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Abstract—Network slicing to enable resource sharing among
multiple tenants –network operators and/or services– is consid-
ered a key functionality for next generation mobile networks.
This paper provides an analysis of a well-known model for
resource sharing, the ‘share-constrained proportional allocation’
mechanism, to realize network slicing. This mechanism enables
tenants to reap the performance benefits of sharing, while
retaining the ability to customize their own users’ allocation. This
results in a network slicing game in which each tenant reacts
to the user allocations of the other tenants so as to maximize
its own utility. We show that, under appropriate conditions, the
game associated with such strategic behavior converges to a Nash
equilibrium. At the Nash equilibrium, a tenant always achieves
the same, or better, performance than under a static partitioning
of resources, hence providing the same level of protection as such
static partitioning. We further analyze the efficiency and fairness
of the resulting allocations, providing tight bounds for the price of
anarchy and envy-freeness. Our analysis and extensive simulation
results confirm that the mechanism provides a comprehensive
practical solution to realize network slicing. Our theoretical
results also fill a gap in the literature regarding the analysis
of this resource allocation model under strategic players.

I. INTRODUCTION

There is consensus among the relevant industry and stan-

dardization communities [1], [2] that a key element in 5G

mobile networks will be network slicing. The idea is to

allow the mobile infrastructure to be “sliced” into logical

networks, which are operated by different entities and may be

tailored to support specific services. This provides a basis for

efficient infrastructure sharing among diverse entities, ranging

from classical or virtual mobile network operators to new

players that simply view connectivity as a service. Such new

players could be, for instance, Over-The-Top (OTT) service

providers which use a network slice to ensure satisfactory

service to their customers (e.g., Amazon Kindle’s support

for downloading content or a pay TV channel including a

premium subscription). In the literature, the term tenant is

often used to refer to the owner of a network slice.

A network slice is a collection of resources and functions

that are orchestrated to support a specific service. This includes

software modules running at different locations as well as the

nodes’ computational resources, and communication resources

in the backhaul and radio network. The intention is to only

provide what is necessary for the service, avoiding unneces-

sary overheads and complexity. Thus, network slices enable

tenants to compete with each other using the same physical

infrastructure, but customizing their slices and network oper-

ation according to their market segment’s characteristics and

requirements. For instance, slices can be geared at supporting

various IoT or M2M applications, such as the connectivity

required to realize ‘intelligent’ vehicular systems.

A key problem underlying network slicing is enabling

efficient sharing of mobile network resources. One of the ap-

proaches considered in 3GPP suggests that resources could be

statically partitioned based on fixed ‘network shares’ [3]. How-

ever, given that slices’ loads may be spatially inhomogenous

and time varying, it is desirable to allow resource allocations

to be ‘elastic’, e.g., dependent on the slices’ loads at different

base stations. At the same time, tenants should be protected

from one another, and retain the ability to autonomously

manage their slice’s resources, in order to better customize al-

locations to their customers. To that end, it is desirable to adopt

resource allocation models in which tenants can communicate

their preferences to the infrastructure (say by dynamically

subdividing their network share amongst their customers) and

then have base stations’ resources allocated according to their

preferences (i.e., proportionally to the customers’ shares).

Under such a dynamic resource allocation model, a tenant

might exhibit strategic behavior, by adjusting its preferences

depending on perceived congestion at resources, so as to max-

imize its own utility. Such behavior could in turn have adverse

effects on the network; for instance, the overall efficiency may

be harmed, or one may see instability in slice requests. The

focus of this paper is on (i) the analysis and performance of

this simple resource allocation model, and (ii) the validation

of its feasibility as a means to enable tenants to customize

resource allocation within their slice while protecting them

from one another.

Related work: The resource allocation mechanism infor-

mally described above corresponds to a Fisher market, which

is a standard framework in economics. In such markets,

buyers (in our case slices) have fixed budgets (in our case

network shares) and (according to their preferences) bid for

resources within their budget, which are then allocated to

buyers proportionally to their bids. Analysis of the Fisher

market shows that, as long as buyers are price-taking (i.e.,

they do not anticipate the impact of their bids on the price

– in our case, the impact of the slices’ preferences on the

overall congestion), the Nash equilibrium is socially optimal,



and distributed algorithms can be easily devised to reach it [4].

This assumption may be reasonable for markets where the

impact of a single buyer on a resource’s price is negligible,

but does not apply to our case where a relatively small number

of active tenants might be sharing resources.

There is a substantial literature on Fisher markets with

strategic buyers, which, as will be studied in this paper,

anticipate the impact of their bids [5]. The analysis, so far, has

been limited to the case of buyers with linear utility functions

of the allocated resources, which can lead to extremely unfair

allocations. While such utility functions may be suitable for

goods, they are not an appropriate model for tenants wishing

to customize allocations amongst their customers. This paper

includes a comprehensive analysis for a wide set of slice

utility functions, including the convergence of best response

dynamics and other results which to our knowledge are new.

A related resource allocation model often considered in the

networking field is the so-called ‘Kelly’s mechanism’ [6]; this

mechanism allocates resources to players proportionally to

their bids and, assuming that they are price-taking, converges

to a social optimum. Follow-up work has considered price-

anticipating players in this setting; for example, [7] ana-

lyze efficiency losses, while [8] devise a scalar-parametrized

modification that is once again socially optimal for price-

anticipating players. However, in Kelly’s mechanism players

respond to their payoff (given by the utility minus cost)

whereas in our model tenants’ behavior is only driven by their

utilities (since they have a fixed budget: the network share).

Consequently, results on the analysis of Kelly’s mechanism

are not applicable to our setting.

In the context of the existing resource allocation models

described above, this work covers the following gap in the

literature: the analysis of budget-constrained resource allo-

cation under price-anticipating users with nonlinear utilities.

The reader is referred to the extended version [9] for a table

illustrating this gap in the context of existing literature.

From a more practical angle, multi-tenant sharing has been

studied from different points of view, including planning,

economics, coverage, performance, etc. [10], [11]. This paper

focuses specifically on the design of algorithms for resource

sharing among tenants, which has been previously addressed

by [12]–[15]. The work of [15] considers sharing via a bid-

based auction, which may incur substantial overhead and

complexity; in contrast, our approach relies on fixed (pre-

negotiated) network shares. The works of [12]–[14] also fix a

network share per slice, but consider approaches where the

infrastructure makes centralized decisions on the resources

allocated to each tenant’s customers; hence, these approaches

do not enable tenants to make their own decisions on how to

allocate resources to their customers.

Network slicing has emerged as a desirable feature for

5G [1]. 3GPP has started work on defining requirements for

network slicing [2], whereas the Next Generation Mobile

Network (NGMN) alliance has identified network sharing

among slices (the focus of this paper) as a key issue [16]. In

spite of these efforts, most of the work so far has addressed

architectural aspects with only a limited focus on resource

allocation algorithms [17], [18]. To the best of our knowledge,

this is the first work investigating how to enable tenants to

customize their allocations in a dynamic slicing model.

Key contributions: The rest of the paper is organized as

follows. After introducing our system model (Section II), we

show that with the resource sharing model under study, each

slice has the ability to achieve the same or better utility than

under static resource slicing irrespective of how the other slices

behave, which confirms that this model effectively protects

slices from one another (Section III-A). Next we show that if

tenants exhibit strategic behavior (i.e, optimize their utilities),

then (i) a Nash equilibrium exists under mild conditions; and

(ii) the system converges to such an equilibrium when tenants

sequentially take their best response (Sections III-B and III-C).

The resulting efficiency and fairness among tenants are then

studied, providing: (i) a tight bound on the Price of Anarchy of

the system, and (ii) a bound on the Envy-freeness (Section IV).

Our results are validated via simulation, confirming that the

approach provides substantial gains, protects network slices

from each other, operates close to optimal performance and is

effectively envy-free (Section V).

II. SYSTEM MODEL

We consider a wireless network consisting of a set of

resources B (the base stations or sectors) shared by a set of

network slices O (the tenants). At a given point in time, the

network supports a set of users U (the customers or devices),

which can be subdivided into subsets Ub (the users at base

station b), Uo (the users of slice o) and Uo
b (their intersection).

We further assume that a user u ∈ U has a mean peak capacity

cu depending on the choice of modulation and coding at the

base station it is associated with. For any user u, we let b(u)
denote the base station it is currently associated with.

A. Resource allocation model

As indicated in the introduction, we focus on a well estab-

lished resource sharing model known in economics as a Fisher

market. Hereafter, we will refer to this model as the ‘Share-

Constrained Proportional Allocation’ (SCPA) mechanism.

In our setting, each slice o is allocated a network share so
(corresponding to its budget) such that

∑

o∈O so = 1. The

slice is at liberty in turn to distribute its share amongst its

users, assigning them weights (corresponding to the bids): wu

for u ∈ Uo, such that
∑

u∈Uo
wu = so. We let wo = (wu : u ∈

Uo) be the weights of slice o, w = (wu : u ∈ U) those of all

slices and w
 o = (wu : u ∈ U \ Uo) the weights of all users

excluding those of slice o.

We shall assume users are allocated a fraction of resources

at their base station proportionally to their weights wu. Thus

the rate of user u is given by

ru(w) =
wu

∑

v∈Ub(u)
wv

cu =
wu

lb(u)(w)
cu

where lb(w) =
∑

u∈Ub
wu denotes the overall load at b (recall

that cu is the achievable rate if the user had the entire base

station to itself).



To implement the above resource allocation, a slice needs to

communicate the weights of its users w
o to the infrastructure.

When selecting its weights, we assume that the slice is aware

of the overall load at each base station (indeed, a slice could

infer these by varying its users’ weights and observing the

resulting resource allocations).1

In the case where a slice o is the only one with users at a

given base station b, we shall assume that the slice’s users are

allocated the entire capacity at that base station independent

of their weights. Thus such a slice would set wu = 0 for these

users, allowing them to receive all the resources of this base

station without consuming any share. In order to avoid dealing

with this special case, and without loss of generality, we will

make the following assumption for the rest of the paper.

Assumption 1. (Competition at all resources) We assume that

all resources have active users from at least two slices.

B. Network Slice Utility and Service Differentiation

Network slices may support services and customers of

different types and needs. Alternatively, competing slices with

similar customer types may wish to differentiate the service

they provide. To that end, we assume each network slice has

a private utility that reflects the benefit obtained by the slice

from a given allocation and is given by

Uo(w) =
∑

u∈Uo

φufu(ru(w)),

where φu is the relative priority of user u, with φu ≥ 0
and

∑

u∈Uo
φu = 1, and fu(·) is a (concave) utility function

associated with the user. In the sequel, we will often focus on

the following well-known class of utility functions [19].

Definition 1. A network slice o has a homogenous αo-fair

utility if for all u ∈ Uo we have that

fu(ru) =

{

(ru)
1  αo

(1  αo)
, αo 6= 1

log(ru), αo = 1.

Thus, in our setting, a slice is free to choose different

fairness criteria in allocating resources across its users, by

selecting the appropriate αo parameter. Note that αo = 1 cor-

responds to the widely accepted proportional fairness criterion,

while αo = 2 corresponds to potential delay fairness, αo → ∞
to max-min fairness and αo = 0 to linear sum utility.

A slice can also ‘strategically’ optimize the weight alloca-

tion of its users to maximize its own utility. We will consider

such strategic behavior of weight allocations in Section III.

C. Baseline allocations

Next we introduce two natural resource allocation compar-

ative baselines: socially optimal allocations and static slicing.

1It is worth noting that, with the SCPA mechanism under study, the weights
of a given tenant are not disclosed to the others, which only see the overall
load at each base station.

a) Socially Optimal Allocations (SO): If slices were to

share their utility functions with a centralized authority, one

could in principle consider a socially optimal allocation of

weights and resources. These would be given by the maximizer

to the overall network utility U(w) given by (see [14]):

max
w≥0

U(w) :=
∑

o∈O

soU
o(w)

s.t. ru(w) =
wu

lb(u)(w)
cu, ∀u ∈ U

∑

u∈Uo

wu = so, ∀o ∈ O.

Note that (as in [14]) we have weighted the slices’ utilities to

reflect their shares (thus prioritizing those with higher shares).

We shall denote the resulting optimal weight and resource

allocations under the socially optimal allocations by w
∗ and

r
∗ = (r∗u : u ∈ U), respectively.

b) Static Slicing (SS): By static slicing (also known as

static splitting [20]) we refer to a complete partitioning of

resources based on the network shares so, o ∈ O. In this

setting, each slice o receives a fixed fraction so of each

resource and can unilaterally optimize its weight allocation

as follows:

max
w

0≥0
Uo(wo) =

∑

u∈Uo

φufu(ru(w
o))

s.t. ru(w
o) =

wu
∑

v∈Uo

b(u)
wv

socu ∀u ∈ Uo

∑

u∈Uo

wu = so,

where we have abused notation to indicate that, in this case,

Uo and ru depend only on w
o. We shall denote the resulting

optimal weight and resource allocations under static slicing

for all slices by w
ss and r

ss = (rssu : u ∈ U) respectively,

where

rssu =
wss

u
∑

v∈Uo

b(u)
wss

v

socu ∀u ∈ Uo, ∀o ∈ O. (1)

III. STRATEGIC BEHAVIOR AND NASH EQUILIBRIUM

Under the SCPA resource allocation model, it is reasonable

to assume that a player (network slice) would choose to adjust

its weights so as to optimize its utility (and thus the service

delivered to its customers). Since the resources allocated to a

user depend on the weight allocations of the other slices, such

behavior would be predicated on the aggregate weight of the

other slices at each resource. From the point of view of slice

o, the overall load at resource b can be decomposed as

lb(w) = aob(w
 o) + dob(w

o)

where

aob(w
 o) =

∑

o′∈O\{o}

∑

u∈Uo′

b

wu and dob(w
o) =

∑

u∈Uo

b

wu,

correspond to the aggregate weight of the other slices and that

of slice o, respectively. As indicated in Section II, we assume

ao(w  o) = (aob(w
 o) : b ∈ B) are readily available to slice o.



A. Gain over Static Slicing

We first analyze if strategic behavior on the part of network

slices may result in allocations that are worse that those under

static slicing. Note that static slicing provides complete iso-

lation among slices but potentially poor utilization. A critical

question is whether dynamic sharing, which achieves a higher

resource utilization, also provides the same level of protection.

This is confirmed by the following result.

Lemma 1. Consider slice o and any feasible weight allocation

w
 o for other slices satisfying the network share constraints.

Then, there exists a weight allocation w
o for slice o, possibly

dependent on w
 o, such that the resulting weight allocation

w satisfies ru(w) ≥ rssu for all u ∈ Uo .

This lemma is easily shown by choosing w
o such that

wu =
wss

u
∑

u∈Uo

b(u)
wss

u

ao
b(u)(w

 o)
∑

b′∈Bo
aob′(w

 o)
so, ∀u ∈ Uo

where Bo is the set of base stations where slice o has users. The

intuitive interpretation for this choice is that by distributing its

weights proportionally to the load at each base station, slice

o can achieve the same resource allocation as static slicing at

each base station. Further, by redistributing these allocations

amongst its user in the same manner as static slicing, it

achieves at least as much rate per user.

It follows immediately from this lemma that under the SCPA

resource allocation model, if all slices exhibit strategic be-

havior attempting to maximize their utilities, they necessarily

achieve a higher utility than under static slicing.

Theorem 1. If the game where each network slice maximizes

its utility has a Nash equilibrium, then each slice achieves a

higher utility than under static slicing.

Note this result does not require slices to have homogenous

or concave utilities, just that they be increasing in the users’

rate allocations.

B. Existence of Nash Equilibrium

Next we study whether there exists a Nash equilibrium (NE)

under which no slice can benefit by unilaterally changing its

weight allocation. To that end, we first characterize the best

response of a slice.

Given the weights of the other slices, w  o, the best response

of slice o is the unique maximizer wo of its utility, i.e.,

max
w

′o≥0

∑

u∈Uo

φufu

(

w′
ucu

ao
b(u)(w

 o) + do
b(u)(w

′o)

)

s.t
∑

u∈Uo

w′
u = so.

The following lemma characterizes the best response for a

network slice with homogenous αo-fair utility (see [5] for the

best response when αo = 0).

Lemma 2. Suppose slice o has a homogeneous αo-fair utility

(with αo > 0). Given the weights of the other slices w
 o >

0, slice o’s best response w
o is the unique solution to the

following nonlinear set of equations:

wu =

βu
(ao

b(u)(w
 o))

1
αo

(

ao

b(u)
(w  o)+do

b(u)
(wo)

) 2
αo

 1

∑

v∈Uo

βv

(

ao

b(v)
(w  o)

) 1
αo

(

ao

b(v)
(w  o)+do

b(v)
(wo)

) 2
αo

 1

so, ∀u ∈ Uo, (2)

where βu := (φu)
1

αo (cu)
1

αo
 1

.

Note that slice o need only know ao(w  o) to compute

its best response. Building on this characterization, we will

study the game in which all slices choose to allocate their

weights based on their best response. The following theorem

proves that this game admits a Nash equilibrium, i.e., there is

a weight allocation w such that no slice can improve its utility

by modifying its weights unilaterally.2

Theorem 2. Suppose all slices have homogenous αo-fair

utilities (with possibly different αo > 0). Then, there exists

a (not necessarily unique) Nash equilibrium satisfying (2) for

each slice.

The proof of this result is technical and been relegated

to [9]. The argument proceeds as follows. We consider a

perturbed game where an additional slice assigns a weight ε at

each base station. For this perturbed game, we have concave

utilities and compact strategy spaces such that the result of

[21] gives existence of a Nash equilibrium.3 We then consider

a sequence of such equilibria as ε → 0. By compactness of

the strategy space it must have a converging subsequence. One

can further show that the weight allocations for the perturbed

equilibria have uniform positive lower bounds, so the limit of

the converging subsequence also has positive weights. Note

that (as it can be seen from Lemma 2) slice o’s best response in

the perturbed game w
o is a continuous differentiable function

of w  o as long as w  o > 0. It then follows by continuity that

the limit of the converging subsequence is a Nash equilibrium.

C. Convergence of Best Response Dynamics

Below we will consider a best response game wherein slices

realize their best responses in rounds; specifically, they update

their weights (wo) sequentially, one at a time and in the same

fixed order, in response to the other slices’ weights (ao).

Theorem 3. If slices have homogeneous αo-fair utilities,

possibly with different αo ∈ [1, 2] for o ∈ O, then the best

response game converges to a Nash equilibrium.

2The existence of a NE had already been proven by [4] for the case αo =
0 ∀o. Here we extend this result to any combination of αo values.

3In particular, [21] shows by applying the Kakutani fixed point theorem
that there exists a solution to the equations defining a Nash equilibrium. Note
that in the case of users with log utilities, the function is not defined for a
weight of 0 and hence the conditions of [21] are not satisfied; however, a
careful reading of the proof of [21] shows the result still applies.



Note that the value of αo impacts a slice’s best response

and consequently the game dynamics. As seen in Lemma 2,

the best response weights are proportional to:

wu ∝ g(aob , d
o
b) :=

(aob)
1

αo

(aob + dob)
2

αo
 1

,

where we have suppressed the dependency of aob on w
 o

and dob on w
o. The function g(·, ·) has different properties

depending on αo which are shown in Table II. The regime

where 1 ≤ αo ≤ 2, considered in Theorem 3, is of particular

interest since it includes proportional (αo = 1) and potential

delay (αo = 2) fairness. It is known that convergence is not

ensured when αo = 0 for all slices (see [5]); for other regimes,

we resort to the simulations results provided in [9], which

suggest convergence for any αo > 0.

αo = 0 0 < αo < 1 1 ≤ αo ≤ 2 2 < αo < ∞

g w.r.t. do
b

linear convex convex concave

g w.r.t. ao
b

linear convex concave concave

NE existence X [5] XTheorem 2 for heterogeneous αo

convergence × [5] Xsimulations XTheorem 3 Xsimulations

TABLE I: Impact of αo on slice’s Best Responses.

Perhaps surprisingly, the above result is quite challenging to

show. The key challenge lies in the “price-anticipating” aspect

of the best response, in which players anticipate the impact of

their own allocation.4 The rest of this section is a sketch of

the proof for this result.

We shall denote time as slotted {0, 1, ..., t, ...} and assume

a single slice makes an update each time slot. Without loss of

generality, we will index slices {1, 2, ..., |O|} = O according

to their updating order in a round. We let w(t) = (wo(t) : o ∈
O) be the weights of all slices at the end the time slot t update,

where w
o(t) = (wu(t) : u ∈ Uo). Suppose that slices have

arbitrary positive initial weight vectors at time zero denoted

w(0) = (w1(0),w2(0), ...,w|O|(0)). Consequently, slice 1

will update its weights at time slots: {1, |O|+1, ..., r ·|O|+1},

corresponding to rounds {0, 1, ..., r, ...}.

We will further define ∆w
o(t+1) = (∆wu(t+1): u ∈ Uo),

where ∆w
o(t+ 1) = (∆wu(t+ 1): u ∈ Uo) such that,

wu(t+ 1) = wu(t)(1 + ∆wu(t+ 1)), ∀o ∈ O, u ∈ Uo

where 1+∆wu(t+1) captures the relative change in slice o’s

weight update at time slot t + 1. Furthermore, to capture the

overall changes in slices weights at the end of each round, we

shall define ω(0) = w(0), ω(r) = (ωo(r) : o ∈ O) where

ω
o(r) = w

o(r · |O| + 1) and ∆ω
o(r) such that ∆ω(r) =

(∆ω
o
u(r) : u ∈ Uo). For all o ∈ O, we define

∆ω
o(r) := max

u∈Uo

∆ω
o
u(r), ∆ω

o(r) := min
u∈Uo

∆ω
o
u(r).

4Indeed, as mentioned in the introduction, there are very few results in the
literature on the convergence of price-anticipating best response dynamics.

The key step in our convergence proof is the following

lemma – see the appendix for a sketch and [9] for the detailed

proof.

Lemma 3. If the game has not converged to a Nash equilib-

rium, i.e. ∆ω(r) 6= 0 for r > 1, then:

max
o∈O

(

1 + ∆ω
o(r + 1),

1

1 + ∆ω
o(r + 1)

)

<

max
o∈O

(

1 + ∆ω
o(r),

1

1 + ∆ω
o(r)

)

.

The above lemma suggests that when slices have not

reached an equilibrium, then in the next round

max
o∈O

(

1 + ∆ω
o(r + 1),

1

1 + ∆ω
o(r + 1)

)

will decrease. This in turn suggests that maximum and min-

imum components of the vector of relative changes, 1 +
∆ω(r), are getting closer to 1.

With this result in hand, one can show the existence of

a Lyapunov function guaranteeing convergence of the best

response game, thus completing the proof of Theorem 3 –

see [9] for the detailed proof.

IV. PERFORMANCE BOUNDS ANALYSIS

In this section we analyze the performance of the Nash

equilibrium in terms of two standard metrics for efficiency

and fairness: (i) the price of anarchy, which gives the loss

in overall utility resulting from slices’ strategic behavior, and

(ii) envy-freeness, which captures the degree to which a slice

would prefer another slice’s allocations across the network

resources. We will focus on the case where slice utilities are 1-

fair homogeneous i.e., Uo(w) =
∑

u∈Uo φu log(ru(w)) ∀o ∈
O – a widely accepted case leading to the well-known pro-

portionally fair allocations.

A. Efficiency: Price of Anarchy

According to [22], for slices with 1-fair homogenous util-

ities, the socially optimal allocation of resources w
∗ is such

that w∗
u = φuso, ∀u ∈ Uo and ∀o ∈ O. The following

theorem bounds the difference between the overall network

utility resulting from such socially optimal allocation, U(w∗),
and that obtained at a Nash equilibrium of the SCPA resource

allocation mechanism, U(w) – a sketch of the proof is

provided in the Appendix.

Theorem 4. If all slices have 1-fair homogenous utilities, then

the Price of Anarchy (PoA) associated with a Nash equilibrium

w satisfies

PoA := U(w∗)  U(w) ≤ log(e).

Furthermore, there exists a game instance for which this bound

is tight.

Note that, with 1-fair utilities, if we increase the capacity

of all resources by a factor ∆c, we have a utility increase

of log(∆c). Thus, the performance improvement achieved by



the socially optimal allocation over SCPA is (in the upper

bound) equivalent to having a capacity e times larger, i.e.,

almost the triple capacity. While there are some (pathological)

cases in which such a bound can be achieved, our simulation

results show that for practical scenarios the actual performance

difference between the two allocations is much smaller, con-

firming that (for αo = 1) the flexibility gained with the SCPA

mechanism comes at a very small price in performance.

B. Fairness: Envy-freeness

Next we consider a Nash equilibrium w and analyze

whether a slice, say o, with utility Uo(w), might have a better

utility if it were to exchange its resources with those of another

slice, say o′. To that end, we denote by w̃ the resulting weight

allocation when the users of slices o and o′ exchange their

allocated resources. It is easy to see that w̃o is such that

w̃o
u =

φu
∑

v∈Uo

b

φv

do
′

b (w) for all b ∈ B and all u ∈ Uo
b , (3)

i.e., slice o takes the aggregate weight of o′ at base station b
under the Nash equilibrium, do

′

b (w), and allocates it propor-

tionally to its user priorities. Clearly, w̃o′ is defined similarly

and the remaining slices weights remain unchanged under w̃.

We define the envy of slice o for o′’s resources under the

Nash equilibrium w by

Eo,o′ := Uo(w̃)  Uo(w).

Note that envy is a “directed” concept, i.e., it is defined from

slice o’s point of view. When Eo,o′ ≤ 0, we say slice o is not

envious. The following theorem provides a bound on Eo,o′ –

see the Appendix for a sketch of the proof.

Theorem 5. Consider a slice o with 1-fair homogeneous

utilities and the remaining slices O \ {o} with arbitrary slice

utilities. Consider a slice o′ such that so = so′ . Let w denote

a Nash equilibrium and w̃ denote the resulting weights when

o and o′ exchange their resources. Then, the envy of slice o
for o′ satisfies

Eo,o′ = Uo(w̃)  Uo(w) ≤ 0.060.

Furthermore, there is a game instance where 0.041 ≤ Eo,o′ .

Given that, if one increases the rates of all users by a factor

∆r this yields a utility increase of log(∆r), one can interpret

this result as saying that, by exchanging resources with o′,
slice o may see a gain equivalent to increasing the rate of all

its users by a factor between 4.1% and 6.1% (given by the

lower and upper bounds of the above theorem). This is quite

low and, moreover, simulation results show that in practical

settings there is actually (almost) never any envy, confirming

that our system is (practically) envy-free.

V. PERFORMANCE EVALUATION

Next, we evaluate the performance of the SCPA resource

allocation mechanism via simulation. The mobile network

scenario considered is based on the IMT-A evaluation guide-

lines for dense ‘small cell’ deployments [23], which consider
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Fig. 1: Average Gain over Static slicing and Loss against

Social optimum for different scenarios.

base stations with an intersite distance of 200 meters in a

hexagonal cell layout with 3 sector antennas.5 The network

size |B| is 57 sectors and users move according to the Random

Waypoint Model (RWP).6 Users’ Signal Interference to Noise

Ratio (SINRu) is computed based on physical layer network

model specified in [23] (which includes path loss, shadowing,

fast fading and antenna gain) and user association follows the

strongest signal policy. The achievable rate for users, cu, are

determined based on the thresholds reported in [24]. For all

our simulation results, we obtained 95% confidence intervals

with relative errors below 1% (not shown in the figures).

A. Overall performance

Throughout the paper we have used static slicing and the

socially optimal resource allocations as our baselines. In order

to confirm our analytical results and gain additional insights,

we have evaluated the performance of the SCPA mechanism

versus these two baselines via simulation. As an intuitive met-

ric for comparison, we have used the extra capacity required

by these baseline schemes to deliver the same performance as

SCPA:

(i) Gain over SS: additional resources required by static

slicing to provide the same utility as SCPA (in %).

(ii) Loss versus SO: additional resources required by SCPA to

provide the same utility as the socially optimal allocation

(in %); note that this metric is closely related to the Price

of Anarchy analyzed in Section IV-A.

The results shown in Figure 1 are for different user densi-

ties (|U|/|B|) and different slice utilities (αo parameter). As

expected, the SCPA mechanism always has a gain over static

slicing and a loss over the social optimal. However, for αo = 1
the loss is well below the bound given in Section IV-A. We

5Note that, in this setting, users associate with sectors rather than the base
stations we used in the mechanism description and analysis.

6In the extended version, additional simulation results are given for different
mobility models [9].



further observe that performance is particularly good as long

as αo does not exceed 1 (Gain over SS up to 50% and Loss

over SO below 5%), and it degrades mildly as αo increases.

B. Fairness

In addition to overall performance, it is of interest to

evaluate the fairness of the resulting allocations. While in

Section IV-B we derived analytically a bound on the envy,

we have further explored this via simulation by evaluating

up to 107 randomly generated scenarios, with parameters

drawn uniformly in the ranges: |O| ∈ [2, 12], |B| ∈ [10, 90],
|U|/|B| ∈ [3, 15], αo ∈ [0.01, 30] and φ vectors in the simplex.

Our results show that Eo,o′ < 0 holds for all the cases

explored, confirming that in practice the system is envy-free.

C. Protection against other slices

One of the main objectives of our proposed framework is

to enable slices to customize their resource allocations. This

can be done by adjusting (i) the user priorities φu, and (ii)
the parameter αo, which regulates the desired level of fairness

among the slice’s users. In order to evaluate the impact that

these settings have amongst slices, we simulated a scenario

with three slices: Slice 1 has α1 = 1, Slice 2 has α2 = 4, and

Slice 3 has α3 with varying values. For simplicity, we set the

priorities φu equal for all users.

Figure 2 shows the rate distributions of the 3 slices. We

observe that the choice of α3 is effective in adjusting the level

of user fairness for Slice 3; indeed, as α3 grows, the rate

distribution becomes more homogeneous. Such customization

at Slice 3 has a higher impact on Slice 1 than on Slice 2. This

is the case because, as α2 is quite large, the distribution of

Slice 2’s rates remains homogeneous, making the slice fairly

insensitive to the choices of the other slices. As can be seen in

the subplots, the utilities of Slices 1 and 2 are not only larger

than the utility of static slicing, but remain fairly insensitive

to α3, showing that in both cases we have a good level of

protection between slices.

VI. CONCLUSIONS

In this paper we have analyzed a ‘share-constrained propor-

tional allocation’ framework for network slicing. The frame-

work allows slices to customize the resource allocation to

their users, leading to a network slicing game in which

each slice reacts to the settings of the others. Our main

conclusion is that the framework provides an effective and im-

plementable scheme for dynamically sharing resources across

slices. Indeed, this scheme involves simple operations at base

stations and incurs a limited signaling between the slices

and the infrastructure. Our results confirm system stability

(best response dynamics converge), substantial gains over

static slicing, and fairness of the allocations (envy-freeness).

Moreover, as long as the majority of the slices do not choose

αo values larger than 1 (i.e., they do not all demand very

homogeneous rate distributions), the overall performance is

close to optimal (price of anarchy is very small). Thus, in this

case the flexibility provided by this framework comes at no

cost. If a substantial number of slices choose higher αo’s, then

we pay a (small) price for enabling slice customization.
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APPENDIX

In the following we provide sketches of the proofs of some

of the most relevant theoretical results of this paper. The

complete proofs of all the results can be found in the extended

version of the paper [9].

Sketch of the proof of Lemma 3

Let ∆aob(t) be the relative change of aob(t) since the previous

round, i.e., aob(t) = aob(t  |O|)(1+∆aob(t)), and let ∆ao(t) =
minb a

o
b(t) and ∆ao(t) = maxb a

o
b(t). To prove the lemma we

will start by showing the following intermediate result:

max

(

1 + ∆wo(t+ 1),
1

1 + ∆wo(t+ 1)

)

<

max

(

1 + ∆ao(t),
1

1 + ∆ao(t)

)

,

(4)

We will first show that

 

1 + ∆wo(t+ 1)
)

< max

(

1 + ∆ao(t),
1

1 + ∆ao(t)

)

. (5)

Let u, u′ ∈ Uo be, respectively, the user for which ∆wu(t+
1) takes the largest value and the one for which it takes the

smallest value. Then,

wu(t+ 1)

wv(t+ 1)
=

wu(t)(1 + ∆wo(t+ 1))

wv(t)(1 + ∆wo(t+ 1))
(6)

From Lemma 2 we have

wu(t+ 1)

wu′(t+ 1)
=

βu(ao

b
(t  |O|+1)(1+∆ao

b
(t)))

1
αo

(ao

b
(t  |O|+1)(1+∆ao

b
(t))+duwu(t)(1+∆wo(t+1)))

2
αo

 1

β
u′(ao

b′
(t  |O|+1)(1+∆ao

b′
(t)))

1
αo

(ao

b′
(t  |O|+1)(1+∆ao

b′
(t))+dvwv(t)(1+∆wo(t+1)))

2
αo

 1

where b and b′ are the stations of user u and u′ respectively.

By operating on the above equation, we can obtain the

following inequality for 1 ≤ αo ≤ 2:

wu(t+ 1)

wu′(t+ 1)
≤

βu(a
o

b
(t  |O|+1))

1
αo

(ao

b
(t  |O|+1)+duwu(t))

2
αo

 1

βv(ao

b′
(t  |O|+1))

1
αo

(ao

b′
(t  |O|+1)+dvwv(t))

2
αo

 1

(1 + ∆ao(t))1  
1

αo

(1 + ∆ao(t))
1

αo

=
wu(t)

wv(t)

(1 + ∆ao(t))1  
1

αo

(1 + ∆ao(t))
1

αo

. (7)

Combining (20) with the above yields

wu(t)(1 + ∆wo(t+ 1))

wv(t)(1 + ∆wo(t+ 1))
<

wu(t)

wv(t)

(1 + ∆ao(t))1  
1

αo

(1 + ∆ao(t))
1

αo

.

From xayb ≤ max(x, y) for x, y ≥ 1 and a+ b = 1

(1 + ∆ao(t+ 1))1  
1

αo

(1 + ∆ao(t))
1

αo

≤ max

(

1 + ∆ao(t),
1

1 + ∆ao(t)

)

.

From the above two equations we have

1 + ∆wo(t+ 1)

1 + ∆wo(t+ 1)
< max

(

1 + ∆ao(t),
1

1 + ∆ao(t)

)

. (8)

We can now prove (18) by contradiction. Suppose that

1 + ∆wo(t+ 1) ≥ max

(

1 + ∆ao(t),
1

1 + ∆ao(t)

)

.

and combining this with (??) yields 1
1+∆wo(t+1) < 1, which

contradicts the fact that ∆wo(t + 1) needs to be necessarily

smaller than 0 unless we have already converged.7 Thus, this

proves (18).

To prove (17), we also need to show the equation below.

This can be proven based on a similar argument to the one

we have used for (18) (see [9] for the details).

1

1 + ∆wo(t+ 1)
< max

(

1 + ∆ao(t),
1

1 + ∆ao(t)

)

.

Once we have shown (17), we proceed as follows. From the

fact that aob(t) =
∑

o′∈O\{o}

∑

u∈Uo′

b

wu(t), it can be seen that

(1 + ∆ao(t)) ≤ max
t′∈{t  |O|+2,...,t}

(1 + ∆wo(t′)(t′)) and

(1 + ∆ao(t)) ≥ min
t′∈{t  |O|+2,...,t}

(1 + ∆wo(t′)(t′)).

7The case in which we have converged, ∆w
o(t + 1) = 0, is detailed in

the extended version of the proof [9].



Combining the above with (17) yields

max

(

1 + ∆wo(t+ 1),
1

1 + ∆wo(t+ 1)

)

< max
t′∈{t  |O|+2,...,t}

(

1 + ∆wo(t′)(t′),
1

1 + ∆wo(t′)(t′)

)

Finally, the lemma is proven by applying the above expres-

sion recursively.

Sketch of the proof of Theorem 4

Since in the NE each slice maximizes its utility, we have

∑

u∈Uo

φu log

(

wu

lb(u)(w)

)

≥
∑

u∈Uo

φu log

(

w∗
u

do
b(u)(w

∗) + ao
b(u)(w)

)

Given that do
b(u)(w

∗) + ao
b(u)(w) ≤ lb(u)(w) + lb(u)(w

∗),

∑

u∈Uo

φu log

(

wu

lb(u)(w)

)

≥
∑

u∈Uo

φu log

(

w∗
u

lb(u)(w) + lb(u)(w∗)

)

From the above it follows that
∑

u∈Uo

φu log(ru(w
∗))  

∑

u∈Uo

φu log(ru(w))

≤
∑

u∈Uo

φu log

(

w∗
ucu

lb(u)(w
∗)

)

 
∑

u∈Uo

φu log

(

w∗
ucu

lb(u)(w) + lb(u)(w
∗)

)

=  
∑

u∈Uo

φu log

(

lb(u)(w
∗)

lb(u)(w) + lb(u)(w
∗)

)

Summing the above over all slices weighted by the corre-

sponding shares yields

U(w∗)  U(w) ≤  
∑

u∈U

φuso log

(

lb(u)(w
∗)

lb(u)(w) + lb(u)(w∗)

)

Given w∗
u = φuso, we have

U(w∗)  U(w) ≤  
∑

b∈B

log

(

lb(w
∗)

lb(w) + lb(w∗)

)

∑

u∈Ub
w∗

u

=  
∑

b∈B

∑

u∈Ub

wu log

(

lb(w
∗)/lb(w)

1 + lb(w∗)/lb(w)

)

lb(w
∗)

lb(w)

and, given that (x/(1 + x))x > 1/e for x ≥ 0, this yields

U(w∗)  U(w) ≤
∑

b∈B

∑

u∈Ub

wu log(e) = log(e)

To show that the bound is tight, see the game instance given

in [9] for which it holds U(w∗)  U(w) = log(e).

Sketch of the proof of Theorem 5

In order to bound the envy Uo(w̃)  Uo(w) at the NE, we

will construct a weight allocation m that satisfies Uo(m) ≤
Uo(w) and Uo(m̃) ≥ Uo(w̃) – where w̃ and m̃ are the

allocations resulting from exchanging the resources of slices

o and o′ in w and m, respectively. It then follows that

Uo(m̃)  Uo(m) is an upper bound on the envy.

Specifically, the weight allocation m will be chosen such

that: (i) for all slices different from o, the weights remain the

same as in the NE, i.e, m
 o = w

 o; and (ii) the weights

of slice o are chosen so as to maximize Uo(m) subject

to dob(m
o) =

∑

u∈Uo

b

mu≤aob(m
 o) ∀b ∈ B and slice o’s

share constraint. Note that with this weight allocation we have

ao
b(u)(m

 o) = ao
b(u)(w

 o) – for readability purposes, we will

use just ao
b(u). Note also that the weights that slice o would

have with the resources of o′ remain the same, i.e. m̃o = w̃
o.

By following a similar argument to that of Lemma 2, it

can be seen that the above leads to the weights mu for u ∈
Uo solving the set of equations below, which have a feasible

solution as long as so <
∑

u∈Uo aob(u)(m
 o) (see [9] for the

case when this does not hold).

mu =































aob(u)
φu

∑

v∈Uo

b(u)
φv

, aob(u) = dob(u)(m
o)

φu
ao

b(u)

ao

b(u)
+do

b(u)
(mo)

∑

v∈Ûo

φv

ao

b(v)

ao

b(v)
+do

b(v)
(mo)

s′o, aob(u) > dob(u)(m
o)

where Ûo is the set of users of slice o for which ao
b(u) >

do
b(u)(m

o) and s′o = so  
∑

u∈Uo\Ûo mu.
Note that Uo(m) ≤ Uo(w) is a direct consequence of the

fact that w is a NE and m
 o = w

 o. The inequality Uo(m̃) ≥
Uo(w̃) is proven in the extended version [9] by showing that

we can move from w̃ to m̃ through intermediate steps such

that in each of them Uo(w̃) increases.
To find an upper bound on Uo(m̃)  Uo(m), re-

call that Uo(m̃) =
∑

u∈Uo φu log(
m̃ucu
lb(m̃) ) and Uo(m) =

∑

u∈Uo φu log(
mucu
lb(m) ). Given that lb(m̃) = lb(m) and m̃u =

mu for u /∈ Ûo, this yields

Uo(m̃)  Uo(m) =
∑

u∈Ûo

φu log(m̃u)  
∑

u∈Ûo

φu log(mu).

Since
∑

u∈Ûo log(m̃u) subject to
∑

u∈Ûo m̃u = s′o takes a

maximum at m̃u = φ̂us
′
o (where φ̂u = φu/

∑

v∈Ûo φv),

Uo(m̃)  Uo(m) ≤
∑

u∈Ûo

φu log(φ̂us
′
o)  

∑

u∈Ûo

φu log(mu)

≤
∑

u∈Ûo

φ̂u log(φ̂us
′
o)  

∑

u∈Ûo

φ̂u log(mu) (9)

In order to bound the term
∑

u∈Ûo φ̂u log(mu) above, we

look for a bound on mu

mv

. Given that aob ≥ dob(m
o) holds for

all b, we have for u, v ∈ Ûo:

mu

mv

=
φu

φv

ao

b(u)

ao

b(u)
+do

b(u)
(mo)

ao

b(v)

ao

b(v)
+do

b(v)
(mo)

>
φu

φv

ao

b(u)

ao

b(u)
+ao

b(u)

ao

b(v)

ao

b(v)

=
1

2

φu

φv

It can be seen that
∑

u∈Ûo φ̂u log(mu) subject to mu

mv

≥
1
2
φu

φv

is maximized when the mu

φu

of all users but one is equal

to the lower bound given by the constraint, which yields
 

mu

φu

)

= 1
2

 

mv

φv

)

, ∀u 6= v. Substituting these m values

in (??) and simplifying the resulting expression, we obtain

Uo(m̃)  Uo(m) ≤ log(1 + φ̂)  φ̂ log(2). The φ̂ value that

maximizes this expression is φ̂ = 1
log 2  1. Substituting this

value in the expression gives Uo(m̃)  Uo(m) ≤ 0.060. To

show that the bound is tight, see [9] for a game instance that

satisfies Uo(m̃)  Uo(m) = 0.041.
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