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Abstract

Background: Multicomponent therapeutics offer bright prospects for the control of complex diseases in a

synergistic manner. However, finding ways to screen the synergistic combinations from numerous pharmacological

agents is still an ongoing challenge.

Results: In this work, we proposed for the first time a “network target”-based paradigm instead of the traditional

“single target"-based paradigm for virtual screening and established an algorithm termed NIMS (Network target-

based Identification of Multicomponent Synergy) to prioritize synergistic agent combinations in a high throughput

way. NIMS treats a disease-specific biological network as a therapeutic target and assumes that the relationship

among agents can be transferred to network interactions among the molecular level entities (targets or responsive

gene products) of agents. Then, two parameters in NIMS, Topology Score and Agent Score, are created to evaluate

the synergistic relationship between each given agent combinations. Taking the empirical multicomponent system

traditional Chinese medicine (TCM) as an illustrative case, we applied NIMS to prioritize synergistic agent pairs from

63 agents on a pathological process instanced by angiogenesis. The NIMS outputs can not only recover five

known synergistic agent pairs, but also obtain experimental verification for synergistic candidates combined with,

for example, a herbal ingredient Sinomenine, which outperforms the meet/min method. The robustness of NIMS

was also showed regarding the background networks, agent genes and topological parameters, respectively.

Finally, we characterized the potential mechanisms of multicomponent synergy from a network target perspective.

Conclusions: NIMS is a first-step computational approach towards identification of synergistic drug combinations

at the molecular level. The network target-based approaches may adjust current virtual screen mode and provide a

systematic paradigm for facilitating the development of multicomponent therapeutics as well as the modernization

of TCM.

Background
Multicomponent therapeutics, in which two or more

agents interact with multiple targets simultaneously, is

considered as a rational and efficient form of therapy

designed to control complex diseases [1,2]. Here “agent”

refers to medicinal entities, chemical substances, herbs

and the like with pharmacological or biological activities.

One of the fundamental advantages of multicomponent

therapeutics is the production of “synergy”, that is, the

combinational effect to be greater than the sum of the

individual effects, making multicomponent therapeutics

a systematic approach, rather than the reductionism of

an additive effect. Understanding multicomponent

synergy is critical for developing a novel strategy to con-

quer complex diseases. It is believed that combinations

of agents can effectively reduce side effects and improve

adaptive resistance, thereby increasing the likelihood of
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conquering complex diseases, such as cancer, in a syner-

gistic manner [3].

Evaluation of multicomponent synergy is usually

implemented experimentally in a case-by-case approach

[4] and evaluated using the reference models of additi-

vism to recognize synergy such as the Bliss indepen-

dence model [5], the Loewe additivism model [6] and

the Combination Index theorem [7]. However, large

number of possible agent combinations will be formed

even in the case of a small collection of therapeutic

agents. Therefore, although some experimental methods

have been launched to screen favourable drug combina-

tions by disease-relevant phenotypic assays [8], the high-

throughput identification of synergistic agent combina-

tions arising from numerous agents remains an unre-

solved issue [9]. By way of contrast, computational

approaches that take advantage of the rapid accumula-

tion of massive data may provide a more promising and

desirable method for multicomponent drug studies. Cur-

rently, computational efforts for the evaluation of multi-

component therapeutics mainly focus on two directions.

The first direction is to identify and optimize multiple

target interventions by modelling signaling pathways or

specific processes and is usually applied to small scale

problems [10,11]. One of limitations of this approach is

the fact that crosstalks, feedbacks or interactions among

pathways are widely present in complex diseases, sug-

gesting that pathways should be integrated rather than

treated separately [12,13]. The second newly developing

direction is to measure the efficacy of drugs, especially

multi-target drugs, by using network biology approaches

[14]. However, the realistic method remains to be estab-

lished and the association between drug actions and net-

work properties is not precisely known. Thus, finding

ways to evaluate multicomponent therapeutics and sort

order for synergistic agent combinations is still a consid-

erable challenge. Novel computational approaches are

urgently required for feasible and efficient identification

of multicomponent synergy.

Recently, computational systems biology approaches as

well as our previous studies have been enhancing our

understanding of various aspects of complex diseases,

including the identification of disease-related genes or

functional modules, and the recognition of redundant,

adaptable and system mechanisms in diseases [15-17].

Now, we are standing at the portal of a new era to

bridge molecular states to physiological states as well as

various disease states through the biological networks

that sense genetic and environmental perturbations [18].

To keep in line with new developments, researchers

have also started to change their way of thinking in

terms of drug-treated complex biological systems, and

studies such as network pharmacology [19] have been

springing up. Against this background, we propose a

novel concept, “network target”, with the attempt to

update current single target-based or multiple target-

based drug studies. We roughly defined the “network

target” as a therapeutic target that is derived from sys-

tematic interventions of the biological network (includ-

ing the network state and its pivotal elements)

underlying a disease or pathological process. The con-

cept of network target considers simultaneously the dis-

ease mechanisms and drug actions on a network basis,

and a network target for a certain disease may corre-

spond to a variety of single-component or multicompo-

nent therapeutics.

On the other hand, while the scientific community has

high expectations for the coming network pharmacology

[19], this new field should be composed of two main

approaches due to our poor understanding of cell beha-

viours and drug-protein interactions: 1) Bottom-up:

Addition of well-known molecular drugs and observa-

tion of synergistic effects; 2) Top-down: Reduction of

more general formulae to its minimal elements that

keep its beneficial properties. In this regard, an empiri-

cal system of multicomponent therapeutics, traditional

Chinese medicine (TCM), may have the potential of

addressing a relationship between multicomponents and

drug synergistic effects. Having been evolved over 3,000

years, TCM is characterized by the use of Herbal For-

mulae (Fu-Fang) that are usually grouped by two or

more medicinal herbs and capable of systematically con-

trolling various diseases such as angiogenic disorders

[20] via potentially synergistic herb interactions [21,22].

For instance, the Realgar-Indigo naturalis Formula has

an effect on promyelocytic leukemia via the action

mechanism of synergy among its components [23].

Thus, the multicomponent synergy in Chinese herbs is

of great significance for understanding TCM and for

new drug discovery. Although this is still an open ques-

tion, it is believed that the rich body of TCM experience

in combined use of herbs may provide an excellent

model for studying synergistic effects among different

components [24], and the systems biology approaches

could shed light on the mystery of TCM [22,25].

In this work, we report a novel method, called NIMS

(Network target-based Identification of Multicomponent

Synergy), to address the network target-based virtual

screen and assess the synergistic strength of multicom-

ponent therapeutics. NIMS measures synergistic agent

combinations by creating and integrating two para-

meters, namely Topology Score and Agent Score. Next,

NIMS was applied to prioritize synergistic combinations

from 63 agents including 61 herbs or herb compounds

as well as five agent pairs with known synergistic effects

containing 2 additional chemicals 5-fluorouracil and

Rapamycin. One of NIMS outputs was then subjected to

experimental verification. We hope the network target-
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based approaches will improve our understanding of

multicomponent therapeutics in terms of complex biolo-

gical systems.

Results
Pipeline of NIMS

The rationale of the network target concept and NIMS

is to transfer the relationship among agents to the inter-

actions among the targets or responsive gene products

of agents in the context of a biological network specific

for a disease or pathological process. This hypothesis

may be reasonable in many situations especially when

synergy occurs only if the effects of individual agents

are mediated through independent action mechanisms.

In NIMS, a set of genes or gene products affected by an

agent are termed agent genes, and the disease-specific

biological network serves as the background network to

perform NIMS. Then, two elements in NIMS, Topology

Score (TS) and Agent Score (AS), are proposed to evalu-

ate agent interactions.

As shown in Figure 1, TS is derived from topological

features of the background network related to certain dis-

ease conditions and drug actions. From the network tar-

get perspective, the achilles’ heel of the biological

network underlying a certain disease is more likely to

become the attack points of drugs. Thus, we assume that

the more important the agent gene as a network node is,

the stronger effect on the disease the agent will produce.

To determine the importance of an agent gene as a node

in the network, we propose a node importance score, (IP

(v), here v denotes a vertex / node), by integrating degree

[26], betweenness [27] and closeness [28], three network

centrality indexes that have been used to define the net-

work properties of drug targets separately or collectively

[29]. Moreover, we suppose that if an agent pair produces

synergy, their agent genes should be adjacent in the net-

work. Accordingly, for a candidate agent pair agent1 and

agent2, we defined a topology-dependent score, TS, to

evaluate both the importance score (IP(v)) of agent1 genes

and agent2 genes and the network distance between these

two gene sets. TS1,2 is given by:
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where IP1(i) for agent1 genes and IP2(j) for agent2
genes are calculated by integrating Betweenness, Close-

ness and a variant of the Eigenvector PageRank [30]

through Principal Component Analysis (PCA). The

negative exponential function is utilized to weigh the

interaction of two agents based on the shortest path

length. The min(di,j) is the minimum shortest path from

genei of agent1 to all agent2 genes, whereas min(dj,i) is

the minimum shortest path from genej of agent2 to all

agent1 genes. We only consider the nearest connection

between agent1 genes and agent2 genes in the network.

The two terms in the brackets are dual and represent

the synergy strength measurement for a combination of

agent1 and agent2.

Figure 1 Pipeline of NIMS: ranking the synergistic effect of n agents paired with a given agent. For a given agent (Agentx) and n

candidate agents (Agent1, …, Agentn), all agent genes are collected and mapped to a disease network target. For each agent (Agent1, …, Agentn)

combined with Agentx, TS (Topology Score) is obtained by calculating the node importance of both sets of agent genes and the shortest path

between them. TS is subsequently weighed by the AS (Agent Score) of each agent pair to ultimately produce S (Synergy score), which is used to

rank the synergy strength for the n candidate agents matched with the given Agentx.

Li et al. BMC Systems Biology 2011, 5(Suppl 1):S10

http://www.biomedcentral.com/1752-0509/5/S1/S10

Page 3 of 13



As agents with independent action mechanisms but

treating similar diseases may be more likely to produce

synergistic effect, we also introduced AS, a concept

transferred from the disease phenotype similarity [31],

to quantify the similarity score of two agents and fine-

tune the TS results. Here, if an agent gene falls into the

gene set of a phenotype recorded in the OMIM (Online

Mendelian Inheritance in Man) database, this phenotype

will be identified as an agent phenotype for the given

agent. The similarity between two agent phenotypes

quantifies the overlap of their OMIM descriptions and

is calculated by a text mining method [31] (See Meth-

ods). The AS for agent1 and agent2 is given by

AS

P

N

i j

i j
1 2,

,

,=
∑

, where Pi,j is the similarity score between

phenotypei of agent1 and phenotypej of agent2, and N is

the total number of phenotype pairs.

Ultimately, NIMS produces the synergy score, S1,2, for

agent1 and agent2 by calculating S1,2 = TS1,2 × AS1,2,

which denotes the node importance, network adjacency

and action similarity of two gene sets of agent1 and

agent2. A high score means a great probability of synergy.

Note that currently NIMS only measures the synergy of

combinational agents with independent mechanisms

according to the Bliss independent theory [5], so we

roughly set the valid range of the NIMS score from 0 to

0.9. When the score is larger than 0.9, the two agents in

combination are more likely to act on the same gene sets

and in contradiction with the independence assumption.

For these agent combinations, we may need more infor-

mation to distinguish their interaction modes.

Application and experimental verification of NIMS

We applied NIMS to prioritize synergistic agent pairs

from 63 manually collected agents (See Methods) and

estimated their effects on angiogenesis, a key pathologi-

cal process in various diseases such as cancer and rheu-

matoid arthritis [32], with the network constructed by

our LMMA approach previously [17]. The NIMS

synergy scores for all agent pairs against the angiogen-

esis network ranged from 0.199270 to 0.012959, with TS

score from 0.814868 to 0.103790 and AS score from

0.262459 to 0.107882, respectively. From the outputs of

NIMS, we firstly checked the rank of five agent pairs

with known synergy in every 62 pairs for a given agent.

As shown in Table 1, the synergy scores of both 5-fluor-

ouracil (5-FU) combined with Vinblastine [33] and 5-FU

combined with Rapamycin [34] entered the top three.

Three other synergistic pairs, Vinblastine and Camp-

tothecin [35], Genistein and Camptothecin [36], and

Genistein and Rapamycin [37], also earned high marks

and ranked in the top layer. We then used, respectively,

three global background networks including the global

protein-protein interaction (PPI) network and two kinds

of global pathway networks (Keep Node Content and

Merge Node Content, KNC and MNC) (See Methods)

to calculate the synergy score. Results showed that

NIMS is relatively robust to different background net-

works in these cases (Table 1).

Next, an in vitro assay was conducted to validate NIMS

predictions. Sinomenine, an anti-angiogenic alkaloid that

extracted from a TCM commonly used herb named Sino-

menium acutum[20,38], was selected as the seed agent

(as Agentx in Figure 1). Agent combinations were

sampled from five intervals of the rank list composed of

all 62 agents matched with Sinomenine. Here, we only

considered commercially available agents with known

chemical structures. This restriction left five Sinomenine

partners, namely Luteolin, Quercetin, Honokiol, Matrine

and Paeoniflorin. To determine the synergy strength of

the agent pairs, low-dose combinations with more than a

Table 1 NIMS ranks against four types of background networks

Rank among 62 agent pairs #

Given agent Partner agent Angiogenesis network (NIMS score) PPI KNC MNC

5-fluorouracil Vinblastine* 2 (0.18104) 1 2 2

Rapamycin* 3 (0.13744) 2 3 26

Vinblastine Camptothecin* 1 (0.19927) 1 1 3

Genistein Camptothecin* 2 (0.12070) 3 2 2

Rapamycin* 6 (0.11533) 4 7 4

Sinomenine Matrine 4 (0.10923) 6 3 11

Honokiol 8 (0.10142) 5 9 16

Luteolin 10 (0.10007) 11 17 6

Quercetin 14 (0.09835) 20 5 3

Paeoniflorin 29 (0.08215) 26 29 31

*: Agent pairs with known synergistic effects.

#: For each given agent, there are totally 62 candidate agent pairs. PPI, protein-protein interaction network. KNC, Keep Node Content pathway network. MNC,

Merge Node Content pathway network.
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70% inhibition rate were regarded as effective [39]. Using

the Maximum Increased Inhibition Rate (MIIR) measure

for each combination (Figure 2), we found that the high-

est MIIR 26.83% was reached by Sinomenine combined

with Matrine ((S):(M)), whereas the lowest MIIR 1.86%

was reached by Sinomenine combined with Paeoniflorin

((S):(P)). This rank order of agent pairs is identical to the

order predicted by NIMS when against the angiogenesis

network, and such a performance is superior to those

against three global networks (Table 1).

Robustness of NIMS

NIMS integrated three measures, namely Betweenness,

Closeness and PageRank to capture the node importance

IP(v) from different aspects. In the undirected angiogen-

esis network, we found that all three measures are highly

Figure 2 Anti-angiogenesis synergistic effects of five agent pairs. a-e. The red line denotes the inhibition rate of Human Umbilical Vein

Endothelial Cells (HUVEC) proliferation in a dose-dependent manner. The blue line denotes the additive effects calculated by the Bliss

independence model. The gray column denotes the optimal dose and ratio of each pair. f. The value of the maximum increased inhibition rate

(MIIR) for the synergistic effects produced by five agent pairs corresponds well with the NIMS ranks against the angiogenesis network. The

proportion of two agents is determined by following the same ratio of the two agent’s IC50 values.
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correlated and the majority (94.81%) of their variance can

be explained by the primary eigenvector. However, these

three centrality measures could not replace one another,

especially in the directed networks. Thus, we integrated

these three centrality measures to address the node

importance from different angles. Furthermore, the posi-

tive role of AS in NIMS was also shown in the agent pair

rankings. In the case study, the AS scores of Matrine,

Honokiol, Luteolin, Quercetin and Paeoniflorin sepa-

rately combined with Sinomenine were 0.1708, 0.1590,

0.1705, 0.1611 and 0.1414, respectively. These scores

reached an approximate rank with that resulted from

network topologies alone. The removal of the AS scores

ranked Luteolin ahead of Quercetin, suggesting that the

integration of AS, which reflects current knowledge

about complex diseases and agent actions, could improve

the predictive accuracy of NIMS by weighing TS.

The robustness of NIMS was also addressed with

respect to both agent genes and the background net-

work. By adding or removing agent genes randomly, the

permutation test results showed that the Spearman

Rank Correlation Coefficient (SRCC) was relatively

stable when adding genes, but the SRCC decreased dra-

matically when some key genes were removed (Figure

3a and Figure 3b). The results evidence that the NIMS

synergy score may be determined largely by some key

agent genes, and the rank results will remain stable as

long as these key genes are retained. Such phenomena

also agree well with that the power law networks are

robust with respect to deletion of random nodes, but

fragile with respect to deletion of hubs [40]. Moreover,

by deleting or importing additional interactions at differ-

ent percentages in the angiogenesis network, we found

that the NIMS outputs were quite stable even when 50%

of the edges were randomly removed or added (Figure

3c), indicating that NIMS is insensitive to both incom-

pleteness and noise regarding the background network.

Comparison with meet/min

To determine whether the synergy rank of agent pairs

could be obtained from corresponding agent genes

alone, regardless of network knowledge, we used the

meet/min method, a similarity measurement between

two gene sets that discards the network information

[41], to rank the agent pairs. The meet/min method is

believed to be simple but effective and non-biased [41].

Because the NIMS score and the meet/min coefficient

(ranging from 0 to 1) will both reach their maximum

when the gene set of one agent is merely the subset of

that of the other agent, we only investigated agent com-

binations with valid scores from 0 to 0.9. In general, a

relatively high correlation (SRCC=0.6251) between the

meet/min coefficient and the NIMS synergy score was

observed for all agent pairs. However, compared with

the experimental results, the performance of the meet/

min method was relatively poor in ranking synergistic

pairs with Sinomenine (Table 2).

NIMS synergy and GO function

We measured Gene Ontology (GO) co-annotations to

advance understanding of the underlying synergy

mechanism for agent pairs predicted by NIMS. All three

GO categories, Biological Processes, Cellular Compo-

nents and Molecular Functions, were considered. As

shown in Table 3, weak correlations were observed

between the NIMS synergy scores and the GO similarity

scores calculated from genes of each agent pairs. Results

showed that agents with synergy may not target the

same functional processes.

Features of synergistic agent combinations on the

angiogenesis network target

Practically, we treat the angiogenesis network target as

core subnetworks of angiogenesis network which contains

the intersection of a set of shortest path subnetworks

Figure 3 Permutation tests to assess the robust performance of NIMS. The permutations are performed by evaluating fluctuations of (a) TS

(Topology Score), (b) AS (Agent Score), and (c) the background network (angiogenesis network) and calculated by the average SRCC (Spearman

rank correlation coefficient) between the permutation outputs and the original scores.
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associated with individual or combinational drug actions.

To learn the exact features on the angiogenesis network

target derived from agent combinations with different

NIMS scores, we mapped the responsive genes of 5-flour-

ourcil, Vinblastine, Sinomenine, Matrine and Paeoniflorin

to the network target and the detailed network features

especially pathway crosstalks and feedback loops were ana-

lyzed. As shown in Figure 4, we found that the network

target could capture different synergistic responses

induced by three agent combinations with different NIMS

synery scores. For example, 5-flourourcil and Vinblastine

can affect KDR protein complex, the crosstalk between

AKT1 and MAPK1 pathways, the PTEN feedback loop as

well as two biological processes, endothelial cell prolifera-

tion and apoptosis, and four hub nodes (KDR, MAPK1,

JUN and TP53). The network target affected by Sinome-

nine and Matrine contains the crosstalk with EGFR, KDR

and TNFRSF1A pathways, the PTEN feedback loop, as

well as, four biological processes closely associated with

angiogenesis and two hub nodes (JUN and TP53). How-

ever, Sinomenine and Paeoniflorin with lower synergy

score can only affect two biological processes and one hub

node (TP53) (Figure 4).

Characterizing the mechanisms of multicomponent

synergy from a network target perspective

Despite the widespread occurrence of multicomponent

therapeutics, the molecular mechanisms that underlie

drug synergy remain unclear. Based on the above com-

putational and experimental results of NIMS, we

demonstrate that the network target can nicely interpret

the multicomponent synergy by its latent network

topology properties. We hence give a generalization of

the network target concept and NIMS parameters to

formalize our viewpoints on drug synergistic mechan-

isms. As shown in Figure 5, the shortest path distance

(min(di,j) in NIMS) can describe the protein complexes,

crosstalks as well as feedback loops in the network

formed by genes associated with two agents (Figure 5a),

the hub and betweenness (IP(v) in NIMS) denotes the

importance of genes or stimuli-influenced number of

molecules two agents affected (Figure 5b), and func-

tional modules means the biological processes two

agents targeted (Figure 5c). It is important to note that

these findings match well with the synergy phenomena

present in complex biological systems. The available evi-

dences showed that molecular synergisms can be

emerged from different aspects, for example, protein

complexes in cell-regulatory systems [42], crosstalk

[43-47] and feedback control in the structures of signal

pathways [48,49], stimuli-influenced number of mole-

cules (e.g. number of activated enzymes, receptors,

channels or transcription factors) [50,51] and gene

expression profile [52] in signal transduction process.

Thus, from the network target perspective, we can gain

a comprehensive understanding of drug synergistic

mechanisms on the basis of complex biological systems.

Discussion
Recently, with the growing understanding of complex

diseases, the focus of drug discovery has shifted from

the well-accepted “one target, one drug” model designed

toward a single target to a new “multi-target, multi-

drug” model aimed at systemically modulating multiple

targets [19,53]. In this work, we proposed the concept

of “network target”, which treats the disease-specific bio-

logical network and its key elements as a therapeutic

target, and established a NIMS approach to prioritize

the multicomponent synergy. NIMS combines network

topology and agent similarity, with regard to agent

genes as well as phenotypes. To demonstrate the cap-

ability of NIMS, we applied this algorithm to the priori-

tization of synergistic anti-angiogenesis agent pairs from

an empirical multicomponent therapeutic system, TCM.

Our results show that NIMS, especially when used

Table 2 Synergy ranks of five Sinomenine pairs resulted from NIMS, meet/min and cell experiment

Agent matched with Sinomenine NIMS rank The meet/min rank Experimental rank

AS × TS TS AS

Matrine 4 5 10 20 1

Honokiol 8 6 32 19 2

Luteolin 10 21 12 21 3

Quercetin 14 14 26 29 4

Paeoniflorin 29 22 52 6 5

AS, Agent Score; TS, Topology Score.

Table 3 Correlation of the NIMS synergy score with agent

genes’ GO co-annotations

Correlation of the NIMS score with GO similarity
score

Categories Biological
Processes

Cellular
Components

Molecular
Functions

SRCC 0.1649 0.0641 0.1571

p-value of
SRCC

0.1963 0.617 0.2182

GO, Gene Ontology; SRCC, Spearman Rank Correlation Coefficient.
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against the angiogenesis network, could not only suc-

cessfully recover known synergistic drug pairs (Table 1),

but also rank the anti-angiogenesis synergistic agents

matched with a given agent, Sinomenine (Figure 2).

Interestingly, two synergistic agent pairs predicted by

NIMS in the case study, Sinomenine and Matrine, and

Sinomenine and Honokiol, respectively, are main consti-

tuents of TCM herbal formulae such as Qing-Luo-Yin

[38] and Tou-Gu-Zhen-Feng pill. These preliminary

results demonstrate the potential of NIMS as a tool for

screening synergistic combinations from current drugs

as well as TCM herbs or herbal formulae.

NIMS uses the agent gene and phenotype information

plus network topology features. We demonstrated that

NIMS is robust to the collected agent genes if the key

genes are reserved (Figure 3a and Figure 3b). Moreover,

NIMS is also relatively robust to the background net-

work, although available networks such as the PPI net-

work are still incomplete and biased (Figure 3c) [54].

We consider the following aspects of NIMS may contri-

bute to such robust performances. (1) The gene set

information of agents not only reflects the knowledge of

agent action similarity, but also determines the meet/

min coefficient. We detected a potential correlation

between the meet/min coefficient and the NIMS score.

Thus the agent gene information itself ensures a rela-

tively stable performance of NIMS against different

types of networks. (2) The inherent agreement of topo-

logical features, a critical element in ranking synergistic

agent pairs, is embedded in the angiogenesis, HPRD and

KNC networks. On the contrary, poor performance is

seen when the network topology is fundamentally

altered, as in the MNC pathway network (Table 1).

Note that the MNC pathway network is constructed in

a different way (See Methods for details). (3) NIMS

only makes use of a small fraction of the network

around the network targets. Thus, it is relatively insensi-

tive to changes of the whole background network but

Figure 4 Features of synergistic agent combinations on the angiogenesis network target. a. 5-flourourcil and Vinblastine with known

synergy. b. Sinomenine and Matrine with the high NIMS synergy score. c. Sinomenine and Paeoniflorin with the low NIMS synergy score. The

nodes with red or blue colour denote responsive genes associated with two agents respectively.
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Figure 5 A network target perspective for understanding the mechanisms of multicomponent synergy. a. Two agents targeting a

protein complex, the feedback loop or crosstalk in a signaling network (the left figure) may have the shortest path distance and obtain high

NIMS synergy score compared to those do not (the right figure). b. Two agents targeting hub or betweenness nodes (the left figure) may

produce higher synergism than the combinations targeting peripheral nodes (the right figure). c. Two agents targeting two compensatory

modules related to one disease or the similar diseases (the left figure) may produce higher synergism than those targeting two unrelated

modules from unrelated diseases (the right figure). Dashed lines represent direct or indirect connections in a network. Blue or red nodes denote

the responsive genes of two agents respectively.
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very sensitive to changes in key genes. This fact under-

lines the importance of the network target as a deter-

mining factor responsible for both disease mechanisms

and agent actions in a network level.

We also evaluated the underlying synergy strengths

produced by agent pairs from the perspective of GO

functions. For 62 agents matched with Sinomenine,

there is relatively lower correlation between NIMS

synergy scores and GO co-annotations (Table 3). This

finding is not surprising, because synergistic effects in

multicomponent therapeutics could be achieved by

genes that are involved in different biological processes

related to a disease [1]. A disease or pathological condi-

tion is also characterized by the involvement of complex

biological processes with hierarchical organization.

Hence, synergistic agent pairs may not be restricted to

act on the same biological functions.

Based on the above results, we further investigated the

effects on the angiogenesis network target illustrated by

three agent combinations with different NIMS synergy

scores, namely 5-flourourcil and Vinblastine, Sinome-

nine and Matrine, and Sinomenine and Paeoniflorin

(Figure 4), and characterized the multicomponent syner-

gistic mechanisms from a network target perspective

(Figure 5). Interestingly, we found that the network tar-

get coupling with NIMS parameters can capture the

potential drug synergistic mechanisms from many

aspects covering protein complexes, crosstalk and feed-

back loop of pathways, and stimuli-influenced molecular

number [42-52], demonstrating the network target

could serve as a new mode of drug target and the NIMS

method is reasonable for identifying drug synergy. Such

features also make NIMS compatible and upgradeable

with other small-scale or large-scale network methods

regarding drug action mechanisms we developed

recently [9,55][22].

NIMS is a vital part in our NIDA (Network target-

based Identification of Drug Action and drug synergy)

system [56]. In previous studies, we demonstrate that

this system can also be used to prioritize effects of can-

didate drugs / herbs on one or more biological pro-

cesses related to given diseases [57]. To improve further

the quality and performance of NIMS, there are three

issues to be considered. First, the network target for a

specific disease can be generated by disease-causal gene

networks, disease-responsive gene networks or drug tar-

get networks. Due to the lack of understanding of com-

plex diseases, here we only adopt the responsive gene

network associated with a given disease or pathological

process such as angiogenesis. It is believed that the

more precise the network target is chosen, the more

accurate predictions will be obtained, as suggested by

the comparison results between the angiogenesis net-

work and three global networks. We will also evaluate

more useful parameters such as subgraph centrality and

information centrality to calculate the node importance

in both directed and undirected networks [58]. Addi-

tionally, the prediction obtained by NIMS may also be

improved if we make use of more information such as

the network Yin-Yang imbalance [25] or the side-effect

information to refine the network target.

Second, though we only conducted the pure com-

pounds to experimental studies, NIMS actually can be

flexibly used to multiple ingredients in each herb as long

as the related genes (agent genes) are available and reli-

able. To extend NIMS to more complicated conditions

or more than two agents, we can treat mixed agents such

as herb extracts and herbs as a group of compounds, and

the predicted ranks of NIMS depend only on what agent

genes are inputted and how accurate the agent genes are.

For agent genes, the present work merely considered

responsive genes associated with a limited number of

TCM agents. Hopefully, NIMS can be updated when

more precise information on drug targets is revealed for

more agents by experiments or recent developed predic-

tion tools such as drugCIPHER [55].

Third, as an initial effort for prioritizing synergistic

agent combination in a computational framework,

NIMS currently is a little bit simplified since it considers

only part of the synergistic effects at the molecular level

and currently does not make the distinction between

the synergistic and antagonistic effects. The tissue-level

synergism did not enter into our calculations. Further

studies will be devoted to quantitative analysis of

synergy, tissue-level synergy analysis, and pattern com-

parison between synergism and antagonism by integrat-

ing multilayer -omic data and spatio-temporal

information. The identification of the cooperative beha-

viours and mechanisms of multiple agents as well as

corresponding network targets will also be examined by

both in vitro and in vivo experiments.

Conclusions
In summary, our work demonstrates that the network

target-based methods are of importance for estimating

synergistic combinations and facilitating the combina-

tional drug development. NIMS can serve as a first-step

computational approach for the high-throughput identi-

fication of multicomponent synergy and the moderniza-

tion of traditional Chinese medicine. It is also a

promising way to elucidate the inter-relationship

between complex diseases and drug interventions

through the network target paradigm.

Methods
Data preparation

To obtain the empirical multicomponent candidates, 49

TCM herbs and 12 herb-derived compounds with
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potential anti-inflammatory, anti-angiogenic or anti-

tumor activities were selected from the 2005 Edition of

Chinese Pharmacopoeia, an official compendium of

drugs, covering traditional Chinese herbs, herbal formu-

lae and western medicines.Two chemicals 5-fluorouracil

and Rapamycin were also included and resulted in a

total of 63 agents. Five agent pairs among them were

reported synergistic action and retrieved as benchmark

data for NIMS outputs. By reading more than 2,000

references regarding agent actions from both PubMed

and the China National Knowledge Infrastructure

(http://www.cnki.net), available agent genes and agent

phenotypes were manually collected. The number of

genes for each agent ranged from 10 to 108. A total of

736 non-redundant agent genes were obtained. For cal-

culating Agent Score (AS), we collected the agent pheno-

type similarity scores from the study of van Driel et al

[31], in which the similarity score between two pheno-

types is determined by the cosine of their feature vector

angle, and the reliability of the score has also been

tested [31].

Angiogenesis network construction and three global

networks

The angiogenesis gene network was constructed by the

LMMA method we developed previously [17]. By using

the keyword “Angiogenesis OR Neovascularization”, we

retrieved 49,885 PubMed abstracts (until Feb 9, 2007),

in which 2,707 genes were identified with Entrez gene

ids and served as nodes of the angiogenesis network.

Two genes were considered linked if they had any rela-

tionship in the PPI from HPRD (release 7) [59] or path-

way interactions from KEGG [60]. We also employed

three types of global networks, the PPI network and two

types of global pathway networks merged from 201

KEGG human pathways, to evaluate the robustness of

NIMS in terms of the background network. In KEGG,

one node within a KEGG Orthology (KO) may denote a

group of genes/proteins, and one gene may belong to

different KOs. For example, K01090 contains 26 human

genes, and the gene CDKN3 is categorized in both

K01090 and K01104. Therefore, we built two distinct

pathway networks: the Keep Node Content pathway net-

work and the Merge Node Content pathway network. In

the KNC network, the original node content was kept

consistent, whereas in the MNC network, different KOs

with one or more overlapping genes were merged into

one node.

NIMS robustness analysis

By changing the parameters and then calculating the

correlation between the new and original NIMS scores,

we checked whether NIMS could perform robustly. All

three centrality measures (Betweenness, Closeness and

PageRank) for TS and the role of AS were analyzed.

Then, we conducted permutation tests and measured

SRCC between the permutated and original TS or AS

scores for the changes of collected agent genes as well as

the background networks. In this step, agent genes were

removed or added randomly from the angiogenesis net-

work, changing 10% of the genes at a time. Each itera-

tion of adding or removing genes was repeated 100

times. For angiogenesis network, we randomly deleted

edges and imported additional edges respectively at dif-

ferent percentages, each repeated 20 times, and mea-

sured the synergy score.

NIMS synergy and GO function analysis

To examine the association between biological functions

and the NIMS predicited synergy, we used permutation

tests and SRCC to evaluate whether the genes related to

the synergistic agent pairs predicted by NIMS tended to

have co-annotations in GO [61]. We used the Union-

Intersection (UI) score to analyze the GO functional

similarity for genes from each agent pair. The UI score

was calculated by the GOstats package in Bioconductor

[62], defined as UI
GOs g GOs g

GOs g GOs g
g g1 2

1 2

1 2
,

_ _

_ _
=




, where

GOs_g1 and GOs_g2 are the GO annotation term sets of

agent1 genes and agent2 genes, respectively.

Angiogenesis in vitro assay

We employed the commonly-used Endothelial Cell Pro-

liferation assay to verify NIMS predicted synergistic

effects on angiogenesis. Human Umbilical Vein

Endothelial Cells were obtained from Cascade Biologics

(Portland, USA), cultured in Medium 200 (Cascade Bio-

logics), supplemented with low serum growth supple-

ment including 2% fetal bovine serum and a well-

documented angiogenic growth factor bFGF (5 ng/ml)

stimulus. Sinomenine and the sampled partner agents

were purchased from the National Institute for the Con-

trol of Pharmaceutical and Biological Products, Beijing,

China. The concentration range of each agent was

obtained from literature and the IC50 value (the half

maximal inhibitory concentration) for each individual

agent was measured. To compare the interacted agents

under the same effect level, we determined the propor-

tion of each agent pair by following the same ratio of

the two agent’s IC50 values. For example, if the IC50

values of agent1 and agent2 are 10 and 100 respectively,

we set the proportion of this agent pair as 1:10 in verifi-

cation experiments. Each treatment was administrated

after cell growth for 24 hours in a 96-well plate. Cell

proliferation was estimated using a Cell Counting Kit

(CCK-8, Dojindo, Japan) after 48 hours of treatment.

Each experiment was repeated three times. By using the
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Bliss independence model [5], the synergistic strength

was determined by calculating: MIIR=max(IRsyn–IRadd),

where IRsyn and IRadd denote inhibition rates and the

Bliss additive value of an agent pair at a certain dose/

ratio.
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