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Abstract

Aiming at serving the interdisciplinary demand in network science, this paper introduces a

new concept for complex networks, named network stiffness, which is extracted from struc-

tural engineering by assuming that a complex network behaves similarly with a structured

framework. This analogy allows interpreting that a complex network can resist against any

cause attempting to induce deformation changes to the network’s structure, regardless of

whether the network is material or not. Within this framework, this paper examines the con-

text of applying the conceptual analogy of stiffness from the field of structural engineering to

network science and then it develops computational approaches capturing different aspects

of network stiffness so that to be used in complex network analysis. The implementation of

these approaches to a real-world network (global inbound tourism network) shows that stiff-

ness can produce interesting insights to complex network analysis about the factors related

to changes caused to the structure and the status of a complex network.

1. Introduction

Research in complex networks had diachronically the merit to be multidisciplinary, which

obviously contributed to the evolution of this scientific field into an emerging academic disci-

pline, the so-called network science (NS) [1,2]. Provided that synthesis is a major perspective

for multidisciplinary modeling, the synthetic approach has also been proven fruitful in the

study of complex networks [3–5]. Some indicative examples are the conceptualization of the

preferential attachment mechanism [5,6] by statisticians [7], which emerged from the study of

species per genus of flowering plants, the conceptualization of the small-world phenomenon

by sociologists [8], which was introduced during social experiments of forwarding mails

worldwide along groups of personal connections, the conceptualization of spatial networks

from physicists and geographers [4], the conceptualization of visibility graphs by applied

mathematicians [9], who introduced a method of transforming a time-series into a complex

network, and many others.

Aiming at serving the multidisciplinary demand in NS, this paper introduces a new concept

named “network stiffness”, which is extracted from structural engineering by assuming that a

complex network behaves similarly with a structured framework, in order to be used in the

study of complex networks. In terms of structural engineering [10], stiffness is the property
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expressing the level of consolidation of a structural framework and, thus, expressing the frame-

work’s resistance against any cause inducing deformation and structural changes. Stiffness is a

well-established concept in the field of structural engineering [11], which is used within the

context of structural analysis and design in order to measure the level of deformation that sets-

of-loads induce to structured elements. Mostly, stiffness is used for the computation of the geo-

metric and structural properties of buildings and other construction works, in order these

structures to be static-adequate and resistant [10,11].

Considered as a term related to networks, stiffness has been used to describe polymer and

biological networks. Among the few relevant papers existing in the literature, a prime reference

can be found back in the authors of [12], who studied stiffness of rats’ cardiovascular collagen

networks, aiming at measuring the accumulation of collagen and its structural remodeling and

afterwards at correlating their findings with the behavior of the rats’ myocardium. In the work

of [13], the authors used the term for rigid rods polymer networks in order to study the elastic-

ity of a two-dimensional random network of such polymer in a model incorporating the rods’

anisotropic elasticity and the random geometry of the network. In a later paper, the author of

[14] studied stiffness of spring networks aiming at relating the viscoelastic response of these

networks with some critical structural measures, such as the proximity to isostaticity, the

shear-modulus, and the creep. In the most recent work of [15], the authors studied stiffness of

collagen-I and alginate interpenetrating networks aiming at investigating whether tuning the

stiffness of a model wound dressing biomaterial could control the behavior of dermal

fibroblasts.

As being evident by these few available papers, in the current literature, stiffness is a concept

related to networks that are explicitly considered as material bodies (structures) and not as

graph models. Therefore, the concept is restricted to the material nature of networks and not

to their state of connectivity. Within this context, this paper attempts to provide a broader

conceptualization of network stiffness, aspiring to be applicable to the total family of complex

networks, regardless they are material or not. In particular, it attempts to link the concept of

network stiffness with the state of connectivity and thus to link this concept with the topology

of complex networks. Such linkage is possible by assuming that a complex network behaves

similarly with a structured framework, even in cases that network links (edges) are of immate-

rial nature. This assumption allows computing in complex networks either the forces applied

to network nodes, when the effect of forces is measurable, or the deformations (displacements)

caused to network nodes by known forces, in accordance with the existing methodology of

design and analysis of structural frameworks (e.g. beams, columns, structural plates) in struc-

tural mechanics [10,11]. Such computations can provide insights about the response-mecha-

nism of complex networks against structural changes and thus they can be useful in the

relevant research of network dynamics.

Currently, the common approach of measuring the perturbations and their propagation in

complex networks was proposed by the authors of [16]. In particular, for a given activity

(node-attribute) X, which for the nodes i and j takes respective values X = xi and X = xj, the

authors used a correlation matrix defined by the permanent perturbations dxj on the value xi

and dxj on the value xj, according to the formula:

GijðXÞ ¼
dxi=xi

dxj=xj

�

�

�

�

�

�

�

�

�

�

; ð1Þ

This correlation matrix enjoys lots of applications, mainly in biology, and it generally cap-

tures the influence of node j on i. [16,17]. Based on relation (1), the authors of [16] defined a
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measure named impact of node i, according to the formula:

IiðXÞ ¼
X

n

j¼1

AijG
T
ij ; ð2Þ

where Aij is the adjacency matrix of the network and GT
ij is the transposed matrix of Gij. This

measure captures the average response of the node’s (i) neighborhood to the perturbation of i

[16].

At next, the authors defined a measure named stability of node i, according to the formula:

SiðXÞ ¼
X

n

j¼1

AijGij

 !�1

; ð3Þ

which, loosely, has an inverse configuration in comparison with Ii. However, a critical differ-

ence with Ii is that node stability is defined by the original Gij matrix instead of by the trans-

posed GT
ij and thus the interpretation of Si is different than the inverse of Ii. In particular, node

stability captures the inverse response of node i to individual perturbations of its nearest neigh-

bors [16]. Based on the method of analogy, the new concept of network stiffness seems capable

to provide insights in the study of complex networks dynamics. Toward this direction, the

computational approaches developed in this paper are evaluated in comparison with the mea-

sures proposed by the author of [16].

The remainder of this paper is organized as follows: section 2 presents the methodological

framework of the study; it configures the conceptual analogy of stiffness between a structured

framework and a complex network and it develops computational approaches of network stiff-

ness in complex network analysis. Section 3 presents a couple of implementations of the pro-

posed concept to a real-world network of global inbound tourism flows and it evaluates the

proposed computational approaches in comparison with established propagation measures in

complex networks. Section 4 discusses limitations of the study and addresses for further

research, and finally, in section 5, conclusions are given.

2. Methodological framework

2.1. The conceptual analogy of stiffness: From structural engineering to
complex networks

In structural engineering, stiffness is the property expressing the resistance of a structured

framework against any force attempting to cause structural changes [10]. The measure of stiff-

ness is also related with the ease with which an external force is propagated along the body of

the structured framework and it depends on the geometry (cutting area, length) and on the

composition (elasticity) of the elements (beams, columns) composing the framework [10,11].

Based on the method of analogy, we can assume that a complex network behaves similarly

with a structured framework and thus we can transfer the concept of stiffness from the field of

structural engineering to complex networks (Fig 1). This is possible because, first, both a struc-

tured framework and a complex network can enjoy discrete modeling into a graph composed

by sets of nodes and edges (links). In particular, in a structured framework [10,11], the struc-

tural elements (i.e. beams or columns) can be modeled into edges and the edge intersections

can be modeled into nodes. Similarly, a complex network is by default defined by a graph

model composed by a set of nodes and links [4,6].

Second, in a complex network, edge weights (wij) express the power of connectivity between

nodes [3,4] and thus they configure the network’s capability to spread information along the
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network structure, regardless of whether the network is material or not. Similarly, the elasticity

moduli (kij) of the structural elements (ij) define the capability of a structured framework to

distribute the effect of external forces throughout the framework’s body [10] and thus they

configure the power of connectivity between nodes. Third, the stiffness k of a structured

framework is modeled into a square matrix Kn×n (called stiffness matrix or stiffness tensor),

with length equal to the number of nodes (intersections) (n) in the framework [10,11]. The

stiffness matrix includes the elastic moduli Kn×n = [kij] of the structural elements configured

by nodes i and j [10] and thus it expresses a connectivity matrix Wn×n = [wij] of the frame-

work’s graph model, in which edge weights are wij = kij.

These similarities configure the analogy between a structured framework and a complex

network and, therefore, they allow assuming that the notion of stiffness of a structured frame-

work (e.g. of a beam structure) can be used as an aspect of network connectivity or topology.

Based on this analogy, the next section develops a pair of computational approaches of net-

work stiffness in complex network analysis.

2.2. Network stiffness: Developing computational approaches

2.2.1. Vectors of forces and displacements. Considering network stiffness as a topologi-

cal property of complex networks allows computing (in a complex network) either the forces

applied to network nodes, when the effect of forces is measurable, or the deformations

Fig 1. Semantic diagram for the conceptual analogy of stiffness, from the structural engineering to complex networks: (a) in structural engineering, stiffness describes
the ability of a structured framework to resist against an external force, whereas (b) in complex networks, stiffness represents the network’s ability to resist against (b1)
external or (b2) internal causes (forces) applied to network nodes inducing changes in the network.

https://doi.org/10.1371/journal.pone.0218477.g001
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(displacements) caused to network nodes by known forces, in accordance with the existing

methodology in structural mechanics. Based on the analogy which was previously described,

we can assume the weights matrix Wn×n = [wij] of a complex network as the stiffness matrix

Kn×n = [kij] of a structured framework. Let’s also consider a node-attribute (or activity) X, mea-

sured at two different times X = x(ta) and X = x(tb) and let’s assume that the change x(tb)–x(ta)

observed for this attribute can be seen as the displacements (d = d(tb)–d(ta) = x(tb)–x(ta))

caused by an external (or internal) force f (see Fig 1). Then we can compute the force applied

to the set of network nodes VG according to the relation [10,11]:

fn�1 ¼ Kn�n � dn�1

observed ¼
ðKn�n¼½kij�

n�n�Wn�n¼½wij�
n�nÞ

W � dobserved ¼ W � ½diðtbÞ � diðtaÞ�
n�1

; ð4Þ

where n is the number of network nodes. In structured frameworks, the forces vector fn×1 =

[Fi] is measured in force units, whereas, in complex networks, forces are measured in w�x

(weights�node-attribute) units.

In contrast, by considering that a known force f is applied to the set of network nodes VG,

we can compute the effect of this force (i.e. the displacements vector dn×1 = (d1, d2,. . ., dn)΄) on
VG by solving the linear system (4) and get:

dn�1 ¼ ðWn�nÞ
�1

� fn�1

observed; ð5Þ

where (Wn×n)−1 is the inverse of the weights matrix Wn×n = [wij]. A solution of relation (5) is

possible when W is invertible matrix. In structured frameworks, the displacements vector d

expresses the length of displacements along the direction of the external force f and it is mea-

sured in metric units. In complex networks, d expresses the effect of f on the network nodes

and it is measured in F/w (force/weights) units.

According to relation (4), when d is a vector of ones (d = [1 1 1]΄) and the adjacency matrix

An×n = [aij] is the stiffness matrix (K = A), then the forces vector f equals to the network

degrees f�k = (k1, k2,. . ., kn). This observation implies that when the vector of network degrees

is applied as force to an unweighted network (i.e. every node is subjected to a force equal to its

degree) it causes unit effects (displacements). Further, it can be observed that when a single

node is subjected to a force equal to its degree, the displacements caused to the other network

nodes equal to the degree of the node where the force is applied. Similarly, when the vector of

network strengths is applied as force f = s = (s1, s2,. . ., sn) to a weighted network it causes unit

effects (displacements) to network nodes.

2.2.2. The stiffness scale-factor. In structural engineering, network stiffness is the con-

cept linking the vectors of forces (f) and displacements (d) in a cause-effect context [10,11].

This is because the stiffness matrix K is the tensor expressing a pair-wise relation of the form

K = f(f,d). Within this framework, by assuming that a complex network behaves similarly with

a structured framework, we can develop, in a complex network, a pair-wise property between

any pair of node-attributes x and y, for which a cause-effect pattern of the form y = f(x) will

exist (x = cause, y = effect). Within a structured-framework-alike context, this is possible by

considering that one network attribute acts like the vector of forces (e.g. y = f) while the second

acts like the vector of displacements (x = d).

In particular, let’s consider a complex network G(V,E), with stiffness K, and a pair of node-

variables x,y, of length |V| = n. According to relation (4), node-variables x,y can attain a cause-

effect relation within the context of network stiffness as follows:

f ¼ K � d ,
ðf�x;d�xÞ

x ¼ K � y )
ð9K�1Þ

y ¼ K�1 � x: ð6Þ
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If we assume that the stiffness matrix is the connectivity matrix (K�W), then relation (6)

cannot be satisfied for the node-variables x,y. Therefore, we need to define the stiffness matrix

in terms of W, namely K = f(W). To do so, let’s consider a vector s = [s1, s2, . . .,sn]΄ and the
diagonal function diag(�) [18], as follows:

diagðsÞ ¼ diag

s
1

s
2

.

.

.

sn

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

� SdðsÞ ¼ ½sij� ¼

s
1

0 � � � 0

0 s
2

� � � 0

.

.

.
.
.
.

.
.

.
.
.
.

0 0 � � � sn

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼
si; i ¼ j

0; otherwise
:ð7Þ

(

Then, we seek for a matrix Sd(s) that produces the stiffness matrix K, according to the rela-

tion:

K ¼ SdðsÞ � W: ð8Þ

Based on relation (8), the relation (3) gives:

x ¼ K � y , f ¼ K � d ¼ ðSd � WÞ � d ¼

s
1
� w

11
s
1
� w

12
� � � s

1
� w

1n

s
2
� w

21
s
2
� w

22
� � � s

2
� w

2n

.

.

.
.
.
.

.
.

.
.
.
.

sn � wn1 sn � wn2 � � � sn � wnn

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

� d; ð9Þ

where x = [xij]�f = [Fij], y = [yij]�d = [dij], and Wn×n = [wij] is the connectivity (weights)

matrix of network G. Equivalently to relation (9) we have:

Sd
�1 � f ¼ W � d ,

1=s
1

0 � � � 0

0 1=s
2

� � � 0

.

.

.
.
.
.

.
.

.
.
.
.

0 0 � � � 1=sn

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

�

F
1

F
2

.

.

.

Fn

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

w
11

w
12

� � � w
1n

w
21

w
22

� � � w
2n

.

.

.
.
.
.

.
.

.
.
.
.

wn1 wn2 � � � wnn

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

�

d
1

d
2

.

.

.

dn

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

,

,

F
1
=s

1

F
2
=s

2

.

.

.

Fn=sn

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

w
11
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12

� � � w
1n

w
21

w
22

� � � w
2n

.

.

.
.
.
.

.
.

.
.
.
.

wn1 wn2 � � � wnn

2

6

6

6

6

6

6

6
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3

7
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7

7

7

7

7

7

5

�
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1
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2

.

.

.
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2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼
X

n

i¼1

w
1idi

X

n

i¼1

w
2idi � � �

X

n

i¼1

wnidi

" #0

,

, s ¼ si ¼ Fi=
X

n

j¼1

wijdj; i ¼ 1; . . . ; n

" #0

or s ¼ xi=
X

n

j¼1

wijyj; i ¼ 1; . . . ; n

" #0

:ð10Þ

According to this analysis, in the complex network G, s is the vector applied to the weights

matrix W so that node-variable y (�displacements vector d) to be the effect of node-variable x

(�force vector f). Because vector s operates as a scale factor to network G, in the extent it is

defined by relation (8) (i.e. it escalates the weights matrix W to be equal with the stiffness ten-

sor K), we can name the vector s(x,y)�sx,y as “stiffness scale-factor of variables x,y”. Overall, the
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previous pair-wise approach proposes a method for correlating, in a cause-effect context, two

node-variables x and y of a complex network.

2.3. Implementation framework: The global inbound tourism network

The proposed stiffness-based computational approaches are evaluated in comparison with the

existing measures of [16], in a real-world application context. For the implementation of this

procedure, the strongest connected component (Gs) of the global inbound tourism network

(GTN) is used, as it was modeled by the authors of [19]. In particular, the GTNs is modeled in

the L-space representation (see [3]) into a directed weighted graph G(V,E), where nodes repre-

sent tourism destinations countries and links represent annual tourism flows from the country

of origin to the country of destination. The strongest connected component was chosen to par-

ticipate in the analysis instead of the whole GTN in order the adjacency of this sub-network’s

not to be singular. Therefore, GTNs was chosen to demand all computations to be possible.

The GTNs consists of 17 countries worldwide, as it is shown in Table 1.

Two versions of the GTNs are considered in the analysis, as shown in Fig 2; the first refers

to the year 2008 and the second to the year 2016. These two versions are constructed on data

extracted from references [20–23].

The node-variables (attributes) considered in the analysis refer to the network topology and to

the socioeconomic framework of GTNs. In particular, node-variables participating in the analysis

are shown in Table 2. The socioeconomic attributes are chosen from the literature [19,20–23,25]

according to their relevance in the determination of the phenomenon of tourism demand.

The dynamics of the GTN were computed for two time-snapshots ta = 2008 and tb = 2016.

Therefore, all formulas defined previously are computed on the differences dxi = xi(2016)–

xi(2008). Measures, which are computed using formulas (2):(5) and (10), refer to a certain

attribute (node-variable) X extracted from Table 2. For instance, variable f(k) expresses a

force-alike vector computed on the attribute of degree (k), variable d(POP) expresses a dis-

placements-alike vector computed on the population (POP) attribute, variable s(EIG)

expresses a scale-factor vector computed for variables x = EIG2008 and x = EIG2016, and vari-

able s(k,EIG) expresses a scale-factor vector computed for variables x = k and x = EIG, for the

same reference-year. Finally, the analysis is implemented using the Spearman’s (rank) correla-

tion coefficient rs [28]. In particular, rs is computed using the standard formula of the Pear-

son’s correlation coefficient, according to the relation:

r ¼
covðx; yÞ

sxsy
; ð11Þ

Table 1. Countries included in the strongest connected component GTNs of the global inbound tourism network�.

Rank Label Country Rank Label Country

1 AUS Australia 10 KOR Korea, Rep.

2 AUT Austria 11 MEX Mexico

3 BEL Belgium 12 NLD Netherlands

4 CAN Canada 13 NZL New Zealand

5 FRA France 14 ESP Spain

6 DEU Germany 15 CHE Switzerland

7 IRL Ireland 16 GBR United Kingdom

8 ITA Italy 17 USA United States

9 JPN Japan

�. As modeled by the authors of [19].

https://doi.org/10.1371/journal.pone.0218477.t001
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where cov(x,y) is the covariance of (vector) variables x and y, and si is the sample standard

deviation of variable i = x,y. However, the Spearman’s correlation coefficient rs is computed on

the value-ranks variables rnk(x) and rnk(y) instead of on these variables’ values. Ranks are pro-

duced by ascending sorting of values within variables x and y. Therefore, it stands that rs = ρ

(rnk(x), rnk(y)) and that the Spearman’s coefficient of correlation ranges within the interval [–

1,1], describing a perfect linear relation (positive or negative) in cases where |rs| = 1.

3. Implementation

3.1. Measuring the cause-effect (force-displacements) vectors for two time-
states of GTN

By assuming that the GTN is a structured-framework-alike network (i.e. it behaves similarly

with a structured framework), we can compute the forces applied to network nodes, for a mea-

surable deformation, and, vice versa, the deformations (displacements) caused by known

Fig 2. The strongest connected component (GTNs) of the global inbound tourism network (GTN) [19], shown in geo layout [24] embedding (a) for the year 2008 and
(b) for the year 2016. Nodes express tourism destination countries, links express tourists’ arrivals from country (node) i to node j, and node size and coloring are
proportional to node degree (undirected). Data extracted from [20].

https://doi.org/10.1371/journal.pone.0218477.g002
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forces. First, for computing the forces-alike vectors f(X), we define as displacements the differ-

ences:

dobservedðXÞ ¼ ½xið2016Þ � xið2016Þ�n�1
; ð12Þ

where xi is the i-th element of variable x belonging to the set {k, STR, C, CB, CC, EIG, POP,

GDP, UNEMP} of Table 2. Based on the observed displacements, we compute the forces-alike

vectors f(X) according to relation (4). Next, for computing the displacements-alike vectors d

(X), we define as forces the differences:

fobservedðXÞ ¼ ½xið2016Þ � xið2016Þ�n�1
; ð13Þ

which are computed on variables shown in Table 2. Based on the observed forces-alike vari-

ables, we compute the displacements-alike vectors d(X) according to relation (5). Also, we

compute the impact and stability node-variables according to relations (2) and (3), for the set

of available node-variables of Table 2. Finally, we apply pair-wise correlations rs = ρ(rnk(x),

rnk(y)) on the set of the 36 available node variables, which were computed according to rela-

tion (11).

The (significant-only) results of the analysis are shown in Fig 3, where we can observe that

the forces-alike vector variables f(X) generally appear to be correlated with the stability vari-

ables S(X). This observation does not concern pairs (f, I) of the same attribute X, but systematic

(almost universal) correlations appearing between the group of force-alike variables FT = {f

(k), f(STR), f(C), f(CB), f(CC)}, the variable S(EIG), and the group of socioeconomic variables

SS/E = {S(POP), S(GDP), S(UNEMP)}. The majority of these correlations are negative, illus-

trating an inverse analogy between the force-alike variables (f) and the variables of stability (S).

This outcome is reasonable, because f-variables are conceptually related with the cause of

deformation in the network, whereas S-variables are related with the resistance [16] of the net-

work. An exemption from this pattern of negative analogy is the variable f(CC) of the

Table 2. Variables considered in the analysis.

Node-variable
(attribute)

Symbol Description Reference

a. Variables of network topology

Degree k Number of connections adjusted to a node (undirected). [26]

Node (incoming)
strength

STR Sum of weights of the incoming connections adjusted to a node (directed). [3]
�

Clustering coefficient
(local)

C Defined by the fraction of number of a node’s connected neighbors E(i) (i.e. the number of triangles) to the number
of the total triplets (equal to ki(ki–1)) shaped by this node. It expresses the tendency of nodes to cluster with their
neighbors or the probability of meeting linked neighbors around a node (undirected).

[3]
�

Betweenness centrality CB Defined by the fraction of all shortest paths in the network including a given node, to the total number of all shortest
path in the network (undirected).

[27]
�

Closeness centrality CC Defined by the inverse average distance of the shortest paths from a given node to all the others in the network. It
expresses node accessibility (undirected).

[27]
�

Eigenvector Centrality EIG Spectral measure computed on the eigenvectors of the adjacency matrix and it measures the influence of a node
(undirected).

[26]
�

b. Socioeconomic variables��

Population POP Number of nationals present in, or temporarily absent from a country, and aliens permanently settled in a country. [21]

Gross domestic product GDP Defined by the expenditure on final goods and services minus imports. [22]

Unemployment UNEMP The share of the labor force that is without work but available for and seeking employment (% of total labor force). [23]

�. Computed on data from [20]
��. Node (incoming) strength (STR) can be included also in this group

https://doi.org/10.1371/journal.pone.0218477.t002
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clustering coefficient (CC) attribute, which is positively correlated with S(EIG) and SS/E, obvi-

ously due to the inverse definition if CC (see Table 2). Overall, the significant correlations

observed for pairs (FT, S(EIG)) and (FT, SS/E) imply that the force-alike concept of network

stiffness is effective to be used as a measure of network topology because it includes at the

same time information related to node stability, to the spectral configuration of the network

due to its relevance with eigenvector centrality [5], and to the socioeconomic framework of the

GTNs. This can be especially useful for multidisciplinary research in complex networks,

because the force-alike measures of stiffness capture information that is not restricted to the

reference attribute X but they include broader information about the spectral and socioeco-

nomic configuration of the network.

As far as the displacements-like variables are concerned, we can observe that d(X)-based

correlations do not appear as systematic as those with the f(X)-variables. However, we can

observe a trend of d(X)-based correlations to include information specialized to the S(C) and S

(CC) variables. Despite the lack of universality, the (S, d) correlation-block shapes a supple-

mentary picture in comparison with the correlations observed for the (S, f), a fact showing that

the conceptual framework connecting the force-alike and displacements-alike stiffness-mea-

sures with the measures of impact and stability appears consistent.

A final remark about f(X)-based and d(X)-based correlations is that they appear in their

vast majority indifferent to the impact-based variables. This observation seems reasonable

because the measure of impact has intrinsic configuration, capturing nodes’ response to per-

turbations [16], and thus is more trend-based (or strain-based), in comparison with the f-alike

and d-alike stiffness-measures which have an external, measurable, cause-effect, configuration.

Fig 3. Spearman’s non-parametric correlations, (a) at 5% level of significance and (b) at 10% level of significance, between forces-alike f(X) and displacements-alike d
(X) variables, stability S(X), and impact I(X). The f(X) and d(X) variables were computed using the proposed formulas (4) and (5), respectively, while S(X) and I(X) were
computed using formulas (2) and (3), respectively. Symbols (X) represent attributes X2{k, STR, C, CB, CC, EIG, POP, GDP, UNEMP}, according to which each variable
is computed. Only significant correlation coefficients are shown.

https://doi.org/10.1371/journal.pone.0218477.g003
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3.2. Measuring the scale factor vector for two time-states of GTN

At next, we calculate the scale factors s(X) for the variables shown in Table 2 and we apply the

same as previously correlation analysis between s(X) and I(X) and S(X). This time the scale-

factor vectors s(x) are computed on a single attribute X, according to the formula:

sðXÞ ¼ sðx
2008

; x
2016

Þjx
2008

¼ ððdiagðsðXÞÞÞ � WÞ � x
2016

; ð14Þ

where we consider as forces-alike vector the node-variable of attribute X for the year 2008 and

as displacements-alike vector the variable of the same attribute (X) for the year 2016. Compu-

tations are repeated accordingly for all attributes of Table 2. This approach produces scale-fac-

tor vectors s(X) describing the level to which a network should escalate so that a force-alike

attribute X = x2008, observed for the year 2008 for the GTNs, to cause displacements-alike

effects equal to the values X = x2016 of the same attribute observed for the year 2016. Within

this context, we apply pair-wise correlations between the produced s(X), I(X), and S(X).

The (significant-only) results of the scale-factor correlation analysis are shown in Fig 4,

where we can observe a general inverse picture in comparison with this that was shaped by

the (f-based and d-based) analysis of the previous sub-section. In particular, in the (S,s)

Fig 4. Spearman’s non-parametric correlations, (a) at 5% level of significance and (b) at 10% level of significance, between forces-alike f(X) and displacements-alike d
(X) variables, stability S(X), and impact I(X). The s(X) variables were computed using the proposed formula (10), while S(X) and I(X) were computed using formulas (2)
and (3), respectively. Symbols (X) represent attributes X2{k, STR, C, CB, CC, EIG, POP, GDP, UNEMP}, according to which each variable is computed. Only significant
correlation coefficients are shown.

https://doi.org/10.1371/journal.pone.0218477.g004
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correlation-block, we can observe systematic correlations between the group of the scale-factor

variables XT = {s(k), s(STR), s(CB), s(CC)}, the variable S(EIG), and the SS/E group, which are

inverse in comparison with those of Fig 3. An interesting observation within the (S,s) correla-

tion-block is that now the s(CB) variable shows a negative analogy instead of the f(CC) variable

in Fig 3. Based on the definitions of these two attributes [26], we can observe that betweenness

centrality has more intrinsic topological concept (it is a shortest-path-based measure counting

frequencies) than closeness centrality expressing accessibility. Another interesting remark is

that the s(C) is a variable correlated just with the variables of its own attribute (S(C) and I(C)).

Finally, in Fig 4, we can observe a considerable number of correlations between scale-factor

s(X) and impact-based variables included in the set {I(C), I(CB), I(CC)}. Despite the lack of

universality, this implies that the scale-factor variables s(X) have more intrinsic configuration

than the force-alike f(X) and displacements-alike d(X) variables shown in Fig 3. This is consis-

tent with the way that s(X) is defined in relations (7),(8), and (10), according to which the mea-

sure of stiffness scale-factor has more spectral configuration because is being applied to the

connectivity weights matrix W of the network and thus it operates indirectly in relation (4).

Overall, the correlations observed between the s(X) and impact-based and stability-based

variables imply that the scale-factor concept of network stiffness can be also effective to be

used as a measure of network topology. This is because, first, it includes inverse information to

this extracted from Fig 3 and thus it has a supplementary utility to the force-alike and displace-

ments-alike concept of network stiffness. Second, it includes additional impact-related infor-

mation which complies with the spectral (and thus more intrinsic) configuration being

evident by the way this measure is defined. Finally, an extra advantage of the scale-factor mea-

sure of stiffness, which is not possible to capture by the measures of impact and stability, is its

potential to be used as a measure for correlating, in a cause-effect context, two node-variables

x and y of a complex network.

4. Limitations and addresses of further research

This paper developed a conceptual analogy between a structured framework and a complex

network aiming at considering the notion of stiffness from structural engineering as a topolog-

ical property of complex networks. This approach sets limitations which are basically related

with the introductory nature of the study. Therefore, regardless of how well is being docu-

mented, the analogy developed between a structured framework and a complex network

should be further tested in more complex network applications. For instance, researchers who

are activated in the fields of polymer and biological networks, where the structural-engineer-

ing-based concept of stiffness was first used, may contribute to the further evaluation of the

proposed topological conceptualization of stiffness, based on literal data that do not necessitate

the assumption of analogy between a structured framework and a complex network. However,

provided that the conceptual analogy introduced in this paper appears fruitful in capturing

dynamics in a spatio-socioeconomic and of immaterial nature network (i.e. the network of

global tourism flows), then further applications about the network dynamics utilizing this new

concept as a topological measure in complex networks are necessary. Especially, the research-

ers who are activated in the fields of network dynamics, of vulnerability, of information

spreading and cascading, and of virus and disease spreading in complex networks can find

many reasons to be motivated using this concept in their researches.

Despite the conceptual framework, one technical limitation about the proposed approach

regards the inability to compute the displacements-alike vector according to relation (5) when

the weights matrix of the complex may result to a zero determinant. This can happen, for

instance, when the network is disconnected (i.e. it includes more than one components) or
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when it has a connectivity matrix of ones (e.g. it is a complete graph), namely Wn×n = [1].

Being the GTN a disconnected network restricted this paper to implement the analysis using

the strongest connected component instead of the total network. However, avenues for further

research suggest developing methods of repairing insufficient connectivity of the stiffness

matrix similarly to the rationale of methods of repairing insufficient connectivity for the com-

putation of centrality indices (see [27]).

Overall, the attempt of this paper to broaden the concept of network stiffness from just a

material property into a property of network topology seems to set any emerging limitation to

an upgrade-potential through further research. This potential provides added value to the pro-

posed conceptual approach and serves the purpose of multidisciplinary demand in NS.

5. Conclusions

This paper showed that, by assuming that a complex network behaves similarly with a struc-

tured framework, it is possible to use the classic measure of stiffness from structural engineer-

ing to network science and thus to consider the new concept of network stiffness as a

topological property in complex networks. The paper conceptualized three different aspects of

network stiffness, the force-alike, the displacements-alike, and the scale-factor vectors in order

to be used in complex network analysis. The implementation of the proposed measures in a

real-world network and their evaluation in comparison with propagation measures in the anal-

ysis of network dynamics showed that stiffness can produce interesting insights to network

science.

In particular, the correlation analysis applied between the available variables showed that

the force-alike concept (f) of network stiffness is effective to be used as a measure of network

topology because it includes at the same time information related to node stability, to the spec-

tral configuration, and to the socioeconomic framework of the network. Also, it showed that

the displacements-alike concept (d) of network stiffness is supplementary to the force-alike

one, which both may shape an extrinsic picture of the network-dynamics’ framework. Finally,

the analysis showed that the scale-factor concept (s) of network stiffness is equipped with a

more intrinsic functionality, which due to its spectral configuration it integrates the previous

two stiffness-based measures because except with the measure of stability it is also correlated

with node impact. An extra advantage about the scale-factor stiffness concept, which cannot

be captured by any other among the examined measures, is its potential to be used as a mea-

sure for correlating, in a cause-effect context, any pair of node-variables of a complex network.

Overall, the analogy of assuming that a complex network behaves similarly with a struc-

tured framework showed potentials to provide added value in the multidisciplinary research of

complex networks, as the case study of the spatio-socioeconomic global inbound tourism net-

work has shown. In spite of detecting significant correlations between the proposed concepts

and the existing measures of propagating network dynamics, the overall approach instructs

more for a supplementary rather than a single use of all these measures (both existing and pro-

posed) in order to shape a more spherical picture about network dynamics. As being evident,

stiffness can suggest a promising concept for network science, capable in providing interesting

insights and to motivate for further research.

Author Contributions

Conceptualization: Dimitrios Tsiotas.

Data curation: Dimitrios Tsiotas.

Formal analysis:Dimitrios Tsiotas.

Network stiffness: A new topological property in complex networks

PLOSONE | https://doi.org/10.1371/journal.pone.0218477 June 18, 2019 13 / 15

https://doi.org/10.1371/journal.pone.0218477


Funding acquisition: Dimitrios Tsiotas.

Investigation: Dimitrios Tsiotas.

Methodology: Dimitrios Tsiotas.

Project administration: Dimitrios Tsiotas.

Resources: Dimitrios Tsiotas.

Software:Dimitrios Tsiotas.

Supervision: Dimitrios Tsiotas.

Validation: Dimitrios Tsiotas.

Visualization: Dimitrios Tsiotas.

Writing – original draft:Dimitrios Tsiotas.

Writing – review & editing: Dimitrios Tsiotas.

References
1. Barabasi A-L. Network science. Philosophical Transactions of the Royal Society of London A: Mathe-

matical. 2013; 371(1987): 20120375.

2. Brandes U, Robins G, McCranie A, Wasserman S. What is network science? Network Science. 2013;
1: 1–15.

3. BarthelemyM. Spatial networks. Physics Reports. 2011; 499: 1–101.

4. Tsiotas D, Polyzos S. The complexity in the study of spatial networks: an epistemological approach.
Networks and Spatial Economics. 2017; 18(1): 1–32.

5. Tsiotas D. Detecting different topologies immanent in scale-free networks with the same degree distri-
bution. Proceedings of the National Academy of Sciences of the United States of America (PNAS).
2019; 116(14): 6701–6706.

6. Albert R, Barabasi A-L. Statistical Mechanics of Complex Networks. Review of Modern Physics. 2002;
74(1): 47–97.

7. Yule GU. AMathematical Theory of Evolution, based on the Conclusions of Dr. J. C. Willis, F.R.S. Philo-
sophical Transactions of the Royal Society B. 1925; 213(402–410): 21–87.

8. Milgram S. The small world problem. Psychology Today. 1967; 2: 60–67.

9. Lacasa L, Luque B, Ballesteros F, Luque J, Nuno JC. From time-series to complex networks: The visibil-
ity graph. Proceedings of the National Academy of Sciences. 2008; 105(13): 4972–4975.

10. Zienkiewicz OC, Taylor RL, Zhu JZ. The Finite Element Method: Its Basis and Fundamentals, Sixth edi-
tion, 2005; Oxford: UK, Elsevier Butterworth-Heinemann.

11. Przemieniecki JS. Theory of matrix structural analysis. 1985; New York: Dover publications.

12. Doering CW, Jalil JE, Janicki JS, Pick R, Aghili S, Abrahams C,Weber KT. Collagen network remodel-
ing and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovascular
Research. 1988; 22(10):686–695. https://doi.org/10.1093/cvr/22.10.686 PMID: 2978464

13. Wilhelm J, Frey E. Elasticity of Stiff Polymer Networks. Physical Review Letters. 2003; 91(10): 108103.
https://doi.org/10.1103/PhysRevLett.91.108103 PMID: 14525511

14. Tighe BP, Dynamic Critical Response in Damped RandomSpring Networks. Physical Review Letters.
2012; 109(16): 168303. https://doi.org/10.1103/PhysRevLett.109.168303 PMID: 23215140

15. da Cunha CB, Klumpers DD, Li WA, Koshy ST,Weaver JC, Chaudhuri O, Granja PL, Mooney DJ. Influ-
ence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast
biology. Biomaterials. 2014; 35:8927e8936. https://doi.org/10.1016/j.biomaterials.2014.06.047 PMID:
25047628

16. Barzel B, Barabasi A-L. Universality in network dynamics. Nature Physics. 2013; 9(10): 673–681.

17. Harush U, Barzel B. Dynamic patterns of information flow in complex networks. Nature Communica-
tions. 2017; 8(1): 2181 https://doi.org/10.1038/s41467-017-01916-3 PMID: 29259160

18. Horn RA, Johnson CR. Matrix Analysis. 1985; New York: Cambridge University Press.

Network stiffness: A new topological property in complex networks

PLOSONE | https://doi.org/10.1371/journal.pone.0218477 June 18, 2019 14 / 15

https://doi.org/10.1093/cvr/22.10.686
http://www.ncbi.nlm.nih.gov/pubmed/2978464
https://doi.org/10.1103/PhysRevLett.91.108103
http://www.ncbi.nlm.nih.gov/pubmed/14525511
https://doi.org/10.1103/PhysRevLett.109.168303
http://www.ncbi.nlm.nih.gov/pubmed/23215140
https://doi.org/10.1016/j.biomaterials.2014.06.047
http://www.ncbi.nlm.nih.gov/pubmed/25047628
https://doi.org/10.1038/s41467-017-01916-3
http://www.ncbi.nlm.nih.gov/pubmed/29259160
https://doi.org/10.1371/journal.pone.0218477


19. Tsiotas D, Niavis S, Belias D, Sdrolias L. Modeling the International Tourism Demand as a Complex
Network: the Case of the Global Inbound TourismMarket. In Kavoura A, Kefallonitis E, Giovanis A. Stra-
tegic Innovative Marketing and Turism, 7th ICSIMAT. 2019; Athenian Riviera: Greece, 2018, forthcom-
ing (doi: https://doi.org/10.1007/978-3-030-12453-3)

20. Organization for Economic Co-Operation and Development–OECD. OECD.Stat, Inbound tourism.
2019a; available at the URL: http://stats.oecd.org/index.aspx?DataSetCode=TOURISM_INBOUND
[accessed: 15/5/2019].

21. Organization for Economic Co-Operation and Development–OECD. OECDData, Population (GDP)
(indicator). 2019b: https://doi.org/10.1787/d434f82b-en [accessed: 15/5/2019].

22. Organization for Economic Co-Operation and Development–OECD. OECDData, Gross domestic prod-
uct (GDP) (indicator), 2019c: https://doi.org/10.1787/dc2f7aec-en [accessed: 15/5/2019].

23. Organization for Economic Co-Operation and Development–OECD. OECDData, Unemployment rate
(GDP) (indicator), 2019d: https://doi.org/10.1787/997c8750-en [accessed: 15/5/2019].

24. Bastian M, Heymann S, JacomyM. Gephi: An open source software for exploring and manipulating net-
works. Proceedings of the Third International ICWSMConference (AAAI Press, Menlo Park, CA) 2009:
361–362.

25. Polyzos S, Regional Development. 2011; Athens, Greece: Kritiki Publications [in Greek].

26. NewmanMEJ. Networks: An Introduction. 2010; Oxford, UK: Oxford Univ Press.

27. Koschutzki D, Lehmann K, Peeters L, Richter S. Centrality Indices. In Brandes U, Erlebach T. (Eds.)
Network Analysis. 2005; Berlin, Germany: Springer–Verlag Publications, 16–61.

28. Norusis M, SPSS 16.0 advanced statistical procedures companion. 2008; New Jersey, USA: Prentice
Hall Press.

Network stiffness: A new topological property in complex networks

PLOSONE | https://doi.org/10.1371/journal.pone.0218477 June 18, 2019 15 / 15

https://doi.org/10.1007/978-3-030-12453-3
http://stats.oecd.org/index.aspx?DataSetCode=TOURISM_INBOUND
https://doi.org/10.1787/d434f82b-en
https://doi.org/10.1787/dc2f7aec-en
https://doi.org/10.1787/997c8750-en
https://doi.org/10.1371/journal.pone.0218477

