
Network Topology and Rainfall Controls on the
Variability of Combined Sewer Overflows
and Loads

GavanMcGrath1,2,3,4 , Thomas Kaeseberg5 , Julian David Reyes Silva5 , JamesW. Jawitz6 ,

Frank Blumensaat7,8 , Dietrich Borchardt9 , Per-Erik Mellander1, Kyungrock Paik1,10 ,

Peter Krebs5, and P. Suresh C. Rao1,11

1Environment, Soils and Land Use Department, Teagasc, Johnstown Castle, Wexford, Ireland, 2Ishka Solutions,

Nedlands, Western Australia, Australia, 3School of Agriculture and Environment, The University of Western Australia,

Perth, Western Australia, Australia, 4Department of Biodiversity Conservation and Attractions, Kensington, Western

Australia, Australia, 5School of Civil and Environmental Engineering, Technische Universität Dresden, Dresden,

Germany, 6Soil and Water Science Department, University of Florida, Gainesville, FL, USA, 7Eawag, Swiss Federal

Institute of Aquatic Science and Technology, Dübendorf, Switzerland, 8Institute of Environmental Engineering, ETH

Zurich, Zurich, Switzerland, 9Helmholtz Centre for Environmental Research UFZ, Magdeburg, Germany, 10School of

Civil, Environmental, and Architectural Engineering, Korea University, Seoul, South Korea, 11Lyles School of Civil

Engineering, Purdue University, West Lafayette, IN, USA

Abstract Water and pollutant fluxes from combined sewer overflows (CSO) have a significant impact

on receiving waters. The random nature of rainfall forcing dominates the variability of sewer discharges,

pollutant loads, and concentrations. An analytical model developed here shows how sewer network

topology and rainfall properties variously impact the stochasticity of CSO functioning. Probability

distributions of sewer discharge and concentration compare well with the results from a calibrated Storm

Water Management Model in an application to a sewershed located in Dresden, Germany. The model is

determined by only four parameters, three of which can be predicted a priori, two from the rainfall record

and one from the network topology using geomorphological flow recession theory, while the fourth can be

estimated from a short discharge time series. The sensitivity of CSO and wastewater treatment loads to

network structure suggests simple topologies may be more vulnerable to poor performance. The analytical

model is useful for evaluating various CSOmanagement strategies to reduce adverse impacts on receiving

waters in a probabilistic setting.

1. Introduction

With a preference for human settlement next to rivers globally (Fang et al., 2018), wastewater discharges

from urban areas have significant impacts on the health of riverine ecosystems and other human settle-

ments downstream. A large number of cities globally have combined storm water-sanitary sewer systems

that discharge only mechanically treated sewage to aquatic and marine ecosystems during heavy rainfall.

While urban wastewater treatment plants can take the majority of sewerage when present, combined-sewer

overflow (CSO) discharges, rich in nitrogen, phosphorous, heavy metals, antibiotics, hormones, and other

sanitary pollutants, can have significant environmental impacts (David et al., 2013; Phillips et al., 2012).

Impacts on ecosystems arise from chemical (i.e., oxygen depletion and nonionized ammonia peaks) and

physical (i.e., frequently increased bed shear) stresses that depend to a large degree on local conditions (Bor-

chardt & Sperling, 1997). Predicting the variability of CSO loads, concentrations and the frequency of events

are key to understanding their impacts and for working toward resilient and sustainable urban drainage

systems.

The variability of CSO functioning is a crucial component of its design. Key design criteria include dilution

rates in relation to dry weather flow, storage capacity in relation to design storms, an acceptable number

of overflows per year, a maximum tolerable pollution load, and a maximum CSO discharge (Riechel et al.,

2016). Accounting for the stochastic nature of rainfall is one of the key challenges in CSO treatment design

(Geiger, 1998). On the other hand, the sewer network controls the travel time distribution and also influences

the flows and therefore the distribution of loads (Lhomme et al., 2004). In the following, the hypothesis that
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both rainfall variability and the sewer network topology are significant controls on the statistical properties

of CSO functions are elaborated.

1.1. Rainfall Controls

Rainfall variability is a dominant control of CSO event timing, event loads, and concentration variability

(Coutu et al., 2012; Geiger, 1998; Sandoval et al., 2013). Short intense rainfall can promote elevated loads

in first flush events (Krebs et al., 1999). Long-duration, low-intensity events can lead to poorer efficiency at

an urban wastewater treatment plant, reducing the relative contribution of CSOs to river pollution (Phillips

et al., 2012). Rainfall event intensities correlate with CSO water quantity and pollutant loads, while event

duration and rain depth predict CSO pollutant concentrations (Sandoval et al., 2013). Under the chang-

ing climatic conditions, the frequency of intense rainfall may increase, which brings concerns about an

increasing frequency of CSO events (Semadeni-Davies et al., 2008; Sterk et al., 2016). These aspects of

CSO performance are suited to treatment as a stochastic process, specifically accounting for the statistical

properties of the timing and magnitude of rainfall events on the hydrological response (Botter et al., 2009).

1.2. Network Topology and Discharge Variability

Taking a nonlinear relationship between storage and runoff, Q, the continuity equation can be stated as

(Botter et al., 2009)

dQ

dt
= −kQ𝛼 + 𝜉(t), (1)

where k is related to the hydraulic residence time and 0 < 𝛼 is a flow recession exponent. The rainfall, 𝜉, is

assumed to follow amarked Poisson process with exponentially distributed times between events and event

depths. From equation (1) the probability density function (PDF) for long-term temporal variability ofQwas

previously derived, and the shape of the PDF was shown to be strongly controlled by 𝛼 (Botter et al., 2009).

The topological properties of river networks have also been shown to be related to 𝛼 (Biswal &Marani, 2014).

Through a decomposition of a river network into so-called independent links, a power law relationship

between the number of independent links N(l) and the total lengths of those same links, G(l), at a distance l

was derived, that is, N(l) ∝ G(l)𝛼 (Biswal & Marani, 2010). In rivers, at least, there appears to be an intrinsic

relationship between the network structure, the hydrological response, and the variability of discharge.

Sewers sharemany topological characteristicswith rivers (Yang et al., 2017). Like rivers, sewers followpower

laws in the area-distance relationship (Hack's law) and in the probability distribution of contributing area,

with exponent values similar to those found in rivers (Yang et al., 2017). A topological model also predicts

runoff characteristics from sewers, as in rivers (Lhomme et al., 2004). We therefore hypothesize that the

topological properties of gravity-driven sewer networks will influence the PDF of discharges, as well as

pollutant loads and concentrations.

1.3. A Utilitarian Perspective

Clearly, the structure of the sewer network and rainfall properties are important factors, together with regu-

lations and/or guidelines, impacting upon CSO design and function. The manager of a sewer system might

wonder what the use is to predict variability of a CSO system given that the rainfall properties cannot be

controlled or that only small changes to the structure of a sewer system can be changed at any one time.

First, in response, many parts of the world face the challenge of constructing sewer systems to keep pace

with rapid urbanization (Xu et al., 2019). As such there is a need for general design tools to plan future urban

infrastructure as distinct from comprehensive hydrodynamic models solving the mass and energy balance

equations for water and solute transport. Second, managers of established systems more and more need to

be aware of climate change impacts and to have a whole-of-catchment approach to managing sewer perfor-

mance. This necessitates a systems-scale understanding of the transformation of rainfall variability into the

variability of runoff production and sewer functioning.

Treating runoff as a stochastic process has led to recent insights into how urbanization is changing the

statistical properties of runoff as well as the variability of urban wash-off (Daly et al., 2014; Mejía et al.,

2014). A stochastic approach was recently developed to evaluate the variability of water storage within, and

discharges from a CSO tank (Wang & Guo, 2018). The process descriptions of storage and discharge used by

Wang and Guo (2018) are identical to those used to previously examine soil water storage (McGrath et al.,

2007; Milly, 1993) and the temporal clustering of threshold flow events (Aquino et al., 2017; Laio et al., 2001;

McGrath et al., 2007). Furthermore, there have been recent advances in understanding how the network
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structure of rivers influences the hydrodynamics of discharge (Biswal & Marani, 2010). As a result, there

is an opportunity to draw upon these new ideas in hydrology and apply them to improve the theoretical

underpinnings of the practice of CSO management.

In this contribution we develop analytical expressions for the PDFs of CSO discharges, loads, and concen-

trations with parameters derived from rainfall and the structure of the sewer network. The PDFs compare

favorably with the results of a calibrated StormWater Management Model (SWMM). The model developed

here allows a sewer system manager/designer to easily assess how changing rainfall patterns (e.g., climate

change scenarios) or urban growth (e.g., expansion and redesign of the sewer network) would impact CSO

functioning and the risks to urban rivers.

2. Stochastic Analytical CSO Network Yield (saCSOny)Model
2.1. Discharges, Concentrations, and Loads

The combined flows (and loads),Qc (Lc) at a CSO diversion, are given by the sum of the sanitary flow (load),

Qs (Ls), and urban storm water flow (load), Qu (Lu):

Qc = Qu + Qs, (2)

Lc = CcQc = Lu + Ls = CuQu + CsQs, (3)

where Qu is the stochastic storm water runoff, Qs is the sanitary discharge, and Cu is the solute concen-

tration in storm water, assumed to be constant and much smaller than the steady concentration in the

sanitary flow, Cs. Implicitly, we assume Lu ≪ Ls and that the above terms represent system averages and

thus describe well-mixed conditions at the catchment scale. Sanitary flows typically display strong diurnal

and weekly variability, while storm water flows vary significantly at subhourly time scales during rainfall

events. While Qs and Cs are initially assumed constant, this assumption is later relaxed, such that fluctua-

tions in the sanitary fluxes can be taken into account. The difference between Qc and a threshold discharge,

Qt, at a CSO diversion, determines the CSO discharge, QCSO = Qc − Qt, and the load during a CSO event,

LCSO = CcQCSO. The overflow structure is typically a weir, and when the water level in the upstream pipe

reaches a certain height, the weir overflows into the CSO pipes. These structures are constructed such that

the flow directed toward the wastewater treatment plant depends on the upstream flow rate only to a minor

extent. A simple threshold is therefore a good approximation to the hydrodynamics. The WWTP receives a

flow, QWWTP = Qc − QCSO, and a load, LWWTP = CcQWWTP. A stochastic model for Qu is described next from

which PDFs for the flows, loads, and concentrations are derived.

2.2. StormWater PDFs

Starting with equation (1), Botter et al. (2009) previously derived the PDF of discharges for rivers (the term

Qu here). In relation to equation (1), when 𝛼 = 1, the storage-discharge relationship is described as a linear

reservoir, such that flows decrease exponentially with time during the recession phase. The PDF of Qu in

this case is given by equation (A1). Flow recession in rivers, however, is often better described by power

laws (Wittenberg, 1999). When 0 < 𝛼 < 1, the nonlinearity is termed concave; when 1 < 𝛼 < 2, a range

often observed in rivers, the nonlinearity is termed convex; and finally, when 𝛼 > 2, the relation is termed

hyperbolic. For concave recession the PDF is given by equation (A2) (Botter et al., 2009). The PDFs of the

convex and hyperbolic models have the same form as equation (A2) without the Dirac delta term. For the

variables of interest (Qc, QCSO, QWWTP, Cc, LCSO, and LWWTP), we can apply a change of variables to derive

their PDFs from the PDFs for Qu (see Appendix A).

2.3. Accounting for Sanitary Discharge Variability

To take into account the diurnal variation in sanitary flows (Qs) and concentrations (Cs), they can be treated

as randomvariables, independent ofQu andCu. Using themarginal distribution rule, the PDF ofQc is related

to the marginal distribution of Qc, given Qs and the PDF of Qs, that is,

pqc
(
Qc

)
= ∫

∞

0

pqc
(
Qc|Qs

)
pqs

(
Qs

)
dQs. (4)

This is effectively a weighted average of the PDF of combined flows (equation (A4)), where the weights

are determined from the distribution of sanitary flows (pqs ). A short period of observed dry weather flows
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Figure 1. The Lockwitzbach sewer network and combined sewer overflow (CSO). Coordinates are UTM Zone 33
North.

suffice to estimate pqs . The PDFs of discharges to theWWTP and from the CSO can be rescaled similarly. To

derive the PDF of Cc, the same approach can be used together with the distribution of sanitary loads, pLs , or

alternatively the joint distribution of Qs and Cs using the marginal distribution of Cc (equation (A10)), and

the joint PDF of Qs and Cs that is,

pcc
(
Cc
)
= ∫

∞

0 ∫
∞

0

pcc
(
Cc|Qs,Cs

)
pqscs

(
Qs,Cs

)
dQsdCs. (5)

Practically, this is achieved by sampling a short time series of dry weather flows Qs(ti) and Cs(ti) at corre-

sponding times then averaging the resulting ensemble of pCc
(
Cc|Qs(ti),Cs(ti)

)
over the set of samples, at each

concentration, Cc, then normalizing the result to obtain a PDF. The complete set of equations are presented

in Appendix A.

Next, the above model (defined by equations (2)–(5) and (A1)–(A13), which we refer to as saCSOny) is

applied to a sewershed located in Dresden, Germany. The software R was used for data analysis (R Core

Team, 2018). All code used in this paper is documented in the supporting information), and the SWMMinput

and output needed to run the scripts can be found online (at https://doi.org/10.26182/5bbbff6fadf94). The R

code includes scripts to numerically determine the PDFs and their corresponding cumulative distribution

functions, analyze rainfall time series to determine the rainfall parameters, analyze SWMM input files to

calculate 𝛼 from the network properties, analyze a discharge time series to conduct flow recession analysis,

and reproduce all figures in the main text and supporting information.

3. Application
3.1. The Lockwitzbach Sewershed

The Lockwitzbach sewer network, located in Dresden, Germany, has a mean annual rainfall of 665 mm/a

(1981–2010), a potential evaporation rate of 605 mm/a and amean annual temperature of 9.4 ◦C (Deutscher

Wetterdienst, 2017). The sewershed has an area of 144.3 ha, with 36 ha of connected impervious surface.

Wastewater from approximately 7,630 inhabitants and storm water from primarily suburban land use are

collected by 12.83 km of pipes. Extraneous water does not impact upon this sewer network (Karpf and Krebs

2011). The CSO structure operates as a sideflow weir with a flow threshold of approximately 600 L/s. Excess

water is discharged into the Lockwitbach, an urban stream that drains into the Elbe River. A gate prevents

backflow from the stream or downstream pipes. The northern outlet of the sewershed provides a connection

for transport to the central Dresden WWTP.
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Figure 2. Empirical flow recession analysis: (a) discharge, Qc, and rainfall, P, time series for three of the five events
shown in b; (b) linear regression of the logarithms of the rate of change in discharge, and mean discharge, that is,
log(−dQc∕dt) = log(k) + 𝛼log(Qc), where the mean 𝛼 = 1.7 (Table S3); (c) the power law relation found between length
and number of independent links, that is, G(l) ∝ N(l)1.7; and (d) the associated decomposed sewer network of
independent links (color coded; Biswal & Marani, 2014).

A monitoring program of the joint Urban Observatory Dresden of Dresden University and the Helmholtz

Centre for Environmental Research-UFZ under the Terrestrial Environmental Observation Initiative was

established with the aims to analyze transport processes in sewer networks and the impacts of urban water

management on river quality (Helm et al., 2015; Wollschläger et al., 2016). For hydraulic and water quality

simulations, the open source software EPA-SWMM v. 5.1.011 was previously calibrated to these data (Deb

et al., 2002; Kaeseberg et al., 2018; Rossmann, 2010; Steinberg, 2015). The calibrated model was run with

a time step of 10 min, using rainfall at a similar temporal resolution. A 17-year simulation was produced

providing modeled discharge and ammonia concentrations at the CSO junction with a 10-min resolution.

Further details can be found in the supporting information (Text S2; Figures S1 and S2).

3.2. Parameter Estimation

The climate parameters, 𝜆 and 𝛾 , were determined from the precipitation time series (Text S2; Table S2;

Figures S3–S5). These parameters describe the exponential probability distributions of the time between

rainfall events and themagnitude rain events (Rodriguez-Iturbe et al., 1999). Aminimumrainfall-free period

of 5 hr, selected as the threshold to delineate distinct rain events, was chosen based upon the flow reces-

sion characteristics, which typically had returned to near pre-event flow rates within this time frame. Due

to the seasonality of rainfall, the analysis was separated into annual quarters defined as January–March

(JFM), April–June, July–September, andOctober–December. Precipitation totals for each event and the time

between the start of events were determined and found to be approximately exponentially distributed for

each quarter (Figures S3 and S4). The parameter 𝜆 was estimated by multiplying the frequency of actual

rainfall by the long-term runoff coefficient, 0.55. The parameters were estimated as the inverse of the mean

of the time between rainfall events and the mean storm depth, respectively (Tables 2 and S2), equivalent to

maximum-likelihood estimation (MLE). Potential for bias in the diurnal timing of events was assessed, with

JFM and October–December events distributed indistinctly from uniform distributions, indicating no bias

in timing at a daily time scale (Figure S5). Events in April–June and July–September were found to be sig-

nificantly different from a uniform distribution by the Kolmogorov-Smirnov (KS) test, with a preference for

early to middle morning events as compared to the late evening. While present, this bias had little impact

on the estimated PDFs.

The point in the network chosen to represent combined flows was the junction immediately upstream of

the pipe to the CSO structure (Figure 1). The parameters, k and 𝛼, were estimated from the mean of five

flow recession events (Brutsaert & Nieber, 1977; Figure 2; Table S3). Additional flow recession analyses
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Table 1
saCSOny Model Parameters

Parameter Value Estimation method

𝜆 0.30 d−1 Rainfall event analysisa

𝛾 0.54 mm−1

k 2 ± 0.03 mm1−𝛼 d𝛼−2 Flow recession

𝛼 1.7 ± 0.2 Flow recession and topology

Qs 11.3 L s−1 Empirical PDF of dry spell flows

Cs 57.2 mg/L

Cu 0 mg/L Assumed

Note. PDF = probability density function.
aJanuary–March rainfall parameters are listed with other seasonal parameters
listed in Table S2. Mean values for dry spell sanitary parameters are tabulated.
The 95% confidence interval is denoted by ±.

were performed on 93 events (Table S4; Figure S6), selected with the criterion that the maximum discharge

during the event. was >160 L/s (i.e., approximately 10 times the sanitary flow rate). Both analyses found

a mean 𝛼 = 1.7 and mean k = 2 mm1−𝛼 d𝛼−2 (Table 1). A log-linear relationship (Figure S6c) between

parameters was found between k and 𝛼. There was no evidence for a seasonal pattern in k or a normalized k

(Dralle et al., 2015). The geomorphological approach of Biswal and Marani (2014) was applied to estimate 𝛼

using the topology of the sewer network (Figures 2c and 2d). This independently resulted in the same value,

𝛼 = 1.7, as the mean measured recession exponent (Text S5). Separately, MLE was applied to estimate k

(MLE 1) and both k and 𝛼 (MLE 2) using pqc (Table S5).

The sanitary discharge concentration has a characteristic diurnal andweekly periodicity (Figures 3a and 3b).

A 2-week-long period of dry weather flows was used to determineQs and Cs, and from these their respective

PDFs, pqc and pcc (Text S6). Across the entire time series the Cc-Qc relationship is bound by strong dilution

(i.e., Cc ∝ Q−1
c
) with the variation of dry weather concentrations preserved over several orders of magnitude

of Qc (Figure 3c), supporting the use of the well-mixed assumption. Hysteresis is also evident in concentra-

tion discharge dynamics, indicating that mixing is not perfect during individual events and thus apparently

well-mixed conditions emerge over the ensemble of flow events.

Figure 3. Characteristics of the sewer dynamics with (a) dry period discharges, Qs (and probability density function
pqs ); (b) concentrations, Cs([NH

+
4
]) (and probability density function pcs ); and (c) the Cc-Qc relationship, bounded by

Cc ∝ Q−1
c .
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Figure 4. Probability distributions of Storm Water Management Model (SWMM) modeled and saCSOny predicted:
(a) discharge, Qc, and (b) concentration, Cc. Parameters as in Table 1. A posteriori fits of the probability density
function by maximum likelihood are also shown (MLE 1, where k was estimated with fixed 𝛼 = 1.7, and MLE 2,
where both k and 𝛼 were estimated; see Table S5). MLE = maximum-likelihood estimation.

3.3. Predicted PDFs of CSO Function

The observed PDFs for JFM discharge and ammonia concentration [NH+
4
] agree well with the PDFs pre-

dicted from a priori estimated parameters (Figures 4, S7, and S8; Text S7). A posteriori fits of the PDFs by

MLE (Table S5) have very similar shapes. The multiple modes stem from the diurnal variation in sanitary

flows and the roughness of the PDFs stem from the application of equation (5) using a fine discretization of

the empirical PDFs of Qs and Cs. Importantly, the PDFs capture the long tails of both distributions, which

is necessary to correctly capture the load distribution for CSO events.

Despite the similarity, one-sample KS tests reject the hypothesis that the empirical and model PDFs share

the same distribution. As the KS tests develop statistics based upon the maximum deviation between the

distributions, it is a conservative test. The failure of the test may stem from some clear differences between

the two distributions. For discharge in the range of flows close to the upper end of sanitary flows (20 L/s)

the saCSOny model tends to slightly over predict the likelihood of discharges. Similarly for concentrations

near the lower end of sanitary concentrations (30 mg/L). The latter may be due to the overprediction of

discharges. Small tomedium rainfall events of long duration and low intensity, not well described as Poisson

shocks, may be another contributing factor. Hydrodynamic processes such as storage, pipe friction, and

hydrodynamic dispersion may also have an influence. Despite some minor deficiencies, the simple model

is able to capture significant features of the PDFs, from a just 2 weeks of observed dry weather flows and a

handful of flow recessions.

4. Sensitivity Analysis

In the following subsections the effects of the four model parameters are illustrated (Figures 4–6 and

S9–S11). The values listed in Table 1 form the base scenario and sensitivity analysis is conducted by

systematically varying the others.

4.1. Network and Hydrodynamic Controls

Flow recession has a significant impact upon CSO functioning (Figure 5). As 𝛼 decreases the mode of pqc
increases near Qs, intermediate flows become more probable and larger flows less likely (Figure 5a). The

PDF pcc is a mirror image of pqc , with lower concentrations less likely with higher 𝛼. For small 𝛼 there is the

potential for the PDF to become bimodal (Figure 5b). Interestingly, the probability of high QCSO increases

with decreasing 𝛼 until 𝛼 = 1 and then with further decreases the probability of high discharges declines

(Figure 5c). The frequency of CSO events first increases as 𝛼 increases, then for 𝛼 > 1 event frequency

decreases again (Figure 5c). The distribution of WWTP discharges resembles that of Qc, albeit truncated

at the acceptance threshold, Qt (Figure 5d). For the parameters used, the PDFs of CSO load are relatively

uniform for 𝛼 > 1 indicating a wide range of loads are equally probable (Figure 5e). The load probabilities

decrease and increase in accord the the frequency of CSO discharge. The likelihood of smaller loads to the

WWTP changes similarly with 𝛼, peaking at 𝛼 ∼ 1.5 in this instance (Figure 5f).
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Figure 5. The impact of the flow recession parameter, 𝛼, on probability density functions of: (a) Qc; (b) Cc; (c) QCSO;
(d) QWWTP; (e) LCSO; and (f) LWWTP. Parameters used: Cs = 100 mg/L, Qs = 15 L/s, Cu = 0 mg/L, k = 2 mm1−𝛼 d𝛼−2,
𝛾 = 0.45 mm−1, 𝜆 = 0.3 d−1; Qt = 100 L/s. Lines denote the continuous part of the probability density function
(left axes) while the circles denote the atom of probability (right axes). For Lcso and Qcso the points correspond to
Lcso = 0 and Qcso = 0.

Longer mean residence times (smaller k) increase the probability of larger combined flows, lower concen-

trations in combined flows, higher flows from CSOs, higher flows to WWTPs, and higher loads (Figure 6).

Of the hydrological parameters 𝛼 is a key influence on the probability that a CSO is discharging (Figures 7).

The parameter k, which controls hydrodynamic response times, influences the probability of CSO discharge

at smaller values. The discharge threshold is also significant with declining likelihood of CSO discharge the

higher the threshold and at higher thresholds seasonal differences in the rainfall become more significant

(Figure S9). Some variability of the discharge threshold could be expected to occur due to the hydraulics

of pipe flow. Some variability is also due to discharge measurement errors, as practical CSO construction

often differs from principles of weir design for the purposes of flow measurement (Ahm et al., 2016). The

effect of variation in Qt on the frequency of CSO discharge can be inferred from Figure S9. In the case of

Lochwitzbach 10–20% variation in Qt would produce small differences in the order of magnitude estimate

of the CSO frequency. Smaller thresholds however would result in larger absolute errors.

4.2. Climate Controls

Rainfall has a significant impact on function, as expected. Increasing rainfall frequency (also increasing

total annual rainfall) shifts the PDFs of Cc such that lower concentrations are more probable (Figure S10).

This is in response to greater rainfall overall. The effect of increasing mean rain event depth (1∕𝛾) is similar

(Figure S11). Increasing rainfall frequency and mean rain event depth increases the probability of CSO

events and higher loads as both contribute to greater overall rainfall (Figures 7b, S10, and S11). The impact

of fewer but more intense rainfall can be seen in the frequency of CSO events (Figure 7b). Climates of
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Figure 6. Sensitivity analysis to the flow recession parameter, k, with 𝛼 = 1.7. All other parameters as in Figure 5.

equal mean rainfall lie along lines with a slope of 1 in that figure, and it can be seen that a shift from a

high-frequency, low-intensity rainfall to a low-frequency, higher-intensity rainfall results in an increasing

probability a CSO is discharging.

5. Discussion

The saCSOnymodel quantified relative roles of climate and network parameters in controlling the statistics

of CSO functions. The important role of climate is well known. Perhaps less well recognized is the significant

effect that the network topology has upon the variability of CSO functioning.

5.1. Network Controls

For Lockwitzbach at least it was demonstrated that the topology of the sewers could predict 𝛼. More work

needs to be done to establish the extent to which this is more generally applicable to sewers. The empirical

studies linking flow recession to topology have all been conducted on rivers to date (Biswal &Marani, 2014).

With sewersheds evolving from simple linear features at early stages of development, toward fractal objects

with topological properties of rivers, we expect 𝛼 to change as they grow (Yang et al., 2017). Biswal and

Marani (2014) suggested 𝛼 ∼ 1∕(1 − H), where H ∼ 0.6 is Hack ́s exponent. For sewers it has been shown

H decreases from ∼1 to 0.6 as they matured (Yang et al., 2017), which suggests 𝛼 decreasing from∞ to 2.5

during growth. While the relation suggested by Biswal and Marani (2010) may be valid for mature river

networks, this suggests it may not be relevant for growing sewers. Intuition suggests that early on flow

resembles a simple linear reservoir (i.e., 𝛼 = 1) and as the complexity of the network develops 𝛼 likely

increases. If this were the case, the sensitivity analysis suggests that for the Lochwitzbach at least, high CSO

loads and discharges tend to be more probable when 𝛼 ∼ 1 (see Figure 4); thus, poor performance of the

CSO is more likely.
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Figure 7. Proportion of time (log10) a CSO discharges as a function of (a) the topology/hydrodynamic parameters and
(b) the rainfall parameters. Parameters used include Qt = 100 L/s, an impervious catchment area of 36 ha and for
(a) 𝜆 = 0.3 d−1, 𝛾 = 0.45mm−1; and (b) 𝛼 = 1.7, k = 2mm−0.7 d−0.3.

For k the expected changes seem to be clearer, as it is expected to decrease as the length of the pipe network

and as the total area of connected impervious surface expands. The parameter k can be impacted by numer-

ous factors. Longitudinal growth of the network would lengthen mean travel times of water and reduce k.

Green infrastructure may also delay and lengthen travel times as a design goal. The results for Lockwitbach

suggests that the frequency of CSO events would decline further were k to decrease.

A take-home message for a sewer manager is that alternative network structures will have varying flow

recession exponents and, as a result, varying water quality outcomes. Designing the right structure, from

a network perspective, has the potential to lower the costs and reduce the constraints to mitigate CSO

impacts on receiving waters. The Lockwitzbach was the first sewer system in which 𝛼 was predicted from

the topology, so much more work needs to be done to evaluate this approach and identify its limitations in

application to other sewersheds. Additionally, to design for growing infrastructure sewer manages would

be further supported by providing them with knowledge as to how to design a network to achieve a set of

hydrodynamic parameters and to predict how these properties age as the sewersheds self-organize over time

(Semadeni-Davies et al., 2008).

5.2. Climate Controls

Regional, seasonal, and interannual variations in rainfall properties vary significantly andmay explain large

differences in CSO performance. We see (Figure 7) that increasing the likelihood of large rainfall events

(smaller 𝛾) leads to increased frequencies of CSO events (Sterk et al. 2016). As the model assumes exponen-

tial distributions of rainfall depth and intereven times, it is best suited to describing what happens during

typical conditions and may not be best at describing very rare events.

Catchment managers cannot be expected to control the rainfall, as one reviewer pointed out, but it should

be remembered that 𝜆 is an effective rainfall event rate, incorporating the filtering of smaller, nonproductive

events, and thus the runoff coefficient. Catchment managers can therefore directly influence the course of

𝜆 by supporting green infrastructure, pervious paving, and managing the connectivity of impervious area,

among others actions. For example, green infrastructure can increase infiltration, increase detention stor-

age, and reduce the peak flows of urban runoff, thereby reducing CSO loads (Riechel et al., 2016). Increased

detention storage would decrease 𝜆 though not significantly impact 𝛾 (Rodriguez-Iturbe et al., 1999). A 𝜆 for

green infrastructure, 𝜆g, can be estimated as 𝜆g = 𝜆 exp(−𝛾s), where s is the effective catchment-scale deten-

tion storage added. In the case of Lockwitzbach the effect of adding an extra 1 mm of detention storage as

green infrastructure would reduce the JFM 𝜆 from 0.3 to 0.17 d−1. Assuming that 𝛼 and k remain unchanged

the frequency of CSO discharges would be expected to decrease approximately threefold (Figures 7b and

S10). Naturalmultidecadal variability and climate change-related impacts on rainfall patterns therefore have

the potential to impact water quality outcomes (Mellander et al., 2018; Semadeni-Davies et al., 2008; Sterk

et al., 2016). The saCSOnymodel offers the potential for sewer systemmanagers to better plan for a mitigate

these impacts.
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5.3. Mixing Assumptions

The C ∝ Q−1 relationship, bounding the SWMM-simulated values (Figure 3), may be partly the result of

the assumption in SWMM that individual pipes are completely mixed, high-dispersion reactors (Rossmann,

2010). This need not necessarily be the case at the scale of a sewershed; however, in the case of the entire

Lochwitzbach sewershed, well-mixed conditions remain a reasonable approximation. Contrasting spatial

distributions of storm water and sanitary inflows likely determine to what extent complete mixing is a rea-

sonable approximation at the catchment scale (Krebs et al., 1999). Power law C-Q relationships, C = dQ−h

with h < 1, may be evidence of such incompletemixing. Partialmixing could be introduced into equation (3)

and distributions derived in a similar way (Text S1). Currently, this would rely on an empirical C-Q relation-

ship to establish the mixing parameters, which is somewhat unsatisfactory. As the flow recession exponent

is estimated from the network topology, it seems plausible that in the future, relatedmethodsmight be devel-

oped to predict d and h a priori, in a similar manner as has been done for flow recession (Biswal & Marani,

2014).

5.4. Assessing Impacts on ReceivingWaters

The PDF of CSO loads can be used to estimate impacts upon receiving waters. Where guidelines specify

CSO loads with respect to dry flow rates in a river (Holzer & Krebs, 1998), then the PDFs of CSO load can

be integrated to estimate the probability of not meeting a dilution threshold. Alternatively, where the river

responds on much longer time scales, say several days to rise and fall from a single rainfall event, then

the PDF of a dynamic load threshold can be estimated assuming load and river discharge are independent

random variables in a manner similar to equation (4). In the case of the small Lockwitzbach stream, the

discharges would be strongly correlated with the sewer flows at subdaily time scales. In this case considera-

tion of the covariance between stream and CSO discharges would be required. The size of the sewershed in

relation to the receiving water should also be a consideration in assessing the applicability of the saCSOny

model. It is expected small to medium, gravity-driven sewersheds, with a small number of outlets would be

most suitable; however, additional research comparing saCSOny predictionswith sewer performancewould

help clarify the situations where the model is and is not suitable.

6. Conclusions

A four-parameter analytical model has been developed here to explore hydrological and climate factors

influencing the functioning of a simple CSO system. We demonstrated that three of the parameters of the

model can be estimated readily a priori from the climate and the structure of the sewer network and one

parameter from a short time series of observed discharge by flow recession analysis. A significant finding

is that the flow recession exponent may be estimated from the sewer topology, and it significantly impacts

variability of CSO function. This suggests that the statistical properties can be estimated from the design and

aminimumof datawithout the need for solution of the full de Saint-Venant equations. Furthermore, relative

contributions to variability from rainfall and the hydrodynamics/sewer structure can be disentangled. The

equations derived here offer new approaches to rapidly assess options to mitigate CSO impacts on urban

rivers. Future work is required to test the saCSOny model across diverse urban settings.

Appendix A : The saCSOnyModel

The PDF for storm water discharge in the case of linear case is (Botter et al., 2009)
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[
−𝛾Qu

]
(A1)

and for the nonlinear case (Botter et al., 2009):
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𝛿
(
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Using equation (A2), the remaining PDFs for flows, loads, and concentrations for the nonlinear case (the

linear case is omitted for space as it can be derived similarly) can be derived using a change the variables,

that is,

MCGRATH ET AL. 9588



Water Resources Research 10.1029/2019WR025336

p𝑦 (Y ) = px
(
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) ||||
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𝜕Y

||||
, (A3)

where 𝑓−1 (Y ) is the inverse of a function Y = 𝑓 (X) of a random variable, X , with probability density,

px (X), and p𝑦 (Y ) is the PDF of Y . Applying a change of variables in the case of the combined flows, that is,

Qc = Qs + Qu, gives the PDF of Qc, as
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The remaining PDFs are derived similarly. With a CSO event triggered when Qc > Qt, then the PDF of its

discharge, QCSO, can be determined to be

pqCSO
(
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)
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(
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(
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where
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]
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The PDF for QWWTP is
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where

P
[
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]
= ∫

∞

Qt

pqc
(
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)
dQc, (A9)

and P
[
Qu = 0

]
is given by the last term in equation (A2). The PDF of the concentration of effluent is

pcc (Cc|Qs,Cs) = K
|Cu − Cs|
(Cu − Cc)

2
G

(
Qs

(
Cs − Cc
Cc − Cu

))
+ P[Qu = 0]𝛿(Cs − Cc), (A10)

where we have written the PDF as a marginal distribution so as to recognize the possibility that Qs and Cs
may themselves display a degree of variability. While it is possible to derive the full PDF of CSO loads, for

the sake of space and simplicity the case when the storm water concentrations are negligible (i.e. Cu ≪ Cs)

is shown:

plCSO
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where the sanitary load, Ls = QsCs, has been substituted. The PDF of WWTP loads is

plWWTP

(
LWWTP

)
= K

QtLs

L2
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Acronyms

CSO combined sewer overflow

SWMM StormWater Management Model
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