations: static
resource partitioning and the social optimal. Throughout the
paper, we present analytical results that support the design of
NES, including (i) the existence of a Nash Equilibrium and the
convergence of Best Response Dynamics, (ii) the effectiveness
of admission control and protection from other slices, (iii)
the user selection and weight allocation choices, and (iv)
the gains over static slices and loss over social optimal. We
further evaluate the performance of NES via simulation in
Section VI, confirming that it provides substantial gains in
terms of utility, throughput performance and reduced blocking
probability while incurring an acceptable complexity.

II. NETWORK SLICING MODEL

We consider a wireless network consisting of a set of
resources B (the base stations or sectors) shared by a set of
network slices O (each operated by a different tenant). At a
given point in time, the network supports a set of active users
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U (the customers or devices), which can be subdivided into
subsets Uob , Ub and Uo, corresponding to the users of slice
o at base station b, the users at base station b, and the users
of slice o, respectively. We consider that the association of
users with base stations is fixed (e.g., by a pre-specified user
association policy) and let b(u) denote the base station that
user u is (currently) associated with.

A. Resource allocation model

Following a similar approach as [4], [10], in our model
each slice o is allocated a network share so (corresponding
to its budget) such that

∑
o∈O so = 1. The slice is at liberty

to distribute its share amongst its users, assigning them non-
negative weights (corresponding to the bids):

wu for u ∈ Uo, such that
∑
u∈Uo

wu ≤ so.

We let wo = (wu : u ∈ Uo) be the weights of slice o, w =
(wu : u ∈ U) those of all slices and w−o = (wu : u ∈ U \
Uo) the weights of all users excluding those of slice o. We
further let lb(w) =

∑
u∈Ub wu denote the load at base station

b, dob(w
o) =

∑
u∈Uob

wu the aggregate weight of slice o at
b, and aob(w

−o) =
∑
u∈Ub\Uob

wu the aggregate weight of all
other slices (excluding o) at b. We shall allocate each user a
fraction of the base station’s resources in proportion to her
weight wu.

We let cu denote the achievable rate for user u, defined as
the product of (i) the average rate per resource unit achieved
by the user, and (ii) the total amount of resources available
at the base station. Note that this depends on the modulation
and coding scheme selected for the current radio conditions,
which accounts for noise as well as the interference from the
neighboring base stations. Following similar analyses in the
literature [10], [26], [27], we shall assume that cu is fixed for
each user at a given time.

We further let ru denote the rate allocated to user u. Under
our model, ru is given by cu times the fraction of the base
station’s resources allocated to the user. Given that users are
allocated a fraction of resources proportional to their weights,
we have that ru is a function of the weights w given by:

ru(w) =
wu∑

v∈Ub(u) wv
cu =

wu
lb(u)(w)

cu. (1)

When implementing the proposed resource allocation mech-
anism, a slice may assign a non-zero weight to some users
while others may be dropped. To decide the setting of the
users’ weights, we assume that each slice o is aware of the
aggregate weight of the other tenants at each base station,
i.e., aob(w

−o). It is worth noting that for the mechanism under
study we have that (i) a slice only sees the aggregate weight of
the other slices, and hence can learn very limited information
about the other slices; in particular, the weights of each tenant
are not disclosed, and (ii) the mechanism needs to store very
limited data; indeed, it is sufficient to keep the total load
of each base station, as a tenant can obtain aob(w

−o) by
simply subtracting its weight from the base station’s load. Such
information is already considered within the network slicing

management system defined by 3GPP [24], and hence should
be readily available.

In order to avoid the indeterminate form resulting from
having all the weights at a base station equal to 0 in (1),
we will require weights to exceed a fixed lower bound (i.e.,
wu ≥ δ, ∀u). This bound can be arbitrarily small; indeed, in
practice it should be set as small as possible, to allow slices
the highest possible flexibility while avoiding zero weights.
Accordingly, in the rest of the paper we assume that δ is so
small that its effect can be neglected, except for Theorem 2,
where this assumption is required to prove the existence of a
Nash Equilibrium.

In the case where a slice o is the only one with users at
a given base station b, such a slice would simply set wu to
the minimum possible value for these users, allowing them to
receive all the resources of this base station while minimizing
the consumed share. To avoid dealing with this special case,
hereafter we shall assume that all base stations have users
from at least two slices. Note that this assumption is made
to simplify the expressions and discussion, and does not limit
the generality of our analysis and algorithm, which indeed
supports base stations with all users from the same slice.

B. Slice utility

Network slices may support services and customers with
different needs, or may wish to differentiate the service they
provide from competing slices. To that end, we assume that
each slice has a private utility function, Uo, that reflects the
slice’s performance according to the preferences and needs of
its users. The slice utility consists of the sum of the individual
utilities of its users, Uu, i.e.,

Uo(w) =
∑
u∈Uo

Uu(ru(w)).

For inelastic traffic, we assume each user u requires a
guaranteed rate γu, hereafter referred to as the user’s minimum
rate requirement. Following standard practice, we shall model
inelastic traffic utility functions as1

Uu(ru(w)) = φufu(ru(w)), for ru(w) ≥ γu,

where fu(·) is a concave2 utility function associated with
the user, and φu is the relative priority of user u (where
φu ≥ 0 and

∑
u∈Uo φu = 1). The relative priorities reflect

the importance that users are given by the tenant of their slice;
they drive, jointly with the load at the respective base stations,
the weights assigned to the users, which in turn determine the
rate allocation.

Note that the above utility function is only defined for
rates above the minimal requirement, as performance degrades
drastically if this guarantee is not met. Note also that the
above definition includes elastic traffic, which corresponds to

1Inelastic traffic utility functions are typically modeled as a discontinuous
function [28] or a sigmoidal one [29]. In this paper we adopt the former
model, which aims at providing users with a guaranteed rate, and thus is
aligned with the Guaranteed Bit Rate (GBR) class of 3GPP [30].

2Note that, even when fu(·) is concave, we are dealing with non-concave
utilities, due to the minimum rate requirement.
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the special case γu = 0; thus, the results of this paper apply
to mixes of elastic and inelastic traffic.

While most of our results hold for arbitrary fu(·) functions,
in some cases we will focus on the following widely accepted
family of utility functions (see α-fairness, [31]):

fu(ru) =

{
(ru)1−αo

(1−αo) , αo 6= 1

log(ru), αo = 1,
(2)

where the αo parameter sets the level of concavity of the
user utility functions, which in turn determines the underlying
resource allocation criterion of the slice. Particularly relevant
cases are αo = 0 (maximum sum), αo = 1 (proportional
fairness), αo = 2 (minimum potential delay fairness) and
αo →∞ (max-min fairness).

In our model for slice behavior, a tenant proceeds as follows
to optimize its performance. First, it maximizes the number
of users that see their rate requirement met, selecting as many
users as can be possibly served. Second, it maximizes the
utility Uo(w) obtained from the users that have been selected.

Note that the above framework is sufficiently flexible to ac-
commodate different network slicing models, including those
under study in 3GPP [24]. For instance, in the case where
tenants are Mobile Virtual Network Operators (MVNOs), the
users of a tenant may have different service demands (e.g.,
elastic and inelastic users). Alternatively, we can also support a
model where different slices are deployed for specific services;
in this case, we may have some slices with only elastic users
and others with only inelastic users.

C. Baseline allocations

Below we introduce two approaches to resource allocation
that we will use as benchmarks to assess the performance of
the proposed framework. For now, we shall assume the users’
rate requirements can be met, and thus focus on the weight
allocation that maximizes the slice’s utility.

a) Socially Optimal Allocation (SO): If slices were to
share their utility functions with a central authority, one
could in principle consider a (share-constrained) allocation of
weights (and resources) that optimizes the overall performance
of the network, expressed in terms of the network utility U(w)
defined as the sum of the slices’ utilities (see [4], [10]):

U(w) :=
∑
o∈O

Uo(w).

The above is referred to as the socially optimal allocation,
which is given by the following maximization:

max
w≥0

U(w)

s.t.
∑
u∈Uo

wu = so, , ∀o ∈ O, wu ≥ δ,

ru(w) ≥ γu, ∀u ∈ U .

We shall denote the resulting optimal weights and resource
allocation in the socially optimal setting by w∗ and r∗ =
(r∗u(w∗) : u ∈ U), respectively.

b) Static Slicing Allocation (SS): By static slicing (also
known as static splitting [32]) we refer to a complete parti-
tioning of resources based on the network shares so, o ∈ O.
In this setting, each slice o receives a fixed fraction so of each
resource, which is shared among its users proportionally to
their weights,

rssu (wo) =
wu∑

v∈Uo
b(u)

wv
socu, ∀u ∈ Uo, ∀o ∈ O, (3)

where we note that, in this case, the rate of a user depends
only on the weights of the other users in her slice, i.e., wo.
A slice can then unilaterally optimize its weight allocation as
follows:

max
wo≥0

Uo(wo)

s.t.
∑
u∈Uo

wu = so, rssu (w) ≥ γu, ∀u ∈ Uo.

where we have abused notation to indicate that in this case
the slice’s utility, given by Uo(wo) =

∑
u∈Uo Uu(rssu (wo)),

depends only on wo. We shall denote the resulting optimal
weights resulting from static slicing by wo,ss.

D. Network slicing framework

In this paper, we introduce our NEtwork Slicing (NES)
framework to address the resource allocation problem in the
context of the above system. NES manages both users and
resources in network slices, as mobile users come and go.
The proposed framework comprises the following modules:

1) Admission control: the purpose of this module is to ensure
that admitted users will see their rate requirements met
during their lifetime with a sufficiently high probability,
even after there are changes in the network.

2) Weight allocation: this module determines how to allocate
weights to the users, with the goal of maximizing the
slice’s utility.

3) User dropping: while admission control aims at ensuring
that all rate requirements are always met, when users re-
associate or see a change in their radio conditions, or
when other slices admit more users, it could happen that
a slice can no longer keep all its users while meeting their
requirements; in that case, this module decides which
users to drop.

The design of the admission control module is presented
in Section III, while that of the weight allocation and user
dropping modules is presented in Section IV.

In order to analyze the stability of the NES framework,
we assume that slices are competitive (strategic and selfish),
i.e., each attempts to unilaterally optimize its own utility, and
model the behavior of the weight allocation and user dropping
modules as a non-cooperative game. Note that this game only
considers admitted users, i.e., admission control is not part of
the game. It may be played at a point in time when admitted
users may have re-associated or seen a change in their radio
conditions, or new users may have been admitted; as a result,
when playing the game we may not be able to meet all
rate requirements. Thus, the game involves slices deciding
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(i) which set of users to serve when the rate requirements
of all users cannot be met, and (ii) how to allocate weights
amongst the slice’s users, in response to other slices’ decisions.
Hereafter we refer to this game as the network slicing game;
its formal definition is stated as follows:

Definition 1. Consider a set of slices o ∈ O, each with a
set of admitted users u ∈ Uo. In the network slicing game,
each slice selects which subset of users to serve within the
set Uo and their associated weight allocation wo such that
(i) as many users as possible are served (meeting their rate
requirements), and (ii) the slice’s utility Uo is maximized for
the selected subset of users.

III. ADMISSION CONTROL FOR SLICED NETWORKS

In order to meet user rate requirements, NES needs to apply
admission control on new users, rejecting them when the slice
cannot guarantee with a very high probability that it will be
able to satisfy the rate requirements of all its users during their
lifetime. Note that this only applies to new users; in case the
user rate requirements can no longer be satisfied as a result
of users moving, or other tenants changing their allocations,
this is handled by the user dropping module described in
Section IV-A.

In the following, we analyze the implications of applying
admission control on the system stability, and propose two
different admission control algorithms, Worst-case admission
control (WAC) and Load-driven admission control (LAC).
These two algorithms correspond to different trade-offs be-
tween slice isolation and efficiency: while WAC provides
perfect isolation, guaranteeing that a slice will never need
to drop users because of changes in the other slices’ loads,
LAC achieves a higher efficiency at the cost of providing
more relaxed guarantees on isolation (yet ensuring that the
probability of dropping a user remains sufficiently low).

A. Nash Equilibrium existence

A critical question is whether the network slicing game
defined in Section II-D possesses a Nash Equilibrium (NE),
i.e., there exists a choice of users and associated weight
allocation w such that no slice can unilaterally modify its
choice to improve its utility. In the following, we analyze the
requirements on admission control policies in order to ensure
that a NE exists after admission control is applied. Note that, if
the game does not have a NE, strategic slice behavior may lead
to system instability affecting the practicality of the proposed
approach.

The following theorem shows that if admission control
cannot ensure that slices can satisfy the rate requirements of
all their users, the network slicing game may not have a NE.
The proof of the theorem exhibits a case where instability
arises when there is no weight allocation such that the rate
requirements of all the users of a given slice are met given
feasible allocations for the other slices. Note that in a dynamic
setting such a situation could arise, when a slice initially
admits users for which the requirements are feasible, and
subsequently other slices admit additional users to their slice,

making some of the users in the first slice infeasible (see the
Appendix for the proof of all the theorems).

Theorem 1. When slices cannot satisfy all of their users’ rate
requirements, the existence of a NE cannot be guaranteed for
the network slicing game.

The problem identified by the above theorem can be over-
come by applying an admission control scheme that avoids
such situations. According to the following theorem, a NE
exists as long as admission control is able to guarantee that
a slice can satisfy the rate requirements of all its users under
any feasible weight allocation of the other slices (including
future allocations when possibly new users may have been
admitted). Note that in this case the resulting game focuses on
maximizing slice utilities while meeting the rate requirements
of all users. This result implies that, as long as proper admis-
sion control is implemented and ensures that rate requirements
can always be satisfied, the stability of the system can be
guaranteed.

Theorem 2. Suppose admission control ensures that, for any
feasible weight allocation of the other slices, each slice o has
a weight allocation wo such that its users’ rate requirements
are met. Then, the network slicing game has a (not necessarily
unique) NE.

Note that the above theorem guarantees the existence of a
NE when all slices are elastic; indeed, elastic slices have a rate
requirement equal to 0, and therefore their rate requirements
can always be satisfied. This leads to the following result.

Corollary 1. When all slices are elastic, the network slicing
game has a NE.

In the following, we propose two alternative admission con-
trol policies (one more aggressive and one more conservative)
that aim at ensuring that the conditions given by Theorem 2 are
met. Note that it is ultimately up to the tenant to choose and
customize its admission control strategy, and hence each tenant
may independently apply its own admission control policy.

B. Worst-case admission control (WAC)

The WAC policy is devised to ensure that the rate re-
quirements of all users are always met, independently of
the behavior of the other tenants. To that end, under the
WAC policy a slice admits users as follows: it conservatively
assumes it has access to only a fraction so of resources at each
base station, and admits users only if their requirements can
be satisfied with these resources. Given that a user needs a
fraction γu/cu of the base station’s resources to meet her rate
requirement, this policy imposes that for slice o the following
constraint is satisfied at each base station b:∑

u∈Uob

γu
cu
≤ so. (4)

The WAC policy aims at ensuring that (4) is satisfied at all
times. However, even if this condition holds when a new user
is admitted, it may be subsequently violated upon changes in
the slice, e.g., due to mobility of users or changes in their cu.
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To provide robustness against such changes, we follow the
approach in [33] for single-tenant networks. Specifically, we
add a guard band to (4) aimed at ensuring that the condition
will continue to hold with high probability after any changes.
Thus, a slice admits a new user request as long as the following
holds ∑

u∈Uob

γu
cu
≤ ρw · so,

where ρw < 1 parametrizes the guard band: the smaller this
parameter, the larger the guard band. In practice, this parameter
may be set to different values by different slices based on the
slice specifics, such as the fluctuations of cu or user association
(where larger fluctuations will require a larger guard band) or
the desired level of assurance to its users (stricter guarantees
will require a larger guard band). The reader is referred to [33]
for a discussion on how to set this parameter.

In the following, we analyze the properties of WAC under
the assumption that (4) is satisfied with this policy. The
theorem below shows that, as long as this condition is satisfied,
a slice will always be able to meet its users’ rate guarantees
independent of the setting of the other slices. Thus, a high
degree of protection to the choices and changes in other slices
is provided. The theorem also shows that if the slice deviates
from the proposed policy, it is not protected from the other
slices’ choices, implying that this policy represents a necessary
condition to provide protection.

Theorem 3. Consider a slice o with users having rate require-
ments γo = (γu : u ∈ Uo), then the following hold:

1) If (4) is satisfied, there exists at least one weight alloca-
tion wo such that ∀u ∈ Uo ru(w) ≥ γu, for any feasible
allocation of the other slices’ aggregate weights ao.

2) If (4) is not satisfied, slice o is not protected, as there is
a feasible ao allocation such that slice o is not able to
meet the rate requirements of its admitted users.

Note that combining this result with Theorem 2, it follows
that a NE exists when all slices run WAC. Indeed, the above
theorem ensures that a slice can find an allocation that meets
the rate requirements of all its users for any feasible ao, which
comprises all the possible allocations of the other slices w−o.
Theorem 2 guarantees that when this holds, a NE exists. Thus,
we have the following corollary:

Corollary 2. If (4) is satisfied by all slices, then the network
slicing game has a NE.

Note that Corollary 2 imposes more conservative conditions
than Theorem 2; for instance, if a slice never has users at
a given base station, according to Theorem 2 such a slice
cannot place any weight on this base station; in contrast, the
arguments behind (4) account for, and protect the slice against,
such possibility.

C. Load-driven admission control (LAC)

While the WAC policy protects a given slice from the
others, it may be overly conservative in some cases where base
stations are lightly loaded or where some slices are unlikely to
use resources at certain base stations. In those cases, one may

opt to be more aggressive in admitting users without running
significant risks. To this end, we propose the Load-driven
Admission Control (LAC) policy, where a slice measures
the current load across base stations and performs admission
control decisions based on the measured loads (assuming that
they will not change significantly).3

The following theorem provides a basis for the design of
the LAC policy. It gives a necessary and sufficient condition
that has to be satisfied to meet the rate requirements of the
slice’s users, given the current weight allocations of the other
slices. This constraint is shown to be less restrictive than the
one imposed by (4), implying that LAC (potentially) allows
the admission of more users than WAC.

Theorem 4. Consider a slice o comprising users with rate
requirements γo = (γu : u ∈ Uo), and suppose the aggregate
weight of the other slices is given by ao. Then, a weight
allocation wo that meets slice o’s rate requirements exists if
and only if the following is satisfied:

∑
b∈B

∑
u∈Uob

γu/cu

1−
∑
u∈Uob

γu/cu
aob ≤ so. (5)

where Uob is the subset of users of slice o associated with base
station b, according to the given user association policy.

Moreover, if the rate requirements satisfy (4), then the above
condition is satisfied.

The central idea of the LAC policy is as follows. Upon
receiving a request of a new user u with a rate requirement
γu, slice o assesses the current ao values in the network
and checks whether (5) would be satisfied with the new user.
According to the theorem, as long as (5) is satisfied, the rate
requirements can be met if the ao values do not change.
However, in practice ao may change due to the response of the
other slices to slice o, or to changes in the other slices (e.g.,
the admission of new users). We shall address this uncertainty
by following a similar approach to WAC: when admitting a
new user, we verify that (5) is satisfied with a sufficiently large
guard band, i.e.,

∑
b∈B

∑
u∈Uob

γu/cu

1−
∑
u∈Uob

γu/cu
aob ≤ ρl · so, (6)

where ρl < 1 is the parameter providing the guard band for
LAC. Note that, in addition to other considerations, in this case
the setting of ρl will need to account for observed statistical
fluctuations of ao, larger fluctuations requiring a larger guard
band.

The following theorem shows that, as long as the chosen
value for ρl is sufficiently conservative, LAC is effective in
guaranteeing that the rate requirements of all users are met.

Theorem 5. There exists a ρl value sufficiently small such
that the rate requirements of all the users of slice o can be
met independent of how the other slices change their weights.

3Note that many similar (load-driven) admission control algorithms have
been proposed in the literature [34], [35] in the context of single-tenant
networks. In this paper, we apply this concept to a network slicing setting.
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The following corollary follows from the above result and
Theorem 3. Indeed, as long as every slice satisfies either (4)
and (6), Theorems 3 and 5 guarantee that all slices can choose
a weight allocation that satisfies the rate requirements of all
their users. Furthermore, Theorem 2 guarantees that when this
holds there exists a NE. These implies that, as long as all
slices run either WAC or LAC, the system can be expected to
be stable.

Corollary 3. If either (4) or (6) holds for every slice (the
latter with a sufficiently small ρl), then there exists a NE.

IV. WEIGHT ALLOCATION AND USER DROPPING FOR
NETWORK SLICING

Once a slice decides which users to admit, possibly fol-
lowing one of the admission control policies presented above,
it needs to determine the weight allocation of the admitted
users. In NES, this is determined based on a sequence of
best responses, where in each round a slice chooses its best
response given the choices of the other slices. A slice’s best
response involves the following two steps: (i) user subset
selection, to determine which subset of users to serve, and
(ii) weight allocation, to set the weights of the users in
the selected subset. In the following, we first present the
algorithms to perform the user subset selection and weight
allocation, and then analyze the convergence of the sequence
of best responses.

A. User subset selection

When a slice cannot satisfy the rate requirements of all its
users, it needs to decide which subset to serve. Note that, while
admission control aims at ensuring that rate requirements of
all users can always be satisfied, in practice this can only be
ensured with a (very) high probability due to the unpredictable
nature of the mobile network; thus, in some unlikely cases it
may happen that the rate requirements of some users cannot be
met. When this happens, the slice has to drop those users. Note
that this yields a novel paradigm for managing the resources
of a slice, where changes in one part of the network may lead
to dropping users in another part.

Below we present the algorithms for two possible ap-
proaches for user selection: (i) MaxSubsetSelection, which
maximizes the cardinality of the subset of served users (thus
minimizing user dropping); and (ii) PriorityUserSelection,
which uses a priority ordering on a slice’s users (enabling
a slice to customize its users’ service).

To realize MaxSubsetSelection we use a greedy algorithm
which at each step adds the user which needs the smallest
additional weight to meet the selected users’ rate requirements.
To that end, let Ũo be a candidate subset of the admitted users
by slice o, Uo, and let ωob (Ũo) be the minimum aggregate
weight required to satisfy the rate requirements the candidate
subset’s users on base station b, Ũob . The value of ωob (Ũo)
can be computed as follows. The minimum weight wu needed
to satisfy the rate requirement of user u ∈ Ũob must satisfy

Algorithm 1: MaxSubset Algorithm.

Initialize: Ũo = ∅
while Ũo 6= Uo do

u∗ = argminu′{∆ωo(Ũo, u′) | u′ ∈ Uo \ Ũo}
if ωo(Ũo ∪ {u∗}) ≤ so then Ũo := Ũo ∪ {u∗};
else return;

end

wucu/lb = γu; summing these over u ∈ Ũob and isolating∑
u∈Ũo wu yields

ωob (Ũo) = aob(w
−o)

∑
u∈Ũob

γu/cu

1−
∑
u∈Ũob

γu/cu
.

where we are assuming
∑
u∈Ũo γu/cu ≤ 1 (otherwise we let

ωob (Ũo) =∞).
We further let ωo(Ũo) =

∑
b∈B ω

o
b (Ũo) denote the aggre-

gate minimal weight requirement for the slice, and for any
user u′ ∈ Uo we define the marginal aggregate weight of the
user u′ given candidate subset Ũo as

∆ωo(Ũo, u′) = ωo(Ũo ∪ {u′})− ωo(Ũo).
Building on the above notation, we present a greedy solution

in Algorithm 1, which provides as output the set of selected
users Ũo. The following theorem confirms the effectiveness of
this algorithm.

Theorem 6. The MaxSubsetSelection algorithm results in a
subset of users that maximizes the number of users the slice
can serve and still meet their minimal rate requirements.

Alternatively, slices might apply a PriorityUserSelection
algorithm to customize their user subset selection policy by
assigning users a priority order. Such an ordering may depend,
e.g., on the users’ traffic class, the revenue they generate, how
long users have been in the system, and/or their current signal
to noise ratio, among other factors. To this end, the algorithm
simply adds users sequentially to the subset to be served in
order of decreasing priority until no more can be added, i.e.,
ωo(Ũo ∪ {u∗}) > so.

B. Weight allocation
Once a slice has selected a set of users whose requirements

can be satisfied, it sets their weights as follows. Given the
aggregate weights of the other slices, aob(w

−o), a slice chooses
wo such that the its utility is maximized, i.e.,

wo = arg max
w′o

∑
u∈Ũo

Uo(w′
o
,w−o),

s.t.:
w′u

aob(w
−o) + lob(w

′o)
≥ γu
cu
, ∀u ∈ Ũo,

w′u ≥ δ, ∀u ∈ Ũo,
∑
u∈Ũo

w′u ≤ so.

where, for convenience, we write Uo(w′o,w−o) = Uo(w) to
highlight dependencies on other slices weights.

Note that as long as utility functions fu(·) are concave in
the allocated user rates, the above maximization corresponds
to a (computationally tractable) convex optimization problem.
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C. Convergence of best response dynamics

With NES, we determine users’ weight allocation based
on a sequence of best responses. The proposed algorithm
implements the best response computed above in rounds: slices
update the weight allocation of their users wo, sequentially,
one at a time and in the same fixed order, in response to
the other slices weights ao. Following standard game theory
terminology, we refer to this iterative process as Best Response
Dynamics.

The following theorem shows that the above dynamics may
not converge. In particular, the proof of the theorem considers
an instance satisfying the conditions of Theorem 2, i.e., a
feasible instance under admission control, and shows that, even
though a NE is guaranteed to exist under such conditions, Best
Response Dynamics do not converge.

Theorem 7. Consider a game instance such that, for each
slice o ∈ O there exists an allocation satisfying the rate
requirements of all its users for any possible allocation of the
other slices. Even though a NE is guaranteed to exist under
these conditions, Best Response Dynamics may not converge.

While the above theorem shows that convergence cannot
be ensured, our simulation results show that in practice Best
Response Dynamics converge quickly to a region close to the
NE, and hence we can simply force the system to halt after a
number of best response rounds and use the weights obtained
in the last round. Specifically, following the results provided
in Section VI-D, in our simulations we halt the system after
7 rounds.

From the above, it can be seen that NES incurs an ac-
ceptable computational load, as its execution involves solving
a sequence of convex optimization problems (each of which
scales with the number of users of the slice and number of base
stations) for a limited number of times (namely, the number
of slices in the network multiplied by 7). Moreover, the
above computations may be possibly performed at centralized
controllers, as the resource allocation does not need to be
implemented in the base stations before the sequence of
optimizations converges or stops. Also, resources may be re-
allocated only periodically to alleviate the overhead associated
to the reconfiguration of base stations. Quantitative results on
the computational load are provided in Section VI-E.

V. ANALYSIS OF THE NES FRAMEWORK

In the following, we analyze the performance achieved by
the NES approach proposed above as compared to the two
baseline allocations given in Section II-C: (i) the socially
optimal allocation, and (ii) static slicing. Our analysis assumes
that NES reaches a Nash equilibrium.

A. Gain over static slicing

The result below shows that NES outperforms static slicing.

Theorem 8. For the same set of admitted users, the utility
achieved by an operator under NES is never lower than the
utility that this operator would obtain under static slicing.

While the theorem assumes the same set of admitted users
for static slicing and NES, we argue that the result holds
in general. Indeed, a tenant is free to choose any admission
control policy, including that employed by static slicing, and
it is to be expected that it will apply the policy that maximizes
its utility. Thus, it follows that the level of satisfaction of the
tenant will be greater with NES, under the chosen admission
policy, than with static slicing.

B. Loss over the socially optimal allocation

We now study the difference in the utility achieved under
socially optimal resource allocation vs. that achieved under
NES. We focus on the case where fu(·) follows (2) for αo = 1
and αo = 2, which are two highly relevant settings in practice
(corresponding to proportional and minimum delay potential
fairness, respectively). To perform the comparison, we define
the Loss over the Social Optimal (LSO) as follows. For αo = 1
we define LSO .

= U(w∗)− U(ŵ), where w∗ is the socially
optimal weight allocation and ŵ is the weight allocation with
NES, while for αo = 2 we define it as LSO .

= U(ŵ)
U(w∗) . Note

that these definitions are adjusted to the type of utility function:
for αo = 1, utilities are logarithmic in the rate, and hence by
subtracting utilities we capture the ratio between rates, while
for αo = 2 utilities are inversely proportional to the rates, and
hence the ratio between rates is obtained by dividing utilities.

The following theorem provides a bound on the LSO and
gives an instance for which the LSO is close to this bound,
showing that the bound is tight.

Theorem 9. Let user utilities fu(·) follow (2),
¯
γu be the

minimum rate guarantee in the network, c̄u be the largest
possible achievable rate and ε =

¯
γu/c̄u. Under a given set of

admitted users, we have that:
1) If αo = 1 ∀o ∈ O, then LSO ≤ − log(ε) and there is an

instance for which LSO ≥ − 1
2 log(2ε).

2) If αo = 2 ∀o ∈ O, then LSO ≤ 1
ε and there is an

instance for which LSO ≥ 1
3ε .

Note that, according to the above results, the bound on the
LSO relaxes as we decrease the minimum rate requirement
in the network, and becomes unbounded in the case where
we have elastic traffic with no rate guarantees, i.e., γu = 0.
However, in a well provisioned network all users should expe-
rience a sufficiently large rate, and in this case the LSO should
be low according to the above result. This is corroborated
by our simulation results, which show that in practice NES
performance is close to optimal and LSO is very small.

VI. PERFORMANCE EVALUATION

We next evaluate the performance of NES via simulation.
Unless otherwise stated, the mobile network setup of our
simulator follows the IMT-A evaluation guidelines for dense
‘small cell’ deployments [36], considering a network with
19 base stations disposed in a hexagonal grid layout with 3
sectors, i.e., |B| = 57. User mobility follows the Random
Waypoint (RWP) model. The users arrive to the network
following a Poisson Process with intensity λ arrivals/sec, and
their holding times are exponentially distributed. Users’ SINR
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Fig. 1. Performance of NES in terms of network utility as compared to the
two benchmark allocations (SS and SO).

is computed based on physical layer network model specified
in [36] (which includes path loss, shadowing, fast fading and
antenna gain) and user association follows the strongest signal
policy. The achievable rate for a user u, cu, is determined
based on the thresholds reported in [37]. Unless otherwise
stated, the rate requirement of the inelastic users is set to
γu = 0.5 Mbps, we have αo = 1 for all slices, there are
5 slices in the network with equal shares, the arrival rate is
λ = 5 (equally split among slices) and the average holding
time is 1 minute. In the simulations, we consider both slices
with mixed traffic of different types (Sections VI-A and VI-C)
as well as slices dedicated to one specific traffic type (Section
VI-B). All confidence intervals are below 1%.

A. Network utility

We first analyze the network utility achieved by NES
as compared to the two benchmark solutions presented in
Section II-C (namely, SS and SO). To ensure that the rate
requirements of admitted users are always met, we adopt the
WAC admission control policy with ρw = 1 and suppress
user movements yielding changes in base station associations
and/or cu values. To analyze the impact of inelastic traffic,
we vary the fraction of inelastic traffic arrivals, θ, yielding
an arrival rate of θλ for inelastic users and of (1 − θ)λ for
elastic ones. The results, depicted in Fig. 1, show that (i) NES
outperforms very substantially SS, providing very high gains,
and (ii) it performs almost optimally, very close to the SO.
Moreover, this holds independently of the mix of elastic and
inelastic users present in the network.

B. Throughput gains

To give a more intuitive measure of the gains achieved by
NES, we define the throughput gain over SS, ∆, as follows:
it is the value such that, if we increase the rate of all users
in SS by ∆, we reach the same network utility as NES (e.g.,
∆ = 100% means that SS achieves the same utility as NES
when multiplying all user rates by 2). Fig. 2 illustrates the
throughput gains for (i) αo = 1 and αo = 2, which are the two
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Fig. 2. Throughput gains over SS for different traffic types (elastic, inelastic),
utility functions (αo) and network load (λ).

most relevant αo values in practice, (ii) elastic and inelastic
slices, where all users are either elastic and inelastic, and (iii)
different arrival rates λ, yielding different network loads. We
conclude from the results that (i) gains are very substantial,
ranging from 100% to 20%, (ii) they decrease with the load,
as already observed in [4], and (iii) they are fairly insensitive
to the fraction of inelastic traffic and choice of utility function.

C. Blocking probability

In addition to improving the performance of admitted users,
one of the key advantages of the dynamic resource allocation
implemented by NES is that it allows admitting more users
while meeting their rate requirements. In order to assess the
achieved improvement, we evaluate the blocking probability
(i.e., the probability that a new user cannot admitted) under
NES versus SS. For NES, we consider the two admission
policies proposed in Section III (WAC and LAC), while for
SS we apply the policy given in [33]. For all settings, we drop
users based on the MaxSubsetSelection algorithm, and adjust
the guard bands to ensure that the probability of dropping an
admitted user is no more than 1%. To increase the offered
load sufficiently so that we can observe the behavior of the
blocking probability, we set γu = 1 Mbps and an average
holding time of 2 minutes. The results are given in Fig. 3 as
a function of the fraction of inelastic user arrivals (θ). They
show very high gains over SS for both approaches (WAC and
LAC), and confirm that, by behaving more aggressively, LAC
is able to admit many more users than WAC.

D. Convergence to the NE

To better understand the dynamics of NES, we have eval-
uated a very large number of randomly generated scenarios
(namely 104 scenarios) with the following settings: (i) a
uniform number of slices between 2 and 10, i.e., |O| ∼
U(2, 10), (ii) a number of users per slice of |Uo| ∼ U(0, 350),
(iii) inelasticity level θ ∼ U(0, 100)(%), (iv) minimum rate
requirements γu ∼ U(0, 3) Mbps, and (v) the shares so
proportional to the number of users. We have found that a
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Fig. 3. Blocking probability for new arrivals for the two policies proposed
and the SS benchmark.

Fig. 4. Box plot for the RMSE of the weight allocation at a given round with
respect to the NE weight allocation.

vast majority (97.6%) of scenarios converge to the NE after
100 rounds. For such scenarios, Fig. 4 shows the difference
between the weight allocation at a given round and the one
at the NE in terms of mean squared error (RMSE), providing
a box plot with the median (red), 95% percentile (box), 99%
percentile (whisker) and outliers (red crosses). We observe that
the RMSE decreases exponentially in the number of rounds.
After 7 rounds we are already very close to the NE (the median
is below 10−4), which justifies our choice in Section IV-C.
Additional results, not included for space reasons, show that
user rates exhibit a very similar behavior to the weights.

E. Computational load

Next we evaluated the computational complexity of the NES
algorithm when the system halts after 7 rounds (as given by
the configuration chosen in this paper). Fig. 5 shows the com-
putational times for a dual-core 2.9GHz i7 processor for elastic
and inelastic traffic and different numbers of slices and users,
when the number of base stations is scaled with the number of
users and admission control is adjusted to ensure that dropping
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Fig. 5. Computational times of the proposed approach as a function of the
number of slices and users in the network.

probabilities below 1%. Results confirm that NES can be
applied to practical settings, as complexity is roughly linear
with the size of the network and computational times remain
low even for large size problems; for instance, for a network
with 9000 users the time falls below 2.5 seconds. We further
observe that inelastic traffic slightly increases complexity but
does not challenge the practicality of the approach. Finally, we
note that the computational time values provided here could
be further improved by optimizing the code, parallelizing tasks
and/or increasing the machine computational power.

F. Slice differentiation

We next analyze the ability of NES to deploy slices
providing a customized service. To this end, we consider a
scenario with 4 slices with different requirements: (i) slice
1 provides rate requirements of γu = 1 Mbps with WAC,
(ii) slice 2 provides γu = 0.5 Mbps with WAC, (iii) slice 3
provides γu = 0.5 Mbps with LAC, and (iv) slice 4 provides
no minimum rate requirements. All slices have the same
share, the arrival rate is of λ = 10 equally split among the
slices, and admission control is configured to provide dropping
probabilities below 1%. Fig. 6 shows the empirical CDF of the
user rates for each slice as well as the blocking probabilities
(≈ 47.2%, 16.7%, 3.58% and 0%, respectively). We observe
that (i) the minimum rate requirements are satisfied for all
slices; (ii) as the rate requirements increase, so does the
blocking probability, yielding an overall improvement of the
user rate distribution, and (iii) by employing LAC, we achieve
a dramatic reduction of the blocking probability while paying
a very small prices in terms of user rate distribution. We
conclude that NES is effective in enabling slice differentiation.

VII. CONCLUSIONS

In this paper we proposed and analyzed a framework for
network slicing that relies on network shares and allows
slices to customize resource allocations to their users. This
framework results in a network slicing game where each slice
unilaterally reacts to the settings of the others. While this
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Fig. 6. Blocking probability and empirical CDF of the user rates for a scenario
of 4 slices with different requirements.

game has been previously studied for elastic traffic, the slices’
behavior changes substantially when users have minimum rate
requirements, and so does the outcome of the game. Indeed,
we have shown that (in contrast to the elastic case) this game
may not have a Nash Equilibrium and, even when it has a NE,
Best Response Dynamics may not converge to the equilibrium.
In spite of this (apparently) negative result, we have shown
that as long as admission control is applied (which is to be
expected under inelastic traffic), we can guarantee that a NE
exists. We have proposed algorithms for admission control,
weight allocation and user dropping, which jointly bring the
system to a NE. We have further analyzed performance at
the equilibrium, showing that it is close to the social optimal
and provides substantial gains over static slicing. Based on
these results, our main conclusion is that the proposed NES
framework provides an effective and implementable scheme for
dynamically sharing resources across slices, both for elastic
and for inelastic traffic.

APPENDIX: PROOFS OF THE THEOREMS

Proof of Theorem 1

Consider a setting with two base stations (a and b) and
two slices (1 and 2), each slice with one user associated to
base station a and another user associated to base station b.
We refer to these users as U = {1a, 1b, 2a, 2b}. Let the rate
requirements of slice 1 be γ1a = γ1b = 2C/3, the users of
slice 2 have no minimum rate requirements, and s1 = s2 =
1/2. We show that this game has no NE by contradiction. We
necessarily have that either w2a ≤ 1/4 or w2b < 1/4. Let us
assume that w2a < 1/4 and w2b > 1/4. Since in this case
slice 1 can only meet the rate requirements of user 1a, its best
response will concentrate its weight on this user, w1a = 1/2.
However, the best response of slice 2 to such allocation of
slice 1 is to concentrate its share on user 2a. Thus, w2a > 1/4,
which contradicts the initial assumption. Following a similar
argument, it can be seen that if we assume w2a = 1/4 or
w2a > 1/4, we also reach a contradiction.

Proof of Theorem 2

Let W be the convex and compact set of feasible weights
w satisfying (i) wu ≥ δ ∀u, and (ii)

∑
u∈Uo wu = so ∀o and

let us consider the mapping w→ w̃ = Γ(w), where w̃o is the
best response of slice o to w−o. We next show that this map-
ping satisfies the conditions of Kakutani’s theorem: i) Γ(w) is
non-empty, ii) Γ(w) is a convex-valued correspondence, and
iii) Γ(w) has a closed graph. Conditions i) and ii) follow
from the fact that the best response of a slice to w−o is a
unique allocation w̃o. This implies that that w̃ exists and is a
single point (and hence a convex set). Condition iii) is shown
by proving that w̃o is a continuous function of w−o for all
slices. Consider the set of users for which ru > γu and the set
for which ru = γu. As long as these sets do not change, w̃o

can be expressed as a continuously differentiable function of
{w̃o,w−o}, and it follows from the implicit function theorem
that w̃o is a continuous function of w−o. When some user
moves from set ru > γu to ru = γu (or viceversa), such
user satisfies both the equation for ru = γu and the one for
ru > γu, providing continuity over the transitions. Since all
the conditions of Kakutani’s theorem are satisfied, we have
that the mapping Γ has at least one fixed point, which implies
that at least one NE exists.

To show that the NE is not necessarily unique, we provide
an example with multiple NEs. Consider a scenario with three
slices (1,2,3) and three base stations (a,b,c). Let the first slice
have users in base stations a and c (users 1a, 1c), the second
slice in a and b (2a, 2b) and the third slice in b and c (3b, 3c).
Let φ1a = φ1b = 1/2, φ2a = φ3c = 1 and φ2b = φ3b = 0.
Also, let γu = 1/2 for users 2b and 3b, γu = 0 for all other
users and cu = 1 for all users. It can be seen that all the weight
allocations satisfying w1a = w1b = 1/6, w2b = w3b = w and
w2a = w3c = 1/3 − w for w ∈ [δ, 1/3 − δ] correspond to a
NE, which shows that multiple NE exist for this example.

Proof of Theorem 3

The result of 1) follows directly from Lemma 1 in [4]. If
users are admitted at base stations such that under static slicing
their rate guarantees are met, i.e. rssu ≥ γu, then it follows
by the above mentioned lemma that there exists an allocation
satisfying ru ≥ rssu ≥ γu, which proves the first part of the
theorem.

To prove 2), we proceed as follows. Suppose slice o admits
users are such that their associated rate requirements violate
(4) at some base station b, i.e.,

∑
u∈Uob

γu/cu > so. If all other
slices place their entire share at that base station, we have

∑
u∈Uob

ru
cu

=

∑
u∈Uob

wu∑
u∈Uob

wu + 1− so
≤ so,

which implies
∑
u∈Uob

ru/cu <
∑
u∈Uob

γu/cu and hence
necessarily ru < γu for some u, proving the second part of
the theorem.
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Proof of Theorem 4
Recall that the rate of user u is given by ru = wucu/lb(u).

If we add the rates of the users of slice o at a given base
station b and isolate

∑
u∈Uob

wu, we obtain∑
u∈Uob

wu =

∑
u∈Uob

ru/cu

1−
∑
u∈Uob

ru/cu
aob .

By summing the above over all base stations and noting that∑
u∈Uo wu = so, we obtain∑

b∈B

∑
u∈Uob

ru/cu

1−
∑
u∈Uob

ru/cu
aob = so. (7)

We now prove that as long as (5) is satisfied, there exists
a weight allocation wo that meets the rate requirements of all
users. Let us consider the weight allocation satisfying4

wu =
(γu/cu)lb(u)∑
v∈Uo (γv/cv)lb(v)

so, ∀u ∈ Uo. (8)

Note that with the above weight allocation, the rates ru
are proportional to γu, which means that either we have ru ≥
γu ∀u or ru < γu ∀u. The latter yields a contradiction; indeed,
if ru < γu ∀u it follows that∑
b∈B

∑
u∈Uob

γu/cu

1−
∑
u∈Uob

γu/cu
aob >

∑
b∈B

∑
u∈Uob

ru/cu

1−
∑
u∈Uob

ru/cu
aob = so,

which contradicts (5). Hence, it follows that ru ≥ γu ∀u.
We next prove that if (5) is not satisfied, then there ex-

ists no weight allocation meeting the rate requirements. The
proof goes by contradiction. Assume (5) is not satisfied but
ru ≥ γu ∀u. From the latter, it follows that

∑
u∈Ub ru/cu ≥∑

u∈Ub γu/cu ∀b. Combining this with (7) yields∑
b∈B

∑
u∈Uob

γu/cu

1−
∑
u∈Uob

γu/cu
aob ≤ so,

which contradicts that assumption that (5) is not satisfied.
Finally, we show that if the rate requirements satisfy (4),

then they surely satisfy (5). The lhs of (5) increases with∑
u∈Uob

γu/cu. As long as this value is no larger than so, we
have that the following equation gives a sufficient condition
for (5) to be satisfied: so

1−so
∑
b∈B a

o
b ≤ so.

The above is surely satisfied since
∑
b∈B a

o
b = 1 − so. As

(4) imposes
∑
u∈Uob

γu/cu ≤ so, it follows that as long as (4)
is satisfied, (5) is also satisfied.

Proof of Theorem 5

Let us take ρl = minb
aob

1−
∑
u∈Uo

b
γu/cu

. Then, from (6) it

follows that
∑
b∈B

∑
u∈Uob

γu/cu ≤ so. From this, we have
that condition (4) is satisfied. According to Theorem 3, as
long as this condition is satisfied, there exists a choice of
wo that satisfies the rate requirements of all users of slice
o independent of the weight setting of the other slices, which
completes the proof.

4The existence of such an allocation follows from applying Brouwer fixed-
point theorem to the function f : W → W , where wu = fu(w) is given
by (8) and W is the set of weights satisfying

∑
u∈Uo wu = so and wu ≥

(γu/cu)aobso/
∑

v∈Uo (γv/cv) (recall that aob 6= 0 ∀b, as weights cannot
be zero).

Proof of Theorem 6
The proof goes by contradiction. Let Ũo be the set of

users selected by the MaxSubsetSelection algorithm, and let us
assume that there exists an alternative feasible user selection
Ûo such that |Ûo| > |Ũo|. If we take the set Ûo and substitute
each user by another one in the base station with smaller
γu/cu, the resulting set Ūo is feasible and has the same number
of users as the original one. Note that set Ūo necessarily has
some base station b with more users than set Ũo – otherwise
|Ûo| > |Ũo| would not hold. Let us assume that there exists
some other base station b′ with fewer users. In this case,
let us remove user u from one of the base stations with
more users, b, and add user u′ in one of the base stations
with fewer users, b′. The resulting set remains feasible, as
∆ωob′(Ūo, u′) ≤ ∆ωob′(Ūo, u) – otherwise MaxSubsetSelection
would have chosen a different subset of users. We can do this
until there are no base station with fewer users than in Ũo.
The result of these operations is a feasible set where all base
stations have as many users or more than Ũo, and overall it has
more users. However, this yields a contradiction: if such set
was feasible, the MaxSubsetSelection algorithm would have
selected more users.

Proof of Theorem 7
Let us consider a scenario with three base stations (a,b,c)

and three slices (1,2,3), with s1 = s2 = s3 = 1/3 and
any arbitrary α1, α2, α3 values. Let slice 1 have two users
associated to base stations a and b (u1a,u1b), slice 2 two
users associated to base stations b and c (u2b,u2c) and slice
3 two users associated to base stations a and c (u3a,u3c). Let
cu = 1 ∀u, γ1a = γ2b = γ3c = 1/2, γ1b = γ2c = γ3a = 0,
φ1a = φ2b = φ3c → 0 and φ1b = φ2c = φ3a → 1. The NE
of this instance is wu = 1/6 ∀u. However, if we start with
w3c = w < 1/6 and w3a = 1/3 − w, and perform a best
response cycle starting starting with slice 1 followed by 2 and
3, it can be seen that this leads to an endless cycle where
each slice takes a weight allocation of either {w, 1/3 − w}
or {1/3 − w,w} at each step (none of which corresponds to
the NE). Hence, Best Response Dynamics do not converge for
this instance of the game.

Proof of Theorem 8
The proof follows from Lemma 1 of [4], which shows that,

given a slice o and a feasible weight allocation w−o for the
other slices, there exists a weight allocation wo for slice o,
possibly dependent on w−o, such that the resulting weight
allocation w satisfies ru(w) ≥ rssu for all u ∈ Uo. Therefore,
there exists a weight allocation that provides the same utility
as static slicing. Since the weight allocation chosen by NES
is the one that maximizes the slice’s utility, it surely provides
a utility no smaller than that under static slicing.

Proof of Theorem 9
We start for αo = 1. To prove the bound on the LSO, we

first note that

U(w∗) =
∑
o∈O

∑
u∈Uo

soφu log

(
w∗u∑

u′∈Ub(u) w
∗
u′
cu

)
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≤
∑
o∈O

∑
u∈Uo

soφu log (c̄u) .

Furthermore, from the minimum rate constraint it follows that

U(ŵ) =
∑
o∈O

∑
u∈Uo

soφu log

(
ŵu∑

u′∈Ub(u) ŵu′
cu

)
≥
∑
o∈O

∑
u∈Uo

soφu log
(
¯
γu
)
.

Combining the above two equations, we obtain U(w∗) −
U(ŵ) ≤ log(c̄u/

¯
γu) = − log(ε), which completes the first

part of the proof.
To show that the above bound is tight, we consider the

following network instance. We have two slices with shares
s1 = s2 = 1/2 and two base stations. The first slice has two
users in the first base station (weights w11 and w12) and the
second slice has one user in the first base station (w21) and
another one in the second base station (w22). All users have
cu = c̄u, and the rate requirements are γ11 = c̄u(1/2 − ε)
for the first user and γu =

¯
γu = c̄uε for the other ones.

Furthermore, let φ11 → 0, φ12 → 1, φ21 → 0 and φ22 → 1.
In the allocation employed by NES (which corresponds to
the NE) we have w11 = 1/2 − ε, w12 = ε, w21 → 1/2 and
w22 → 0, which yields U(ŵ) = 1

2 log(εc̄u)+ 1
2 log(c̄u). In the

social optimal, we have the following weight allocation: w11 =(
1
2 − ε

) (
1
2 + ε

2(1−ε)

)
, w12 = 1/2 − w11, w21 = ε

2(1−ε) and
w22 = 1/2 − w21, from which U(w∗) = 1

2 log ((1/2)c̄u) +
1
2 log(c̄u). This yields U(w∗)− U(ŵ) = − 1

2 log (2ε) , which
terminates the proof for αo = 1.

To prove the LSO bound for αo = 2, we note that

U(w∗) ≥ −
∑
o∈O

∑
u∈Uo

soφu
1

c̄u

and
U(ŵ) =≤ −

∑
o∈O

∑
u∈Uo

soφu
1

¯
γu
.

Combining these two equations we obtain U(ŵ)
U(w∗) ≤

1
ε , which

completes the first part of the proof. The tightness of the bound
is proven by considering the same network instance as for
αo = 1:

U(ŵ)

U(w∗)
=
− 1

2
1
εc̄u
− 1

2
1
c̄u

− 1
2

1
(1/2)c̄u

− 1
2

1
c̄u

=
1
ε + 1
1

1/2 + 1
≥ 1

3ε
.
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