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Abstract

Edmund Crampin (1973-2021) was at the forefront of Systems Biology research and his work will influence
the field for years to come. This paper brings together and summarises the seminal work of his group in
applying energy-based bond graph methods to biological systems. In particular, this paper: (a) motivates the
need to consider energy in modelling biology; (b) introduces bond graphs as a methodology for achieving
this; (c) describes extensions to modelling electrochemical transduction; (d) outlines how bond graph
models can be constructed in a modular manner and (e) describes stoichiometric approaches to deriving
fundamental properties of reaction networks. These concepts are illustrated using a new bond graph model
of photosynthesis in chloroplasts.
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1. Introduction

Edmund Crampin [1] made seminal contribu-
tions to Systems Biology which will remain influ-
ential in the field. One of his many research areas
was the energy-based analysis of biological systems
using the bond graph approach and he coauthored
an number of papers [2–17] and directly influenced
others [18–23]. This paper brings together and sum-
marises this work, illustrates the approach using
photosynthesis as an example and suggests future
research directions.

One of the great challenges in biology is under-
standing how the complex nature of biochemistry
leads to robust physiological function [24]. Math-
ematical models (and mechanistic models in par-
ticular) are essential to both bridging between the
vast range of biological measurements and making
sense of how biological systems function. However,
biochemical systems are highly diverse both in their
physics and in how they operate, making it diffi-
cult for a single modelling approach to consistently
capture all aspects of biology [25]. Nonetheless,
underlying all biological systems are the laws of
physics, particularly conservation of mass, charge,
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momentum and energy. Energy in particular is cen-
tral to life, just as it is central to physics: it can
be take different forms but can never be created or
destroyed. Thus, models that explicitly consider en-
ergy can connect and communicate with each other
through this conserved physical quantity (Figure 1).
Bond graphs build on this insight, combining en-
ergy transduction with the dynamics of biological
systems.
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Figure 1: Energy as a common currency of biological systems.
Cellular biochemistry comprises a diverse range of subsystems
spanning across different physical domains. However, as with
all physical systems, they share energy in common. Explicitly
modelling energy allows for disparate cellular processes to be
linked together.

Bond graphs were introduced by Paynter [26,
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27] to model the flow of energy though physical
systems of interest to engineers and are described in
several text books [28–31] and a tutorial for control
engineers [32]. Bond graphs provide a systematic
approach to elucidating the analogies between dis-
parate physical domains based on energy. They
are related to the behavioural approach to systems
dynamics [33] and to the port-Hamiltonian [34]
methodology. The basic principles of the bond
graph approach are discussed in § 2.

Bond graphs were first used to model chemi-
cal reaction networks by Katchalsky and coworkers
[35]. A detailed account is given by Oster et al.
[36] and an overview of the approach is given by
Perelson [37]. Katchalsky’s work was further de-
veloped in the context of chemical reaction systems
by a number of groups [38–43]. Later, this work
was extended in the context of Systems Biology
by Edmund Crampin’s group at Melbourne. These
extensions are discussed in § 3 – § 7.

Bond graphs represent the flow of energy though
systems and, as such, can be used to represent and
connect systems in more than one physical domain;
thus, for example, the transduction of chemical en-
ergy and electrical energy can be readily modelled
within this framework [5, 10, 19, 22]. Chemoelec-
trical transduction is discussed in § 4 in the context
of redox reactions.

Modelling complex biological systems requires
complex modelling problems to be broken down
into manageable pieces. This can be enabled by
developing models of subsystems that are subse-
quently coupled together in a hierarchical manner.
Because they are based on a graph structure, bond
graphs are relatively simple to merge, and the under-
lying physical representation ensures that merged
models remain consistent with the laws of physics
[13–16, 21]. In § 5, we discuss how bond graphs
can be embedded within reusable modules. This
process is facilitated by a set of Python-based tools
BondGraphTools [13]. § 6 discusses the rela-
tionship beween bond graphs, stoichiometric analy-
sis, pathway analysis and CRNs.

Photosynthesis [44–47] is an energy transduc-
tion system converting the energy of photons to
chemical energy stored as ATP via the transduction
of the energy of light, chemicals, electrons and pro-
tons. A simple bond graph model of photosynthesis
is given in § 7 and used throughout the paper to
provide illustrative examples.

§ 8 gives directions for future research.

2. Energy-based analogies

In the 19th century, James Clerk Maxwell ob-
served [48] that analogies are central to scientific
thinking and allow mathematical results and intu-
ition from one physical domain (e.g. electrical, me-
chanical or chemical) to be transferred to another.
Bond-graph modeling is based on three types of
analogies, namely, variable analogies, component
analogies, and connection analogies [32]. These
analogies arise in the essential elements of a bond
graph: bonds (§ 2.1), components (§ 2.2) and junc-
tions (§ 2.3).

2.1. Variable analogies and bonds

Bond-Graph Electrical Chemical
Effort Voltage Gibbs energy
e V (V) µ (J mol−1)
Flow Current Molar flow
f I (A) v (mol/sec)
Quantity Charge Molar amount
q =

∫ t
f (τ)dτ q (C) x (mol)

Table 1: Analogous variables. Systematic modeling, including
the bond graph approach, uses the concept of analogous variables
to bring together different physical domains. One such analogy
is the effort/flow analogy displayed here: each row contains
analogous variables, each column corresponds to a domain. In
each case effort× flow = power. Gibbs energy is also referred to
as chemical potential.

The bond graph approach of Paynter [26, 27]
uses the effort-flow analogy of Table 1. In particular,
Table 1 shows three categories of variable (effort,
flow and quantity) with examples from two physical
domains (electrical and chemical):

Effort variables, with the generic symbol e, includ-
ing mechanical force, electrical voltage and
Gibbs energy.

Flow variables, with the generic symbol f , includ-
ing mechanical velocity, electrical current and
molar flow.

Quantity variables, with the generic symbol q, in-
cluding electrical charge and mechanical dis-
placement. These are the integral with re-
spect to time of the correponding flows: q =∫ t

f (τ)dτ.

Additional domains, including mechanical, mag-
netic and thermal, can also be incorporated in this
scheme. We note that the quantity variables are
linked to effort and flows: effort has unit J/quan-
tity and flow has unit quantity/second. Thus, a key
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insight is that the product of the effort and flow
variables in each domain is power, that is,

effort × flow = power. (1)

Hence, different physical domains, despite dis-
parate effort and flow variables, have power in com-
mon. This insight leads to the definition of the
power bond which carries effort and flow variables;
in bond graph notation it has the symbol⇁.

In the context of biochemical systems, models
have a long history of incorporating flow. The effort
(chemical potential) has historically been neglected,
but has been considered more regularly in light of
new thermodynamic measurements [49] and mod-
elling studies using thermodynamics to restrict the
range of plausible parameters [50–52].

2.2. Component analogies and components

In addition to variable analogies, physical do-
mains often share similar mathematical equations.
These are encapsulated via component analogies.
Some components common to several physical do-
mains include the following:

R component, which can correspond to an elec-
trical resistor or a mechanical damper, dissi-
pates energy;

C component, which can correspond to an elec-
trical capacitor or a mechanical spring (or
compliance), stores energy through its charge
q =

∫
f dt;

I component, which can correspond to an electrical
inductor or a mechanical mass, stores energy
through its generalised momentum p =

∫
edt.

In the linear case the corresponding equations
for the R , C , and I components in terms of the
generic variables of Table 1 are, respectively,

e = r f (2)

e =
q
c
, q̇ = f (3)

f =
p
m
, ṗ = e (4)

where r, c, and m are constants describing the corre-
sponding physical system. In the electrical case, (2)
corresponds to Ohm’s law and (3) to Coulomb’s law;
in the mechanical case, (3) corresponds to Hooke’s
law, while (4) corresponds to Newton’s second law.
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Figure 2: 1 and 0 junctions

2.3. Connection analogies and junctions

Electrical components may be connected in par-
allel (where the voltage is common) and series
(where the current is common). These two con-
cepts are generalised in the bond graph notation as
the 0 and 1 junctions respectively. The 0 junction
of Figure 2(a) implies that all impinging bonds
have the same potential (but different flows). The
1 junction of Figure 2(b) implies that all imping-
ing bonds have the same flow (but different poten-
tials). The direction of positive energy transmission
is determined by the bond half arrow. As all bonds
impinging on a 0 junction have the same potential,
the half arrow implies the sign of the flows for each
impinging bond. The reverse is true for 1 junctions,
where the half arrow implies the signs of the poten-
tials.

To be explicit, Figure 2(a) shows a 0 junction
with four impinging bonds. The potentials on the
four bonds are equal and the four flows are related
by a single equation having regard to the half ar-
rows:

e1 = e2 = e3 = e4 (5)
f1 + f2 = f3 + f4 (6)

Similarly, Figure 2(b) implies that

f1 = f2 = f3 = f4 (7)
e1 + e2 = e3 + e4 (8)

These junctions therefore describe the network topol-
ogy of the system.

3. Chemical Reactions

Like all physical systems, biological systems
must comply with conservation of energy. Energy
is at the core of how biological systems operate
and has been proposed to have lead to the origins
of complex life [53]. It follows that understanding
living systems requires a modelling approach that
satisfies energy conservation. Bond graphs satisfy
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this requirement, as we discuss in this section. § 3.1
considers a simple reaction, §§ 3.2 and 3.3 intro-
duces the thermodynamics of species and reaction
components and § 3.4 shows how reactions can be
connected to form a network. § 3.5 looks at multi-
ple stoichiometry and § 3.6 details a diagrammatic
simplification of reaction components.

3.1. A simple reaction A r B

Ce:A Re:r Ce:B

µA

vr

µB

vr

Figure 3: Bond graph of the reaction A
r

B. µA is the chem-
ical potential associated with the chemical species Ce:A, µB is
the chemical potential associated with Ce:B and vr is the molar
flow associated with the reaction Re:r.

The simple reaction A B is shown as a
bond graph in Figure 3. This bond graph contains
two bonds (⇁) and three components Ce:A, Re:r
and Ce:B. Note that bond graph components follow
the convention of type:name, i.e. the component
type (e.g. Ce) is separated from the component
name (e.g. A) by a colon.

The bond graph is to be interpreted as follows:

Ce components represent chemical species. In
particular Ce:A and Ce:B represent the two
chemical species A and B respectively. They
are special cases of the bond graph C component
which store chemical energy in the same way
as electrical capacitors store electrical energy.

Re components represent reversible chemical re-
actions between species. The inward imping-
ing bond is associated with reactants and the
outward impinging bond is associated with
reaction products. In particular, Re:r repre-
sents the chemical reaction between the two
species A and B where A is the reactant and
B the product. It is a special case of the bond
graph R component which dissipates chemi-
cal energy.

It is important to realise that calling A and B
reactant and product respectively is a merely
conventional designation. The reaction can
proceed in either direction and is exactly equiv-
alent to the reaction B r A where the re-
actant and product designation is reversed.
The Re component is discussed in detail in
§ 3.3, p.5.

⇁ The components are connected by bonds (in
the bond graph sense of the word) represented

by⇁. The bonds transmit chemical energy
and are associated with a reaction flow v and
a chemical potential µ. (The annotation with
potentials µ and flows v is for clarity and does
not form part of the bond graph).

The half-arrow on the bond pointing into the
Re component indicates that species A is to
appear on the left-hand side of the reaction;
the half-arrow on the bond pointing out of the
Re component indicates that species B is to
appear on the right-hand side of the reaction.
The half-arrow does not represent direction of
flow; this is a reversible reaction and the flow
can be in either direction. It does, however,
indicate that a reaction flow from left to right
is regarded as positive and that from right to
left as negative.

3.2. The Bond Graph Ce component

The C component is the bond graph abstrac-
tion of an electrical capacitor and is used as such
in the context of electrochemistry in § 4. For the
purposes of modelling chemical species, it is conve-
nient to define a modified nonlinear C component:
the Ce component.

Thus, the Ce component represents a chemical
species with chemical potential replacing voltage
and molar flow replacing current [35, 36]. In solu-
tions with constant temperature and pressure, the
Gibbs free energy determines the chemical potential
of species [54]. Thus, the bond graph Ce component
for biomolecular systems accumulates a chemical
species A as the number of moles xA and generates
the corresponding chemical potential µA in terms
of the molar flow xA [2]. In dilute solutions, the
following relationships hold:

µA = µ
⊘
A + RT ln

xA

x⊘A
(9)

where xA(t) =
∫ t

0
vA(t′)dt′ + xA(0) (10)

where µ⊘A is the chemical potential of xA when xA =

x⊘A. When thermodynamic measurements are avail-
able, µ⊘A is often set to the standard free energy of for-
mation and the standard amount is set to xA = c0W,
where c0 is the standard concentration (often 1 M)
and W [litres] is the compartment volume. Equation
(9) may be rewritten in two ways:

µA = RT ln KAxA (11)

where KA =
1
x⊘A

e
µ⊘A
RT (12)
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and

µA = µ
⊘
A + RT ln

(
1 +

x̃A

x⊘A

)
(13)

where x̃A = xA − x⊘A (14)

Equation (12) is equivalent to that used previously
[2] and equation (14) is convenient when x̃A is small
and so:

µA ≈ µ
⊘
A + RT

x̃A

x⊘A
when

x̃A

x⊘A
≪ 1 (15)

3.3. The Bond Graph Re component
The R component is the bond graph abstraction

of an electrical resistor. In the chemical context, a
two-port R component represents a chemical reac-
tion with net chemical potential replacing voltage
and molar flow replacing current [35, 36]. As it is
so fundamental, this two port R component is given
a special symbol: Re [2]. The Re component de-
termines a reaction flow v in terms of forward and
reverse affinities A f and Ar as the Marcelin–de Don-
der formula [55]:

v = κ
(
exp

A f

RT
− exp

Ar

RT

)
(16)

where κ is a rate constant, A f is the sum of chemical
potentials in the reactants and Ar is the sum of chem-
ical potentials in the reactants. In the special case of
mass-action kinetics, κ is a constant. In more gen-
eral cases, κ may be a function of the forward and
reverse affinities A f and Ar or even the individual
chemical potentials µ of each reactant and product
[14, 15].

Thus, for the bond graph in Figure 3, the chemi-
cal potentials are given by

µA = RT ln(KAxA) (17)
µB = RT ln(KBxB) (18)

and the reaction rate is given by

vr = κ
(
exp
µA

RT
− exp

µB

RT

)
= κKAxA − κKBxB (19)

where the second equality arises from substituting
Equations (17)–(18). Thus, the differential equa-
tions of the system are

ẋA = −vr = −κKAxA + κKBxB (20)
ẋA = vr = κKAxA − κKBxB (21)

These are equivalent to mass action kinetics, but
formulated using the thermodynamic parameters
κ and K. This new parameterisation ensures that
models are thermodynamically consistent, which
kinetic parameters often fail to satisfy [10, 13].

3.4. Reactions with connections

1 Re:r 1

Ce:B

Ce:A

Ce:D

Ce:C

v

µA + µB

v

µC + µD
v

µA

v

µB

v

v

µD

µC

(a) A + B
r

C + D

Ce:A Ce:C

Ce:B

Re:r2Re:r1 0
v1

µA

v1

µB

v2

µB

v2

µC

µB v1 − v2

(b) A
r1

B
r2

C

Figure 4: Bond graphs of reactions with connections.

Bond graphs can represent reactions more com-
plex than the reaction A B discussed in § 3.1.
These require the bond graph 0 and 1 junction
components of § 2.3.

When a reaction involves more than one reactant
or product, 1 junctions are used. For example, Fig-
ure 4(a) is the bond graph representation of the reac-
tion A + B C + D. The left-hand 1 junction
enforces two constraints:

1. The flow associated with each of the three
bonds is the same (v).

2. To ensure chemical potential is conserved, the
effort (forward chemical potential A f ) associ-
ated with the bond connecting the 1 junction
to the Re component is the sum of the chemi-
cal potentials µA and µB associated with species
A and B:

µA + µB = A f (22)

Half-arrows pointing into the junction corre-
spond to the left-hand side of the equation
and half-arrows pointing out of the junction
correspond to the right-hand side of the equa-
tion.
The right-hand 1 junction is similar, but now
the effort (reverse chemical potential Ar) asso-
ciated with the bond connecting the 1 junction
to the Re component is:

Ar = µC + µD (23)

When a species is involved in multiple reactions,
0 junctions are used. For example, the reaction
A B C is represented by the bond graph
in Figure 4(b), where the 0 junction enforces two
constraints:
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1. The effort (chemical potential µB) associated
with each of the three bonds is the same.

2. To ensure mass conservation, the flow into
Ce:B is the difference between the flows as-
sociated with Re:r1 and Re:r2:

vB = v1 − v2 (24)

Again, half-arrows pointing into the junction
correspond to the left-hand side of the equa-
tion; half-arrows pointing out of the junction
correspond to the right-hand side of the equa-
tion.

3.5. Multiple stoichiometry

1 Re:r 1

Ce:B

Ce:A

Ce:D

Ce:C

µA + 2µB

v v

3µC + 4µD

µA

v

µC

µD
µB

v v

v

(a) A + 2 B 3 C + 4 D

Ce:FdRed

Ce:NADP

Ce:Hn

Re:r

Ce:NADPH

Ce:FdOx11

(b) Ferredoxin reductase

Figure 5: Bond graphs of reactions involving multiple stoichiom-
etry.

In some reactions, more than one molecule of a
species appears. There are two ways of representing
multiple molecules using bond graphs

1. Using multiple bonds [19].
2. Using the transformer (TF) component [2, 35–

41].

In this section, the multiple bond approach is used,
but the TF approach is used in § 6.

Figure 5(a) shows a simple example of the re-
action A + 2 B 3 C + 4 D. Here, the reaction
affinities are given by

A f = µA + 2µB (25)
Ar = 3µC + 4µD (26)

and the differential equations are given by ẋA = −v,
ẋB = −2v, ẋC = 3v and ẋD = 4v, where v is the rate
of reaction.

Figure 5(b) shows the ferredoxin redox reaction
which occurs in the photosynthesis electron trans-
port chain [44] and is discussed in § 4.2 and § 7:
2 FdRed + Hn + NADP 2 FdOx + NADPH

3.6. One-port Re component

Re:r

Ce:D

Ce:C

1

Ce:B

Ce:A

(a) A + 2 B 3 C +
4 D

Ce:FdRed Ce:FdOx

Ce:NADP

Ce:NADPH

Ce:Hn

R:r

1

(b) Ferredoxin reductase

Figure 6: One-port Re component. Figures 6(a) and 6(b) are one-
port Re representations of Figures 5(a) and 5(b) respectively.

While the two-port Re component is the most
precise way of representing a reaction, one can also
employ a shorthand to replace it with an R component
connected to a 1 junction. For example, the bond
graphs in Figures 6(a) and 6(b) are shorthands for
those in Figures 5(a) and 5(b).

This has two interpretations:

1. Since the shorthand representation preserves
the reaction thermodynamics and stoichiom-
etry, it can serve as a representation of the
model structure in the absence of kinetics or
regulation. Here, one can think of kinetics
and regulation as modulators of the resistance
parameter of the R component.

2. Under the assumption that all reactions fol-
low the law of mass action with positive sto-
ichiometries, there is a one-to-one mapping
between the shorthand and full bond graph.
Thus, the full bond graph can be uniquely
generated from the shorthand representation.

In some cases, the one-port representation pro-
vides a clearer representation of the conservation
laws of a biochemical network: this is used in
§ 4.2 and § 7. However, in general, the two-port
Re component is used to give a mathematically ex-
plicit representation.

4. Electrochemical transduction

The fundamental biophysical processes of life
involve the transduction of chemical energy and
electrical energy. To provide two examples, the
chemiosmotic theory of Mitchell [56] explains how
both chemical and electrical energy are stored in
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a trans-membrane proton gradient; and Hodgkin
and Huxley [57] show how the mutual transduc-
tion of chemical and electrical energy gives rise to
action potential in nerves. Because the chemical
and electrical domains are so intertwined, the analy-
sis and understanding of such systems is enhanced
by a common approach to the two domains. One
example of this is the proton motive force PMF of
chemiosmotic theory [45, 47, 58] which reexpresses
the chemical potential of protons as electrical volt-
age using the Faraday constant so that it can be
added to the electrical potential. A second exam-
ple is the notion of redox potential [47, 59] which
assigns a voltage to reactions involving electron
transfer.

A bond graph interpretation of chemiosmosis [19]
and membrane transduction [5, 10] has been devel-
oped. A general discussion of bioelectrical systems
in a bond graph context is given by Gawthrop and
Pan [22]. The notion of reexpressing chemical po-
tential as electrical potential is not just confined to
electrically-charged ions, but can be generally ap-
plied to any chemical species – charged or not [19].
This Faraday-Equivalent Potential is examined in
§ 4.1 and its implications for redox reactions are
discussed in § 4.2.

4.1. Faraday-Equivalent Potential

The conversion factor relating the quantities
charge and molar amount (see Table 1) from the
electrical and chemical domains is Faraday’s con-
stant

F ≈ 96 485 C mol−1. (27)

Noting that the units of electrical current are C s−1

or A and that the units of electrical voltage are J C−1

or V. Then the chemical potential µ [J mol−1] can
be reexpressed as ϕ [V] and flow v [mol s−1] can be
reexpressed as f [A] where:

ϕ =
µ

F
[V] (28)

f = Fv [A] (29)

For example, consider NAD at standard con-
ditions which has a chemical potential of µ⊖NAD =

18 100 J mol−1 under standard conditions. The cor-
responding Faraday-equivalent potential is ϕ⊖NAD =

188 mV. Similarly, a molar flow of v = 1 µmol s−1

has a Faraday-equivalent flow of about f = 97 mA.

4.2. Redox reactions

Redox reactions provide the energy required to
sustain life [59, 60] and the notion of the redox

C:E2C:E1

1 0 1 0 1Ce:FdRed

Re:r1 Re:r2 Ce:Hn Re:r3

Ce:NADPH

Ce:NADPCe:FdOx

Figure 7: Ferredoxin reductase (Figure 5(b)) in redox form. Here,
the overall redox reaction has been decomposed into two half-
reactions (Re:r1 and Re:r3) and an electron transfer reaction
(Re:r2).

potential is useful in describing their energetic prop-
erties. Both redox reactions and redox potential can
be clearly and explicitly described using the bond
graph approach. Redox reactions can be rewritten
as two half reactions which explicitly account for
electron transfer [47, 59]. Such reactions have a
bond graph representation [19]. For example, the
ferredoxin reductase reaction (Figure 5(b)) can be
rewritten in terms of two half reactions r1 and r3 and
an electron e– transfer reaction r2:

FdRed
r1 e –

1 + FdOx (30)

e –
1

r2 e –
2 (31)

2 e –
2 + H +

n + NADP
r3 NADP (32)

where e –
1 denotes electrons donated in half-reaction

r1 (30) and e –
2 denotes electrons accepted in half-

reaction r3 (32).
These half-reactions correspond to the bond

graph representation of Figure 7. Thus, the bond
graph component Re:r1, together with the com-
ponents C:FDred, C:FDox and connecting bonds
represents reaction r1 and the bond graph component
Re:r3, together with the components C:NADP, C:NADPH
and C:Hn and connecting bonds represents reaction
r3.

The ferredoxin reductase reaction in the redox
form of Figure 7 is used as a module in a modular
description of photosynthesis in § 7.

5. Modularity

By its very nature, systems biology is complex.
Constructing large-scale models requires smaller
ones to be composed together. A common chal-
lenge is finding interfaces for models to communi-
cate. Bond graphs provide a natural interface for
this: connections correspond to conservation laws
in physics (§ 2) [61]. Here we discuss two method-
ologies for connecting models.
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0Re:r1 1 SS:[P]Re:r2
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(a) Enzyme catalysed reaction (ECR) module

Ce:S ECR:E1 Ce:P
[S] [P]

(b) Enzyme catalysed S P (modular)

1

Ce:C

Ce:S

0

0Re:r1 1 Ce:PRe:r2

Ce:E

(c) Enzyme catalysed S P (full model)

Ce:X ECR:E1 Ce:Z
[S] [P]

Ce:Y

0 ECR:E2
[S] [P]

(d) Enzyme catalysed X Y Z (full model)

Figure 8: Modular representation of an enzyme catalysed reac-
tion. (a) A modular representation of an enzyme-catalysed reac-
tion (ECR). Here, the substrate S and product P are considered
external, and are represented as external ports (SS components).
This defines the reusable ECR module. (b) An enzyme catalysed
reaction S + E C E + P that uses the ECR module
in (a). (c) The full representation of the bond graph in (b). (d)
A bond graph representation of a series of enzyme catalysed
reactions X Y Z, where each reaction is catalysed by
the ECR module in (b).

5.1. Black-box modularity
Traditionally, bond graphs define modules through

a black-box paradigm that follows in the tradition
of engineering. Here, modules are independently
developed bond graph models with predefined inter-
faces to the external environment. This is useful in
cases where connections are known in advance, for
example, enzymes in a metabolic network [3].

Consider the enzyme-catalysed reaction

S + E C E + P (33)

In this network, we consider the substrates S and
P to be external since they interact with other en-
zymes. The enzyme states E and C are assumed
to be internal since they are isolated in the context
of metabolic networks (although this assumption
would need to be relaxed when enzyme abundances
are regulated through gene expression). The corre-
sponding bond graph is in Figure 8(a), where the
connection to the Ce:S and Ce:P components are
left unconnected, like an open port in an electrical
circuit. In bond graph notation, these are repre-
sented by SS components (SS:S and SS:P) that
label the external connections.

We define the enzyme module in Figure 8(a) to
be an ECR module. This can be reused within an
outer bond graph to construct a model of the full
reaction in Equation (33). This is shown in Figure
8(b). Because the ECR module has two ports, the
ports need to be explicitly specified so that the com-
ponents are connected correctly. These ports are
labelled using the red [S] and [P] labels, indicat-
ing that the Ce:S component is connected to the [S]
port and the Ce:P component is connected to the [P]
port. An equivalent full bond graph representation
is shown in Figure 8(c).

Another advantage of this modular representa-
tion is that the enzyme module is reusable. Two
enzyme catalysed reactions in series can be repre-
sented by the bond graph in Figure 8(d). This is
equivalent to the reactions

X + E1 C1 E1 + Y (34)
Y + E2 C2 E2 + Z (35)

Larger networks of such two-state enzymes can
be constructed through this approach. Furthermore,
more complex enzyme-catalysed mechanisms could
be implemented by replacing the ECR modules
with different modules [14].

5.2. White-box modularity
For many applications in biology, it is beneficial

for external ports to be defined in a flexible manner,
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1

Ce:C1

Ce:X

0

0Re:r1 1 Ce:YRe:r2

Ce:E1

1

Ce:C2

Ce:Y

0

0Re:r1 1 Ce:ZRe:r2

Ce:E2

(a) ECR1 module (b) ECR2 module

(c) Merged model

[Y] [Y]

ECR1 0

Ce:Y

ECR2
[Y] [Y]

Figure 9: A white-box approach to model composition. (a) An enzyme catalysed reaction X + E1 C1 E1 + Y, embedded
within the ECR1 module. (b) An enzyme catalysed reaction Y + E2 C2 E2 + Z, embedded within the ECR2 module.
During model merging, the Ce:Y component (shown in green) is common to both modules. It is therefore recognised as a point of
connection. The components are then replaced by ports (indicated by the red [Y] labels). (c) The merged model connects the [Y] ports
to a single Ce:Y component through a 0 junction to ensure mass conservation.

prior to coupling models together. For example,
a modeller may develop a model of a metabolic
signalling pathway without a priori knowledge of
the other pathways it may be connected to [62]. This
allows individual models to be simulated and tested
in isolation, while also being able to be merged with
other models without connections being defined in
advance.

Because bond graphs are graphical, they support
this flexibility [14, 15, 17]. Any one-port compo-
nent can be replaced by an external connection and
then connected to an external module. For instance,
the two enzyme reactions in Figure 8(d) could be
represented separately as Figures 9(a) and (b). In a
white-box modularity approach, the Ce:Y compo-
nents are recognised as being equivalent, and can
be merged through the following steps:

1. Disconnect the Ce:Y components in each
module and replace them with SS:Y com-
ponents.

2. Add the two enzyme modules to another bond
graph, which also contains a Ce:Y compo-
nent connected to a 0 junction. This ensures
a common chemical potential as well as mass
conservation.

3. Connect the two modules to the enzyme mod-
ules through the [Y] port.

The resulting bond graph gives the same model as
in Figure 9(c).

Model merging can be facilitated by unambigu-
ously annotating species and reactions using on-
tological terms from databases [63]. Using this
semantics-based approach, bond graph models can

be systematically merged by recognising equivalent
species and defining a set of graph-based rules to
merge the individual bond graphs [17].

6. Stoichiometry and Bond Graphs
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Figure 10: Stoichiometry of Bond Graphs

Stoichiometric analysis of biomolecular systems
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[64–67] looks at the null spaces of the stoichiomet-
ric matrix to derive fundamental properties of the
systems expressed as conserved moieties and flux
paths. Stoichiometric analysis is closely linked with
the bond graph approach [2, 18].

The stoichiometric matrix be directly obtained
from a bond graph [2, 3]; this is examined in § 6.1.
Conversely, a bond graph can be obtained from the
stoichiometric matrix [15]. Open systems can be
created from closed systems using the concept of
chemostats [4, 6, 68]; this is examined in § 6.2.
The stoichiometric concept of pathways has a bond
graph interpretation [6]; this is examined in § 6.3.
In parallel with the seminal work of Oster et al.
[35, 36], the mathematical foundations of chemical
reaction networks (CRN) were being laid by Fein-
berg [69], Horn and Jackson [70] and Feinberg and
Horn [71]; these results are collated by Feinberg
[72]. This approach to chemical reaction network
theory was further developed by Sontag [73], Angeli
[74], and van der Schaft et al. [75, 76, 77]. The re-
lation between CRNs and bond graphs is discussed
by Gawthrop and Crampin [7]; this is examined in
§ 6.4.

6.1. The stoichiometric matrix

In bond graph terms, a chemical reaction net-
work, such as that depicted in Figure 4(a), can be
thought of a number of reactions (represented by
Re components) connected to species (represented
by Ce components) by bonds. In particular, the net-
work of bonds relates the reaction flows f to the the
species flows ẋ. Collecting the nF reaction flows
into a column vector F and the nX species flows into
the column vector x, x can be expressed in terms of
F as

ẋ = NF (36)

N is called the stoichiometric matrix and contains
integer elements. For example, the stoichiometric
matrix of the example in Figure 7 is

N =



1 −1 0
0 1 −2
1 0 0
−1 0 0
0 0 −1
0 0 −1
0 0 1


(37)

where

x = (XE1, XE2, XFdOx, XFdRed, XHn, XNADP, XNADPH)T

(38)

and F = (v1, v2, v3)T .
Equation (36) relates the reaction flows F to the

species flows ẋ. As the bond graph approach is en-
ergy based, the stoichiometric matrix N appearing in
(36) can also be used to relate the corresponding en-
ergy covariables: the species chemical potentials ϕ
and the reaction potentialsΦ. In a closed system, the
net power flowing into the Ce and Re components
must be zero hence:

ẋTϕ + FTΦ = 0 (39)

Using Equation (36), Equation (39) can be rewritten
as:

FT NTϕ + FTΦ = FT
(
NTϕ + Φ

)
= 0 (40)

It follows that:

Φ = −NTϕ (41)

Thus not only does the stoichiometric matrix N re-
late the reaction flows F to the species flows ẋ, but
its negative transpose relates the species chemical
potentials ϕ and the reaction potentials Φ.

As discussed in § 3, it is necessary to decompose
reaction potential Φ into the forward potential Φ f ,
and the reverse potential Φr where:

Φ = Φ f − Φr (42)

Defining v f and vr as the flow covariables of Φ f

and Φr, v f and vr are the reaction flows correspond-
ing the the left and right hand sides of the reaction
equations. These are, of course, equal

v f = vr = F (43)

Nevertheless, it is convenient to decompose Equa-
tion (36) as:

ẋ = −N f v f + Nrvr (44)

where N f and Nr are the forward and reverse sto-
ichiometric matrices respectively, containing only
positive integer elements. Combining Equation (36),
Equation (43) and Equation (44), it follows that

N = Nr − N f (45)

Also, using the same argument as that leading to
Equation (41),

Φ f = N fϕ (46)
Φr = Nrϕ (47)

As discussed by Cellier and Greifeneder [40],
the pair of equations (36) and (41) are equivalent to
an (energy-transmitting) multiport transformer with
modulus N – the stoichiometric matrix. This leads
to the conceptual bond graph of Figure 10(a), where
TF is used to represent a multiport transformer, Ce
the Ce components and Re the Re components.
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6.2. Chemostats and Open Systems

As discussed by Gawthrop and Crampin [4, 6],
open biomolecular systems can be described and
analysed using the notion of chemostats [4, 68].
Chemostats have two biomolecular interpretations:

1. one or more species are fixed to give a con-
stant concentration (for example under a spe-
cific experimental protocol); this implies that
an appropriate external flow is applied to bal-
ance the internal flow of the species.

2. as a Ce component with a fixed state imposed
on a model in order to analyse its proper-
ties [3].

When chemostats are present, the reaction flows
are determined by the dynamic part of the stoichio-
metric matrix. In this case the stoichiometric ma-
trix N can be decomposed as the sum of two matri-
ces [4]: the chemostatic stoichiometric matrix Ncs

and the chemodynamic stoichiometric matrix Ncd

N = Ncs + Ncd (48)

Ncd is the same as N except that the rows corre-
sponding to the chemostat variables are set to zero [6].

With these definitions, an open system can be
expressed as

ẋ = NcdF (49)

The stoichiometric properties of Ncd, rather than N,
determine system properties when chemostats are
present.

6.3. Pathways

As discussed in the textbooks [64, 66, 67, 78],
the (non-unique [6]) nF × nP null-space matrix Kp

of the open system stoichiometric matrix Ncd (48)
has the property that

NcdKp = 0 where nP = nF − r (50)

and r is the rank of N. Ncd is an integer matrix and
therefore Kp can also be chosen to be an integer ma-
trix. This is achieved by performing row reduction,
as implemented in the Matrix.nullspace()
method from the Python sympy package. Further-
more, if the reaction flows F are constrained in
terms of the nP pathway flows Fp as

F = KpFp (51)

then substituting Equation (51) into Equation (36)
and using Equation (50) implies that ẋ = 0. This
is significant because the biomolecular system of

equation (36) may be in a steady state for any choice
of Fp.

Following the arguments of § 6.1, Equation (51)
can be interpreted as a bond graph multi-port trans-
former transmiting the energy flow FT

pΦp to FTΦ

and thus represented by the conceptual bond graph
of Figure 10(d). Defining

Np = NKp Np
f = N f Kp Np

r = NrKp (52)

give the conceptual bond graph of Figure 10(b).
Continuing the example of Figure 7 with the

reactions (30)–(32) and the chemostats are FdOx,
FdRed, Hn, NADP and NADPH (in that order), the
pathway matrix Kp is

Kp =
(
2 2 1

)T
(53)

From Equation (52)

Np =
(
2 −2 −1 −1 1

)T
(54)

This gives the pathway reaction:

2 FdRed + H +
n + NADP 2 FdOx + NADPH

6.4. Chemical Complexes
The formal concept of complexes is essential to

chemical reaction network theory [72]. Complexes
are the combination of chemical species forming
the substrate and products of the network reactions.
This section summarises the links between chemical
reaction network theory to the bond graph approach
by incorporating the concept of complexes – further
details are given by [7].

The complexes form the left and right hand sides
of chemical reactions and each is associated with
the coresponding reaction flow. Defining Z as the
matrix relating the species flows ẋ and the complex
flows f c, ẋ = Z f c. Further, defining D as the matrix
relating the complex flows f c and the reaction flows
f , f c = D f . Thus, ẋ = ZD f and the stoichiometric
matrix can be decomposed as N = ZD. As in § 6.1,
the matrices Z and D can be regarded as bond graph
junctions and bonds represented as transformers;
this is indicated in Figure 10(c).

As an example, consider the reactions (30)–(32)
corresponding to the reaction network of Figure 7.
The complexes corresponding to the three sets of
reactants are: FdRed, E1 and 2 E2 + Hn + NADP;
the complexes corresponding to the three sets of
products are: E1 + FdOx, E2 and NADPH. This
gives six complexes in total1. The relations between

1In general the complexes may not all be different [7].
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Figure 11: Ferredoxin reductase (Figure 7) in CRN form. The
7 species are mapped to the 6 complexes (Fdred, Fdox + E1, E1,
E2, 2 E2 + Hn + NADP, NADPH) by the bonds connecting the
7 upper 0 junctions to the 6 lower 0 junctions; this mapping
corresponds to the matrix Z. The 6 complexes are mapped onto
the three reactions by the bonds connecting the lower 0 junctions
to the Re components; this mapping corresponds to the matrix
D.

the three reactions, the six complexes and the seven
species are given graphically in Figure 11. The Z
and D matrices are given in the Additional Material.

7. Example: Photosynthesis

Photosynthesis within plant chloroplasts is the
basis of life on earth [44–47]. As shown in Fig-
ure 12(a), the chloroplast has a membrane sepa-
rating an inner space (lumen) from an outer space
(stroma). In the chloroplast, the lumen gains protons
and is called the p-space, the stroma loses protons
and is called the n-space [45]. Thus, geometrically,
the lumen corresponds to the mitochondrial matrix
and the stroma to the mitochondrial inter-membrane
space. However, electrically, the p-space is inside
and the n-space outside – the reverse of the mito-
chondrial situation.

7.1. Modular bond graph model

The chloroplast electron transport chain (ETC)
has 4 complexes, each of which is represented by the
bond graph modules of Figure 12(b): Photosystem
II (PII), Cytochrome (CYT), Photosystem I (PI)
and Ferredoxin - NADP reductase (Fer). As an
example, the bond graph for Fer is given in § 4.2,
Figure 7; the bond graphs for each of the other
three modules is given in the Additional Material.
The four modules were coupled using the white-box
approach described in § 5.2.

PII Photosystem II absorbs photons (P680) at wave-
length 680nm and splits water, releasing pro-
tons into the p-space and passing electrons to
the plastoquinone (PQ) – plastoquine (PQH2)

couple which absorbs protons from the n-
space. The net reaction is:

2 H2O + 4 Hn + 4 P680 + 2 PQ
4 Hp + O2 + 2 PQH2 (55)

A more detailed model would include mecha-
nisms of photon absorption [44].

Cyt Cytochrome passes electrons to the plastoquine
– plastoquinone couple which releases two
protons into the p-space. Electrons are passed
to the plastocyanine couple (PcOx – PcRed).
Two protons are pumped across the mem-
brane. The net reaction is:

2 Hn + PQH2 + 2 PcOx
4 Hp + PQ + 2 PcRed (56)

PI Photosystem I absorbs photons (P700) at wave-
length 700nm and transports electrons from
the plastocyanine (PcRed – PcOx) couple to
the ferredoxin (FdOx – FdRed) couple. The
net reaction is:

FdOx + P700 + PcRed
FdRed + PcOx (57)

Fer Ferredoxin-NADP reductase transfers electrons
from the ferredoxin (FdRed – FdOx) couple
to convert NADP to NADPH absorbing a pro-
ton from the n-space. The net reaction is:

2 FdRed + Hn + NADP
2 FdOx + NADPH (58)

Applying the pathway analysis of § 6.3, the modular
Electron transport chain has the overall reaction:

2 H2O + 10 Hn + 2 NADP + 4 P680 + 4 P700

12 Hp + 2 NADPH + O2 (59)

As well as generating NADPH from NADP and
splitting water, the reaction passes 12 protons from
the negative to the positive space. These are used to
generate ATP as shown in Figure 12(c), where four
protons are required to generate each ATP molecule
[46]. Applying the pathway analysis of § 6.3, the
modular bond graph of Figure 12(c) has the overall
reaction:

3 ADP + 3 HPO2 + Hn + 2 NADP + 4 P680 + 4 P700

3 ATP + H2O + 2 NADPH + O2 (60)

This reaction corresponds to the statement: “The ab-
sorption of eight photons yields one O2, two NADPH
and three ATP molecules” [46, § 19.4].
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Figure 12: Photosynthesis. (a) Schematic representation (Created by Somepics and used under CC-BY-SA 4.0 https://commons.
wikimedia.org/wiki/File:Thylakoid_membrane_3.svg). (b) Electron transport chain bond graph. The four modules
Photosystem II (PII), Cytochrome (CYT), Photosystem I (PI) and Ferredoxin-NADP reductase (Fer) are described in the text; the
bond graph representation for (Fer) is given in § 4.2, Figure 7 and the rest are given in the Additional Material. (c) Photosynthesis:
generating NADPH, ATP and O2 from photons. The module ETCg conprises the Electron Tranport Chain of (b). Four lumen protons
Hp produce one ATP from ADP and Pi consuming one stroma proton Hn and producing one H2O; the remaining three stroma Hn
protons are returned.
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7.2. Energetics
Photosynthesis, as summarised by reaction (60),

can be thought of as converting the energy of pho-
tons P680&P700 to the chemical energy of products
such as NADPH and ADP. By estimating the in-
put photon energy and the net energy of products,
it is possible to obtain an estimate of conversion
efficiency.

The standard formula [44] for the energy (J) of
a photon is

Ephoton =
hc
λ

J (61)

where h = Planck’s constant (62)
c = velocity of light (63)

and λ = wavelength (64)

This can be converted into energy per coulomb
(J C−1 or V) of photons to give

ϕphoton =
Nav

F
Ephoton =

Navhc
Fλ

V (65)

where Nav = Avogadro’s number

= 6.022 × 1023 mol−1 (66)
and F = Faraday’s constant (67)

For example:

ϕphoton =

1.82V λ = 680nm
1.77V λ = 700nm

(68)

Thus, from Reaction (60), the energy input corre-
sponding to one O2 molecule is

Φphoton = 4(1.82 + 1.77) = 14.38 V (69)

Redox reaction Em

NADP+ + H+ + 2 e– R1 NADPH -0.324
O2 + 4 H+ + 4 e– R2 2 H2O 0.816

Table 2: Redox potentials (at pH 7) from [44, Table A1.2].

A key challenge in the development of dynamic
models is the fitting of parameters to experimental
data, especially when thermodynamic constraints
need to be satisfied. Here, we use the thermody-
namically safe parameterisation provided by bond
graphs to resolve this issue [15]. Parameter estima-
tion depends on both the form of the model and the
type of data available. For example, a bond graph
model combined with reaction potential Φ data can
be used to estimate a consistent set of species poten-
tials ϕ [15]. Moreover, reaction potentials provide

a route to computing the efficiency of a chain of
reactions [9]. Using the close relationship between
redox potentials and reaction potential [19], this sec-
tion combines the bond graph model of this paper
with redox data for photosynthesis [44]. In particu-
lar, for a given half-reaction, the reaction potential
Φ is given in terms of the redox potential Em by

Φ = nEm (70)

where n is the number of electrons. Thus from
Table 2, the potentials for the reactions R1 and R2
are:

Φ1 = 2 × −0.324 = −0.648 V (71)
Φ2 = 4 × 0.816 = 3.264 V (72)

ATP hydrolysis (in the stroma) has the reaction R3:

ATP + H2O
R3 ADP + Pi + Hn (73)

Thus the chemical part of the chloroplast reaction
(60) can be decomposed in terms of the two reac-
tions of Table 2 and reaction (73) as:

2 × R1 − 1 × R2 − 3 × R3 (74)

According to [59, Case study 4.2], the standard
(at pH 7) Gibbs energy of reaction R3 is A3 =

34 kJ mol−1. From § 4.1 it follows that:

Φ3 =
A3

F
= 0.36 V (75)

Hence the overall potential of the chemical products
of the reaction is the negative of the potential of the
chemical part of the reaction:

Φchem = −(2Φ1 − Φ2 − 3Φ3) = 5.65 V (76)

Following [9], the efficiency η can be defined as the
ratio of the potential of the products to input driving
potential:

η =
Φchem

Φphoton
= 39.3 % (77)

The reaction potentials all correspond to standard
conditions; thus changing the concentarations would
change the product potential Φchem and thus the ef-
ficiency η. There are many possible definitions of
photosynthesis efficiency; one of these is Energy
Storage Efficiency which is given by [44, § 13.3] as
≈ 27 %. As this is based on the final carbohydrate
products this would be expected to be lower than
that of (77).
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8. Future research directions

The work of Edmund Crampin’s group sum-
marised in this paper provides the basis for energy
based modelling of living systems at all scales from
the cell to the human physiome. Such multi-scale
integrated models are have great potential for sci-
ence, medicine and biotechnology. To achieve this
promise, there is a need for research in a number of
areas.

The large amount of high-throughput data now
available, such as proteomics, metabolomics, lipidomics
and fluxomics, could be used to estimate the numer-
ical parameters for energy based models. While
initial work in this area has made use of fluxomics
data [15], further work is required to incorporate
other other biological data and to account for dis-
crepancies between datasets. To help characterise
uncertainty, sensitivity analysis of bond graph mod-
els [79] needs to be extended to large biological
systems. Parameter uncertainty in the probabilistic
sense, such as that employed in parameter balancing
[51], is also expected to play a role here.

Living systems contain many feedback loops.
These are essential to physiological function, and
form the basis for constructing networks in synthetic
biology. However, in contrast to traditional con-
trol systems, biological controllers are themselves
physical components and are subject to fundamen-
tal limitations in how they operate. Initial work has
characterised the use of passive control in biology,
as opposed to active control in engineering [23]. Fu-
ture work will extend this work to integrate control-
theoretical concepts and apply them in the context
of synthetic biology. Some synthetic constructs
have been observed to compete with the endoge-
nous pathways within the cell for resources [80].
An energy-based approach has the potential to op-
timise the performance of synthetic circuits while
minimally affecting the natural pathways inside a
cell.

Living systems have a significant spatial dimen-
sion including cell motility, blood flow and heteroge-
nous organs [81]. The port-Hamiltonian is a spa-
tial extension of the bond graph which has recently
been applied to biology [82]. However, modelling
biochemistry in this context remains the subject
of further work. Once the extension to spatial do-
mains has been achieved, we will be able to combine
high-throughput omics data with imaging data to
develop detailed, cell-specific models for medicine
and biotechnology [83].

Code availability
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//github.com/gawthrop/GawPan22.
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