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We show how networks modify the diffusion curve by affecting its symmetry. We demonstrate that a net-
work’s degree distribution has a significant impact on the contagion properties of the subsequent adoption

process, and we propose a method for uncovering the degree distribution of the adopter network underlying
the dissemination process, based exclusively on limited early-stage penetration data. In this paper we propose
and empirically validate a unified network-based growth model that links network structure and penetration
patterns. Specifically, using external sources of information, we confirm that each network degree distribution
identified by the model matches the actual social network that is underlying the dissemination process. We also
show empirically that the same method can be used to forecast adoption using an estimation of the degree
distribution and the diffusion parameters at an early stage (15%) of the penetration process. We confirm that
these forecasts are significantly superior to those of three benchmark models of diffusion.

Our empirical analysis indicates that under heavily right-skewed degree distribution conditions (such as
scale-free networks), the majority of adopters (in some cases, up to 75%) join the process after the sales peak.
This strong asymmetry is a result of the unique interaction between the dissemination process and the degree
distribution of its underlying network.
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1. Introduction
The structure of a network, i.e., the pattern of con-
nections among its nodes, significantly affects how
information and new products diffuse (Goldenberg
et al. 2009b, Hill et al. 2006, Katona and Sarvary
2009, Katona et al. 2011, Mayzlin 2002, Newman et al.
2006, Shaikh et al. 2006, Van den Bulte and Wuyts
2007). Because network structure is typically invisible,
the few diffusion models that incorporate network
structure do so by resorting to rough assumptions
(e.g., division into two markets) that oversimplify
the diffusion process and its dynamics. One of these
oversimplifying assumptions in the literature is that
networks generally exhibit scale-free degree distribu-
tions,1 despite the fact that other types of distributions

1 A degree distribution is the probability distribution of the number
of links per node over the entire network.

have been documented in studies of social networks,
including Gaussian/Poissonian distributions in off-
line social groups (Amaral et al. 2000), online fo-
rums, and active email networks (Liben-Nowell and
Kleinberg 2008, Newman et al. 2002, Yeung 2005),
as well as lognormal distributions in a Web linkage
structure and in online social networks (Gomez et al.
2009, Pennock et al. 2002, Stutzbach and Rejaie 2005).
Here, we model the network structure—specifically,
its degree distribution—and we investigate its effect
on the adoption curve.

Because the magnitude and speed of the conta-
gion process, as well as the shape of the adoption
curve, depend strongly on the degree distribution of
the underlying network (as we show in §3 and val-
idate in §6), knowledge of the degree distribution of
a given network is important for marketers to effec-
tively isolate network effects from other factors affect-
ing contagion.
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Using analytical modeling, numerical simulations,
and empirical studies, we show that the network
degree distribution significantly affects the temporal
form of the penetration curve. The adoption growth
rate depends on the average number of neighbors
and the variance of the degree distribution. In cases
where the network degree is significantly skewed
(e.g., the common scale-free distribution), the pene-
tration curve is asymmetrical. Initial growth of sales
is accelerated, and the sales peak occurs early in the
process, whereas sales decline occurs at a slower rate
and extends over a longer period. Such asymmetry
has implications for estimating market potential and
for generating reliable forecasts early in the penetra-
tion process.

It has previously been shown that adoption curve
asymmetry may result from asymmetric adopter
influence (Van den Bulte and Joshi 2007), hetero-
geneous first-purchase timing (Bemmaor 1994,
Bemmaor and Lee 2002), or nonuniform properties of
word-of-mouth processes (Easingwood et al. 1983).
In §3, we show how adoption curve asymmetry may
be explained by the underlying network’s degree
distribution, which leaves traces on each penetration
process. Analysis of the heterogeneity of connectivity
improves the ability to identify the degree distribu-
tion and allows us to correct contagion estimations
and enhance forecasting accuracy.

Previous works have used models to show that a
given pattern of adoption can be explained by net-
work effects (although alternative explanations can,
in principle, be provided). In this paper, we pro-
pose and empirically validate a unified network-
based growth model that links network structure and
penetration patterns. Using external sources of infor-
mation, we confirm that each network degree dis-
tribution identified by the model matches the actual
social network that is underlying to the dissemina-
tion process (see §6). We show that the course of
diffusion is an indirect measure of the degree distribu-
tion of the underlying network, owing to the manner
in which the network affects the adoption pattern.
More specifically, the paper offers the following
contributions:

1. We show analytically that in contagion-based
dissemination over an undirected2 random network3

(with up to an average level of clustering),4 an

2 An undirected network is a network in which the links are undi-
rected; i.e., a link between any nodes A and B is also a link between
B and A.
3 A random network is a network in which the links between nodes
are determined randomly.
4 The clustering coefficient of a given node is defined as the ratio
of the number of actual links to the number of potential links in a
node’s neighborhood. The average clustering coefficient is the aver-
age of the node-level clustering coefficients over the entire network.

increase in degree heterogeneity increases contagion,
even if the average number of ties remains constant.

2. We show analytically and by simulation (§§3
and 4) that highly skewed degree distributions lead
to more highly skewed adoption curves. This is vali-
dated empirically in §§6.1.2 and 6.2.

3. We propose (in §5) a method for estimating
the type of degree distribution of the network (i.e.,
scale-free, normal, lognormal, or uniform), as well
as its two first moments, based solely on early-
phase penetration data. We validate this empirically
(in §6.1.2) and using simulated data (in §6.1.1), imply-
ing that a network leaves its traces on the resulting
penetration pattern.

4. On the basis of the previous three contributions,
we show that such uncovered network information
can be incorporated into a unified growth model
to generate more accurate forecasts of adoption at
a very early stage in the penetration process, when
such forecasts have significant managerial implica-
tions (see §6.3).

The proposed model operates well within a set of
boundary conditions defined in §7. The main simpli-
fying assumptions of the model are symmetrical ties
(undirected network with identical tie strength across
nodes), no clustering, constant marketing efforts over
time and space, and lack of contagion decay. We ana-
lyze the model’s sensitivity to these assumptions in
§7. Model accuracy is reduced when the network is
fragmented (either disconnected or with an extremely
high degree of clustering) or when the dissemination
process exhibits a flat curve (typically associated with
extremely low contagion or with failures).

The remainder of this paper is as follows. Section 2
is a review of past research and the background for
our work. In §3, we develop the analytical baseline
for our analysis of the influence of degree hetero-
geneity on contagion. In §4, we show how degree
heterogeneity can lead to high skewness in adop-
tion curves. We propose a model for estimating
network degree distribution using aggregate pen-
etration data in §5. This model is tested in §6.1
using simulated data (in §6.1.1). In a more strin-
gent test, we use real microlevel network data to
validate the ability of the method to correctly esti-
mate the underlying network (in §6.1.2). In §6.2, we
further test the model using a variety of empirical
cases. The value of network information is explored in
§6.3 by comparing forecasts generated by this model
to the performance of three alternative models—
the gamma/shifted Gompertz model (Bemmaor 1994,
Bemmaor and Lee 2002), the nonuniform influence
model (Easingwood et al. 1983), and the Bass model
(Bass 1969)—using only data from the early stages of
the diffusion process. Finally, in §7, we discuss the
boundary conditions of the model, and we summa-
rize our conclusions in §8.
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2. Background
Recent work highlights the importance of knowledge
of network structure to marketers. Network structure
has been shown to have significant effects on the flow
of information and influence (Katona and Sarvary
2009, Stephen and Toubia 2010). For example, a cate-
gory of consumers known as “influentials” has been
identified as one source of network effects (for an
early observation, see Katz and Lazarsfeld 1955; for a
generalized and quantified model, see Van den Bulte
and Joshi 2007; and for a related field experiment
study, see Hinz et al. 2011). In addition to traits such
as expertise, influentials’ primary source of influence
is their extraordinarily great number of ties to other
individuals (high degree). Whereas the actual influ-
ence of opinion leaders’ degree distribution has been
questioned by Watts and Dodds (2007), recent empir-
ical evidence confirms that influentials accelerate the
diffusion process (e.g., Goldenberg et al. 2009b) and
that a high indegree is correlated with earlier adop-
tion (Iyengar et al. 2011, Katona et al. 2011). It has
further been shown that network effects have concrete
economic value (Gupta et al. 2006); i.e., network links
add monetary value to a market. Stephen and Toubia
(2010) show that specific network structures, such as
those including individuals who have a single link
each, might even diminish economic market value.
In another application, Hill et al. (2006) show that
knowledge of the consumers’ network structure can
significantly improve the firm’s ability to predict con-
sumers’ likelihood to purchase. Finally, Shaikh et al.
(2006) use a generalized diffusion model to evaluate
the structure of small-world networks and find that
structure has an important impact on the temporal
aspects of new product diffusion. They demonstrate
that disregard of network effects may lead to incorrect
interpretation of penetration data, and they conclude
that knowledge of network structure plays a substan-
tial role in the estimation of contagion parameters.

Recently, models of diffusion have been revised to
capture the effect of network structure on new prod-
uct diffusion. Typically, these models encounter one
common obstacle: networks of social influence are
usually invisible or extremely hard to map (Ebbes
et al. 2010). In view of this inherent challenge, mar-
keters and researchers generally assume that dissem-
ination processes propagate over the entire visible
(overt) network. Despite its widespread support, this
is an oversimplified assumption, as the dissemination,
in fact, occurs over a subset of this overt network. We
define this subset as the active network, and we argue
that it does not necessarily share the same properties
or structure as the overt network (similar to Stumpf
et al. 2005). For example, in a network characterized
by a scale-free distribution, a diffusion process might
spread only among a subset of nodes (the actual

adopters, i.e., the active network) characterized by a
Gaussian network degree distribution. Indeed, Inter-
net chain letters have been found to propagate in
a narrow but very deep tree-like pattern, continu-
ing for several hundred steps, rather than fanning
out widely and reaching many people in very few
steps, as would be expected according to small-world
principles (Liben-Nowell and Kleinberg 2008).

There are related works on the estimation of
unknown network properties from other known
properties (e.g., number of links, link probability)
using maximum-likelihood methods (Garlaschelli and
Loffredo 2008, Ramasco and Mungan 2008). Recently,
Trusov and Rand (2011) used a combination of
Bayesian model selection techniques and a large num-
ber of aggregate data sets over a single population
to infer the “universal” social network associated
with that population. On the micro level, Braun
and Bonfrer (2010) developed a method to uncover
the hidden dyad-level interdependence between con-
sumers. Our approach is different, mainly because we
attempt to use a single set of aggregate, early-phase
penetration data to calculate the degree distribution
of the active social network. We then use that infor-
mation to predict the market potential and adoption
curve in those early phases.

3. The Impact of Degree Heterogeneity
on Contagion

Consider the simplest case of social influence, in
which individuals affect one another equally, the mar-
ket is homogeneous for both external and internal
influences, and both effects are constant in time. These
assumptions lead to the Bass differential equation
(Bass 1969):

dN4t5

dt
=

(

P +Q ·
N4t5

M

)

· 4M −N4t55

= MP + 4Q− P5N4t5−
Q

M
N4t520 (1)

Here, N4t5, M , P , and Q are the cumulative num-
ber of adopters at time t, population size (market
potential), external force coefficient, and the inter-
nal force coefficient, respectively. The notation for the
variables used throughout are listed in Table A.1 in
the appendix.

For the early stages of the process (i.e., for low val-
ues of t), the cumulative number of adopters is rela-
tively small in comparison to the market potential, M ,
so that N4t5 � M , yielding the following first-order
linear approximation:

dN4t5

dt
= MP + 4Q− P5N4t5−Q

(

N4t5

M

)

N4t5

≈ MP + 4Q− P5N4t50 (2)
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In its early stages, the adoption process is charac-
terized by exponential growth of the following form:

dN4t5

dt
∝ e4Q−P5t0 (3)

As the process progresses (i.e., for high values of t),
N4t5 ∼ M , and hence �4t5 = M − N4t5 � M , yielding
the following linear approximation:

dN4t5

dt
=

(

P +Q

(

1 −
�4t5

M

))

�4t5≈ 4P +Q5�4t5

= 4P +Q54M −N4t550 (4)

Thus, toward the conclusion of the process, the
adoption rate declines exponentially:

dN4t5

dt
∝ e−4Q+P5t0 (5)

Both slopes are exponential and therefore become
linear on a log scale.

In a scenario where the internal force is greater than
the external force (P � Q5, the temporal dynamics
for a fully connected market (no network is assumed)
are symmetrical around the peak, and the absolute
value of the exponent in the growth phase is approx-
imately equal to that in the decline phase. As will be
shown, the existence of a network degree distribution
disrupts this symmetry. Furthermore, the deviations
from the assumed symmetry provide indications of
the network degree distribution.

Consider a random network, i.e., a network in
which the nodes are connected randomly, with an
equal probability for any pair of nodes to be con-
nected, up to a limit of k neighbors for each node
(Erdös and Rényi 1959). The parameter k, i.e., the
number of neighbors or network degree of a node, is
retrieved from the network degree distribution proba-
bility mass function Pk. In each time step ãt, adopters
have a probability qãt of influencing their neighbors
(persuading them to adopt the product). Potential
adopters also have a probability pãt of being influ-
enced by external forces (marketing forces) to adopt
the product. We also assume that both internal and
external influence rates are completely homogeneous
in time and space and that the network is undirected.
Assuming that internal and external forces are inde-
pendent, the probability that a potential adopter with
x neighbors who have already adopted the product
will adopt the product in time step ãt is linear and
takes the form 4p + xq5ãt. In the linear model, the
dynamics of the expected rate of adoption over a net-
work in the continuous limit (ãt approaches zero) are
given by

dN4t5

dt
=
∑

x

Hx4t5 · 4p+ xq50 (6)

Here, Hx4t5 denotes the number of potential adopters
of order x, i.e., consumers who have not yet adopted
but have exactly x neighbors who have already
adopted the product at time t. This is effectively an
individual-level diffusion model that incorporates the
network effect through the effect of degree hetero-
geneity. The hazard rate is greater for individuals with
greater values of x, implying that adoption rates may
vary under different degree distributions. One of the
immediate properties of (6) is that the adoption rate
increases as individual exposure to adopters increases
(potential adopters with more adopter friends adopt
faster, on average).

The total number of potential adopters at a given
time is

∑

x

Hx4t5=M −N4t50 (7)

Formulated in this manner, the Bass equation can
be viewed as a special case of (6). Assuming that
all individuals are connected to all other individu-
als, the order of all potential adopters at time t is
x = N4t5, where Hx4t5 = M − N4t5. Thus, dN4t5/dt =

4M−N4t554P +4Q/M5N4t55, where P = p and Q =Mq.
In Appendix §A.1, we describe this model of dis-

semination formally on a generalized random net-
work, which can be used as an approximation for the
adopter network underlying the diffusion process (see
also the sensitivity analysis of the model’s assump-
tions in §7). We assume that the maximal degree in
this network is significantly smaller than the size of
the network (which is a realistic assumption for social
networks). We calculate the functions Hx4t5 together
with a set of conditional probabilities of the form
fk�x4t5 (where fk�x4t5 is the conditional probability that
a potential adopter of order x at time t has a net-
work degree of k; see Appendix §A.1). The condi-
tional probabilities fk�x4t5 and the functions Hx4t5 are
then introduced as the solutions to a closed system
of coupled ordinary differential equations. The initial
conditions for these equations are determined exclu-
sively by network size (i.e., market potential M) and
network degree distribution. To extract information
for the estimation procedure, we analyze the adoption
process under two phases: (1) the growth regime in
early stages of penetration and (2) the decline regime
in later stages of the process.

Under the following analysis, penetration grows
exponentially in the initial stages of the process, and
its slope is determined not only by the magnitude of
contagion but also by the network degree distribu-
tion. Because the structure of the network is random,
the probability that two neighbors of a specific node
that adopted the product are neighbors themselves
is negligible in the early stages of the process (for
nonfragmented networks that are sufficiently large
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relative to the maximal network degree). We therefore
find that the adoption rate in the early stages of the
process takes the following form (see Appendix §A.1
for details):

dN4t5

dt
= 4M −N4t55p+ qH14t5

≈ Mp

(

1 −
kavgq

Q̃− 2p

)

e−pt
+Mp

kavgq

Q̃− 2p
e4Q̃−3p5t0 (8)

Here, Q̃ is the effective internal force coefficient.
All high-order terms that include Hx4t5 for x ≥ 2 are
dropped.

Based on (8), the effective internal force coefficient
Q̃ is determined by the ratio of the second moment of
the network degree distribution to the first moment,
giving

Q̃ = q

{

∑kmax
k=kmin

k2Pk
∑kmax

k=kmin
kPk

− 2

}

= q

(

kavg +
�2

kavg
− 2

)

1 (9)

where

kavg =

kmax
∑

k=kmin

kPk and

�2
=

kmax
∑

k=kmin

4k− kavg5
2Pk

are, respectively, the average and variance of the net-
work degree distribution. For the derivation of (8),
the assumption of a strong contagion process yields
Q̃ � p. Thus, when Q̃ > 3p (e.g., Farley et al. 1995),
the rate of adoption exhibits exponential growth:

dN4t5

dt
∝ e4Q̃−3p5t0 (10)

That is, for a given average, greater network degree
variance leads to greater exponential growth. This occurs
because the presence of highly connected individuals
accelerates growth.

For an intuitive perspective on the rationale behind
this growth expression, consider the simpler case
of p = 0. In this case, in the initial noninteractive
stage, each exposed consumer has, on average, only
one adopter neighbor who potentially induces her
adoption. Therefore, if an individual with network
degree k adopts the innovation in the initial stages
of the process, the number of exposed consumers
increases by k − 2, as she has k − 1 neighbors who
have not yet adopted the new product, but also, by
becoming an adopter of the innovation, she herself is
removed from the group of exposed consumers. Tak-
ing into account that nodes with a greater number of
links have a greater probability, on average, of being
exposed to a spreading adoption process, each new

adoption adds
∑kmax

k=kmin
4k− 25P̃k =

∑kmax
k=kmin

kP̃k − 2 indi-
viduals to the number of exposed consumers, where
P̃k is the probability mass function for the degree dis-
tribution among exposed consumers, given by the
probability that the new adopter is a neighbor of
another node with degree k. The probability mass
function of the distribution of the degrees of neigh-
bors in random networks is known to be (Albert and
Barabási 2002)5

P̃k =
k · Pk

kavg
1 (11)

where Pk is the probability mass function for the
degree distribution and kavg is the average degree
for the purpose of normalization. (Note that this
probability is not the original probability Pk that a
certain node in the network has degree k. Conse-
quently, the probability that this node is included in
another node’s sample is skewed at higher degrees.)
The average increase in the number of exposed con-
sumers per current adopter in a single time step is
∑kmax

k=kmin
4k− 25P̃k =

∑kmax
k=kmin

kP̃k − 2 , and hence, the total
increase in the number of exposed consumers in a sin-
gle time step is

dH14t5

dt
=

( kmax
∑

k=kmin

kP̃k − 2
)

· qH14t5

=

(

kavg +
�2

kavg
− 2

)

qH14t5≡ Q̃H14t50 (12)

In the case of p = 0, the adoption rate becomes
dN4t5/dt = qH14t5 ∝ eQ̃t . Adding external influence
(p > 0) moderates the slope of the exponential growth,
as indicated by (8).

Equation (9) is the analytical measure of the
dependence of effective internal force on network
degree heterogeneity. The coefficient depends on the
average number of neighbors and the standard devi-
ation of the degree distribution. As a result, dif-
fusion is accelerated when the network is highly
skewed.6 A highly skewed distribution can change
the average and standard deviation by several orders
of magnitude and consequently affect the internal
force coefficient. Thus, the same product diffusing on
different networks might exhibit significantly differ-
ent Q̃s (but not necessarily different qs). To assess the

5 Owing to the assumption of network randomness, the actual
neighbors of adopters’ degree distribution are not different from
the neighbors of randomly chosen nodes.
6 Note that the effect of heterogeneity in (9) is normalized by con-
nectivity. Therefore, Q̃ decreases with connectivity for kavg <� and
increases with connectivity for kavg > � . Nonetheless, in the very
early stages of the process, overall growth increases with the con-
nectivity in both cases. Namely, 4¡/¡kavg54dN/dt5 > 0 when t is
small, as indicated by Equation (8).
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error generated by ignoring network degree distribu-
tion, consider the simplest estimate of contagion mag-
nitude using the Bass model. In this case, the effect
of the internal force (Q) is underestimated because
the model multiplies the dyad-level, q coefficient by
the entire market potential, M , rather than by the net-
work, q, structure multiplier, kavg +�2/kavg − 2.

4. Degree Heterogeneity Leads to
Highly Skewed Adoption Curves

By the final stage of the adoption process (large t),
almost all individuals have adopted, and most
remaining nonadopters are linked exclusively to
adopters. As a result, in almost all cases, the order
(number of neighbors who have already adopted) of
a nonadopter is equal to his or her network degree.7

Therefore, at this stage, the sole impact of product
adoption by an individual with network degree k is a
reduction in Hk4t5, the number of potential adopters
of order k. Recalling that the probability per time step
of a potential adopter of order k to adopt is kq + p,
we obtain

dHk4t5

dt
= −4kq + p5 ·Hk4t51 (13)

resulting in Hk4t5 ∝ e−4kq+p5t . The rate of adoption in
the final stages of the process can be obtained from (5)
as follows:

dN4t5

dt
=
∑

k

Hk4t5 · 4p+ kq5≈
∑

k

Cke
−4kq+p5t1 (14)

where Ck are time-independent coefficients. Namely,
the rate of adoption is given by the sum of time-
decaying exponentials (representing different popu-
lations with different degrees), which is dominated
by the slowest-decaying exponent. The adoption rate
declines according to the following rule:

dN4t5

dt
∝ e−4kminq+p5t1 (15)

where kmin denotes the smallest degree in the net-
work. (The dynamics throughout the decline stage
are derived directly from the general equations of
diffusion on random networks in Appendix §A.1.)
The growth and the decline slopes are shown to be,
respectively,

x1 = q

(

kavg +
�2

kavg
− 2

)

− 3p1 (16)

x2 = −4kmin · q + p50 (17)

7 At this stage, most nonadopters are linked exclusively to adopters,
so for a given nonadopter, the potential number of adopter-
neighbors approaches the nonadopter’s network degree.

Here, kavg and �2 are the mean and the variance of
network degrees, respectively, and kmin is the smallest
degree in the network. In the case of degree distribu-
tions with moderate tails (e.g., Gaussian, Poissonian),
the smallest and greatest network degrees are of sim-
ilar orders of magnitude, resulting in kavg +�2/kavg =

O4kavg5 = O4kmin5 (here, O4 · 5 denotes an order of
magnitude).

Considering the case in which external influence
p is small, the absolute values of the growth and
decline slopes tend to be very similar (e.g., for
the Gaussian/Poissonian case) and generate a rela-
tively symmetric curve of adoption. In contrast, degree
distributions that are highly skewed to the right
(e.g., scale-free distributions) and span several orders
of magnitude (where kavg + �2/kavg � kmin5 create
asymmetric adoption curves, in which the slope of
growth is much steeper while the slope of the decline
exhibits a long-lasting temporal tail. To illustrate
the asymmetrical functional form of the penetra-
tion curve, we simulated adoption on a 100,000-node
network for different classes of networks. Adoption
processes under each of four common classes of net-
work degree distributions—Gaussian, uniform, log-
normal, and scale-free—are given in Figures 1(a)–1(d),
respectively, (for empirical examples of these net-
works distributions, see Amaral et al. 2000, Barabási
and Albert 1999, Liben-Nowell and Kleinberg 2008,
Limpert et al. 2001, Newman 2005, Newman et al.
2002, Yeung 2005).

As can be seen in Figure 1, each network type
imposes a typical imprint on the adoption curve,
which is easily identifiable on a semilog scale (and
less easily identifiable on the more commonly used
linear scale). In cases where the network degree dis-
tribution has negligible skewness, such as in Gaussian
or Poissonian distributions, only a minor temporal
tail of the adoption rate time series is created by the
“smallest-degree” nodes, which are the last to par-
ticipate in the process. The result is a largely sym-
metric pattern with an exponentially decaying tail
in the final stages of the dissemination process (see
Figure 1(a)). In the case of uniform distribution, the
tail is more accentuated and longer lasting in relation
to the curve itself (see Figure 1(b)), owing to the rela-
tively larger population of smallest-degree nodes.

The lognormal degree distribution has a longer tail,
emanating from the peak itself, with several decay-
ing exponentials (because of the large population of
smallest-degree nodes) and an accelerated growth
rate because of the degree distribution’s heavy skew-
ness to the right, representing highly connected nodes
(see Figure 1(c)). Finally, the scale-free case is dom-
inated by the smallest-degree nodes. Its tail is the
longest and demonstrates a single exponential decay
following sharp rapid growth (see Figure 1(d)).
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Figure 1 Adoption Patterns for Different Network Types: (a) Gaussian, (b) Uniform, (c) Lognormal, and (d) Scale-Free
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In the following section, we use the effect of degree
heterogeneity on the adoption curve to demonstrate
how the model can be used to extract the network’s
degree distribution from a given adoption curve.

5. A Procedure for Estimating
Network Degree Distribution
Using Penetration Data

The procedure we use to estimate a network’s degree
distribution is based on the simplified assumption
that diffusion occurs on an approximately random
network. To model the adoption process, we use a
parsimonious agent-based model (e.g., Garber et al.
2004). In §7, we analyze the robustness of our
model by relaxing our assumptions of an unclustered
network and of linear effects of adopter-neighbors
on potential adopters’ probability of adoption.8

8 We find that the proposed method works for low and moderate
levels of network clustering but not for high-level clustering, which
is the less frequent case. We also find that the linear assumption of

We consider four classes of networks: Gaussian/
Poissonian, uniform, lognormal, and scale-free.9

Each network degree distribution comprises two
parameters. Thus, the estimation involves a total of
four parameters: two network parameters and the
external and internal forces (p and q). Because
the analytical solution is not in closed form (see
Appendix §A.1), we use simulations with constraints
for the purpose of fitting. We iterate over simulation

the hazard model does not affect the efficacy of the method as long
as the average network degree is lower than the concavity factor
of the process. See §7 for a detailed explanation.
9 It should be noted that some networks cannot be perfectly associ-
ated with any “pure” category. In hybrid networks, degree distri-
butions can span more than one category (for example, a Gaussian
distribution for small degrees and a heavy scale-free tail for large
degrees). We use here only four types of networks, but broadly
speaking, one can use any set of networks, including any number
of types in that set for specific purposes. The method can identify
the network of the set that is closest to the degree distribution of
the active network underlying the adoption process. In our data,
we do not find any evidence of the existence of a distinct hybrid
distribution.
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runs fitted to empirical data, using maximum good-
ness-of-fit measures as criteria for reaching a solution.
Therefore, the estimation process entails two stages:
(1) estimation of parameter constraints and (2) fitting
simulations to empirical adoption curves (using the
constraints).

5.1. Stage 1: Estimating the Constraint
In this stage, we estimate three indicators from the
adoption curve: the initial pre-takeoff adoption rate
(see below), the growth slope (16), and the decline
slope (17).10 We use these expressions to reduce the
four-dimensional (four parameters) solution space to
a two-dimensional space to facilitate our search.

5.1.1. Growth and Decline Slopes. The adoption
process modeled here is subject to the two constraints,
expressed by slopes x1 and x2, as indicated by (16) and
(17). We then separate the external influence from the
network degree distribution by retrieving empirical
measures of the adjusted growth and decline slopes,
and we revise (16) and (17) to define the following
two-equation system and solve for the three unknown
parameters �1, �2, and q:

z1 = q

(

kavg +
�2

kavg
− 2

)

(18)

and

z2 = qkmin0 (19)

Here, z1 = x1 + 3p and z2 = −x2 + p are the adjusted
slopes of growth and decline, respectively (satisfying
z1 > z2 > 0), and kavg = kavg4�11�25, �2 = �24�11�25,
and kmin = kmin4�11�25 are functions of the two net-
work degree distribution parameters. In Table B.1
in the online appendix (at http://dx.doi.org/10.1287/
mksc.1120.0711), we provide the explicit form of these
functions for each network class. Equations (18) and
(19) enable us to express two unknown parameters
as a function of the third unknown parameter for all
network classes (with the exception of the scale-free
network class, where only one unknown parameter
can be analytically solved using the remaining two
unknown parameters).

5.1.2. Pre-Takeoff Period. We can estimate the
external influence p. In the pre-takeoff stage,11 a
very early stage of the process, the rate of adoption
is approximately dN4t5/dt ∼ 4dN/dt5�t=0 = Mp. The
external force process is dominant in this stage, and
therefore p can be extracted if M is known.12 If there

10 See Appendix §A.3 for the practical operation of identifying these
stages of the diffusion process.
11 For definitions of takeoff, see Appendix §A.3.
12 In the case of forecasting, M is not known, and we have five
parameters. This case is discussed in §6.3.

is no pre-takeoff stage, i.e., early sales are already
high and the peak is reached quickly, one can mea-
sure 4dN/dt5�t=0, as it is also approximately equal to
M · p in this initial stage; it can be assumed that the
first single unit of time contains a negligible number
of social interactions.

5.2. Stage 2: Fitting Simulations to Data
After estimating the constraints ((18) and (19)), we use
a simulation to fit for the final parameter. We use an
agent-based model to simulate the process of a new
product’s penetration over a given network. We then
use the adoption pattern generated by the simulation
as a fitting function for the data. Using equations that
describe sections of the pattern (see (16) and (17)),
we narrow the fit to a fit of one or two parameters
and thus significantly improve convergence accuracy.
This estimation procedure is conducted for each net-
work class. The estimated active network is defined as
the parameter set that produces the highest goodness-
of-fit score (in terms of R2 measures) of the simu-
lated network’s noncumulative adoption curve to the
empirical adoption data.

In the following sections, we present the results of
four studies that evaluate the accuracy and validity
of the proposed approach and its contribution to fore-
casting accuracy.

6. Model Evaluation
6.1. Recovering Network Parameters

6.1.1. Simulations Study. In this study, we test
the proposed model on a large range of network
degree distributions. Sensitivity of methods is com-
monly tested on simulated data. Simulations also pro-
vide the ability to carry out controlled tests on wider
ranges of parameters than are typically available in
field data. For this purpose, we conducted computer
simulations to generate diffusion scenarios on vari-
ous network degree distributions. Each scenario pro-
duced an adoption curve that was subsequently used
as input for testing the estimation method. We eval-
uated the accuracy of the method by comparing the
estimated network degree distribution with the distri-
bution generated in the simulation.

In total, we tested our model on 40 growth
processes (i.e., 10 parameter sets for each of the
four degree-distribution classes). To represent diverse
dynamic scenarios, we tested sets over a wide range
of values of q (between 0.0005 and 0.5) and p (between
0 and q). For each generated growth process, 10 fit-
ting procedures were conducted. The fitted adoption
curve parameters with the best resulting R2 values
were considered to be the estimated solution parame-
ter set. (We also tried a greater number of fits per gen-
erated network and found that 10 fits are sufficient to
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Table 1 Goodness-of-Fit Indicators for the Reconstruction Method
Over Simulated Data: Average and Standard Deviation of R2

and RMSS

Network class 4R25avg 4R25sd RMSSavg RMSSsd

Gaussian 0095 0003 0094 0002
Uniform 0093 0002 0096 0001
Lognormal 0092 0004 0089 0003
Scale-free 0097 0002 0098 0002

Note. sd, standard deviation.

obtain the greatest degree of accuracy.) For each distri-
bution type, the goodness of fit between the estimated
and the real distribution, measured according to the
R2 indicator and the normalized root mean square
statistic (RMSS; following Jedidi et al. 1997), is given
in Table 1.

We find that the average fit of the actual distribu-
tion of the simulation-generated surrogate set to the
distribution estimated using the proposed method is
greater than 90% in all cases and with small devi-
ations (see Table 1). In this case, we also find that
the estimation accuracy of the diffusion and network
parameters in the proposed model ranges from 6%
to 14%13 (with a standard deviation ranging from 6%
to 17%). This finding suggests that it is possible to
extract the network type and estimate its parameters
for a large range of variables, given a single adoption
pattern. In all tested cases, we demonstrate that the
proposed model provides estimations that are very
close to the actual degree distribution.

In such a simulation-based approach, the model
under investigation is tested using other models.
Real-life phenomena include a richer set of mech-
anisms and noise. To address this, we present the
results of the studies in the following sections.

6.1.2. Empirical Study. In this study we aimed to
achieve two important objectives. First, we applied a
more stringent test to the proposed model to demon-
strate that the estimated degree distributions are close
to actual degree distributions that are known from
an external source. Second, we attempted to elucidate
whether this procedure leads to a unique solution or
whether different degree distribution parameters or
even different network categories can generate iden-
tical adoption curves.

We used data from Friendster (http://www
.friendster.com), an online social network with more
than 115 million users (as of 2008). The advantage
of this online social network as a data source is that
it provides documentation of the time at which each
user joins a group, and network data are largely
in the public domain. Using only the social group

13 Estimation accuracy is defined as the percentage deviation of the
estimated parameter value from the known parameter value.

membership cumulative adoption data, we estimated
the network degree distribution for each social group.
In Table 2, we list the results of the identification
and estimation of the active networks for eight diffu-
sion data sets in which the active network is known
to us. For each known active network (correspond-
ing to users’ group memberships), we calculated fit
to each of the four representative classes of degree
distribution (Gaussian/Poissonian, uniform, lognor-
mal, and scale-free). We calculated cross entropy
(Kullback 1997, Garber et al. 2004), the more intu-
itive R2 measure between distributions, and RMSS (e.g.,
Jedidi et al. 1997).

Table 2 shows, for each network, the lowest
cross entropy, the highest R2 for the fit between
distributions, and the highest RMSS (i.e., the closest
distributions based on these fit statistics). For the first
network (denoted A), the best fit was obtained for a

Table 2 Measures of Goodness of Fit Between Estimated and Directly
Mapped Network Degree Distributions: R2, Cross Entropy,
and RMSS

Gaussian/
Scale-free Poissonian Lognormal Uniform

Network A (scale-free)
Cross entropy 0013 1020 0092 1013
Distributions R2 0098 0030 0069 0075
RMSS 0099 0034 0070 0074

Network B (Poissonian)
Cross entropy 1044 1040 1046 1051
Distributions R2 0042 0095 0036 0018
RMSS 0045 0096 0040 0020

Network C (scale-free)
Cross entropy 0022 1042 1025 1036
Distributions R2 0078 0018 0051 0045
RMSS 0079 0019 0055 0046

Network D (Poissonian)
Cross entropy 1036 1002 1047 1040
Distributions R2 0054 0081 0050 0074
RMSS 0056 0085 0050 0076

Network E (scale-free)
Cross entropy 0040 1067 1057 1011
Distributions R2 0075 0029 0067 0
RMSS 0076 0031 0072 0

Network F (scale-free)
Cross entropy 0069 1099 1070 2039
Distributions R2 0075 0034 0038 0025
RMSS 0077 0037 0032 0028

Network G (Poissonian)
Cross entropy 1045 1011 1067 1078
Distributions R2 0058 0095 0024 0033
RMSS 0062 0096 0032 0035

Network H (scale-free)
Cross entropy 0013 1004 0099 1023
Distributions R2 0096 0043 0056 0070
RMSS 0097 0045 0058 0072
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scale-free degree distribution. The first two moments
of the reconstructed network were14 kmin = 13000±2000
and � = 2022 ± 0015, compared with the actual val-
ues of the active network,15 ktrans = 12021 ± 2000 and
� = 2059 ± 0023. The second network (B) fit best to a
Poissonian degree distribution. The parameter of the
reconstructed network was kavg = 2000 versus kavg =

2000 in the real network, i.e., an accurate match. The
third network (C) parameters are kmin = 4000 ± 1000
and �= 2025±0018, compared with the real active net-
work values of ktrans = 5010 ± 2000 and �= 2066 ± 0040.
The fourth network (D), identified as a network with
a Poisson degree distribution, was shown by the pro-
posed model to have kavg = 5000 versus the empirical
kavg = 7000. The fitted and empirical parameters for
the remaining networks and more details are given in
Table A.2 of the appendix. Finally, the R2 and RMSS
values for the distributions show good fits for net-
works A, B, G, and H (R2 values of 0.98, 0.95, 0.95,
and 0.96, and RMSS values of 0.99, 0.96, 0.96, and 0.97,
respectively).

For networks C–F, high R2 values (0.75–0.81) and
high RMSS values (0.76–0.85) were obtained, with
cross-entropy measures superior to those of the alter-
native tested networks.

Overall, the model correctly identified the
underlying network degree distributions in all cases,16

and the error in the estimation of the actual param-
eter values ranged from 5% to 15% in all cases but
one (in which the error was 28%).

6.2. Fitting Adoption Curves
To address situations that are more realistic than those
described in §6.1.1 and that involve various types of
noise and other error factors, we tested real-life adop-
tion patterns. We sought to include only data sets that
met the following criteria:

1. The growth process has an identifiable (domi-
nant) peak, with relatively smaller fluctuations.

2. The time series has sufficient resolution to allow
differentiation between patterns: the pattern com-
prises at least 50 points of data.

14 The estimations for the parameters of the scale-free case were
calculated using numerical fits to the data, using a method
described by Newman (2005). The error ranges were taken to be
one standard deviation from the fitted value.
15 Because empirical scale-free distributions do not have a clear
equivalent to a cutoff minimum degree, we selected the maximum
point on the left-hand side of the distribution (denoted as ktrans, the
degree in which the transition from power law to zero takes place)
as a comparison point for the model estimation of kmin .
16 The eight diffusion sets were randomly chosen, and they appar-
ently contain no uniform or lognormal distributions. This may be
a property of the specific community and activity selected. Because
these two network types are reported to exist (and have been found
in the studies presented in §6.2), we do not rule out the possibility
that they may exist.

3. The process involves more than several thou-
sands of adopters, to allow for a distinct dissemina-
tion pattern.

We collected a total of 17 data sets represent-
ing adoption processes in diverse fields, including
CD sales, online movie penetration (based on search
query volume), petition signing rates, and enrollment
in online thematic groups. Despite the inherent noise
and potentially high degree of interference caused by
external events in these real-life cases, the dissemina-
tion curves reconstructed using the proposed model
fit the real-life data with a relatively high degree of
goodness of fit17 (R2 in the range of 90%–98%).

Figure 2 presents data on cases grouped accord-
ing to the underlying network degree distribution.
In Figure 2(a), we present sales of an audio CD (Moe
and Fader 2001) (Gaussian pattern; R2 = 0097). Fig-
ure 2(b) presents the daily number of queries for
the term “Cloverfield,” referring to a movie that was
exceptionally credited for its efficient online viral
marketing campaign (a heavily skewed tail distribu-
tion, lognormal; R2 = 0098). Because the campaign
was conducted mainly on Internet websites, includ-
ing YouTube, the lognormal pattern we observed is
not surprising (Limpert et al. 2001). Figure 2(c) repre-
sents the search volume for the movie The Kite Runner
in a similar manner. In contrast to the previous case,
this penetration process exhibits a low skew distribu-
tion (Gaussian pattern, R2 = 0094). Finally, member-
ship in a thematic social group on Friendster, compris-
ing 74,500 users, is depicted in Figure 2(d) (R2 = 0091),
and the distribution is identified as scale-free. In the
latter case, the adoption process represents the timing
and number of users that opted to join a specific the-
matic group (specifically, a group of fans of a certain
category of TV shows) among the groups offered by
Friendster. In addition, we performed the proposed
estimation procedure on each of the four degree dis-
tributions (scale-free, Gaussian, lognormal, and uni-
form) as if it were the actual network. The accuracy
obtained using this identification method is presented
in Table 3 for fits of all 17 cases (see Table B.2 in the
online appendix for details of each case).18

The columns in Table 3 present R2 fit results for dif-
ferent network degree distribution types. In all cases,

17 The fits throughout this subsection were calculated between the
simulated and the empirical noncumulative adoption curves.
18 To compare the network model to existing diffusion models,
we also fitted the same set of empirical adoption curves to three
other existing diffusion models (in fact, these are the same mod-
els we use in §6.3 in the forecasting study): (1) the Bass model
(Bass 1969), (2) the gamma/shifted Gompertz model (Bemmaor
1994, Bemmaor and Lee 2002), and (3) the nonuniform influence
model (Easingwood et al. 1983). We conclude from the results
of the fittings in Table B.5 in the online appendix that the net-
work model outperforms the other three diffusion models for this
data set.
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Figure 2 Fit to Empirical Data: (a) CD Sales, (b) the Movie Cloverfield, (c) the Movie The Kite Runner, and (d) an Online Thematic Social Group
A

do
pt

io
ns

A
do

pt
io

ns
A

do
pt

io
ns

100

10

1
0 20 40 60 80 100

Time (days)

25

20

15

10

5

50 100 150

Time (days)

100

10

1
0 100 200 300 400 500 600

Time (days)

A
do

pt
io

ns

1,000

100
0 10 20 30 40 50 60 70 80

Time (weeks)

Empirical data
Reconstruction fit

(a) (b)

(c) (d)

the R2 fit with the identified degree distribution is
90% or greater and is distinctly different from the
data’s fit to any alternative degree distribution. Per-
haps surprisingly, almost one-half (45%) of all cases
represent non-scale-free active networks, suggesting
that the common assumption, according to which
diffusion occurs over a scale-free network, may be
overused. The existence of a nonnegligible popula-
tion of consumers with above-average degrees, as is
the case in heavily skewed tail distribution, acceler-
ates adoption by generating a rather rapid exposure
of large portions of the market to the product. The
right-hand column in Table 3 presents the asymmetry
ratio, defined as the ratio of the post-peak percentage
of adopters to the pre-peak percentage of adopters
(e.g., for the symmetric case, this ratio is 1).

It can be seen that in all cases, the asymmetry ratio
is greater than 1, and among scale-free networks, the
ratio is greater than 3 in the majority of cases. This
implies that in scale-free networks, only 25% of the

total market typically adopts before the sales peak
is achieved. Therefore, firms that concentrate market-
ing efforts on generating pre-peak sales are in effect
ignoring 75% of their potential market. Furthermore,
estimation of the market potential can be biased if the
network degree distribution is not taken into account
(for an estimation of this bias, see Appendix §A.2).
We show in §6.3 that this has significant implications
for penetration forecasting accuracy.

6.3. Forecasting
The purpose of this study is to assess the value of
the information concerning the underlying network.
Although there might be different applications for this
knowledge (such as improved marketing decisions,
strategizing in buzz programs, etc.), we demonstrate
managerial value by testing forecasting accuracy.
The problem of forecasting penetration early in
the process is well known (Chandrasekaran and
Tellis 2007, Van den Bulte and Lilien 1997). From a
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Table 3 Empirical Goodness-of-Fit Results: R2 Values and
Asymmetry Ratios for All Data Sets and Networks

Scale- Asymmetry
free Lognormal Uniform Gaussian ratio

Identified scale-free networks
Friendster online

group (“Korean
Drama Fanz”)

0091 0068 0070 0045 3093

Friendster online
group (“Emo Is
Love”)

0094 0077 0081 0053 2036

Friendster online
group
(“ABSCBN”)

0091 0070 0045 0059 3037

Friendster online
group (“Muse”)

0095 0072 0088 0068 5025

Friendster online
group
(“LinkinPark”)

0095 0083 0072 0081 1093

Friendster online
group
(“Handsome and
Pretty”)

0095 0083 0054 0031 1078

Friendster online
group
(“Registered
Nurse”)

0090 0025 0040 0081 3042

Friendster online
group (“Islam”)

0093 0075 0064 0022 3041

Friendster online
group (“Dota”)

0094 0089 0078 0064 2033

Identified uniform networks
Petition signers

(“Free our friends
in Iraq 0 0 0 ”)

0090 0086 0095 0052 2036

Petition signers
(“12 Year Old
Jobs”)

0081 0086 0095 0057 7051

Petition signers
(“Save
Wonderfalls”)

0081 0063 0091 0078 2077

Identified Gaussian networks
Search volume for

“Kite Runner”
(after launch)

0068 0061 0079 0094 1039

Friendster online
group (“American
Idol”)

0066 0078 0086 0090 1002

CD sales (“DINK”) 0081 0087 0063 0097 1033
Friendster online

group
(“Starbuckerz”)

0065 0063 0073 0090 1007

Identified lognormal networks
Search volume for

“Cloverfield”
(after launch)

0082 0098 0071 004 4001

managerial perspective, it is difficult to obtain suffi-
cient market information at an early enough stage in
the diffusion process to produce useful forecasts. Fur-
thermore, if the market potential M is not provided
by an external source, forecasting may be plagued
with large-scale errors. Recently, it was shown that

even a simple truncation of diffusion data can lead
to overestimation of parameters (Van den Bulte and
Iyengar 2011).

To test the value of a unified approach to diffu-
sion, we use the proposed model to predict diffu-
sion parameters at different stages of the diffusion
process and compared predictions to results of three
well-known models: (1) the Bass model (Bass 1969),
(2) the gamma/shifted Gompertz model (Bemmaor
1994, Bemmaor and Lee 2002), and (3) the nonuniform
influence model (Easingwood et al. 1983). The fore-
casting method is similar to the reconstruction proce-
dure we used previously (§§6.1 and 6.2; see also the
online appendix), but in this case, the network degree
distribution recovered at an early stage in the process
is used to forecast the entire adoption curve and to
generate an estimation of total market potential.

For this study, we used all 20 adoption cases (all
data sets used in prior studies). For each case, we esti-
mated the diffusion parameters as well as the first two
moments of the network distribution, based solely on
early penetration data (see below). We then generated
an adoption forecast by estimating the remainder of
the penetration curve.19 Similarly, we used the same
early data with three alternative models to predict
penetration.

The prediction results of all four models are pre-
sented for four cases (first four cases in Table 3) in
Figures 3 and 4 as an illustration (all 20 cases are
reported in Tables B.3 and B.4 of the online appendix,
and the mean performance is reported in Table 4). The
market potential forecasting percentage error20 is pre-
sented as a function of forecast timing (presented as
penetration percentage) in Figure 3.

Inclusion of the network degree distribution in
the forecasting model significantly improves market
potential forecasting accuracy and enables predictions
to be made earlier in the penetration process, com-
pared with the three remaining models, for most cases
and most time points.

For example, using only data from the 15% pen-
etration mark, the network-based model improves

19 To simplify the process, we exclusively used scale-free degree-
distribution networks for the fitting procedure. We find that using
only scale-free networks produces good forecasting estimations.
A scale-free distribution, for high-power law exponents, can also
approximate a Gaussian distribution, which proves to be useful
when trying to forecast diffusion curves in general. In a separate
study, not reported here for the sake of brevity, we found that
using the scale-free distribution with our data sets, in forecasting,
achieves better results than when using Gaussian distributions.
20 Because the forecasting estimation was performed using early-
stage data for diffusion curves of processes that have reached a
certain market potential, the error of the early-stage estimations
was taken to be the absolute percentage of the deviation from that
market potential (based on knowledge of the subsequent stages of
these processes).
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Figure 3 Comparison of Estimated Market Potential Forecasting Errors of the Network-Based Model and Three Benchmark Models for
Online Groups: (a) Korean Drama Fanz, (b) Emo Is Love, (c) ABSCBN, and (d) Muse
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forecasting accuracy by at least 25% over other mod-
els in most cases (in two of the cases, accuracy
improves by approximately 80%). The consistently
better results of the network model suggest that it car-
ries valuable added information.

At the early 15% penetration mark, the network
model provides the lowest mean absolute percentage
errors (MAPEs)21 among all four model forecasts (see
Figure 4), significantly improving our ability to fore-
cast the full penetration curve. In three of the four
cases, at 15% penetration, the network model gen-
erates a MAPE that is substantially lower than that
of the next best method (which varies from case to
case). Using data from the 25% penetration mark, the
network model is almost converged on the forecasted
curve with mean squared error levels that are close

21 The MAPE was calculated between the forecasted noncumulative
adoption curve and the actual noncumulative adoption curve.

to the final fit, based on the entire curve, in all four
cases. Again, with the exception of isolated points,
the network model improves the MAPE for forecasted
adoption curves. In Table 4, we report the average
percentage of forecasting error and average MAPE for
all 20 cases (for detailed results, see Tables B.3 and
B.4 in the online appendix). On average, the error per-
centage of the estimated market potential generated
by the network model is 15% smaller in magnitude
than that of the second-best model—the nonuniform
influence model—and 57%–65% smaller than errors
produced by the other models. The average MAPE of
the network model is more than 70% lower than that
of the nonuniform influence model and more than
85% lower than that of the other models. We conclude
that the network model generated more accurate pre-
dictions of the market potential and penetration curve
shape than did the other models examined in the
study.
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Figure 4 Comparison of MAPE of Estimated and Real Future Penetration Curves Using the Network-Based Model and Three Benchmark Models for
Online Groups: (a) Korean Drama Fanz, (b) Emo Is Love, (c) ABSCBN, and (d) Muse
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Table 4 Comparison of Average Performance of Forecasting Models

Gamma/shifted
Network Bass Gompert Nonuniform

Network class model model model influence model

Average % of error 3404 9905 9109 5000
Average MAPE 303 2602 2607 1109

7. The Boundary Conditions
of the Model

The proposed model is based on several simplifying
assumptions that may limit its validity and applica-
bility. Below, we discuss the model’s sensitivity to
these assumptions and outline the model’s boundary
conditions.

7.1. Continuous Process
One of the restrictive conditions of the model is that
it is applicable only to continuous processes in which

the diffusion parameters and market size are suf-
ficiently large to produce a continuous penetration
curve that meets the three criteria defined in §6.2.
This model is not applicable to discontinuous and/or
flat diffusion curves; contagion models, in general, are
not meant to capture such dynamics. Flat penetra-
tion curves (without a dominant peak) are thought to
represent market failures, in which social contagion
plays a marginal role at best. We performed several
checks to investigate the boundaries of the model. On
simulated data, for small values of q and p, the dif-
fusion curves are discontinuous, and the model per-
forms poorly. For example, for a network in which the
average degree is 10, daily coefficients of q that are
smaller than 5e−5 and of p that are around 1e−7 lead
to a flat diffusion curve. Our tests confirm that model
performance diminishes in such cases. We observe a
similar reduction in performance in the three bench-
mark diffusion models used. We conclude that the
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model does not perform well in cases of market fail-
ures, discontinuous data, lack of contagion effects, or
highly dominant external force.

7.2. Clustering
Another limitation of the model is its disregard of
network clustering. Many real-life social networks
exhibit some level of clustering and are therefore not
always as random as typically assumed. The results
presented in §6.3 suggest that the model’s predic-
tive performance is not diminished by a real-life clus-
tering effect, but an evaluation of the drawbacks of
using the random network approximation in the case
of clustered networks is warranted. The local clus-
tering coefficient of a given node is defined as the
ratio of the number of actual links to the number of
potential links in a node’s neighborhood (Watts and
Strogatz 1998). The clustering coefficient of an entire
network (the network average clustering coefficient)
is the average of all local clustering coefficients.

Degree distribution and network clustering are
two strongly interrelated network qualities, as con-
firmed in a study by Volz (2004). For a given degree
distribution, the magnitude of global network clus-
tering coefficient has an upper boundary. It was
also shown that clustering coefficients greater than
approximately 0.3 effectively induce fragmented net-
works (Volz 2004). Diffusion over a fragmented net-
work produces curves that may have several peaks
and a high degree of sales volatility (as we also see
in our simulations). As a result, fragmented networks
do not meet the criteria specified in §6.2. For a sensi-
tivity analysis of the clustering effect, given a specific
degree distribution, we generated clustering in the
networks while maintaining each network’s specific
degree distribution. This was done while simultane-
ously maintaining the requirement that the network
is nonfragmented, meaning that it is not composed
of disconnected subnetworks. The greatest cluster-
ing coefficients obtained for scale-free and Poissonian
networks were 0.4522 and 0.23, respectively (which
is consistent with Mislove et al. 2007). This is also
consistent with reported average values of social
network clustering coefficients of 0.26, with a stan-
dard deviation of 0.17 (Mislove et al. 2007, Newman
et al. 2002). Furthermore, for all eight networks used
in §6.1.2, clustering coefficients were smaller than
0.17. Therefore, we limited our sensitivity analysis
to networks with clustering coefficients no greater

22 We find in our simulations that the limit on the average clustering
coefficient regarding fragmentation (0.3; see Volz 2004) changes in
some cases, depending on network characteristics. Therefore we
used the maximum average clustering coefficients attainable in the
simulations, which was as high as 0.45 for the scale-free case and
0.23 for the Poissonian case, to cover all scenarios.

than 0.45, a point at which fragmentation is already
considerable.

For each clustering coefficient and for each adop-
tion curve predicted by the proposed model, we eval-
uated the difference between the R2 obtained with the
clustering coefficient and that obtained with no clus-
tering coefficient. The results for the scale-free case are
presented in Figure 5(a). The differences range from
several percentage points (∼2.5% for the most com-
mon clustering coefficient) to 9%.

In the case of a Poissonian degree distribution
network, the deviation from the no-clustering case
becomes marked at a clustering coefficient of 0.23 (see
Figure 5(b)). We confirmed that network fragmenta-
tion is also high at these clustering coefficient levels
(0.23 and above).

We were unable to generate networks with greater
clustering coefficients that conformed to the degree-
distribution and nonfragmentation requirements. We
conclude that the effect of network clustering on the
explanatory power of the model under the criteria
in §6.2 is within 1% to 4%. Comparing this with

Figure 5 The Effect of Network Clustering on Goodness of Fit
to Adoption Curves: (a) Scale-Free Case and
(b) Poissonian Case
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the results in Tables 2 and 3, an error term of this
magnitude, which is small in relation to the mag-
nitudes of goodness of fit exhibited in these tables,
is not expected to substantially affect the results for
nonfragmented networks with low to moderate lev-
els of clustering.23 We can conclude that moderate
levels of clustering, which are most common, do not
fragment the network and therefore have little impact
on the diffusion process. High clustering coefficients
attest to fragmented networks that do not meet the
model’s first applicability criterion (see §6.2).

7.3. Concavity
The influence of a consumer’s neighbors on the con-
sumer’s decision to adopt in this model is linearly
proportional to the number of neighbors that are
already adopters (see §3). A more realistic assump-
tion may be a concave adoption function in which the
probability of adoption diminishes with each addi-
tional adopter neighbor. To illustrate the effect of
concavity on adoption, we use a log-concave model.
The probability of any potential adopter to adopt
within a short time interval ãt, given that y of his
neighbors have adopted, is 1 − 41 − pãt541 − qãt5y ≈

4p+ yq5ãt. To model concavity, we substitute the lin-
ear y term with the logarithm term:

P4y5 =

(

p+ q log
(

1 +
y

�

))

ãt

≈ 1 − 41 − pãt541 − qãt5log41+y/�50 (20)

Here, � is the concavity parameter. Low values
of � imply high-magnitude concavity, and high val-
ues of � imply low-magnitude concavity. When the
concavity parameter is much greater than the num-
ber of an adopter’s neighbors (i.e., � � y5, the log-
concave model converges to the linear model (recall
that log41+y/�5≈ y/� when y/� � 15. Therefore, the
importance of the overall concavity effect depends on
the ratio between � and the average degree (aver-
age y). We ran simulations to calculate the effect the
concavity assumption has on the results of the model
by measuring R2 differences between the concave and
the nonconcave models:

P4y5= 1 − 41 − pãt541 − qãt5log41+y/�50 (21)

We analyzed the effect of the concavity parameter
� versus the average degree of the social network
(see Figure 6). For kavg ≤ �, adding the concavity
assumption to the model has virtually no effect on
the predicted adoption pattern. For kavg >�, our orig-
inal model does not account for the nonnegligible

23 We again note that our claims regarding the role of clustering are
limited to cases that meet the criteria specified in §6.2.

Figure 6 The Effect of Concavity on Goodness of Fit to
Adoption Curves
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concavity (the adoption pattern also becomes a func-
tion of �). We conclude that concavity should be
included in the modeling scheme only in cases in
which the average degree equals or is greater than
concavity (�). For example, � = 20 implies that the
effect of each adopter-neighbor on a potential adopter
diminishes when there are more than 20 such adopter-
neighbors. In this case, if the average network degree
is estimated to be smaller than 20, our model is valid.
Although it is beyond the scope of this paper to con-
duct an empirical investigation of �, theoretically, we
assume that kavg ≤ � in all the studies we performed.

7.4. Declining Propensity to Generate
Word of Mouth

Word-of-mouth decay, i.e., a consumer’s diminishing
propensity to generate word of mouth over time, is
a plausible assumption and an emergent subject in
research literature (e.g., Berger and Schwartz 2011).
We conducted a study to assess the effect of word-of-
mouth decay on the model’s performance. The diffu-
sion parameters in the proposed model are assumed
to be an effective average and therefore constant over
time. This assumption does not imply that the diffu-
sion parameters are actually constant in time, but only
that they can be represented by an average constant.
Still, to check for time-dependency effects, we added
time dependency of word-of-mouth generation to the
model such that word of mouth decays exponentially
over time until a minimal constant level is reached.
This minimal level represents effects of the neighbors’
long-term exposure to a product even if adopters do
not produce word of mouth. We find that results are
not affected as long as the minimal constant level of
word of mouth is not negligible.
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7.5. Asymmetric Ties
Another limitation of the model is related to its
assumption of symmetric ties (see Van den Bulte
and Joshi 2007) and its disregard of asymmetrical
ties (which implies that some consumers, regardless
of their degree, are more influential than others).
In some cases, the effect of asymmetrical ties may be
important and may generate multiple peaks, which,
in turn, may reduce the model’s accuracy. This is an
important issue that calls for future research, prefer-
ably using individual-level data, including informa-
tion on tie strength.

7.6. General Identification
Heterogeneity in individual adoption can result from
a variety of factors. In this paper, we explored the
role of the social neighborhood of the individual—
specifically, the individual’s degree. Owing to limi-
tations of the data, we were unable to control for
other alternative explanations. Although it is possi-
ble that alternative models can fit the empirical adop-
tion curves (see §6.2), it is less probable that more
than one model will simultaneously fit the adoption
curve, provide reasonable estimations of the under-
lying structure of the network (see §6.1.2), and pro-
vide forecasts superior to those of existing benchmark
methods (see §6.3). We have also made an effort to
include different types of data sets to demonstrate the
explanatory power of the model across types of adop-
tion processes.

8. Conclusion
We have shown that in networks whose degree distri-
butions have heavily skewed tails, such as scale-free
networks, the pattern and symmetry of the adoption
curve tend to differ from those observed in other
types of networks. Specifically, we have shown that
adoption asymmetry can be substantial (see Table 3),
and in most cases, the bulk of the market adopts after
the peak. Ignoring such network-based features leads
to estimation errors as well as biased forecasting. Cor-
recting for this error is not simple, however, because
in most cases, the network degree distribution of
the active network effectively involved in the diffu-
sion process is unknown. Detailed individual-level
adoption data are available from Web-based network
data bases, but the degree distribution of the active
network is invisible and difficult to extract.24 Data on
off-line networks are even scarcer. As a result of the
inaccessibility of these important network data, mar-
keters have typically resorted to generalized assump-
tions about the networks underlying the adoption
process, resulting in less-than-accurate predictions of
market potential and diffusion. One such assumption

24 Extracting the active social influence network from visible
individual-level data is not a trivial matter, and success depends
on the measured indicators and the quality of the data.

is the assumption that the active networks always
have a scale-free degree distribution. We have shown
that in our data set, this assumption is incorrect. Fur-
thermore, almost one-half of the networks we have
investigated are, in fact, not scale-free.

We have shown here how it is possible to extract
hitherto inaccessible network degree distributions
from typically available aggregate-level adoption
data, and we have demonstrated how to estimate
the parameters of the active network’s degree distri-
bution. The proposed approach generates reasonable
forecasts using early-stage aggregate-level penetration
data of a single product.

Until now, predicting market potential was one of
the most difficult challenges of diffusion modeling.
One source of the inaccuracy of the predictions gen-
erated by current models is penetration curve asym-
metry, potentially caused by degree distributions with
heavily skewed tails. As shown in §6.3, an inte-
grated model of diffusion and network connectivity
that takes this asymmetry into account improves the
accuracy of market potential forecasts. Furthermore,
because the model links heterogeneity of an individ-
ual (consumer)-level trait (degree) to the temporal
traits of aggregate consumption (adoption curve), we
believe it is a potentially useful approach for future
attempts to model aggregate patterns based on het-
erogeneous micro-behavior.

Finally, in addition to uncovering degree distribu-
tion, the model provides further information such
as the number of influentials and their degree cen-
tralities. A growing body of literature connects con-
sumers’ value to the firm to their degree centralities
(Goldenberg et al. 2009a, Libai et al. 2010, Stephen and
Toubia 2010). Therefore, information on the distribu-
tion of consumers’ centralities may enhance firms’
ability to more accurately assess the potential value
of a market, given only a single relevant penetration
curve over that market.
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Appendix

A.1. The Dynamics of Diffusion on a Generalized
Random Network

In this appendix, we formally develop the diffusion dynam-
ics on a generalized random network. The probabilities of a
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potential adopter to be affected by external influence (e.g.,
marketing efforts) and word-of-mouth communications
generated independently by each one of her actual adopter
neighbors at each time step ãt are pãt and qãt, respectively.
Hence, the expected value of the number of adopters
within a short time interval ãt after time t is ãN4t5 =
∑

x Hx4t5 · 4p+ xq5ãt. Under the continuous limit,

dN4t5

dt
=
∑

x

Hx4t5 · 4p+ xq50 (22)

Here, Hx4t5 denotes the number of potential adopters of
order x, i.e., consumers who have not yet adopted but have
exactly x neighbors who have already adopted the prod-
uct by time t. The total number of potential adopters at
time t is

∑

x Hx4t5=M −N4t5, where M is the market poten-
tial. At t = 0, the initial conditions are H04t = 05 = M and
Hx4t = 05= 0 for all x 6= 0. If the network is sufficiently large
compared to the maximal degree in the network, the net-
work is sparsely connected. Because the network is random
and hence does not contain short cycles, we can assume
that within a short time interval, ãt, the order of potential
adopters cannot increase by more than 1 (i.e., the proba-
bility of simultaneous adoption of more than one poten-
tial adopter’s neighbor in the same short time interval ãt
is extremely low). Therefore, the change in the number of
potential adopters of order x at time t is given by

ãHx4t5= −ãNx4t5−ãHxx+14t5+ãHx−1x4t51 (23)

where ãNx4t5=Hx4t5 · 4p+ xq5ãt is the number of potential
adopters of order x who become adopters within a short
time interval ãt after the time t, and ãHxx+14t5 is the num-
ber of potential adopters of order x that increase their poten-
tiality order to x + 1 as result of their neighbors’ decisions
to adopt at the time t.

In general, adoption by any potential adopter of order y
and degree k increases the potentiality order of her k −

y potential adopter neighbors by 1. Thus, on average,
the total number of potential adopters that increase their
order by 1 within a short time interval ãt after time t is
∑

y ãNy4t5
∑

k 4k− y5fk�y4t5, where fk�y4t5 is the conditional
probability that potential adopter of order y at time t has
a network degree k. By definition, fk�y4t5 = 0 for all y > k
(the number of the individual’s adopter-neighbors is limited
by her network degree), and the normalization condition is
∑

k fk�y4t5= 1. Because the network is random, ãHxx+1 (the
number of potential adopters of order x that increase their
order to x+15 in ãt is proportional to the number of poten-
tial adopters of order x; namely,

ãHxx+14t5=
Hx4t541 − fx�x4t55
∑

zHz4t541 − fz�z4t55
·
∑

y

ãNy4t5
∑

k

4k− y5fk�y4t50

Hence the dynamical evolution of the number of potential
adopters of order x described by (23) can be rewritten in
the continuous limit as follows:

dHx4t5

dt
= −4p+ xq + 41 − fx�x4t55w4t55Hx4t5

+ 41 − fx−1�x−14t55w4t5Hx−14t51 (24)

where

w4t5=

∑

y hy4t54p+ xq5
∑

k 4k− y5fk�y4t5

1 −
∑

z hz4t5fz�z4t5
(25)

is the average number of potential adopters that increase
their order of potentiality as a result of a single individual’s
adoption at the time t, and hy4t5 = Hy4t5/

∑

zHz4t5 is the
proportion of potential adopters of order x among the entire
population of potential adopters at the time t.

To define a closed system of dynamical equations, we
also retrieve the dynamics of the conditional probabilities
fk�x4t5. fk�x4t5=H

4k5
x 4t5/Hx4t5 , where H

4k5
x 4t5 is the number of

potential adopters of order x with network degree k. In the
case where Hx4t5 6= 0,

fk�x4t +ãt5 =
H

4k5
x 4t5+ãH

4k5
x 4t5

Hx4t5+ãHx4t5
=

fk�x4t5+4ãH
4k5
x 4t55/Hx4t5

1+4ãHx4t55/Hx4t5

≈ fk�x4t5+
ãH

4k5
x 4t5− fk�x4t5ãHx4t5

Hx4t5
0 (26)

For the same reasons that apply to (23), ãH
4k5
x 4t5 =

−ãN
4k5
x 4t5 − ãH

4k5
xx+14t5 + ãH

4k5
x−1x4t5, where ãN

4k5
x 4t5 =

ãNx4t5fk�x4t5 is the number of potential adopters of order x

and network degree k that adopt at time t, and ãH
4k5
xx+14t5=

ãHxx+1f̃k�x4t5 is the number of potential adopters of order x
and network degree k that increase their order to x + 1 as
result of a neighbor’s decision to adopt at the time t. Here,
f̃k�x4t5 denotes the conditional probability at time t that the
network degree of a potential adopter’s neighbor is k, given
that the neighbor is a potential adopter of order x. Because a
potential adopter of order x and network degree k has k−x
connections with other potential adopters, it follows that in
the case of a sufficiently large random network (using the
distribution of a node’s neighbors),

f̃k�x4t5=
4k− x5fk�x4t5

∑

k′ 4k′ − x5fk′ �x4t5
0 (27)

Substituting the explicit expressions ãH
4k5
x 4t5 and ãHx4t5

in (26) (recall that ãNx4t5=Hx4t5 ·4p+xq5ãt and ãHxx+14t5=

41 − fx�x4t55w4t5Hx4t5ãt), while setting to the continuous
limit, we find that in the case of Hx4t5 6= 0,

dfk�x4t5

dt
=

Hx−14t5

Hx4t5
w4t541 − fx−1�x−14t554f̃k�x−14t5− fk�x4t55

−w4t541 − fx�x4t554f̃k�x4t5− fk�x4t550 (28)

On the other hand, in the case of Hx4t5= 0,

fk�x4t +ãt5=
ãH

4k5
x 4t5

ãHx4t5
=

ãH
4k5
x−1x4t5

ãHx−1x4t5
= f̃k�x−14t50 (29)

This implies that the population at the new product
launch time comprises potential adopters with an order of
potentiality x = 0 (no one has an adopter neighbor) so that
fk�04t = 05= Pk, where Pk is the probability mass function of
the degree distribution of the network, and for each poten-
tiality of order x > 0,

fk�x4t = 05 = lim
ãt→0+

fk�x4ãt5= f̃k�x−14t = 05

=
4k− x+ 15fk�x−14t = 05

∑

k′ 4k′ − x+ 15fk′ �x−14t = 05
0
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The Growth Stage. In a random network, it is unlikely
that any individual’s two neighbors are neighbors them-
selves. Thus, in the relatively early stages of the process,
the number of potential adopters that have more than one
neighbor who is an adopter is very small compared with the
number of potential adopters with either one or no adopter
neighbor. Furthermore, as most of the population has a net-
work degree that is greater than 1 and most individuals
have either 0 or 1 neighbor-adopters at the initial stage of
the adoption process, we can assume that f0�04t5 � 1 and
f1�14t5� 1 when t is small. Thus, the penetration dynamics
at early stages of the diffusion process (see (22)) takes the
following form:

dN4t5

dt
= 4M −N4t55p+ q4H14t5+ 2H24t55+O4H351 (30)

where, according to (24),

dH04t5

dt
= −4p+w4t55H04t51 (31)

dH14t5

dt
=w4t5H04t5− 4p+ q +w4t55H14t51 and (32)

dH24t5

dt
=w4t5H14t5+O4H251 (33)

where

w4t5=h04t5p
∑

k

kfk�04t5+h14t54p+q5
∑

k

4k−15fk�14t5+O4h25

and hx4t5=
Hx4t5

M −N4t5

(see (25)). Let X14t5=H14t5+ 2H24t5=H14t5+O4H25 so that

dN4t5

dt
= 4M −N4t55p+ qX14t5+O4H251 (34)

where

dX14t5

dt
=

dH14t5

dt
+ 2

dH24t5

dt

= 4M −X14t5−N4t55p
∑

k

kfk�04t5+X14t54p+ q5

·

(

∑

k

kfk�14t5− 2
)

+O4H250 (35)

Alternatively,

dX14t5

dt
= 4M −N4t55p

∑

k

kfk4t5+X14t5

·

{

q

(

∑

k

kfk�14t5− 2
)

− 2p
}

+O4H251 (36)

where

fk4t5 =
∑

x

hx4t5fk�x4t5=
M −X14t5−N4t5

M −N4t5
fk�04t5

+
X14t5

M −N4t5
fk�14t5+O4h25

is the network degree distribution among potential adopters
at time t. Recall that fk4t5 denotes the ratio of the num-
ber of potential adopters with network degree k to the

total number of potential adopters at time t, so that fk4t5=

4MPk − N 4k54t55/4M − N4t55, where N 4k54t5 is the cumula-
tive number of actual adopters with network degree k, and
Pk is the network degree distribution (thus, M · Pk is the
total number of individuals in the entire population with
network degree k). Because at early stages of the process
N4t5/M � 1, we can apply the following approxima-
tion: fk4t5= Pk41 −N4t5/M5−N 4k54t5/M +O44N 4k5N5/M25+
O44PkN

25/M25, where fk4t = 05 = fk�04t = 05 = Pk, and hence
fk�14t = 05= f̃k�04t = 05= 4kPk5/4

∑

k′ k′Pk′ 5≡ P̃k. Therefore, the
linearization of (36) produces the following:

dX14t5

dt
= Mpkavg − pX24t5+ 4Q̃− 2p5X14t5+O

(

X2N

M2

)

+O

(

kavgN
2

M2

)

+O4H251 (37)

where kavg =
∑

k kPk and Q̃ = q4
∑

k kP̃k − 25. The function
X24t5=

∑

k kN
4k54t5 evolves through the dynamical equation

dX24t5/dt =
∑

k k4dN
4k54t5/dt5 =

∑

k k
∑

x Hx4t54p+ xq5fk�x4t5,
which can also be linearized to produce

dX24t5

dt
= Mpkavg − pX24t5+ 4Q̃+ 2q5X14t5+O

(

X2N

M2

)

+O

(

kavgN
2

M2

)

+O4kavgH250 (38)

Thus, the temporal derivatives of (34), (37), and (38) gen-
erate the following system of linear and homogeneous ordi-
nary differential equations with constant coefficients:

d2N4t5

dt2
≈ −p

dN4t5

dt
+ q

dX14t5

dt
1 (39)

d2X14t5

dt2
≈ 4Q̃− 2p5

dX14t5

dt
− p

dX24t5

dt
1 (40)

d2X24t5

dt2
≈ 4Q̃+ 2q5

dX14t5

dt
− p

dX24t5

dt
1 (41)

and the initial conditions are 4dN/dt5�t=0 = Mp,
4dX1/dt5�t=0 = Mpkavg, and 4dX2/dt5�t=0 = Mpkavg. The
solution of the subsystem (40) and (41) yields

dX14t5

dt
=A+e

�+t
+A−e

�−t1 (42)

where the �s are the roots of the characteristic polyno-
mial �2 − 4Q̃ − 3p5� + 2p4q + p5 such that �± = 41/25 ·

4Q̃− 3p561 ±

√

1 − 8p4q + p5/4Q̃− 3p527, and A± = ±4�±/
4�+ − �−55Mpkavg. As a result, consider the case where
the mean network degree is much larger than 1 and thus
Q̃ � q, and the aggregate-level word-of-mouth effect is
much stronger than the effect of the external influence (e.g.,
marketing efforts) so that Q̃ � p. One finds that �+ = Q̃ −

3p + O444p+ q5/Q̃5p5 and �− = O444p+ q5/Q̃5p5 � �+, and
hence A− � A+ ≈ Mpkavg. Consequently, (42) takes the fol-
lowing form:

dX14t5

dt
≈Mpkavge

4Q̃−3p5t 0 (43)

The solution of the ordinary differential equation (39) fol-
lowing the substitution of (43) in (39) is given by (see (8)):

dN4t5

dt
≈Mp

(

1 −
kavgq

Q̃− 2p

)

e−pt
+Mp

kavgq

Q̃− 2p
e4Q̃−3p5t 0 (44)
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The Decline Stage. In advanced stages of the diffusion,
the majority of the population has already adopted the
innovation. Hence, most of the remaining potential adopters
are surrounded by adopters and become “perfect holes”: for
almost all potential adopters, the order of potentiality x and
the network degree k are equal. In effect, fk�x4t5≈ �kx, where
�kc is Kronecker’s delta. As a result, the dynamic evolutions
of the number of potential adopters with network degree k
and the number of potential adopters of potentiality order
x = k are identical and are given by reducing (24) as indi-
cated in (13).

A.2. Correction Factor for Asymmetric Diffusion Curves
Let t0 be the time at which we conduct the forecast of the
remaining market potential. We assume that t0 is measured
after the peak. Therefore, the decline rate can be estimated.

If Ṅ 4t05 is the penetration rate at the time t0 and N4t05 is
the cumulative penetration until time t0, then the estimated
total market potential is

M =N4t05+ Ṅ 4t05
∫ �

t0

e−�4t′−t05dt′ =N4t05+
Ṅ 4t05

�
1

where � is the decline rate. Therefore, if we take the Bass
model as a benchmark with decline rate �B , the ratio of the
estimated total market potential values is

M

MB

=
N4t05+ Ṅ 4t05/�

N4t05+ Ṅ 4t05/�B

0

If we focus on the tails, we find that ãM/ãMB = �B/�. Thus,
taking the Bass model as a benchmark, �B = Q + p, where
Q is the exponential term in the growth stage (which is
also the inner force coefficient Q) while �≈ kminq+p, where
kmin is the minimal degree in the network. Now recall that
the growth stage exponential coefficient is given by Q =

q4kavg +�2/kavg − 25. We therefore conclude that

ãM

ãMB

=
�B

�
≈

q4kavg +�2/kavg − 25+ p

kminq + p
1

while in the case of a scale-free network (and also assum-
ing that kminq � p), we can approximate this factor to be
dependent exclusively on network properties: ãM/ãMB =

4kavg +�2/kavg5/kmin. If we wish to incorporate an exponen-
tial discount term �, the estimated market potential is then
given by

NPV = Ṅ 4t05
∫ �

t0

e−4�+�54t′−t05 dt′ =
Ṅ 4t05

�+�
1

and thus

NPV

NPVB

=
�B +�

�+�
0

A.3. Description of the Numerical Method Used to
Extract Network and Diffusion Parameters

Using Complete Penetration Curve Data Ex Post Facto:
Estimations Procedures. We now describe the method of
extracting the numerical constraints from the penetration
pattern, which is the basis for the network reconstruction
method.

Table A.1 Symbols

N4t5 Cumulative number of adopters at time t .
dN4t5/dt Rate of adoption at time t .
Q Aggregate-level internal force coefficient.
P Aggregate-level external force coefficient.
q Individual-level internal force coefficient.
p Individual-level external force coefficient.
Hx The number of potential adopters of order x, i.e., those who

have exactly x neighbors who are adopters of the product
at time t .

fk�x 4t5 The conditional probability that potential adopters of order x
(i.e., with exactly x neighbors who are adopters) at time t

have network degree k.
f̃k�x 4t5 The conditional probability at time t that the network degree

of a potential adopter’s neighbor is k, given that the
neighbor is potential adopter of order x.

Q̃ Effective internal force coefficient. This coefficient contains
the effect of the network’s degree distribution
(Equation (9)).

Pk The network’s degree probability mass function.
P̃k The probability mass function of the degree of the neighbors

of nodes on the network.
kavg1 � The average and standard deviation of the network degree

distribution, respectively.
�1 kmin The scale-free exponent and minimal degree of the network

degree distribution.
�1S The average and standard deviation of the network degree

logarithms, respectively (for the lognormal degree
distribution).

a1 b The minimal and maximal degrees, respectively (for a
uniform degree distribution).

x11 x2 The growth and decline exponential slopes, respectively
(Equations (16) and (17)).

z11 z2 The adjusted exponential slopes of growth and decline,
respectively (Equations (18) and (19)).

�11 �2 The two parameters of the network degree distribution.
Depending on the distribution, these could be kavg and �

(Gaussian) or � and kmin (scale-free). For detailed
information, see Table B.1 in the online appendix.

The Growth Stage. For the growth stage, our aim is
to extract the exponential slope of the adoption rate.
We applied the logistic curve rule by fitting part of a logistic
curve. We also used maximum sales growth; i.e., we identi-
fied the maximum point of sales growth (second derivative
of the cumulative adoption) and regressed for the exponen-
tial slope in a log-linear space. Assuming an exponential
function, we used the “returns” function dN4t5/N4t5, which
is effectively the slope of the exponential function, or in
this case, the growth rate. We expect this function to be
constant in the range of constant exponential growth. We
then estimated the value of the function (the exponential
slope) using the ordinary least squares (OLS) method with
different groups of data points of the returns function. The
growth stage exponential slope was taken to be the average
value across groups.

The Decline Stage. To estimate the decline stage, we also
used the OLS method with different groups of data points
taken from the post-peak section using a linear fit in a
log-linear scale. We found that the results improve dra-
matically when we also used, in this case, the returns
function dN4t5/N4t5, which also exhibits an exponential
decline toward the end of the diffusion process, coinciding
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with the exponential decline of the adoption rate. The rea-
son for that was the reduced noise and longer duration of
the returns function’s tail.
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