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Abstract 1 

Connections among brain regions allow pathological perturbations to spread from a single source region 2 

to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioral variant of 3 

frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related 4 

atrophy patterns relate to structural network organization remains unknown. Here we investigate whether 5 

neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by connectome architecture. 6 

Regional atrophy patterns were estimated in both genetic bvFTD (75 patients, 247 controls) and sporadic 7 

bvFTD (70 patients, 123 controls). We first identify distributed atrophy patterns in bvFTD, mainly 8 

targeting areas associated with the limbic intrinsic network and insular cytoarchitectonic class. Regional 9 

atrophy was significantly correlated with atrophy of structurally- and functionally- connected neighbors, 10 

demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the 11 

predominant group epicenter of brain atrophy using data-driven and simulation-based methods, with some 12 

secondary regions in frontal ventromedial and antero-medial temporal areas. Finally, we find that FTD-13 

related genes, namely C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, 14 

modulating the propagation of pathology through the connectome. Collectively, our results demonstrate 15 

that atrophy patterns in sporadic and genetic bvFTD are jointly shaped by global connectome architecture 16 

and local transcriptomic vulnerability, providing an explanation as to how heterogenous pathological 17 

entities can lead to the same clinical syndrome. 18 

Keywords: connectome; frontotemporal dementia; disease epicentre; gene expression; network spreading 19 
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1. Introduction 1 

Frontotemporal dementia (FTD) is one of the most common forms of early-onset dementia 
1,2

. The 2 

behavioral variant of FTD (bvFTD), which presents with various combinations of behavioral (apathy, 3 

disinhibition, compulsions and stereotypies), personality (decreased empathy and sympathy, altered 4 

personal preferences) and cognitive (executive dysfunction and social cognitive deficits) changes, is the 5 

most common clinical variant of FTD 
2,3

. Despite its distinctive clinical presentation, bvFTD is 6 

pathologically heterogenous, with the most common subtypes being related to the accumulation of 7 

hyperphosphorylated aggregates of either Tau or TAR DNA-binding protein 43 (TDP-43) 
4
. This group of 8 

pathological proteinopathies causing FTD are classified under the frontotemporal lobar degeneration 9 

(FTLD) umbrella. Most cases are sporadic, however around 20% are caused by an autosomal-dominant 10 

genetic mutation including hexanucleotide repeat expansions near the chromosome 9 open reading frame 11 

gene-C9orf72, progranulin-GRN, and microtubule-associated tau protein-MAPT, as the most common 12 

causative genes 
4
.  13 

FTLD pathology cause clinical bvFTD symptoms through their predominant localization in frontal and 14 

anterior temporal brain regions 
4
. Clinically this is reflected by progressive cortical atrophy, which is a 15 

crucial biomarker for the diagnosis 
5,6

. While there is major overlap in atrophy patterns between sporadic 16 

and genetic bvFTD, each genetic subtype has distinctive features including antero-medial atrophy in 17 

MAPT, posterior frontal and parietal involvement in GRN and thalamic/cerebellar volume loss in C9orf72 18 

7
. In recent years, there has been an interest to understand how heterogeneous pathological changes could 19 

lead to similar clinical and atrophy profiles 
8
.  20 

In early work based on functional magnetic resonance imaging (fMRI), it was hypothesized that atrophy 21 

in neurodegenerative diseases progresses predominantly along functional neural networks 
9
, with the 22 

salience network being predominantly affected in bvFTD 
10,11

. Within the salience network, the anterior 23 

insula was identified as the most likely disease epicenter 
9,11

, a finding that was further supported by 24 

pathologic accumulation of tau or TDP-43 aggregates in fork cells and Von Economo neurons, which are 25 

specific to this region 
12

. While the anterior insula clearly plays a significant role in the disease, other 26 

studies using data-driven methods on structural atrophy patterns revealed distinct morphological subtypes 27 

including two salience network-predominant subgroups (a frontal/temporal subtype and a frontal 28 

subtype), a semantic appraisal network-predominant group, and a subcortical-predominant group 
13

. This 29 

opens the possibility that there is not a single unique epicenter at the origin of all bvFTD cases. 30 
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Emerging theories emphasize that connectome architecture shapes the course and expression of multiple 1 

neurodegenerative diseases 
14-18

. Misfolding of endogenous proteins and their subsequent trans-neuronal 2 

spread has been documented in FTLD, Alzheimer’s, Parkinson’s, Huntington’s and amyotrophic lateral 3 

sclerosis (ALS) 
9,19-26

. Despite differences in origin and the proteins involved in each disease, the spread 4 

of the pathology appears to reflect brain network organization at the macroscale level. Namely, 5 

anatomical connectivity is thought to support the propagation of toxic protein aggregates, such that focal 6 

pathology can spread between connected neuronal populations and infiltrate distributed networks in the 7 

brain.  8 

Two key questions remain unanswered about the spread of pathology in bvFTD. First, the spread of 9 

pathology is likely to occur via physical white matter connections but the contribution of structural 10 

connectivity to atrophy progression has been less explored in bvFTD. Evidence for transneuronal spread 11 

of FTLD pathology is mostly based on extrapolation from functional imaging 
8,9

, with some support from 12 

studies using animal models
27

, autopsy data 
28

 and prediction of atrophy patterns 
29

. Although functional 13 

connectivity reflects the underlying structural connectivity patterns and is sometimes used as a proxy for 14 

structural connectivity if no such data is available, the two modalities capture fundamentally different 15 

features of brain network organization and are only moderately correlated with each other
30

. Second, the 16 

role of local vulnerability is poorly understood. It is possible that regional differences in molecular and 17 

cellular make-up render some nodes more or less vulnerable
31-33

. In particular, recent reports in other 18 

neurodegenerative diseases suggest that regional differences in gene expression may confer vulnerability, 19 

effectively guiding the pathological process through the network 
34-36

. Altogether, we hypothesize that 20 

brain network architecture, in concert with local vulnerability conferred by expression of specific genes, 21 

shapes the spatial distribution of atrophy patterns in brain disorders, including FTD 
11,37

. 22 

In the present report we test a structural network-based atrophy propagation model in bvFTD across 23 

sporadic and genetic variants. Specifically, we test the hypothesis that atrophy patterns in bvFTD reflect 24 

the underlying network organization and local transcriptomic vulnerability. We first estimate cortical 25 

atrophy patterns as regional changes in tissue deformation in bvFTD patients. We then use structural and 26 

functional connectivity networks derived from an independent sample of healthy individuals, to 27 

investigate whether regions that are connected with each other display similar atrophy patterns. Finally, 28 

we identify potential disease epicenters using a data-driven approach as well as a simulation-based 29 

approach that models the spread of atrophy across the brain network. We further explore the potential 30 

contribution of FTD-related genes to the propagation of atrophy. 31 

  32 
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2. Methods 1 

2.1 Participants 2 

We retrieved data from subjects with bvFTD and cognitively normal controls (CNCs) from the 3 

Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI) database that had T1-weighted 4 

(T1w) MRI scans matching with each clinical visit (http://4rtni-ftldni.ini.usc.edu/). The inclusion criteria 5 

for bvFTD patients were a diagnosis of possible or probable bvFTD according to the FTD consortium 6 

criteria 
3
, resulting in 70 patients with bvFTD (mostly sporadic) and 123 CNCs available for analyses. 7 

Several patients had more than one scan therefore there was a total of 156 scans in the bvFTD group and 8 

the 326 in the CNC group. We also accessed data from the third data freeze (12/2017) of the Genetic 9 

Frontotemporal Dementia Initiative 2 (GENFI2 - http://genfi.org.uk/), which includes 23 centers in the 10 

UK, Europe and Canada 
38

. GENFI2 participants include known symptomatic carriers of a pathogenic 11 

mutation in C9orf72, GRN or MAPT and their first-degree relatives who are at risk of carrying a mutation, 12 

but who did not show any symptoms (i.e., at-risk subjects). Healthy first-degree relatives who were found 13 

to be non-carriers of a mutation are considered as CNCs. Since the aim of the present study was to study 14 

network propagation of atrophy in the bvFTD clinical phenotype, presymptomatic carriers and 15 

symptomatic carriers whose clinical diagnosis was other than bvFTD were excluded. This GENFI2 cohort 16 

included 75 patients with bvFTD and 247 CNCs. Demographic and clinical characteristics of those two 17 

cohorts are described in table 1. Two-sample t-tests were conducted to examine demographic and clinical 18 

variables at baseline. Categorical variables were analyzed using chi-square analyses. Results are 19 

expressed as mean ± standard deviation and median [interquartile range] as appropriate. 20 

2.2 MRI acquisition and processing  21 

For the FTLDNI cohort, 3.0T MRIs were acquired at three sites (T1w MPRAGE, TR=2 ms, TE=3 ms, 22 

IT=900 ms, flip angle 9°, matrix 256x240, slice thickness 1mm, voxel size 1mm
3
). For the GENFI2 23 

sample, volumetric T1w MPRAGE MRI was obtained at multiple centers using the GENFI imaging 24 

protocol on either Siemens Trio 3T, SiemensSkyra3T, Siemens1.5T, Phillips3T, General Electric (GE) 25 

1.5T or GE 3T scanners. Scan protocols were designed at the outset of the study to ensure adequate 26 

matching between the scanners and image quality control. 27 

All T1w scans were pre-processed through our longitudinal pipeline that includes image denoising, 28 

intensity non-uniformity correction and image intensity normalization into range (0−100) using histogram 29 

matching 
39-42

. The image processing tools used in this study were designed to process data from multi-30 
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site studies to handle biases due to multi-site scanning and they have been successfully applied to a 1 

number of multi-site projects 
37,43-45

. Each native T1w volume from each time point was linearly 2 

registered first to the subject-specific template which was then registered to the ICBM152 template. All 3 

images were then non-linearly registered to the ICBM152 template using ANTs diffeomorphic 4 

registration pipeline 
46

. The images were visually assessed by two experienced raters (MD and ALM) to 5 

exclude cases with significant imaging artifacts (e.g., motion, incomplete field of view) or inaccurate 6 

linear/nonlinear registrations. This visual quality control was completed blind to the diagnosis. Out of 7 

1724 scans, only 43 (2.5%, 36 scans in GENFI2, and 7 in FTLDNI) were rejected. This resulted in a total 8 

of 515 subjects that were included to perform cross-sectional morphometric analyses.  9 

2.3 Deformation-based morphometry (DBM) analyses 10 

DBM 
47,48

 analysis was performed using Montreal Neurological Institute (MNI) MINC tools 
49

. The local 11 

deformations, obtained from the non-linear transformations mapping the MNI-ICBM152-2009c template 12 

to the subject’s MRI, encode the local tissue volume difference between the MNI average template and 13 

subject’s brain.  The determinant of the Jacobian of the deformation field is measured at each voxel. 14 

Determinant values larger than 1.0 indicate that the local volume in the subject is larger than the average 15 

template (e.g., ventricular or sulci enlargement in the case of FTD). Determinant values smaller than one 16 

indicate that the local volume in the subject is smaller than the template.  The latter is often interpreted as 17 

tissue atrophy despite the use of only cross-sectional data. DBM was used to assess voxel-wise cross-18 

sectional group related volumetric differences. To obtain a voxel-wise map reflecting the patterns of 19 

difference between bvFTD and CNCs, the following mixed effects model was applied on a voxel-by-20 

voxel basis, separately for each dataset:  21 

DBM ~ 1 + Dx + AGE + SEX + (1/SITE) 22 

The mixed effects model included age as a continuous fixed variable and diagnosis (Dx) and sex as fixed 23 

categorical variables. Site was included as a categorical random variable. The variable of interest was 24 

diagnosis, reflecting the brain regions that were significantly different between bvFTD and CNCs, 25 

controlling for age and sex. Statistical t-maps were extracted from the model and used for the rest of the 26 

analyses throughout the manuscript. Finally, the t-statistics were multiplied by (-1) such that higher 27 

positive values correspond to higher atrophy and negative values correspond to volume expansion in 28 

patients. 29 

  30 
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2.4 Anatomical parcellation 1 

Statistical t-maps obtained through DBM analysis and mixed effects models were parcellated into 219 and 2 

1000 approximately equally sized cortical regions or parcels using the Cammoun atlas, 
50

, a 3 

multiresolution extension of the anatomical Desikan-Killiany atlas 
51

. We refer to 219 and 1000 4 

parcellation resolutions as low and high parcellation resolutions, respectively. The parcel-wise t-statistics 5 

(i.e., atrophy) were estimated as the mean t-statistic of all the voxels that were assigned to that parcel 6 

according to the atlas. We repeated all the analyses at both parcellation resolutions to ensure that results 7 

are replicable across multiple spatial scales. 8 

2.5 Structural and functional network reconstruction 9 

Connection patterns from healthy individuals are used to represent the architecture of brain networks for 10 

the distributed atrophy patterns that are observed in bvFTD patients. Structural and functional 11 

connectivity data of 70 healthy individuals (mean age 28.8 ± 9.1 years) were obtained from a publicly 12 

available dataset 
52

. Details about data acquisition parameters and preprocessing analysis are available in 13 

52
. Briefly, the participants were scanned in a 3T MRI scanner (Trio, Siemens Medical, Germany) using a 14 

32-channel head-coil. The session protocol included: (1) a magnetization-prepared rapid acquisition 15 

gradient echo (MPRAGE) sequence sensitive to white/gray matter contrast (1-mm in-plane resolution, 16 

1.2-mm slice thickness); (2) a DSI (diffusion spectrum imaging) sequence (128 diffusion-weighted 17 

volumes and a single b0 volume, maximum b-value 8,000 s/mm
2
, 2.2x2.2x3.0 mm voxel size); and (3) a 18 

gradient echo EPI sequence sensitive to BOLD (blood-oxygen-level-dependent) contrast (3.3-mm in-19 

plane resolution and slice thickness with a 0.3-mm gap, TR 1,920 ms, resulting in 280 images per 20 

participant). Diffusion spectrum imaging data and deterministic streamline tractography were used to 21 

construct structural connectivity networks for each healthy individual. Each pair-wise structural 22 

connection was weighted by the log-transform of the fiber density. Individual structural connectivity 23 

networks were parcellated into the low and high parcellation resolutions using the Cammoun atlas 24 

described before. Resting-state functional MRI data collected in the same healthy individuals (with eyes 25 

open) were used to construct functional connectivity networks. The preprocessed resting-state functional 26 

MRI time series were also parcellated using both the low and high resolution versions of the Cammoun 27 

atlas and were correlated to estimate functional connectivity between pairs of brain regions using Pearson 28 

correlation coefficients. Finally, a consensus group-average structural connectivity preserving the edge 29 

length distributions in individual networks 
53-55

 was constructed and a group-average functional 30 

connectivity was estimated as the mean pairwise connectivity across individuals. 31 

ACCEPTED M
ANUSCRIP

T D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ac069/6533638 by guest on 30 M
ay 2022



10 

2.6 Network atrophy 1 

Group-average structural and functional connectivity networks were used to estimate average atrophy 2 

values of neighbors of each brain region 
56

. Briefly, neighbors of a given brain region were defined as 3 

regions that are connected to it with a structural connection for both structurally- and functionally- 4 

defined neighbors. The structurally-connected neighbor atrophy value of each brain region was then 5 

estimated as the average weighted atrophy values of all the neighbors of that region: 6 

    
 

  
∑ 

  

   

                        

where    is the average neighbor atrophy value of brain region or node  ,    is atrophy of  -th neighbor of 7 

node  ,      is the strength of structural connection between nodes   and  , and    is the total number of 8 

neighbors that are connected to node   with a structural connection (i.e., node degree). Normalization by 9 

term    ensures that the estimated neighbor atrophy value is independent from the node degree. The 10 

neighbor atrophy estimation excludes self-connections (   ). The functionally-connected neighbor 11 

atrophy values were estimated using the same equation as above, with the exception that regional atrophy 12 

values were weighted by the strength of functional connections between nodes   and   (    ): 13 

    
 

  
∑ 

  

   

                         

For both structurally- and functionally-defined neighbor atrophy estimates, neighbors were defined as 14 

nodes that were structurally connected to the node under consideration. Altogether, a single neighbor 15 

atrophy value was estimated for each region. We used Pearson correlation coefficients to assess the 16 

relationship between node atrophy and mean neighbor atrophy for structurally- and functionally-defined 17 

neighbors, separately (Fig. 2a).   18 

2.7 Data-driven epicenter analysis   19 

To identify potential disease epicenters, we hypothesized that an epicenter would be a node with high 20 

atrophy that is also connected to highly atrophied neighbors, compared to a high atrophy node with 21 

healthy neighbors, or a healthy node with atrophied neighbors. Using a data-driven approach 
56,57

 , we 22 

first ranked the nodes based on their estimated regional atrophy values. We also ranked the nodes based 23 

on the average atrophy values of their neighbors in a separate list. We then calculated the average ranking 24 
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of each node in the two lists and identified nodes that were highly ranked in both lists (i.e., nodes with 1 

both high local and neighborhood average rankings) as the potential epicenters (Fig. 2b). 2 

2.8 Agent-based spreading model 3 

2.8.1 Simulation-based epicenter analysis  4 

To investigate the transneuronal spread hypothesis, we simulated the spread of pathology on the left 5 

hemisphere of the low-resolution weighted consensus structural connectivity network (111 regions) using 6 

a Susceptible-Infected-Removed (S.I.R) agent-based model 
34

. Briefly, the model consists of simulating 7 

the misfolding of normal proteins in the cortex and their trans-neuronal spreading through the structural 8 

connections between brain regions. The accumulation of pathology, which act as pathogenic agents, then 9 

leads to the atrophy of the afflicted regions. Importantly, this model incorporates synthesis and clearance 10 

rates, which can heterogeneously vary across brain regions. More details about the model’s main 11 

equations can be found in the Supplemental Information. To explore the likelihood that a brain region acts 12 

as an epicenter of this spreading process, we first used baseline clearance and synthesis rates for all 13 

regions. We simulated the spread of pathology and the resulting atrophy using, one at a time, each 14 

individual brain region as the seed of the process. For each seed region, and at each time point, we then 15 

computed the Pearson correlation between the simulated and empirical patterns of atrophy. 16 

2.8.2 Gene expression 17 

To investigate the potential role of gene expression in shaping the modelled patterns of atrophy, we 18 

accessed the Allen Human Brain Atlas (AHBA; http://human.brain-map.org/) 
58

 which provides regional 19 

microarray expression data from six post-mortem brains (1 female, ages 24-57, 42.5 +/- 13.38). We 20 

generated vectors storing gene expression scores for each of the 111 regional parcels of the left 21 

hemisphere. These vectors were then incorporated into the S.I.R. model to regulate the synthesis and 22 

clearance rate of each region, such that a greater expression score entailed greater synthesis and clearance 23 

rates More specifically, our analyses focused on four vectors of gene expression associated with genes 24 

that have been previously linked to bvFTD, namely MAPT, GRN, C9orf72 and TARDBP. Given that 25 

subjects were selected based on their clinical phenotype (bvFTD) rather than on a specific pathological 26 

subtype or genetic mutation, we explored the potential role of the expression of all four genes for both 27 

synthesis and clearance. Our objective was to identify potentially new mechanistic processes underlying 28 

the spreading of atrophy, particularly in sporadic bvFTD where we do not have adequate knowledge of 29 

the contribution of genes related to the various proteinopathies. In complementary experiments, we also 30 
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used the first principal component of the full genes x brain regions matrix of gene expression. This 1 

component captures the principal axis of transcriptional variation across the human cortex
59

. 2 

The AHBA data was pre-processed and mapped to the parcellated brain regions using the abagen toolbox 3 

(https://github.com/rmarkello/abagen)
60

. During pre-processing, we first updated the MNI coordinates of 4 

tissue samples to those generated via non-linear alignment to the ICBM152 template anatomy 5 

(https://github.com/chrisgorgo/alleninf). We also reannotated the microarray probe information for all 6 

genes using data provided by Arnatkevic i t  and colleagues
61

. We then filtered the probes by only 7 

retaining those that have a proportion of signal to noise ratio greater than 0.5. When multiple probes 8 

indexed the expression of the same gene, we selected the one with the most consistent pattern of regional 9 

variation across donors. Samples were then assigned to individual regions in the Cammoun atlas. If a 10 

sample was not found directly within a parcel, the nearest sample, up to a 2mm-distance, was selected. If 11 

no samples were found within 2mm of the parcel, we used the sample closest to the centroid of the empty 12 

parcel across all donors. To reduce the potential for misassignment, sample-to-region matching was 13 

constrained by hemisphere and gross structural divisions (i.e., cortex, subcortex/brainstem, and 14 

cerebellum, such that e.g., a sample in the left cortex could only be assigned to an atlas parcel in the left 15 

cortex). All tissue samples not assigned to a brain region in the provided atlas were discarded. Tissue 16 

sample expression scores were then normalized across genes using a scaled robust sigmoid function 
62

, 17 

and were rescaled to a unit interval. Expression scores were also normalized across tissue samples using 18 

the same procedure. We then aggregated the microarray samples belonging to the same regions by 19 

computing the mean expression across samples for individual parcels, for each donor. Regional 20 

expression profiles were finally averaged across donors.  21 

2.9 Null models 22 

To assess the statistical significance of the node-neighbor relationships and the epicenter analysis, we 23 

used a spatial autocorrelation preserving null model (i.e., “spin tests” 
63,64

). We first used the Connectome 24 

Mapper toolkit
65

 (https://github.com/LTS5/cmp) to generate a surface-based representation of the 25 

Cammoun atlas (both low and high resolution) on the Freesurfer fsaverage surface. We then defined the 26 

spatial coordinates of each parcel by selecting the vertex on the spherical projection of the generated 27 

fsaverage surface that was closest to the center of mass of the parcel 
56,57

. Finally, we used the resulting 28 

parcel spatial coordinates to generate null models of brain maps (e.g., atrophy maps, epicenter rankings) 29 

by randomly rotating the maps and reassigning node values with the values of closest parcels. The 30 

rotations were first applied to one hemisphere and the mirrored rotations were used for the other 31 
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hemisphere. This procedure was repeated 10,000 times to generate a null distribution of brain maps with 1 

preserved spatial autocorrelation. 2 

To ensure the specificity of our transcriptomic results, we relied on a second spatial autocorrelation-3 

preserving null model. This model was proposed by Burt and colleagues
66

 and can be implemented using 4 

the brainSMASH python toolbox (https://github.com/murraylab/brainsmash). First, the empirical brain 5 

map is randomly permuted. Then, this permuted brain map is spatially smoothed and re-scaled to re-6 

introduce the spatial autocorrelation (SA) of the empirical brain map. The smoothing process is achieved 7 

via the following transformation: 8 

   | |     | |     

where y is the surrogate map, x is the permuted data and z is a vector of random gaussian noise. The α 9 

and β parameters are estimated via a least-square optimization between variograms of the original and 10 

permuted data. By maximizing the fit between the variograms of the original and permuted data, we 11 

ensure that the SA of the surrogate map matches the SA of the empirical map. 12 

To ensure that the observed correlation between the empirical and simulated atrophy map from the agent-13 

based model is explained by the topological organization of the structural connection between brain 14 

regions and not solely by the spatial embedding of brain regions, we generated surrogate networks that 15 

preserve the geometry of the structural connectome. The edges of the consensus network were first binned 16 

according to inter-regional Euclidean distance. Within each length bin, pairs of edges were then selected 17 

at random and swapped 
67

. This procedure was repeated 500 times, generating a population of rewired 18 

structural networks that preserve the degree sequence of the original network and that approximately 19 

preserve the edge length distribution (i.e., wiring cost) of the empirical network.  20 

2.10 Data availability 21 

Data used in this study are part of FTLDNI and GENFI databases and de-identified data can be accessed 22 

upon request at http://4rtni-ftldni.ini.usc.edu/ and http://genfi.org.uk/, respectively, after agreeing to their 23 

corresponding data terms. 24 

  25 
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3. Results  1 

3.1 Demographics 2 

Table 1 compares demographic and clinical variables between bvFTD and CNCs across the two research 3 

databases. Subjects with bvFTDs were on average older than CNCs in the GENFI2 cohort, but not in 4 

FTLDNI. As expected, significantly lower MMSE and higher FTLD-CDR average scores were observed 5 

in symptomatic subjects compared to healthy controls. 6 

3.2 Distribution of atrophy and resting state networks and 7 

cytoarchitectonic classes  8 

We used a linear mixed effects model to obtain a group-level, bvFTD-related atrophy map, controlling for 9 

age, sex and acquisition site. The voxel-level and parcellated atrophy maps are depicted in Fig. S1a,b. In 10 

order to assess whether distributed atrophy patterns are more pronounced in specific brain systems, we 11 

used two brain system definitions (Fig. 1): (1) intrinsic functional networks defined by Yeo and 12 

colleagues 
68

; (2) a cytoarchitectonic classification of human cortex based on the classic von Economo 13 

atlas 
69-72

. Nodes were first stratified according to their network assignments based on the Yeo networks 14 

and von Economo classes. We then calculated the mean atrophy values for each intrinsic network (Fig. 1, 15 

left) and cytoarchitectonic class (Fig. 1, right) for FTLDNI (Fig.1a) and GENFI (Fig. 1b) datasets, 16 

separately. To assess the statistical significance of network atrophy values, we compared the empirical 17 

values to a distribution of means calculated from a set of spatial autocorrelation-preserving null models 18 

(i.e., “spin tests” 
63,64

; see Methods section for more details on null model). Specifically, network labels 19 

were randomly rotated while preserving the spatial autocorrelation and the mean network atrophy values 20 

were calculated for each rotation (10,000 repetitions; two-tailed test). 21 

The observed mean network atrophy and the corresponding null distribution of means are depicted for 22 

each intrinsic network and cytoarchitectonic class in Fig. 1. The anatomical distributions of intrinsic 23 

networks and cytoarchitectonic classes are depicted in Fig. 1 (bottom row). Note the difference in the 24 

definition of “limbic” system between the intrinsic networks and cytoarchitectonic classes. The intrinsic 25 

limbic network mainly consists of the temporal poles and orbitofrontal cortex, whereas the 26 

cytoarchitectonic limbic class mainly includes the cingulum. In terms of intrinsic networks, limbic and 27 

default mode intrinsic networks were the most affected (i.e., higher than expected atrophy) with relative 28 

preservation of somatomotor and visual intrinsic networks (i.e., lower than expected atrophy). In terms of 29 
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cytoarchitectonic classes, the insular and association cytoarchitectonic classes displayed greater atrophy 1 

compared to nulls, with lower atrophy in primary sensory cytoarchitectonic classes. While there are 2 

marginal variations in statistical significance of the findings, the overall trend of network atrophy patterns 3 

is consistent across the two datasets. 4 

3.3 Relationship between atrophy maps and connectivity  5 

We next investigated whether atrophy patterns in bvFTD are conditioned by network organization, such 6 

that connected regions display similar atrophy patterns. Specifically, we assessed whether the 7 

connectivity profile of a node can predict the atrophy of its neighbors by investigating the relationship 8 

between node and neighbor atrophy values (Fig. 2a). Structural and functional connectivity (SC and FC) 9 

networks (Fig. S1c), derived from an independent sample of 70 healthy participants 
52

, were used to 10 

estimate mean neighbor atrophy value for each region. The relationship between node and neighbor 11 

atrophy was then examined by correlating the mean neighbor atrophy with nodal atrophy (Fig. 2c,d). 12 

Regional atrophy was significantly correlated with the mean atrophy of its connected neighbors in both 13 

datasets. Fig. 2c (left panel) shows the results for FTLDNI dataset (high resolution parcellation: r = 0.69, 14 

pspin = 0.0001 and r = 0.65, pspin = 0.0001, for SC- and FC- defined neighbors respectively) and Fig. 2d 15 

(left panel) shows the results for GENFI dataset (high resolution parcellation: r = 0.61, pspin = 0.001 and r 16 

= 0.54, pspin = 0.0006, for SC- and FC- defined neighbors respectively). These correlations are 17 

significantly greater when considering connected versus not-connected neighbors, across datasets and 18 

resolutions (Table S1). 19 

To assess whether the relationship between node and neighbor atrophy is specifically driven by network 20 

topology rather than spatial autocorrelation, we used a spatial autcorrelation-preserving null model to 21 

construct a null distribution of node-neighbor correlations 
63

. Fig. 2c,d (middle panel) displays the 22 

observed correlation between node and neighbor atrophy along with the corresponding null distribution of 23 

correlations for both datasets. We also repeated all analyses at a lower parcellation resolution to ensure 24 

that the findings are robust to how network nodes are defined. The relationship between node and 25 

neighbor atrophy was consistent across resolutions and significantly greater in empirical networks 26 

compared to null networks in both datasets (Fig. 2c,d; pspin < 0.05, two-tailed tests). The results were 27 

consistent when the binarized structural connectivity network was used to defined SC- defined neighbors 28 

(Fig. S2). 29 

  30 

ACCEPTED M
ANUSCRIP

T D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ac069/6533638 by guest on 30 M
ay 2022



16 

3.4 Data-driven epicenters analysis  1 

Given that the distribution of atrophy patterns reflects structural and functional network organization, we 2 

next investigated whether there are brain regions that may act as potential epicenters for bvFTD. We 3 

define an epicenter as a high atrophy node that is connected to high atrophy neighbors (Fig. 2b). Nodes 4 

were ranked based on their atrophy and their neighbors’ mean atrophy values. Epicenter likelihood 5 

ranking was then estimated as the mean node ranking across the two lists. Fig. 2c,d (rightmost panel) 6 

shows the epicenter likelihood rankings on the cortex for FTLDNI (Fig. 2c) and GENFI (Fig. 2d) 7 

datasets, where the highly ranked regions are associated with insular cortex, ventromedial cortex and 8 

antero-medial temporal areas. Empirical epicenter likelihood rankings were then compared with rankings 9 

estimated from spatial autocorrelation-preserving null models (10,000 spin tests 
63

). Several regions were 10 

identified as potential epicenters including the anterior insular cortex bilaterally, but also areas in the 11 

anterior temporal poles, in addition to ventromedial and dorsomedial areas. The results were consistent 12 

when binarized structural connectivity network was used to defined SC- defined neighbors (Fig. S2). 13 

3.5 Dynamic spreading model  14 

We next used an S.I.R model to explore how the brain’s structural connectivity shapes the progressive 15 

spread of FTLD changes. This model has been previously used to study Parkinson’s disease-related 16 

atrophy 
34

 and works by simulating the misfolding of normal proteins in the cortex and their trans-17 

neuronal spread through the structural connections between brain regions. The accumulation of 18 

pathology, acting as pathogenic agents, leads to the atrophy of the afflicted regions (Fig. 3a). Epicenters 19 

are defined as those regions in which misfolded proteins are introduced. We tested which is the most 20 

likely epicenter for the observed empirical patterns of atrophy by running the model and initiating the 21 

spread in each region. As the misfolded agents spread through the network, we measured the Pearson 22 

correlation between the simulated and empirical (FTLDNI) patterns of atrophy (Fig. 3b; left panel). We 23 

then define a region's      as the largest correlation value observed across all values of t when it is used 24 

as the epicenter of the spreading process. Regions that have large      scores are the most likely 25 

epicenters. The three nodes with the largest      are located in the insular, superior-frontal and lateral 26 

orbito-frontal cortex. For these three potential epicenters, the      is greater when considering directly-27 

connected neighbors than when considering non-connected nodes (Fig. S3). 28 

An important factor that can influence the probability that a brain region is identified as the epicenter of 29 

an atrophy pattern is its spatial location in the brain. To isolate the role of structural connectivity, we 30 

compared these       scores to those obtained by simulating the spread of pathology in rewired networks 31 
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that preserve the density, degree sequence and wiring cost of the empirical structural network (Fig. 3b; 1 

right panel). We find that the fit obtained by initiating the spread in the insular region of the empirical 2 

network is significantly larger than the fit obtained in the rewired networks (r = 0.601, p < 0.002). We 3 

also find that it is larger than the fit obtained by replacing the structural connectivity matrix in our model 4 

with matrices of either Euclidean or geometric distances between nodes (Fig. S4a). In other words, the fit 5 

observed by seeding the insula is significantly larger than what would have been expected from its degree 6 

and spatial position alone and can be attributed to its embedding in the global topology of the network. 7 

This result suggests that the topology of the structural connectome plays a significant role in shaping 8 

patterns of simulated atrophy that have a high correspondence with the empirical atrophy.  9 

More generally, by looking at the topographic distribution of      scores, we find that the brain regions 10 

that show the largest fits are located in the insular, medial prefrontal and anterior temporal cortices (Fig. 11 

3c). These results are in accordance with our finding that these regions have large epicenter likelihood 12 

rankings. Fig. 3d shows the empirical pattern of atrophy for the FTLDNI dataset. This pattern is 13 

compared to the simulated pattern of atrophy producing the maximal fit. This largest fit was obtained by 14 

seeding the insula and was measured at t=4410. We find a significant relationship between the two 15 

distributions (r = 0.60, p = 0.0013). Results are presented for the FTLDNI dataset, but similar results are 16 

found in the GENFI dataset (Fig. S5). Up to this point, we focused on group effects because deformation-17 

based morphometry is a technique mainly intended to detect population-level differences in brain 18 

structure. To better understand patient heterogeneity, we considered genetic subtypes in GENFI. We 19 

stratified the GENFI cohort into C9orf72, GRN and MAPT mutation carriers and repeated the main 20 

analyses separately for each genetic group.  Fig. S6,a,b,c shows the three main findings for each genetic 21 

group separately. We find a significant network spreading effect in each group. In addition, both the data-22 

driven and simulation-based analysis identified frontal, temporal and insular epicenters in C9orf72 and 23 

MAPT carriers, with more pronounced involvement of the antero-medial temporal poles in MAPT as well 24 

as frontal and lateral parietal regions in GRN carriers, consistent with previous research
7
 . 25 

3.6 Contribution of gene expression to network spreading 26 

Given the contribution of genetic variants to bvFTD 
73

, we next assessed whether the incorporation of 27 

gene expression information into the S.I.R model can enhance the fits. We used regional microarray 28 

expression data from the Allan Human Brain Atlas 
58

 to generate vectors of gene expression for four 29 

genes that have been previously associated with bvFTD: MAPT, GRN, C9orf72 and TARDBP  
4
. Fig. 4a 30 

shows their topographic distributions. We used this genetic information to set regional heterogeneity for 31 
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the clearance and synthesis of proteins in the model. We used the insula as the seed region of the 1 

spreading process as it is the region that showed the largest fit to the empirical data. 2 

For both FTLDNI (Fig. 4b) and GENFI (Fig. 4c) datasets, we measured the rmax scores obtained by 3 

incorporating regional expression for each of the four genes. With MAPT, GRN, C9orf72 and TARDBP, 4 

we obtain correlation scores of rmax=0.42, rmax=0.44, rmax=0.61 and rmax=0.71 for the FTLDNI dataset, and 5 

rmax=0.28, rmax=0.30, rmax=0.58 and rmax=0.68 for the GENFI dataset. We find that adding regional 6 

heterogeneity for synthesis and clearance using expression of C9orf72 and TARDBP increased model fit 7 

while the incorporation of information regarding the regional expression of GRN and MAPT decreased 8 

model fit. To investigate the significance of the findings, we spun the vectors of gene expression 10,000 9 

times to generate spatially auto-correlated null distributions of rmax scores that we compared to the 10 

empirical results. We find that the scores obtained with C9orf72 and TARDBP are significantly larger 11 

than those obtained with permuted gene expression vectors (p=0.014 and p<0.0001, respectively for the 12 

FTLDNI dataset, and p<0.0001, for both genes, for the GENFI dataset). The scores obtained with 13 

C9orf72 and TARDBP are also significantly larger than those obtained with spatially auto-correlated 14 

distributions of gene expression generated using a variogram-based method (Fig. S7). These results 15 

suggest that C9orf72 and TARDBP may play a significant role in driving the spatial patterning of the 16 

empirical atrophy. 17 

To investigate the relationship between gene expression and the brain’s structural connectivity, we 18 

compared the fits to those obtained using rewired networks preserving the wiring-cost of the empirical 19 

network. For C9orf72, we find that the fits obtained using the empirical networks were significantly 20 

larger than the fits obtained using rewired null networks, for both FTLDNI (p < 0.002) and GENFI (p < 21 

0.002). The fits obtained with the empirical connectome were also greater than the fits obtained by 22 

replacing the structural connectivity matrix in the S.I.R model with matrices of either Euclidean or 23 

geometric distances between nodes (Fig. S4b). For TARDBP, we find that the fits obtained using the 24 

empirical networks were significantly larger than the fits obtained using rewired nulls for FTLDNI 25 

(p=0.014), but not for GENFI (p=0.508). Similarly, the fits obtained with the empirical connectome were 26 

greater than the fits obtained by replacing it with matrices of Euclidean or geometric distances between 27 

nodes for the FTLDNI dataset, but not the GENFI dataset (Fig. S4b). Altogether, these results 28 

demonstrate that the topology of the structural connectome has a positive influence on the increase in 29 

model fit observed when incorporating either TARDBP or C9orf72 into the S.I.R. model, more so than 30 

would the spatial distances between nodes. For TARDBP, this influence is observed when trying to fit our 31 

model to patterns of atrophy associated to both sporadic and genetic bvFTD while for C9orf72, this 32 

influence is only observed when trying to fit our models to patterns of atrophy associated to sporadic 33 
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bvFTD. In other words, our investigations suggest that C9orf72 and TARDBP expression can influence 1 

pathogenic spreading processes unfolding on the structural connectome. Interestingly, both TARDBP 2 

(r=0.83) and C9orf72 (r=0.61) are strongly correlated to the principal axis of transcriptional variation 3 

across the human cortex (gene PC1 
59

), which also enhances the fit of the S.I.R model when used to 4 

incorporate regional heterogeneity (Fig. S8). However, contrary to TARDBP and C9orf72, this increased 5 

fit is not significantly larger than the fits obtained using rewired networks. It therefore suggests that the fit 6 

obtained with gene PC1 is largely due to its spatial distribution on the cortical surface and not necessarily 7 

to its influence on pathogenic spreading processes unfolding on the structural connectome. For 8 

completeness, we also repeated these analyses in the three genetic subgroups of GENFI. Fig. S6,d shows 9 

that the results are consistent across subgroups, with TARDBP and C9orf72 being the two gene 10 

distributions that give the largest model fits. 11 

4. Discussion 12 

The present report provides a comprehensive and statistically robust model supporting the theory of 13 

network-based atrophy in bvFTD, both in sporadic and genetic forms. Our findings are consistent across 14 

two datasets and the genetic/sporadic heterogeneity. Namely, for both sporadic and genetic variants, there 15 

is a strong correlation between node deformation and the mean of neighbor deformation defined by both 16 

structural and functional connectivity, supporting the theory that atrophy progresses through network-17 

based connections. Similar findings were observed at small (219) and large (1000) cortical parcellation 18 

resolutions. Data-driven epicenter mapping identified the bilateral anterior insular cortex, as well as 19 

ventromedial cortex and antero-temporal areas as potential epicenters. The involvement of the antero-20 

medial areas as epicenters ties into previous research showing that data-driven atrophy subtypes include a 21 

“semantic appraisal network” predominant group 
13,74

. The genetic bvFTD cohort showed a very similar 22 

profile of most likely epicenters, with the addition of some dorsal frontal areas. The role of these regions 23 

as epicenters was further supported by the agent-based spreading model. 24 

The localization of cortical atrophy was most significant in the limbic resting state network, and less 25 

present in the visuospatial network (expectedly given its posterior localization). There was significant 26 

atrophy in the default mode network (DMN) in genetic FTD, with a positive trend in sporadic FTD. Of 27 

note, the salience network which has been previously identified as being predominantly involved in 28 

bvFTD 
10,11

 did not show statistically significant atrophy. However, when looking at von Economo 29 

cytoarchitectonic classes, the insular cortex was the most affected, with relative sparing of the primary 30 

sensory neurons. This suggests that the insular cortex plays a central role in the disease, but not 31 

necessarily by spreading through the entire ventral attention network including its most posterior regions. 32 
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In addition, while there have been some reports of opposite connectivity pattern of changes in the salience 1 

versus the DMN in bvFTD and AD 
10

, our results rather suggest that there is significant involvement of 2 

DMN regions in bvFTD. 3 

Finally, although exploratory, using a simulation-based approach and gene expression profile data from 4 

the Allen Human Brain Atlas, we identified that the C9orf72 and TARDPB gene expression could play a 5 

role in the propagation of atrophy in sporadic bvFTD. Indeed, factoring an impact on clearance and 6 

synthesis of both genes related to TDP-43 improved the fit between the modeling spreading models and 7 

the actual atrophy maps based on DBM. While we cannot exclude that some subjects in the FTLDNI had 8 

an unidentified C9orf72 mutation, the involvement of TARDPB is of interest given that mutations in this 9 

gene constitute only a very small fraction of genetic FTD. Results suggest that the activity of this gene 10 

could play a role in sporadic bvFTD, which could be of interest for future therapeutic avenues. 11 

Interestingly, we find that the atrophy in each of the three genetic groups in GENFI (C9orf72, GRN, 12 

MAPT) displays a significant network spreading effect and overall has a similar dependence on local gene 13 

expression, but different network epicenters. Consistent with previous studies 
7
, C9orf72 and MAPT are 14 

marked by prominent epicenters in frontal, temporal and insular cortices that resemble sporadic cases, 15 

with more pronounced antero-medial temporal involvement in MAPT. GRN-related atrophy is marked by 16 

greater epicenter likelihood in more dorsal frontal areas and lateral parietal cortex. How population-level 17 

genetic variation shapes the molecular and network cascades that lead to atrophy remains an exciting 18 

question for future research. 19 

It is important to note that these findings are mainly correlational and do not prove causal influence of 20 

network structure on atrophy. Specifically, it is not possible to determine whether connectivity drives the 21 

progression of grey matter atrophy or that connectome architecture itself is compromised in patients as a 22 

result of white-matter lesions reported in bvFTD, estimated by white-matter hyperintensities 
75-78

. We 23 

used structural and functional networks reconstructed from a sample of young healthy participants as the 24 

underlying architecture that supports pathogen transmission. However, extensive changes in network 25 

architecture may reroute or restrict the spread of pathology. It is also possible that white-matter changes 26 

disrupt normal transneuronal transport of trophic factors, resulting in atrophy among connected regions 27 

without involvement of any pathogens or misfolded proteins. These additional factors could be further 28 

investigated in more complex models using simultaneous measures of regional atrophy and changes in 29 

white-matter architecture and structural and functional networks in a longitudinal sample of FTD patients. 30 

Specifically, a highly sampled, multimodal longitudinal dataset with simultaneous measurements of 31 

regional pathology, white-matter lesions, gene expression, metabolism, cerebrospinal fluid biomarkers, 32 
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vascular and neuroimaging factors in bvFTD would allow precise multifactorial modeling of the disease, 1 

improving individualized diagnosis, therapeutic interventions and prognosis in bvFTD patients 
79,80

.  2 

How could these results apply to individual patients? Because deformation-based morphometry is a 3 

technique intended to detect population-level differences in brain structure, we focused on group effects. 4 

Our findings provide a neurobiological explanation as to why patients with such different genetic and 5 

pathological variations can present with similar clinical syndromes in practice (i.e., because the disease 6 

propagation is constrained by the network architecture). Given the multifactorial nature of the disease and 7 

considerable inter-individual variability, it is necessary to tailor therapeutic interventions to individual 8 

patient needs. The central clinical promise of these network models is that they may effectively 9 

summarize the complex multimodal measurements available, yielding a small number of clinically 10 

relevant features. These features may then allow identification of at-risk pre-symptomatic individuals, 11 

candidates for enrollment in clinical trials, and targets or outcome measures for novel disease modifying 12 

therapies. 13 

Altogether, our results build on previous literature that patterns of neurodegeneration reflect network 14 

architecture
14-18

. Consistent with reports in other neurodegenerative diseases, we demonstrate that atrophy 15 

patterns in bvFTD are associated with global connectome architecture and local transcriptomic 16 

vulnerability
9,11,19-26,37

. The present findings were replicated in two separate samples of genetic and 17 

sporadic bvFTD and were validated using a range of methodological choices. We also confirmed that the 18 

findings are independent from potential confounding factors such as spatial distance and parcellation 19 

resolution. However, there are several methodological considerations that need to be taken into account 20 

when interpreting the findings.  21 

First, there are currently no available molecular techniques to directly measure FTLD changes in vivo. To 22 

overcome this limitation, we opted to use DBM to estimate atrophy in bvFTD patients since it is a robust 23 

method to capture local changes in brain tissue volume. Given that in vivo positron emission tomography 24 

(PET) tracers of TDP-43 and tau PET tracers are not currently reliable in FTLD, using post-mortem 25 

assessments of pathology such as immunohistochemistry of phosphorylated 43-kDa TAr DNA-binding 26 

protein (pTDP-43
81

) would provide a more direct measure of FTD-related pathology 
82-84

. 27 

Second, we identified potential disease epicenters using cross sectional data and undirected networks, 28 

precluding reconstruction of the temporal sequence of pathology. In particular, the epicenter model 29 

cannot assess the cascade of pathology, including molecular, metabolic, vascular, and functional changes, 30 

that may begin before grey matter atrophy and start years before emergence of the clinical syndromes and 31 

disease diagnosis
85

. Modeling disease progression and spread of atrophy across brain networks over time 32 
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remains an exciting open question that could eventually be addressed by increased longitudinal sampling 1 

in large FTD datasets (including GENFI and ALLFTD
86,87

 ), that include multimodal data from 2 

presymptomatic genetic carriers to symptomatic patients at later stages of diseases. 3 

Third, diffusion spectrum imaging and streamline tractography were used to estimate structural 4 

connectivity networks. Although recent technological and analytical developments provide powerful 5 

methods to reconstruct white matter fibers in vivo, with biologically interpretable weights and good 6 

correspondence with histology, they may still yield false positives and negatives 
88-96

 . Fourth, the two 7 

multi-site datasets included in this study have different demographics that could potentially influence the 8 

results.  Although the morphometric procedure controls for site, age and sex, and the results are consistent 9 

across the two datasets, our findings should be interpreted in light of these potential confounding 10 

variables
97,98

 . 11 

5. Conclusion 12 

Altogether, structural and functional connectivity networks and rigorous statistical analyses that account 13 

for spatial autocorrelation and network embedding are used in the present study to demonstrate that 14 

bvFTD-related neurodegeneration is conditioned by connectome architecture, accounting for 30-40% of 15 

variance in atrophy, as well as local transcriptomic vulnerability. FTD-related atrophy appears to be 16 

particularly targeting regions associated with the anterior insular cortex, but it is likely that there are 17 

multiple potential epicenters leading to bvFTD clinical phenotypes. The similarity between genetic and 18 

sporadic forms of bvFTD suggests that multiple pathological changes are constrained by the network 19 

architecture in the spread of atrophy, explaining why many different pathological and genetic entities lead 20 

to the same clinical syndrome. Although exploratory, our results suggest that TARDPB gene expression 21 

could have a significant contribution to disease progression, particularly in sporadic bvFTD.  22 
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Figure legends 1 

Figure 1 Atrophy patterns in intrinsic networks and cytoarchitectonic classes. Mean network atrophy 2 

(i.e., t-value) was calculated for Yeo intrinsic functional networks 
68

 (left column) and von Economo 3 

cytoarchitectonic classes 
69-72

 (right column). Higher t-values correspond to greater atrophy. The observed 4 

mean atrophy values are shown by filled circles for each intrinsic network and cytoarchitectonic class. 5 

Network labels are then randomly permuted using 10,000 rotations from spin tests, preserving the spatial 6 

autocorrelation in the data. The null distributions of means from spin tests are depicted using box plots for 7 

intrinsic networks and cytoarchitectonic classes for both (a) FTLDNI and (b) GENFI datasets (10,000 8 

repetitions; two-tailed test). The bottom row displays the location of intrinsic networks (left) and 9 

cytoarchitectonic classes (right) on the cortex. List of Yeo networks: visual (vis), somatomotor (sm), 10 

dorsal attention (da), ventral attention (va), limbic (lim), frontoparietal (fp), default mode (dmn). List of 11 

von Economo classes: primary sensory cortex (ps), primary motor cortex (pm), primary/secondary 12 

sensory cortex (pss), limbic (lb), insular cortex (ic), association cortex (ac, ac2). 13 

Figure 2 Network-dependent atrophy. (a) Atrophy of a node, estimated by t-values, was correlated with 14 

the mean atrophy of its connected neighbors to examine whether the distributed atrophy patterns in 15 

bvFTD reflect the underlying network organization. (b) If atrophy of a node is related to the atrophy of its 16 

connected neighbors (panel a), a node with high atrophy whose neighbors are also highly atrophied would 17 

be more likely to be a potential disease epicenter, compared to a high atrophy node with healthy 18 

neighbors. To quantify the epicenter likelihood across the cortex, the nodes were first ranked based on 19 

their atrophy values and their neighbors’ atrophy values. Epicenter likelihood ranking of each node was 20 

then defined as its mean ranking in the two lists. (c, d) Left panel: Node atrophy value was correlated with 21 

the mean atrophy value of its structurally- and functionally-weighted neighbors (SC and FC) for FTLDNI 22 

(panel c) and GENFI (panel d) datasets. Scatter plots show the correlation for high parcellation resolution. 23 

Middle panel: The observed correlation values (depicted by filled circles) were compared to a set of 24 

correlations obtained from 10,000 spin tests (depicted by box plots). Asterisks denote statistical 25 

significance (pspin < 0.05, two-tailed). The association between node and neighbor atrophy was consistent 26 

across resolutions and significantly greater in empirical networks compared to null networks in both 27 

datasets. Right panel: Epicenter likelihood rankings are depicted across the cortex. The most likely 28 

epicenters with high significant rankings are regions that are mainly located at the bilateral anterior 29 

insular cortex and temporal lobes (10,000 spin tests). 30 
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Figure 3 Agent-based modeling. (a) The S.I.R model simulates the spread of pathology in the brain. 1 

Proteins propagate via the structural connections between brain regions and induce atrophy, both pre- and 2 

post-synaptically. (b) Left panel: the spreading process was initiated in every brain region and the 3 

correlation between the simulated and empirical patterns of atrophy was computed. The three largest 4 

correlations were obtained by seeding regions of the insula (rmax = 0.601; red), the superior-frontal cortex 5 

(rmax = 0.473; blue) and lateral orbito-frontal cortex (rmax = 0.471; green). The correlations for other brain 6 

regions are shown in gray. Right panel: to control for the potential effect of a brain region’s spatial 7 

embedding, rmax values were compared to rmax correlations obtained using rewired networks that preserve 8 

the wiring-cost of the empirical structural network. Asterisks denote statistical significance (p < 0.05, 9 

two-tailed). The rmax computed by seeding the insula of the empirical network (rmax = 0.60) was 10 

significantly larger than the rmax computed by seeding the insula of the rewired networks (p<0.002). (c) 11 

The largest fit (rmax) obtained by seeding each brain region is shown on the surface of the brain. Larger 12 

values of rmax were generally obtained by seeding insular and prefrontal regions. (d) Left panel: empirical 13 

pattern of atrophy (FTLDNI). Middle panel: simulated pattern of atrophy producing the maximal fit. This 14 

pattern of atrophy was obtained with the insula as the seed, and at t=4410 (see the arrow in panel b). 15 

Right panel: scatterplot of the relationship between standardized empirical and simulated patterns of 16 

atrophy (r = 0.60, p = 0.0013). 17 

Figure 4 Contribution of gene expression. (a) Vectors of regional gene expression were generated for 18 

four genes that have been associated with bvFTD: TARDBP, C9orf72, GRN and MAPT. These vectors of 19 

gene expression were incorporated into the S.I.R model. The correlations between empirical atrophy and 20 

simulated atrophy, with the insula selected as the seed of the simulated spreading process, were then 21 

computed for the FTLDNI dataset (b) and for the GENFI dataset (c). The maximal correlation scores 22 

(rmax) obtained for each gene were compared to the maximal correlation scores (rmax) obtained with spun 23 

distributions of gene expression vectors (grey boxplots). Asterisks denote statistical significance (p<0.05, 24 

two-tailed). For both datasets, we find that the rmax scores obtained by incorporating information about the 25 

expression of C9orf72 and TARDBP are significantly larger than those obtained with permuted gene 26 

expression vectors. The maximal correlations are also compared to the maximal correlation scores 27 

obtained in distance-preserving rewired networks (white boxplots). 28 
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Table 1 Demographic and clinical characteristics of the FTLDNI and GENFI2 samples 1 

  FTLDNI 

N=193 

GENFI2 

N=322 

CNCs 

N=123 

bvFTD 

N=70 

p-value CNCs 

N=247 

bvFTD 

N=75 

p-value 

 

Total number of scans 326 156  409 119  

Age mean (SD), y 63±6 62±6 0.36 48±14 64±8 < 0.001 

Male sex no. (%) 53(43%) 47(67%) 0.001 106(43%) 41(55%) 0.07 

Education mean (SD), y 17.5±1.9 15.6±3.4 < 0.001 13.9±3.5 11.8±4.03 < 0.001 

Estimated years of onset mean 
(SD), y 

- N/A - - 5.2±5.7 - 

Disease duration mean [min-
max], y 

        5.1[3.5-8.2]   

MMSE score mean (SD) 29.4±0.8 23.6±4.9 < 0.001 29.4±1.1 21.9±7.2 < 0.001 

FTLD-CDR Score mean (SD) 0.04±0.2 6.3±3.3 < 0.001 0.21±0.7 9.7±1.4 < 0.001 

Genetic Group no. (%)       

C9orf72 - -   - 39(52%)   

MAPT - -   - 17(22.7%)   

GRN - -   - 19(25.3%)   

 2 

CNCs in GENFI2 cohort correspond to non-carrier first degree relative of a family member with a documented genetic mutation related to 3 

FTD. Genetic groups listed for CNCs in the GENFI2 cohort refer to mutation present in the family of these non-carrier subjects. Values are 4 

expressed as mean ± standard deviation, median [interquartile range]. Data available is specified for each clinical variable as N, whereas N/A 5 

indicates data not available from the original databases. (FTLDNI: frontotemporal lobar degeneration neuroimaging initiative; GENFI: genetic 6 

frontotemporal dementia initiative; bvFTD:  behavioral-variant frontotemporal dementia; CNCs: cognitively normal controls; MMSE: Mini 7 

Mental State Examination. FTLD-CDR: Frontotemporal lobar degeneration clinical dementia rating.) 8 
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