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Abstract

According to the GLOBOCAN statistics, cervical cancer is one of the leading causes of

death among women worldwide. It is found to be gradually increasing in the younger popu-

lation, specifically in the developing countries. We analyzed the protein-protein interaction

networks of the uterine cervix cells for the normal and disease states. It was found that the

disease network was less random than the normal one, providing an insight into the change

in complexity of the underlying network in disease state. The study also portrayed that, the

disease state has faster signal processing as the diameter of the underlying network was

very close to its corresponding random control. This may be a reason for the normal cells to

change into malignant state. Further, the analysis revealed VEGFA and IL-6 proteins as the

distinctly high degree nodes in the disease network, which are known to manifest a major

contribution in promoting cervical cancer. Our analysis, being time proficient and cost effec-

tive, provides a direction for developing novel drugs, therapeutic targets and biomarkers by

identifying specific interaction patterns, that have structural importance.

Introduction

Approximately 528,000 new cases of cervical cancer were diagnosed and 266,000 deaths esti-

mated worldwide in 2012 [1, 2]. The incidence is found to be increasing gradually, mainly in

the younger population of women [3]. Though, the infection of human papilloma virus (HPV)

has an important role in the occurrence of the disease [4], the percentage of women developing

this cancer by infection of HPV alone is about 40% [5, 6]. This indicates that some other factors

like genetic susceptibility, dietary issues, environment and indecent lifestyle are responsible for

the onset of disease [3]. Inspite of huge investments and extensive research in the last few

years, the etiology of cervical cancer is still unclear [7]. Further, this neoplasm is an excellent

model for studying the mechanisms involved in cancer maintenance, and presents a reliable

way to monitor the biological alterations induced by the disease [8].

A previous study by Alsbeih et al., has shown that somatic mutations in PIK3CA, PTEN,

TP53, STK11 and KRAS as well as several copy number alterations lead to the pathogenesis of
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cervical carcinomas [9]. Few comparative screening analyses of diseased smears in regular

intervals have helped to diagnose the stage of cancer in the patient in a cost efficient manner,

but these analyses could not deliver successful results for patients in advanced stage [10]. Later,

studies on the chemokine network have instigated the researchers to target both chemokines

and their receptors for therapeutic intervention, either with antibodies or small molecule

antagonists [11]. However, both, complexity as well as variations at every stage of the cancer

renders designing drug targets very difficult [12, 13]. Systems biology approaches based on net-

work theory have allowed to investigate vast data gathered using -omics technologies (i.e., gen-

, transcript-, prote-, and metabol-omics) in a novel way [14]. Biological processes are consid-

ered as complex networks of interactions among numerous components of the cell rather than

independent interactions involving only a few molecules [15–17]. Earlier studies based on

human disease network reveals that various types of cancers are interlinked to each other

through number of pathways, which are altered in different diseases [18]. As cancer is a com-

plex disease, the representation of a malignant cell as a protein-protein interaction (PPI) net-

work and its subsequent comparitive analysis with its normal couterpart can provide an insight

into the behavior of cancer cells and may lead to the discovery of new biomarkers [19]. In this

study, we analyzed the PPI networks of cervix cells of the uterine tissue for normal and disease

states and investigated their structural properties. This comprehensive study enabled us to

identify differences between the normal and disease conditions. The structural parameters

depict some important proteins which are functionally significant in the occurrence of the dis-

ease and can be used for drug targets for a more effective treatment of the disease.

Results

Structural properties of cancer networks

The total number of proteins and their interacting partners obtained for normal uterine cervix

cell had 4481 nodes and 21801 connections, followed by 2636 nodes and 20040 links for cervi-

cal cancer datasets. From these datasets, we obtained various connected components referred

as networks. Different properties of the normal and disease networks are summarized in

Table 1. The first column in Table 1 indicated that the total number of proteins in the disease

dataset is less than that of the normal data. A probable reason behind this could be more avail-

ability of the normal data in comparison to the disease one. Another probable reason could be

that, in the disease state, many pathways are silenced or protein expressions are altered [20].

Also, for the disease state, there may be involvement of new proteins or pathways which might

have not been captured by the analyst yet. Next column in Table 1 depicted the average degree

Table 1. Network properties of all the real networks.

Network Nori N Nc hki D hCCi Ncc = 1 Ncc = 0

C1 1804 912 9132 20 7 0.31 32 163

C2 1804 724 5707 15 10 0.29 32 136

DNC 831 719 4711 13 8 0.31 37 141

NNC1 2677 694 3724 10 10 0.36 61 229

NNC2 2677 640 2263 7 12 0.27 49 275

The first column (Nori) represented the total number of proteins (nodes) in the normal not common (NNC1 and NNC2) networks, common (C1 and C2) and

disease not common (DNC) networks, collected using various databases (described in result and discussion section), number of proteins in the largest

connected cluster (N) and connections (Nc), the average degree (hki), diameter (D), average clustering coefficienthCCi, the number of nodes having

CC = 1 (Ncc = 1) and CC = 0 (Ncc = 0) for all the networks.

doi:10.1371/journal.pone.0135183.t001
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(hki) of the network. The third column denoted the diameter of the network which indicated

the ability of a network for signal transduction [21]. A lower diameter of the disease network

(DNC and C1) indicated a faster signaling of pathways when compared to the normal state.

This is biologically relevant, as disorders in cancer associated proteins promote the adaptability

of faster communication in many major cancer related cellular signaling processes [22]. Fur-

ther, we calculated the average clustering coefficient (hCCi) of all the networks along with the

total number of nodes having CC equal to one (Ncc = 1) as tabulated in Table 1. The nodes hav-

ing CC = 1 reflected the formation of complete sub-graphs or cliques comprising of the node

under consideration. Also, the higher value of hCCi implicated the existence of high number of

cliques or close to clique structure in the network [21]. Cliques are known as the building

blocks of a network, making the underlying system more robust and stable [23, 24], as well as

known to be preserved during evolution [25]. Networks having less number of cliques depicted

demolition of building blocks, indicating an unstable system which might be leading to the

occurrence of disease.

The degree distribution P(k), of all the networks for both the normal and disease dataset fol-

lowed power law (Fig 1). This demonstrated that in these networks nodes having very less

number of neighbors were in majority coexisting with a few nodes having a very large numbers

of interacting partners. Many other biological systems have been known to follow the power

Fig 1. Degree distribution. Degree distribution for C1, C2, DNC, NNC1 andNNC2 datasets following the power law behavior. Interesting observation is
recognised for the DNC network having double power law.

doi:10.1371/journal.pone.0135183.g001
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law degree distribution with the exponent lying between 2 and 3, suggesting scale free behavior

[17]. Another interesting observation was that the DNC network pertained two different

power laws as also found in many social and economic systems [26]. This behavior is not

found in other networks such as C1, C2, NNC1 and NNC2 and hence made the disease net-

work different. Also, for cervical disease networks, the exponent lied below two for all the net-

works, which may be due to the finite size effect [27].

In order to understand the complexity of interactions as well as to have a deep insight to

changes in the interaction patterns of the disease, a comparison of their properties with the cor-

responding random controls was conducted. Since, the degree sequence is known to be one of

the prime features which in turn affect many other properties of a network, random controls

were generated using the same degree sequence as of the real networks being investigated here.

Comparison with random control networks

We compared all the normal and disease networks with the corresponding configuration

model which is a random replica of the networks considered here. The configuration model

preserves the exact degree sequence of a network [28] by producing random networks for a

given degree sequence of an array of sizem ¼ 1

2

PN

i¼1
ki which have random connections

among different elements. We generated ten such realizations for a given degree sequence, vari-

ous properties of such networks are enlisted in Table 2.

On comparing all the networks with the corresponding configuration models, we found

that the properties of corresponding random controls, which were generated using the same

degree sequence as of the real networks, deviated significantly from those of the real networks.

Though, the diameter as well as the clustering coefficient of the corresponding random net-

works were small as expected [21], the interesting part was that, while the diameter of all real

networks were much larger than the corresponding random controls, the DNC network had

diameter very close to that of the corresponding random model. Since, the diameter of a net-

work is defined as largest of all the shortest paths in a network and reflects the ability of com-

munication among nodes within the network [29], a lower diameter of DNC close to the

corresponding randomized network signified that each node of the DNC network was attached

to other nodes in very few steps [21]. This further indicated that communication in DNC net-

work was faster in comparison to the other (NNC1 and NNC2) networks [29]. A plausible

interpretation for this can be that the signaling of the information in cancer cells was much

faster than the normal cells. The faster information flow in DNC may be a reason for improper

functioning in the cells leading to the diseased state for example the uncontrolled proliferation

of cells. Also, the impact of speedy propagation of signals have already been proven in the case

of epileptic seizures, where due to uncontrolled flow of information abnormalities occur [30].

Next, the clustering coefficient of the real networks were much higher than the configura-

tion model (Tables 1 & 2). These higher clustering coefficients indicated that, in the real net-

works, neighbors were well connected with each other. Also, we found nodes having CC equal

Table 2. Network properties of the corresponding configurationmodel.

Network hki D hCCi Ncc = 1 Ncc = 0

C1 20 6 0.11 10 219

C2 16 6 0.09 6 211

DNC 13 6 0.08 5 234

NNC1 11 6 0.08 11 313

NNC2 7 7 0.05 5 376

doi:10.1371/journal.pone.0135183.t002
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to one, which reflected that they are a part of complete sub-graphs (cliques). These cliques are

known to provide a clue for disease pathogenesis [31], indicating their importance in cancer

networks, a further investigation to these nodes may provide a better understanding of cancer.

Further, it is already reported that the high degree and high betweenness centrality nodes

are important since they are found in various pathways in a network [17, 32] and hence we

analyzed the degree-betweenness centrality correlation (k-βc) for all the networks and com-

pared them with their corresponding random models. We found that, the k-βc for all the com-

mon networks depicted an overall positive correlation as expected (Fig 2) because the high

degree nodes tend to have more betweenness centrality. This result was similar to their corre-

sponding configuration model (Fig 3). For all the real networks, the highest value of βc was

very high when compared to the corresponding configuration model (Figs 2 and 3). For exam-

ple, the highest βc of C1 was around 0.094, while the highest βc of the corresponding configura-

tion model was around 0.063. However, the interesting observation was noted in the DNC

network, where the highest value of βc was as low as that of the corresponding model (0.076 for

real and 0.085 for corresponding configuration model). Thus, the node having highest βc was

due to the degree of that node and no additional property was involved. An interesting thing to

note that, since corresponding model networks were generated using the same degree sequence

as of the real network, the βc of all the nodes in the network was automatically taken care of

Fig 2. Degree-Betweenness centrality correlation. All the real models common (C1 andC2), disease not common (DNC) and normal not common (NNC1
andNNC2) network have positive correlation.

doi:10.1371/journal.pone.0135183.g002
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according to their degree, and any deviation from it may be arising due to the special position

that node possessed due to its functional importance in the network. A lower value of βc indi-

cated no such preference of a high degree node present in DNC. In order to get a further insight

to the difference between the normal and disease states, we diverted our focus to a property

which gave us a detailed information about the local behavior of nodes in the network. As dis-

cussed earlier, CC of a node corresponds to the connectivity between the neighbors of that

node, we further analyzed the degree-CC (k-CC) correlations.

The k-CC of C1, C2 and DNC networks were overall negatively correlated (Fig 4) as found

for other biological systems [17]. However the graph of NNC1 and NNC2 indicated a deviation

from this correlation pattern. The NNC1 and NNC2 consisted of a part of interactions yielding

an overall negative k−CC correlation, with major part of interactions being random reflected in

absence of any k−CC correlations. This inturn depicted that the DNC subgraph have an orga-

nized pattern [33] whereas, NNC1 and NNC2 deviating from any correlation may be consid-

ered more random. This qualitative comparison were done on the basis of their random

pattern, as sufficient amount of randomness is an essential ingredient for the functioning of the

system [34]. The analysis inferred that the lack of minimum amount of randomness in the net-

work might be a cause of changes from the normal to the disease state by affecting the func-

tional unit of the system (cell) through mutation and alterations in the interactions of proteins.

Fig 3. Degree- Betweenness centrality configuration correlation. All the configuration models common (C1 andC2), disease not common (DNC) and
normal not common (NNC1 andNNC2) network shows low betweenness centrality compared to the real model.

doi:10.1371/journal.pone.0135183.g003
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We further investigated the functional importance of the nodes which were in the high

degree regime to understand the biological significance of these nodes in the occurrence of the

cervical cancer.

Functional properties of high degree proteins

We determined the degrees of the nodes in all the normal and disease networks and reviewed

the functional properties of all the highest degree proteins available from the literature as these

nodes are also known to be structurally very important. The proteins (nodes) having the dis-

tinctly high degree in disease states were VEGFA, DIF, IL6, PCNA, ESR1, CCND1, TGFB1. All

these proteins were known to have distinct roles in cancer development. It was found that

over-expression of VEGFA in cervical cell lines increased the tumor growth by activating

PI3K/Akt (Fig 5), and subsequently its downstream to the mTor signaling pathway [35]. Fur-

thermore, VEGFA-induced activation of mTor signaling cascades also promoted cancer cell

growth through cyclinD1 and CDK4 activation [36]. The invasiveness occurred through

MMP2 and MMP3, while inhibition of VEGFA decreased the tumor growth [37]. VEGF-medi-

ated signaling which occurred in tumor cells, contributed to the key aspects of tumorigenesis

including the function of cancer stem cells and tumor initiation [38]. Correspondingly clinical

Fig 4. Degree-Clustering coefficient correlation. The figure showed k−CC correlation of the common (C1 andC2), disease not common (DNC) and
normal not common (NNC1 andNNC2) networks, while the common and DNC networks reflected less random correlation, normal not common exhibited
more towards random correlation.

doi:10.1371/journal.pone.0135183.g004
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studies have verified that VEGF-C expression is closely related to invasion phenotype and

affects the patient’s survival in cervical carcinomas [39–41].

The second protein DIF induced cyclin D1 degradation in cervical cancer cell lines [42] and

regulated stalk differentiation. It invaded mainly the mitochondria and localized the mitochon-

dria in HeLa human cervical cancer cells [43]. The next protein in the high degree regime was

IL6, whose variation in host immune response by single nucleotide polymorphisms may con-

tribute in cervical cancer risk [44]. Additionally, due to chronic inflammation, IL6 cytokine

may increase the risk of developing cervical cancer [45]. It is already known that the cancer-

associated fibroblast senescence induced by high-risk -E6, activates IL-6/STAT3 signaling and

remodel tumor microenvironment favoring the development of cervical cancer after the elon-

gated latency of the disease. This indicated an option to deprive the activated IL-6/STAT3 net-

work against inflammation including fibroblast senescence in tumor microenvironment (Fig 6)

which may be considered as a complement to increase the efficacy of the targeted therapy

against HPV 16/18 in cervical cancer [46]. With activated STAT3, IL-6 emerges senescent at

early passages in cervical cancer tissues infected with high-risk HPV and activates the STAT3

and cellular senescence [47].

The next top high degree protein PCNA (proliferating cell nuclear antigen) increases due to

different grade of CIN (Cervical intra-epithelial neoplasia) lesions in cervical carcinoma. Its

positivity was also found to be increased from basal to superficial layers [48] and indicated the

chances of cervical carcinoma. As the grade of cervical lesion becomes higher from the normal

epithelium to SCC, the expression of PCNA is significantly increased [49]. Up-regulation of

PCNA was closely associated with HR-HPV and progressive CIN. However, the fact that

PCNA is also expressed in normal squamous epithelium precludes the use of this marker as a

potential screening tool for this cancer [50]. The protein having high degree in disease is ESR1

(Estrogen receptor-alpha). Studies revealed that the loss of ESR1 expression has a major role in

cervical cancer progression. Methylation of ESR1 was also found in many cervical cancer

patients [51]. The next protein CCND1, was found functioning in G to A polymorphism

(G870A) of cyclin D1 (CCND1), and changed its spliced transcript. Since transcript b, which

was expressed by the CCND1 870A allele lacked PEST motif and critical for the degradation of

cyclin D1, this process lead to an over accumulation of cyclin D1 in the cell which promoted

Fig 5. VEGF regulation by p53. The Figure depicted how HPV induced p53 imbalance and regulated the
expression of VEGF and PI3K/Akt pathway which in turn leads survival of cells and angiogenesis in cervical
cancer.

doi:10.1371/journal.pone.0135183.g005
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increased cell proliferation and was associated with higher tumor grading of cervical cancer

patients [52, 53]. The next protein TGFB1 functioned to stimulate apoptosis and inhibit the

growth factor. This also increased migration and invasiveness and resulted in metastases.

Metastases contributed to the development of different types of cancer [54]. Later, down regu-

lation of SMAD4, which affected the metastatic potentials in early stages of cervical cancer, was

associated with TGFB1 down regulation and incriminated cervical cancer [55].

Proteins (nodes) having the highest degree in normal states were CDC6, CCNA2, CENP-F,

MKI67IP. Among these, CDC6 played critical roles in DNA replication and carcinogenesis,

but biological significance of the CDC6 on cervical carcinogenesis is still unknown [56]. Also,

previous research on cervical cancer cases shows that CDC6 protein was preferentially

expressed in high grade lesions and in invasive squamous cell carcinoma indicating changes in

up-regulation of CDC6 thereby cell proliferation and invasion.[57] The next protein CCNA2

(also known as CyclinA2) was significantly over-expressed in various cancer types, which indi-

cated its potential roles in cancer transformation and progression [58]. However, cervical can-

cer and relation with this protein has never been reported to our knowledge. Some studies have

shown that over expression of cyclin A2 is associated with overall reduced survival [59, 60],

while others have reported an association with improved survival [61]. It may be possible that

cyclin A2-CDK contributes to tumorigenesis by the phosphorylation of oncoproteins or tumor

suppressors like p53 [62]. The protein CENP-F (Centromere protein F) possess significant cor-

relation of the expression of auto-antibodies with cancer and has been described in many stud-

ies [63]. It has also been reported that expression of CENP-F is an important predictor among

the genes highly expressed in tumors of patients with inferior survival [64]. Next, protein

MKI67IP is an rRNA transcription protein which is present in the tumor co-expression net-

work [65]. MKI67IP gene encodes a nucleolar protein that interacts with the forkhead-

associated (FHA) domain of the Ki-67 antigen, a proliferation related protein. MKI67IP inter-

acting with FHA might promote tumorogenesis as, FHA domain is a phosphopeptide-binding

domain present in a variety of nuclear cellular proteins involved in DNA repair, cell cycle

arrest, or pre-mRNA processing [66]. As of our knowledge, no experimental analysis is done to

confirm its involvement in tumor formation.

Fig 6. IL-6 regulation. The Figure depicted how IL-6 up-regulated the STAT3 protein by both autocrine and
paracrine signaling.

doi:10.1371/journal.pone.0135183.g006
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Further, we analyzed the functional role of the proteins common in disease and normal

states. The high degree proteins found common in both the normal and disease were TP53,

CK1, AKT1, SUMO1, SUMO2, SRSF1 and XRCC3. The first protein TP53 is clearly a compo-

nent of one of the pathways activated in response to DNA damage [67–71] and its mutations

in cervical carcinomas are associated with aggressive cancer and late occurrence in tumor pro-

gression [72]. Also p53 can inhibit cell proliferation by blocking entry into the S phase of the

cell cycle and is also a master regulator of apoptosis. The expression of p53 is increased pro-

portionally to the grade of CIN and cervical cancer. Therefore, p53 immunoreactivity can be

helpful to decide a neoplastic lesion, but absence of p53 does not exclude neoplasia [73]. Sev-

eral independent studies have already shown that mutation in the p53 gene is in small per-

centage of cervical tumors [74]. However, a growing body of evidence indicates that other

functions of p53 may be equally important to prevent or stall cancer development. During

stalling of its function apoptosis terminates but cancer cells proliferates along with mutations.

The second protein CK1 is found important for cell functioning but depletion or inhibition of

CK1 cancer cells results in reduced colony formation and various type of cell carcinoma.

Although, CK1 is highly expressed in tumor tissues, its loss from the cytoplasm is unexpect-

edly predicted in poor survival [75]. The function of Cdk1 is known as a tumor suppressor

protein which is the driving force for mitotic entry, and its activation is tightly regulated by

the G2/M checkpoint [76]. Some studies report that, over expression of C53 overrides the G2/

M DNA damage checkpoint to promote Cdk1 activation, thereby sensitizing cancer cells to

various DNA damage agents [77]. Although, during DNA damage response, activation of

checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 over expression and

thus contributes in tumorigenesis. The next protein is AKT1, whose abnormality leads to

defective signaling in many human cancers and mutations in the AKT pathway responsible

for cervical cancer [78]. Activation of AKT1 suppresses apoptosis in a transcription-indepen-

dent manner, which then phosphorylates and inactivates workings machinery of the apoptotic

pathway. In many types of cancers, activation or deactivation of multiple oncoproteins,

tumor suppressor cell signaling and metabolic regulation intersects the AKT signal transduc-

tion pathway [79]. The next protein SUMO1 is detected in some of the cancers and may be

used as a predictive marker for prognosis of cancer. A recent study demonstrates a significant

increase in protein sumoylation in two leukemic cell lines [80]. The effect can also be mea-

sured for cervical cancer. The protein is SUMO2 is also modified variety of cellular proteins

leads to the alterations in many signaling pathways associated with their target proteins [81],

but its role in cervical cancer is not clear. Further, the protein SRSF1 is up-regulated in cancer

and its transcription is activated by the prooncogenic transcription factor Myc. However

there is a significant difference in SRSF1 gene copy number that may account for its up-regu-

lation [82]. The next protein XRCC3 acts as DNA repair genes and its function is in the main-

tenance of integrity of the genetic material, and hence its dysfunction plays critical roles in

cancer development [83].

What follows that, all the proteins corresponding to the high degree in disease state have

a major contribution in promoting cervical cancer. The proteins having high degree in nor-

mal states also have a potential role in some of the cancers and may be present in cervical

cancer. Moreover, all the high degree proteins are important for the normal as well as the

disease state, but leading to a very different behavior of cell in the two states. In normal

cells these proteins are involved in house keeping functions of the cells, where as in disease

state these are all found to be either up or down regulated or mutated leading to the disease

state.
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Functional properties of proteins having CC = 1

Next, we explored the nodes forming complete sub-graphs i.e. proteins having CC = 1 in all the

networks as they were known to be important for a network. It turned out that for the common

networks, there were 64 proteins found which had CC = 1 (Table 1). Similarly, for DNC there

were 37 proteins (Table 1). Most of the nodes having CC = 1 lied towards a very low degree

regime. Initially, we considered only the distinctly high degree proteins from the list with

CC = 1.

From this analysis we found that the proteins having high degree and CC = 1 in common

and disease states were GSG2, CIT and SRPR, PRR11, HNRNPA0 respectively. We studied the

functional role of these structurally significant proteins from the available literatures and

experimental studies to understand their biological importance. The first protein, kinase has-

pin/GSG2 plays an important role in mitosis and protein kinase activity [84]. Over-expression

of haspin delays early mitosis [85], which disrupts cohesion binding and sister chromatin asso-

ciation. Manipulation in this pathway results in abnormal proliferation of cells and leads to

cancer [86]. Also, down-regulation of CIT (Citron) expression causes knock down of mitotic

kinesis and leads to reduction in KIF14 expression, which causes subsequent delay in mitosis,

and plays a major role in carcinogenesis [87–89]. Further, SRPR mediates the targeting of

nascent secretory and membrane proteins to the rough endoplasmic reticulum and participates

in WNT signaling pathway. Any dysregulation in WNT signaling pathways and mutation or

alteration in its expression level leads to carcinogenesis causing cervical cancer [90, 91]. Next,

PRR11 knock-down causes the dysregulation of multiple critical pathways leading to tumori-

genesis and metastasis [92]. Last protein, HNRNPA0 is a substrate of MK-2 and also an inter-

action partner of the 30terminal HuR clusters [93]. Over expression of HNRNPA0 contributes

to tumorigenesis by stabilizing mRNAs of cytokines and other growth regulators [94, 95]. Cells

with decreased HuR have reduced growth and indicate a role for RNA-binding protein in regu-

lating cell proliferation via cyclin mRNA stabilization, further implying that any imbalance in

HNRNPA0 may lead to activation of CCND1 protein which is a high degree node in the dis-

ease network thereby leading to an increased proliferation and invasiveness of cancer cells.

CCND1 is also a downstream target of WNT signaling pathway. So SRPR dysregulation may

also lead to the up-regulation of Cyclin D1 via WNT pathway. Thus, these proteins are found

either in cervical cancer cell line or anyhow responsible for the occurrence of different types of

cancers.

Discussion

We analyzed the cervical cells for the normal and disease states under the framework of net-

work theory. We investigated the structural properties of protein-protein interaction networks

for both the states, using average degree, degree distribution, diameter, betweenness centrality,

clustering coefficient and important correlations among these quantities of both the networks.

The degree distribution of all the networks is observed to follow power law as found for other

biological systems [17]. This indicated that in all the networks there were very few nodes hav-

ing very high degree. In addition, two power laws were found for the DNC network which

made the disease network different from other networks considered here. Also, all the normal

and disease networks had very high hCCi as observed for other biological networks indicating

well connected neighbors. The interesting observation emerged from the nodes having CC

equal to one, reflecting the existence of clique structure in the network. Cliques being consid-

ered important as preserved structures during evolution makes the system more robust and

stable. The nodes having CC equal to one were found to play an important role in occurrence

of the disease and may act as potential drug targets.
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Further in order to understand changes in the disease states from the normal we generated

random controls. The analysis reflected that in contrast to the DNC network, there was enor-

mous deviation in the properties of normal networks from the corresponding configuration

model. The interesting observation was that while diameter of all the real networks was much

larger than the corresponding random control, the DNC state had diameter very close to that

of the random controls indicating a faster signal processing or subtle changes in the proteins

that push the normal cells to develop into malignant cells in the disease network. We also ana-

lyzed the degree-betweenness centrality correlations of all the real and their corresponding

model networks. The overall k-βc correlation for all the networks was positive, but the striking

findings of DNC suggested that the value of highest βc in DNC was as low as that of its corre-

sponding random control. The lower value of βc of the nodes in the network implicated that

they do not come in many pathways. This emphasized that the highest βc of the node in the

network was only due to its degree and no other factors contribute in bringing it into the short-

est paths exhibited by other networks. Further, apart from betweenness centrality, there were

other properties which can predict the differences in the local behavior of both the normal and

disease networks and in order to do so, we analyzed the k-CC correlation of all the networks.

The k-CC correlation patterns (Fig 4) depicted that the disease network was less random

than the normal network. The DNC networks had comparatively good k-CC correlation indi-

cating modularity. The other networks were found to be deviating from this negative correla-

tion which was interpreted in terms of existence of random interactions in the network. Since,

randomness has already been emphasized as an essential ingredient for proper functionality of

underlying system, [34] disease being less random might be due to the removal of random con-

nections, in turn making disease network less robust.

On the basis of above inferences, we further analyzed the functional properties of high

degree proteins in the normal and the disease networks. We found that the proteins which

have high degrees in the disease state, were primarily responsible for the occurrence of the dis-

ease. The proteins which were high degree in normal states were not found responsible for cer-

vical carcinoma directly but their imbalance may have an important role in changing the

normal cells to cervical cancer progression (for eg. TP53 and AKT deregulation) as they exhib-

ited a significant role in other types of cancers.

Conclusion

To conclude, this framework of studying diseases using network biology and statistical meth-

ods provided time efficient, cost effective and a novel approach to understand the complexity

of the disease. The analyses also detect structural patterns of the proteins which were responsi-

ble for disease onset and progression. The analysis could be useful particularly for those dis-

eases about which much information is unavailable of their genes which are responsible for the

occurrence of the disease. The analysis also suggested that instead of targeting a single protein,

a group of proteins could be of profound implications and can result in developing novel drug

and therapeutic targets. This method could also be extended for analysis of other diseases such

as different cancers, neuronal disorders, environmental diseases etc to predict structural and

functional aspects of the disease state.

Materials and Methods

Data collection and network construction

The network is a set of nodes linked by the edges corresponding to a relations defined between

them. In a PPI network, proteins are the nodes and physical and chemical interaction between

pair of nodes depicting the links between them. In an attempt to obtain all the proteins of the
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normal and cervical cancer we got data from various sources i.e., from Uniprot KB (http://

www.uniprot.org/) [96], the cervical cancer database (CCDB) (http://crdd.osdd.net/raghava/

ccdb/) [97] and Proteome 2D-PAGE Database (http://web.mpiib-berlin.mpg.de/cgi-bin/pdbs/

2d-page/extern/index.cgi) [98] in addition to the data available from previous published litera-

tures. To keep the authenticity of data, we considered only those proteins into account which

are reviewed and/or cited. We also focussed on most widely studied cervical cancer cell lines

whose protein expression data is known in order to add more information. There are several

cell lines available but only a few have been exploited for their maximum proteomic insight.

Here, we used the data of HeLa cell line [99]. After retrieving the proteins for normal and dis-

ease datasets, their interacting partners were downloaded from the STRING database [100].

Adjacency matrix and structural measures

A number of statistical measures have been proposed to understand specific features of the net-

work [101]. In order to perform such analysis for cervical cancer, we defined the interaction

matrix or the adjacency matrix of the network as follows

Aij ¼

(

1 if i � j

0 otherwise
ð1Þ

The most basic structural parameter of a network is the degree of a node (di), which is

defined as the number of neighbors a node has ðdi ¼
Pn

j¼1
AijÞ. The degree distribution P(k)

reveals the fraction of vertices’s having degree k and is known to be a fingerprint of the under-

lying network [102]. Another important parameter is the clustering coefficient (CC) of the net-

work, for a node (CCi) which is defined as a ratio of the number of triangles a particular node

make with its neighbors and the possible number of triangles a particular node can make. The

clustering coefficient of a network can be written as,

hCCi ¼
1

N

X

N

i¼1

CCi; ð2Þ

The average clustering coefficient of the network characterizes the overall tendency of nodes

to form cluster or groups [101]. Further, the betweenness centrality of a node is defined as the

fraction of shortest paths between all the pairs of the nodes that pass through that node i[32]

and can be calculated as,

xi ¼
X

st

ni
st

gst
; ð3Þ

where ni
st is the number of shortest paths from s to t nodes that passes through node i and gst is

the total number of shortest paths from s to t in the network. Another parameter is the diame-

ter of the network which measures the longest of the shortest path between all the pairs of the

nodes [103].

Configuration model

We compared the real networks constructed as Eq 1 for the disease and normal states with the

corresponding configuration model [28, 104]. To construct a configuration model with degree

sequence (d1,d2. . .dN), where d1 � d2 � . . .� dN was taken to the degree sequence of the corre-

sponding real networks. We created a collection of N nodes such that first node had degree d1,

second node had degree d2, and so on. With equal and uniform probability, two nodes were
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picked up at random from the collection and they were connected. This process was repeated

till no node was left unpicked.
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