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NETWORK STRUCTURE AND INNOVATION AMBIGUITY EFFECTS ON
DIFFUSION IN DYNAMIC ORGANIZATIONAL FIELDS

DEBORAH E. GIBBONS
Naval Postgraduate School

Computational modeling simulated innovation diffusion through six prototypical in-
terregional network structures and two distributions of partnering tendencies in dy-
namic organizational fields. Compared to regional constraints, connections among all
geographic regions decreased clearly beneficial innovation diffusion (a low-threshold
adoption model) but increased ambiguous innovation diffusion (a social influence
model). Compared with uniform partnering tendencies, normally distributed partner-
ing tendencies increased diffusion of ambiguous innovations. Overall, local and inter-
regional network structures interacted with the observability of an innovation’s ben-
efits to determine diffusion.

As an organizational population develops, net-
works of relations form among its members. Adap-
tive change can diffuse through these networks
(Kraatz, 1998), but structural disparities may deter-
mine whether an innovation sweeps through the
field or languishes in obscurity. To the extent that
innovation is necessary for the population to
thrive, interorganizational structures that support
diffusion processes are crucial. By exploring struc-
tural effects on innovation transfer at the system
level, the research presented in this article provides
guidance for network-building interventions and
intelligent design of growing networks.

Given the difficulty of measuring networks at an
industry level, it is not feasible to systematically
compare structural effects on global diffusion using
empirical data. Further, published studies focus
primarily on situations in which an innovation has
successfully diffused, so scholars have limited in-
formation about conditions that repress diffusion.
Finally, empirical observations do not allow tests
of alternative conditions that could change out-
comes. A practical solution is to simulate nonlinear
dynamics using parameters drawn from empirical
work, as has been increasingly recommended by
social and organizational scientists (e.g., Anderson,
1999; Kamps & Masuch, 1997; Repenning, 2002).

Through computational modeling, this research
replicated naturally occurring aspects of interorga-
nizational networks and revealed their influences
on diffusion in growing populations. Concurrent
implementation of population ecology and net-

working principles created a virtual world. Within
that world, virtual experiments tested how distri-
butions of partnering tendencies, centralities of ini-
tial adopters’ contacts, and interregional network
structures influenced the likelihood, speed,
breadth, and level of diffusion.

The likelihood that diffusion will occur reveals a
network’s suitability for innovation transfer. The
speed with which an innovation diffuses then af-
fects the level of payback to early adopters because
faster diffusion extends the benefits more quickly
to others. Network impacts on diffusion speed are
equally relevant for early movers who want to deter
diffusion and for policy makers who would rather
speed innovation through a field. Policy makers
and strategists also need to recognize network ef-
fects on the breadth of diffusion among regions
because geographic dispersion may cause regional
discrepancies in technological or conceptual
progress. Finally, increased understanding of struc-
tural influences on diffusion level can facilitate
development of more efficient interorganizational
networks.

THEORETICAL BACKGROUND

Organizational fields, which have been defined
as populations of organizations that occupy the
same or interrelated environmental niches (DiMag-
gio & Powell, 1983), change over time. For this
study, I narrowly defined an organizational field as
including organizations that produce related out-
puts, use related resources, and rely on similar
technologies. Every organizational field develops
unique networks shaped by regional constraints
and organizational partnering tendencies. Struc-
tural characteristics of each network then affect its
capability to diffuse various kinds of innovations.

Thanks to Christopher Gibbons and C. J. Lee for help
with the simulation code, model validation, and data
management. Thanks to Wenpin Tsai and to three anon-
ymous reviewers whose input significantly improved
this article.

! Academy of Management Journal

2004, Vol. 47, No. 6, 938–951.

938



Because of the organizational and technological
similarities among the members of a field, an inno-
vation that benefits one member can also benefit
the others.

Regional Constraint on Networks

Geographic proximity of organizations increases
opportunities for interaction, so regional network
clusters arise naturally. External threats, shared
culture and ethics, similar interests, and preexist-
ing familiarity with the other organizations further
encourage collaboration within a region (Doz, Olk,
& Ring, 2000). The same influences can be expected
to yield more ties to neighboring regions than to
distant ones. All else being equal, most interactions
will occur within regions, some interaction will
occur with neighboring regions, and minimal inter-
action will occur with distant regions.

In most industries, regional attributes moderate
the proximity effect. Ability to obtain knowledge
(Sidorenko & Findlay, 2001) and innovate (Ritsila,
1999) varies across regions, and regions that in-
clude a wider range of capabilities, experiences,
and resources are better able to incorporate external
knowledge (Strambach, 2002). They become cen-
tral in global structures, while less innovative re-
gions remain peripheral. For example, organiza-
tions based in the dominant economic clusters of
Europe, North America, and East Asia tend to part-
ner with others from those three clusters. Within
each cluster, leading countries may act as gatekeep-
ers for information and resource flows to neighbor-
ing areas, as Japan has done in East Asia (Little,
1999). Even patterns of Internet presence (Stern-
berg & Krymalowski, 2002) and of business-to-busi-
ness e-commerce (Kshetri & Dholakia, 2002) reveal
strong regional limitations.

Patterns of regionalization vary. For example, in
agriculture the interaction of organizations tends to
be influenced by proximity, but in the pharmaceu-
tical industry interregional hierarchies constrain
interaction among organizations (Porter & Stern,
2001). Although each network is unique, distinct
patterns can be represented with prototypes such
as unconstrained, decentralized, chain, hierarchi-
cal, and cliquish interregional structures. These in-
terregional (macro) structures can be expected to
influence the diffusion of innovations through a
field. Figure 1 graphically depicts six prototypical
patterns of regional networking.

Organizational Partnering Tendencies

The amount of variance in the centrality of orga-
nizations within a network differs from network to

network (Newman, Strogatz, & Watts, 2001). Some
organizational fields provide equal opportunities
for members to collaborate, while others feature
variance in members’ ability to develop partner-
ships. These distinct patterns of partnering tenden-
cies create distinct network structures.

Many researchers have argued that network cen-
tralities follow a Poisson distribution, which re-
sults from uniform partnering tendencies, yet em-
pirical research has demonstrated variety in
centrality distributions (Barabasi & Albert, 1999).
Stable differences in partnering tendencies, reflect-
ing organizations’ unique opportunities and ac-
tions, have been observed (Gulati, 1995). Normal
distribution of partnering tendencies is particularly
likely to occur as some organizations fall below and
others exceed the mean. Whether uniform or nor-
mally distributed, the pattern of partnering tenden-
cies is a defining characteristic of a network, yet
researchers know little about its effect on the dif-
fusion of innovation.

Network Structures and Diffusion

Interorganizational ties can disseminate innova-
tion (Davis, 1991) and foster adaptation (Kraatz,
1998), but structural aspects of networks regulate
this diffusion process (Gulati, 1998). In sparsely
networked populations, such as the residents of the
United States (Milgram, 1967) or the members of
interlocked corporate boards (Robins & Alexander,
2004), a few bridging ties connect local social clus-
ters. Although some researchers have reported that
increasing ties among clusters facilitates diffusion,
others have found the opposite.

Simulated “small-world” models (see Watts
[1999b] for an overview) have tested effects of net-
work constraint on the spread of disease and
knowledge. Increasing ties between groups, holding
within-group density constant, increases the likeli-
hood of an epidemic (Moore & Newman, 2000). In
contrast, maximal knowledge distribution occurs
when 95 percent of ties are local, and only 5 percent
are distant (Cowan & Jonard, 1999). These discrepant
results imply that the diffusion effect of interregional
structures depends on what is transferring.

Diffusion of a clearly beneficial innovation rests
on potential adopters’ access to knowledge. When a
potential adopter observes innovation benefits, ex-
pected risk decreases and the likelihood of adop-
tion increases (Wejnert, 2002). In this situation,
interorganizational ties serve as information chan-
nels, and thresholds for adoption are low. Cowan
and Jonard’s results suggest that regional barriers
facilitate the diffusion of clearly beneficial innova-
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tions. Specific interregional constraints are likely
to have varying influences on diffusion.

When information about an innovation is ambig-
uous, subjective information from contacts plays a
major role in the decision to adopt (DiMaggio &
Powell, 1983). When objective information is ab-
sent, the likelihood of adoption increases with the
proportion of adopters among one’s contacts. This
is a contagion process, like the process that drives
an epidemic, so greater connection among regions
can be expected to facilitate diffusion of ambiguous
innovations. Specific interregional structures are
also likely to yield varying effects on this process.

Hypothesis 1. At a system level, interregional
network structures have different impacts on
the diffusion of clearly beneficial innovations
and the diffusion of ambiguous innovations.

Within a macro structure, distributions of part-
nering tendencies affect organizational networking
and the overall structure of the network. Many
leaders in the public sector pursue uniform distri-
bution of partnering tendencies among the organi-
zations in their regions. Industrial associations
likewise create formal structures that are designed
to provide uniform partnering opportunities to all

FIGURE 1
Interregional Network Structuresa

a Average partnering tendency is held approximately constant at .10.
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potential members. These efforts generally rest on
an assumption that uniform partnering tendencies
maximize benefits for everyone in the system and,
by extension, for the system as a whole. While this
assumption may be true for some kinds of activi-
ties, it is unlikely to hold true for all diffusion
processes.

Variance in partnering tendencies occurs natu-
rally, creating a range of organizational centralities,
constraints, and opportunities within a social net-
work. This range may produce a population in
which some organizations are heavily influenced
by a small number of innovating contacts because
they have few competing relationships. Early con-
version of the less central organizations could then
contribute to the overall proportion of adopters and
move the system toward a critical mass for wide-
spread diffusion. Because an innovation’s ambigu-
ity affects its adoption process, variance in partner-
ing tendencies may differently influence clearly
beneficial and ambiguous innovation diffusion.

Hypothesis 2. Normal distribution of interorga-
nizational partnering tendencies fosters
greater diffusion of innovations than does uni-
form distribution of partnering tendencies. The
extent of this effect depends on innovation am-
biguity.

At an organization level, centralities of initial
adopters establish the breadth of opportunity for
the diffusion of all innovation types (Valente,
1996). Although they have received minimal re-
search attention, the centralities of first adopters’
contacts also play a role in all types of diffusion.
Low centrality makes these organizations suscepti-
ble to first adopters’ influence because they receive
little contrary information. This information void
increases the likelihood of initial diffusion from
first adopters to their contacts, but very low cen-
trality among the contacts may stifle diffusion be-
cause these organizations are thus less able to serve
as conduits to the rest of the system. High centrality
could also undermine diffusion, despite the in-
creased dissemination potential, because central
organizations may overlook initial adopters among
their plethora of contacts. These competing pro-
cesses imply a positive relation with systemwide
diffusion to the point at which signals from initial
adopters are overwhelmed by the volume of infor-
mation from nonadopting partners.

Hypothesis 3. Increasing centrality among ini-
tial adopters’ contacts positively influences
diffusion only to the point at which communi-
cation with nonadopters overshadows inputs
from initial adopters.

In summary, interregional structures, distribu-
tions of partnering tendencies, and the centralities
of initial adopters’ contacts influence the likeli-
hood, pattern, and extent of diffusion. The follow-
ing section maps theoretical concepts of population
growth, network development, and diffusion onto
corresponding simulation representations and ex-
perimental procedures.

MODELING DIFFUSION THROUGH DYNAMIC
POPULATIONS

Modeling Approach

Individual actions can accumulate to create un-
expected systemwide effects (Schelling, 1969) that
are best understood through computational model-
ing (Robins, Pattison, & Woolcock, 2002). In this
study, the environment for the simulated diffusion
process is a dynamic population of organizations
that develops under empirical parameters. The in-
novations fall into two categories: those having
clearly observable benefits and those whose equiv-
alent benefits are not observable. Each innovation
diffuses through every network structure from the
same starting point in each of 100 growing organi-
zational fields.

In this study’s simulation, the principles gov-
erning organization births and deaths are based
on U.S. government statistics and existing work
in population dynamics (Amburgey, Kelly, & Bar-
nett, 1993; Lomi & Larsen, 1996). The diffusion
processes are grounded in social networks re-
search (e.g., Granovetter & Soong, 1983; Valente,
1995) and institutional theory (DiMaggio & Pow-
ell, 1983). Table 1 summarizes the theoretical
constructs tested here and their representations
in the model.

Organizational Populations and Networks

Legitimacy, which results from proximity to sim-
ilar organizations, increases organizational found-
ings and survival rates (Hannan & Carroll, 1992).
When an area becomes crowded, competition de-
presses foundings and increases the probability of
failure (Lomi & Larsen, 2001), but established and
adapted organizations are more likely to survive
(Baum, 1996). More than a third of American
start-up companies fail in their first three years
(Office of Advocacy, 2001), but the risk of failure
decreases over time (U.S. Small Business Adminis-
tration, 1998). A newly changed organization also
experiences increased risk because any innovation
can disrupt organizational processes. If the organi-
zation weathers the change, risk declines, as envi-
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ronmentally appropriate adaptation improves
chances for survival (Amburgey, Kelly, & Barnett,
1993).

Together, legitimacy, competition, adaptation,
and stability regulate the distribution of organiza-
tions in a field. Ongoing development of the field,
in turn, affects innovation diffusion in two ways.
Congenital learning and selection processes directly
impact the proportion of adapted organizations
within the field. Regional boundaries and availability
of potential partners indirectly impact patterns of dif-
fusion by constraining network formation.

Each organizational field in the simulation is rep-
resented by 400 locations in a square (20 ! 20)
lattice. The lattice is divided into ten (20 rows by 2
columns) regional blocks. As in the real world, the
eastern and western regions adjoin. Each organiza-
tion’s neighborhood includes the 8 (5 each on the
northern and southern boundaries) locations ad-
joining it.

The population component of the simulation is a
variation of Conway’s game, Life (Gardner, 1970).

Three principles are applied in each time period to
every location. First, three organizations adjoining
an unoccupied location result in a birth. This event
indicates resource availability in a geographic re-
gion that is not saturated with competitors. Second,
given no neighbor or one neighbor, geographic iso-
lation leads to death. This event reflects the illegit-
imacy ascribed to unusual or unfamiliar businesses
in a local community. Third, if seven or eight orga-
nizations adjoin an occupied location, competition
for resources may lead to death. Probability param-
eters (Table 1) reflect decreasing failure rates dur-
ing the first three years of operation, an adoption
benefit, and short-term risk due to adaptation shock
(Hannan & Freeman, 1984).

Within each population, network formation is
influenced by locally specified constraints on ran-
dom generation of ties. In a stable structure, orga-
nizational centralities remain similar over time
(Doreian, 1986), so the simulation retains each or-
ganization’s tendency to create ties as long as that
organization exists.

TABLE 1
Theoretical Foundations for Model Parameters

Parameter Theoretical Construct Representation in Model

Population

Births Likely under sparse population. Occurs given three neighbors.

Deaths

Due to isolation Likely if few or no similar organizations. Occurs given 0 or 1 neighbor.

Due to overcrowding Likely if too many organizations compete for

same resources, mitigated by stability and fit.

Probabilistic given 7–8 neighbors.

Newness/stability p reduced by age/10 (! .3).

Environmental fit p reduced by adoption (.1).

Network

Regional structures Test effects of prototypical interregional

network structures on systemwide diffusion

(see “Structures,” Figure 1).

Pairwise tie probabilities weighted within versus across

regions (retaining overall density).Unconstrained

Decentralized

Regional chain

Hierarchy

Central region,

regional cliques

(2)

Partnering tendencies Represent fields where organizations: Partnering tendency distribution:

Similar Have similar tendency to tie uniform (p " .1)

Varying Vary in tendency to tie normal (mean p " .1, sd. " .03)

Innovation

Benefit observability Represent innovation aspects: Two adoption models:

Clearly positive Clearly observable benefits Low-threshold adoption occurs if " .15 of an

organization’s ties have adopted innovation

Ambiguous Difficult-to-assess benefits Social influence (p " percentage of organization’s

ties that have adopted innovation)
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Experimental Design

Conditions in the virtual experiment conducted
here included uniform and normally distributed part-
nering tendencies, six interregional structures, and
two innovation types. Measured variables included
region of initial adoption, number of initial adopters
that immediately failed, regional and overall popula-
tion densities, centralities of initial adopters, and cen-
tralities of initial adopters’ contacts.

In the initial population and for subsequent
births, each organization was assigned a value be-
tween 0 and 1 to represent its partnering tendency
(Table 1). A low density was chosen to reflect the
real-world network inclination to have sparse con-
tacts relative to the number of potential contacts
(Watts, 1999a). In one experimental “condition,”
all organizations were equally likely (p " .1) to
create ties. In the other, the tendency to create ties
was drawn from a normal distribution (mean p " .1,
s.d. " .03) with a range from 0 to 1. Every pair’s
baseline probability of creating a reciprocal tie (a pair-
wise tie probability) equaled the average of their part-
nering tendencies. When organizations failed, their
ties were destroyed. Organizations that subsequently
appeared in those locations drew partnering tenden-
cies from the appropriate distribution, and the net-
work updated itself probabilistically.

The simulation creates macro structures (Figure
1 and Table 1) by scaling tie probabilities within
and among regions. Unconstrained structure 1
links organizations in a worldwide network. All
other structures scale within-block tie probabilities
by 4, preclude ties between some regions, and scale
other tie probabilities to create network prototypes.
Decentralized structure 2 scales between-region tie
probabilities by .67. Regional chain structure 3
scales adjacent-region tie probabilities by 3. Hier-
archical structure 4 scales tie probabilities between
connected regions by 3.33. Structure 5 represents
regional cliques that are connected through a cen-
tral region. The between-region tie probabilities are
scaled by 2.5. Structure 6 duplicates the configura-
tion in structure 5, spreading the central region’s
external tie probabilities across all other regions.

The simulation uses two adoption models to rep-
resent the diffusion of clearly beneficial innova-
tions and the diffusion of ambiguous innovations.
The clear-benefits model applies a 15 percent adop-
tion threshold to all organizations. Under the am-
biguous-benefits model, each organization consid-
ers adoption when any of its contacts adopts, with
the probability of adoption being equal to the per-
centage of adopters among the contacts. If the orga-
nization fails to adopt, it does not reconsider unless
another contact adopts.

Simulation Procedure

Each cycle of the simulation begins when one
seeds an empty field with organizations at a density
of approximately .15 and then allows the simula-
tion parameters to structure the population. The
probabilistic Game of Life runs for 15 time periods,
and the population matrix is stored. Pretests
showed densities ranging from 0 to .66 after 15
periods.

For each condition, ties develop among existing
organizations, and five initial adopters are placed
in one region. This is the only point in the simula-
tion at which new organizations arise in locations
without exactly three neighbors. If no organization
exists at a selected location, a new organization is
created and incorporated into the network. The
population is updated, new ties form, and new
adoptions are recorded. During the population de-
velopment phase, a new organization includes the
innovation at birth if the majority of the organiza-
tion’s geographical neighbors have adopted.

The simulation loops 25 times in every popula-
tion for each of 48 conditions (two partnering ten-
dency distributions, six macro structures, two in-
novation types, and two locations for initial
adopters). Each sequence begins with an identical
population and configuration of initial adopters.
When all 48 conditions have run, one cycle is com-
pleted. Parameters are reset, a new population de-
velops, and the process repeats for 100 cycles.

Analyses

I used logistic regression analysis to determine
which factors increased the likelihood of diffusion.
Ordinary least squares (OLS) analyses were used to
test effects on diffusion level, speed, and breadth.
Diffusion level was defined as the percentage of
total population that eventually adopted. Diffusion
speed was defined as the average number of new
adopters per time period prior to stability. Time of
stability was defined (1) as the last period in which
an organization was born, died, or adopted an in-
novation, (2) as the last period before a pattern
began to repeat, or (3) in a few cases where the
system did not verifiably reach stability, as the 25th
time period. Diffusion breadth was defined as the
number of regions containing adopters at stability.

Predictors included the parameterized variables
and the average centrality of organizations tied to
initial adopters. I calculated the average centralities
of initial adopters’ contacts using only data from ini-
tial adopters that survived at least one time period.
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RESULTS

Examination of outcomes indicated a bimodal
distribution of diffusion levels. Given that five
adopters were seeded into each field, I defined a
diffusion subset as all cases in which at least six
organizations adopted the innovation. Excluding
fields containing five or fewer adopters at stability
yielded 2,852 cases. Of the 1,948 cases that did not
evidence any diffusion, 83 involved death of all
five initial adopters without transmission to other
organizations. These cases were excluded from
analysis, leaving 4,717 data points in the full sam-
ple and 2,852 data points in the diffusion subset.
Initial plots indicated that network centralities had

curvilinear effects on diffusion level, so I included

higher-order terms in regression equations.

For the logistic regression analysis, fields in

which more than 10 percent of the population

adopted were classified as in the diffusion cate-

gory. Fields in which 10 percent or fewer adopted

were classified as in the nondiffusion category. Be-

cause of the bimodal distribution, very few cases

fell between 10 and 60 percent diffused. The model
correctly categorized 81.4 percent of nondiffusion
cases and 61.7 percent of diffusion cases.

OLS regression models predicting diffusion
level, speed, and breadth included controls for
population density, the location and centrality of

TABLE 2
Diffusion Outcome Cell Meansa

Structures and

Characteristics

Clearly Discernible Benefits Ambiguous Benefits

Uniform Distribution

of Partnering

Tendencies

Normal Distribution

of Partnering

Tendencies

Uniform Distribution

of Partnering

Tendencies

Normal Distribution

of Partnering

Tendencies

Structure 1

Diffusion frequency 23% 21% 61% 69%

Diffusion level 23.04 (39.27) 22.81 (39.85) 53.58 (43.17) 61.18 (41.09)

Diffusion speed 4.99 (4.35) 4.58 (4.14) 8.83 (6.70) 10.15 (6.64)

Structure 2

Diffusion frequency 28% 29% 54% 65%

Diffusion level 27.67 (41.31) 27.77 (41.02) 48.03 (43.69) 56.43 (41.20)

Diffusion speed 5.17 (4.44) 5.32 (4.63) 7.98 (6.38) 9.36 (6.58)

Structure 3

Diffusion frequency 36% 36% 46% 54%

Diffusion level 32.01 (42.42) 31.69 (42.05) 39.51 (42.84) 44.93 (42.54)

Diffusion speed 5.76 (4.86) 5.75 (4.93) 7.00 (6.21) 7.57 (6.32)

Structure 4

Diffusion frequency 30% 35% 33% 52%

Diffusion level 28.27 (41.16) 32.70 (42.44) 29.29 (40.44) 44.67 (42.78)

Diffusion speed 5.40 (4.73) 5.98 (4.86) 5.77 (5.66) 7.58 (6.49)

Structure 5

Diffusion frequency 34% 35% 38% 57%

Diffusion level 31.42 (42.45) 32.10 (42.39) 33.24 (41.40) 49.41 (42.88)

Diffusion speed 5.70 (4.88) 5.80 (4.86) 6.07 (5.78) 8.42 (6.72)

Structure 6

Diffusion frequency 30% 34% 39% 53%

Diffusion level 29.35 (41.69) 31.79 (42.18) 32.60 (41.00) 46.21 (43.08)

Diffusion speed 5.39 (4.92) 5.84 (5.05) 6.06 (5.68) 7.74 (6.31)

Marginal means

Diffusion frequency 30% 31% 45% 58%

Diffusion level 28.63 (41.42) 29.81 (41.72) 39.36 (42.92) 50.49 (42.64)

Diffusion speed 5.40 (4.70) 5.55 (4.77) 6.95 (6.17) 8.47 (6.57)

aDiffusion frequency equals the percentage of fields in which adoption exceeded 10 percent. Means for diffusion level and speed are

reported with standard deviations in parentheses; n ranges from 195 to 198 per cell.
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initial adopters, and dead initial adopters. I trans-
formed diffusion level using the natural logarithm
before running regressions.

Table 2 reports diffusion frequency (the propor-
tion of cases in which adoption exceeded 10 per-
cent), mean diffusion level, and mean diffusion
speed by structural condition for each type of
innovation.

Interregional network structures differently im-
pacted diffusion of clearly beneficial and ambigu-
ous innovations at the system level. Structures 1
and 2 increased the probability, level, speed, and
breadth of ambiguous innovation diffusion, while
structure 1 decreased the probability and level of
clearly beneficial innovation diffusion.

Effects of macro structures on the two types of
innovation diffusion become apparent through ex-

amination of cell means in Table 2. For visibly
beneficial innovations, diffusion frequency was
highest through the interregional chain (structure
3). Both the chain and the hierarchical clique struc-
ture (5) increased the level and speed of clearly
beneficial innovation diffusion, while frequency,
level, and speed were lowest through structure 1. In
contrast, decentralized structures 1 and 2 exceeded
the population mean for the frequency, level, and
speed of ambiguous innovation diffusion.

Cumulative adoption curves for both innovation
types appear in Figure 2. For visual clarity, the
graphs include only structures 1 through 4. The
clearly beneficial innovations produce a logarith-
mic curve under all structures, a curve that is com-
monly observed in diffusions based on product at-
tributes (see Mahajan, Muller, & Wind, 2000).

FIGURE 2
Diffusion over Time through Unconstrained, Decentralized,

Chain, and Hierarchical Interregional Structures
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Ambiguous innovations produce a familiar
S-curve, a form typical of social influence pro-
cesses. In the full sample, structures 3 and 4 out-
perform structures 1 and 2 for clearly beneficial
innovations, and structures 1 and 2 outperform
structures 3 and 4 for ambiguous innovations. In
the diffusion subset, the less constrained structures
1 and 2 support greater diffusion of both innova-
tions. This pattern indicates that interregional con-

straint facilitates initial diffusion of a clearly ben-
eficial innovation, but broader communication
across regions hastens diffusion that does occur.

Normal distribution of partnering tendencies fos-
tered greater diffusion of ambiguous innovations
than did uniform partnering tendencies, increasing
diffusion frequency from 45 percent to 58 percent
(Table 2). Regression results indicate that normally
distributed partnering tendencies also increased

FIGURE 3
Effects of Uniform versus Normally Distributed Partnering Tendencies on Diffusion Levels and Speedsa

a Diffusion level is the percentage of a population that had adopted at stability. Diffusion speed is the average number of adopters per

time period prior to stability.
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diffusion level, speed, and breadth for ambiguous
innovations. Distribution of partnering tendencies
had little effect on clearly beneficial innovations.
Significant interaction between distributions of part-
nering tendencies and innovation type can be seen
graphically in Figure 3. Figure 3a shows the full range
of diffusion levels for each type of innovation, broken
out by distribution of partnering tendencies. Figure
3b enlarges the graph for cases in which an innova-
tion diffused. This limited range is more likely to
parallel empirical studies because most failed diffu-
sions do not come to researchers’ attention. Figure 3c
reveals the pattern of partnering distribution effects
on diffusion speed for each type of innovation.

Increasing centralities of initial adopters’ con-
tacts had an inverted-U-shaped relation with diffu-
sion, peaking at 1.33 standard deviations below the
mean for likelihood of diffusion and at 1.13 stan-
dard deviations above the mean for diffusion level
in the full sample. In the diffusion subset, higher
contact centrality increased diffusion level only at the
bottom of the range. Higher contact centrality consis-
tently increased diffusion speed and breadth. These
results indicate that high contact centrality reduces
the chance that an innovation will diffuse, but it
speeds and broadens any diffusion that occurs.

DISCUSSION AND CONCLUSION

This article began with the claim that simulation
of diffusion processes in dynamic organizational
fields can provide insights unavailable through
other approaches. By creating a virtual world that
operates under empirically based rules of popula-
tion development and network constraint, the cur-
rent simulation enabled examination of situated
effects of network attributes on fieldwide diffusion.
Interregional structures, distributions of partnering
tendencies, and centralities of initial adopters’ con-
tacts played complex roles in the diffusion of inno-
vation. Further, the large proportion of nondiffu-
sion cases indicates that a similarly large number of
failed diffusion processes occurs in the real world.
Consideration of the full range of outcomes through
simulation reveals joint effects of interregional
structures and partnering tendencies on diffusion
failure and on successful diffusion processes.

Figure 4 illustrates population growth and diffu-
sion in a typical field through structure 1, in which
ties are unconstrained. Each set of small graphs
depicts population development and diffusion un-
der one condition at four-period intervals. The top
row in each pair shows population development.
The second row in each pair shows which existing
organizations had adopted at that time. All three
examples begin with the same population and ini-

tial adopters. By comparing the first and second
examples, one can see different processes evoked
by clearly beneficial and ambiguous innovation dif-
fusion under normal distributions of partnering
tendencies. The third example depicts develop-
ment of the field given ambiguous benefits and
uniform partnering tendencies. Comparison with
the second example reveals less and slower diffu-
sion given uniform partnering tendencies than
given normal distribution of partnering tendencies.
Overall results indicate that a decentralized inter-
regional network with diverse organizational ten-
dencies to create ties is optimal for fostering the
diffusion of ambiguous innovations. This network
configuration is the least effective for diffusion of
clearly beneficial innovations.

Regional constraints on network formation im-
prove the likelihood that clearly beneficial innova-
tions will diffuse. Macro structures that form a
chain (structure 3) and moderately connected
cliques (structure 5) are particularly conducive to
launching the process. Although diffusing innova-
tions travel more slowly through constrained net-
works than through decentralized structures, the
higher success rate indicates that interregional
clustering fosters diffusion of clearly beneficial in-
novations. This finding aligns with prior work on
knowledge exchange processes indicating that high
levels of regionalization enhanced diffusion
(Cowan & Jonard, 1999) and extends that work by
distinguishing among patterns of interregional con-
straint. Although effects of specific interregional
structures depend on innovation type, hierarchy
does not facilitate diffusion of either innovation.

Local aspects of the networks also influenced
systemwide diffusion. At low levels, increasing
centrality among initial adopters’ contacts in-
creased diffusion. By the midrange, increasing con-
tact centrality began to decrease adoption behavior,
even as it accelerated and broadened successful
diffusions. The role of first adopters’ contacts as
gateways between initial adopters and the rest of
the network created a need for moderate centrality
in order to maximize diffusion.

Model Limitations and Future Research

The prototypical network structures represented
in the simulation differ in their alignment with
naturally occurring networks. Because regional bar-
riers are influential and nearly ubiquitous, they
affect any field that extends beyond local bound-
aries. The unconstrained network is less realistic
than the others because natural networks exhibit
more clustering than occurs through random gen-
eration of ties (Albert & Barabasi, 2002). The struc-

2004 947Gibbons



ture of this model probably underestimates clique
formation. Along similar lines, uniform partnering
tendencies are less likely to occur than normally
distributed tendencies. Preexisting ties influence

creation of future ties (Gulati, 1995), and new orga-
nizations are more likely to link with an existing
organization that is central than with one that is
peripheral (Barabasi & Albert, 1999).

FIGURE 4
Population Growth and Diffusion through a Decentralized Network
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Variation in network density within and across
growing organizational fields is an interesting area
for future research. Although higher network den-
sity increases flows of information or of disease,
density may have more complex effects on innova-
tion adoption. In particular, increasing density
without increasing number of initial adopters
might hinder diffusion if the initial adopters be-
come less salient to their contacts. This situation
would produce an inverted-U-shaped relationship
between density and diffusion, similar to the rela-
tion between centrality among first adopters’ con-
tacts and diffusion. The models presented here do
not include individual or environmental factors
that lead an organization to actively seek or sup-
press information regarding innovation. Levels of
competition may systematically influence these be-
haviors and moderate structural effects on patterns
of diffusion. Further empirical tests of information-
sharing behaviors across organizations will be nec-
essary before such effects can be confidently simu-
lated.

Another interesting direction for ongoing re-
search would be to examine the effect of diffusion
on organizational centrality. Holding constant the
tendency to create ties and making no assumptions
about nonstructural characteristics, one might ex-
pect early adopters to become more central over
time. Increasing centrality of early adopters has
been observed among individuals (Burkhardt &
Brass, 1990), but it has not been examined as a
purely structural outcome among organizations. If
an innovation increases likelihood of survival,
members of initial adopters’ networks that also
adopt are more likely than nonadopters to survive.
Given a constant partnering tendency, those whose
existing contacts survive will accumulate new re-
lationships with minimal loss of old ones. Extend-
ing this effect across an adapting population, earli-
est adopters would increase their ties and their
gatekeeping ability relative to the rest of the field.
These interactions can be tested through future
simulation models that integrate principles of pop-
ulation ecology, network development, and inno-
vation diffusion.

Population development and diffusion are both
nonlinear processes subject to chaotic effects. De-
spite relatively low levels of randomness in the
simulation compared to the real world, chaos
played a large role in population-level change. Es-
timates of population and structural effects on dif-
fusion level indicated that 69.3 percent of the vari-
ance resulted from divergence following initial
adoption. This surprisingly high random effect in-
dicates that much of the variance observed among
organizational fields reflects small, idiosyncratic

events that occur during population and network
development. It further implies that tiny deviations
in current structures may blossom into vast differ-
ences within a few years. This possibility should
encourage large institutions, such as governments
and industry associations, that would like to in-
crease the innovation capacity of organizational
networks. Small, strategic nudges can have im-
mense effects.

Network Design Applications

The key to successful network design rests in
knowing where and how to nudge the system. From
this simulation, I draw three practical conclusions.
First, interregional structures that maximize diffu-
sion of ambiguous innovations may deter diffusion
of clearly beneficial innovations. One needs to struc-
ture for whichever kind of innovation is most impor-
tant or most prevalent in a field. Strategic bridge
building between unconnected regions can improve
the transfer of ambiguous innovations. Allowing
sparsely connected regional clusters can improve the
transfer of clearly beneficial innovations.

Second, interregional hierarchy does not facili-
tate innovation diffusion. Regardless of innovation
type, hierarchical structures among regions work
against innovation diffusion apart from economic,
cultural, and local factors. Because established so-
cial structures tend to reinforce themselves, barri-
ers between regions may resist change. Rather than
battle hierarchical macro structures, change agents
might directly introduce innovations to peripheral
regions and let them percolate through the system.
Interactions around the innovations could then cre-
ate new ties (Burkhardt & Brass, 1990) that gradu-
ally restructure the network.

Finally, the distribution of ties has cumulative
effects on systemwide diffusion. An ideal local de-
sign for either type of innovation includes highly
central innovating organizations and moderately
central contacts. Because variance in partnering
tendencies can increase the diffusion potential of a
network, efforts to equalize network access may be
counterproductive.

Conclusion

By modeling diffusion through growing networks
in dynamic populations, this study has established
foundations for new computational and empirical
research, as well as guidelines for management and
public policy. Comparison of structural effects on
adoption of clearly beneficial versus ambiguous in-
novations introduces a practical approach to un-
derstanding distinct diffusion processes. Beyond
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simple contagion, specific diffusion consequences
of prototypical interregional structures, distribu-
tions of partnering tendencies, and centralities of
initial adopters’ contacts are identified here. Be-
cause the same structure that enables diffusion of
one innovation can squelch diffusion of another,
understanding these interactions is fundamental
for individuals and organizations that want to build
effective networks.
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