
Network Traffic Analysis and Intrusion Detection using Packet Sniffer

Mohammed Abdul Qadeer
Dept. of Computer Engineering,

Aligarh Muslim University,
Aligarh- 202002, India

maqadeer@ieee.org

Arshad Iqbal
Scientist B,

GTRE, DRDO,
Bangalore, India

arshadamu@gmail.com

Mohammad Zahid
Asst. System Engineer,

Tata Consultancy Services,
Trivandrum, India
md.zahid@tcs.com

MisbahurRahman Siddiqui
Univ. Women’s Polytechnic,
Aligarh Muslim University,

Aligarh- 202002, India
misbahurrahman@gmail.com

Abstract- Computer software that can intercept and log traffic
passing over a digital network or part of a network is better
known as packet sniffer. The sniffer captures these packets by
setting the NIC card in the promiscuous mode and eventually
decodes them. The decoded information can be used in any
way depending upon the intention of the person concerned who
decodes the data (i.e. malicious or beneficial purpose).
Depending on the network structure one can sniff all or just
parts of the traffic from a single machine within the network.
However, there are some methods to avoid traffic narrowing
by switches to gain access to traffic from other systems on the
network. This paper focuses on the basics of packet sniffer and
its working, development of the tool on Linux platform and its
use for Intrusion Detection. It also discusses ways to detect the
presence of such software on the network and to handle them
in an efficient way. Focus has also been laid to analyze the
bottleneck scenario arising in the network, using this self
developed packet sniffer. Before the development of this
indigenous software, minute observation has been made on the
working behavior of already existing sniffer software such as
wireshark (formerly known as ethereal), tcpdump, and snort,
which serve as the base for the development of our sniffer
software. For the capture of the packets, a library known as
libpcap has been used. The development of such software gives
a chance to the developer to incorporate the additional features
that are not in the existing one.
 Keywords: Packet capture, traffic analysis, libpcap, network
monitoring, NIC, promiscuous mode, Berkeley Packet Filter,
Network analyzer, packet sniffer, intrusion detection.

I. INTRODUCTION

Packet sniffer is a program running in a network attached
device that passively receives all data link layer frames
passing through the device’s network adapter. It is also
known as Network or Protocol Analyzer or Ethernet Sniffer.
The packet sniffer captures the data that is addressed to
other machines, saving it for later analysis. It can be used
legitimately by a network or system administrator to
monitor and troubleshoot network traffic. Using the
information captured by the packet sniffer an administrator
can identify erroneous packets and use the data to pinpoint
bottlenecks and help maintain efficient network data
transmission. Packet Sniffers were never made to hack or
steal information. They had a different goal, to make things
secure. But then everything has a dark side. Figure 1 shows

the output captured by the Wireshark (packet sniffer
software formerly known as Ethereal). In figure 2 we have
shown that how the data travels from application layer to the
network interface card.

Fig 1: Screen shot of wireshark

Fig 2: Flow of packets

2010 Second International Conference on Communication Software and Networks

978-0-7695-3961-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCSN.2010.104

313

II. LIBRARY : LIBPCAP
Pcap consists of an application programming interface (API)
for capturing packets in the network. UNIX like systems
implements pcap in the libpcap library; Windows uses a port
of libpcap known as WinPcap. LIBPCAP is a widely used
standard packet capture library that was developed for use
with BPF (Berkely Packet Filter) kernel device [1]. BPF can
be considered as an OS kernel extension. It is BPF, which
enables communication between operating system and NIC.
Libpcap is a C language library that extends the BPF library
constructs. Libpcap is used to capture the packets on the
network directly from the network adapter. This library is an
in built feature of the operating system. It provides packet
capturing and filtering capability. It was originally
developed by the tcpdump developers in the Network
Research Group at Lawrence Berkeley Laboratory [2]. If
this library is missing in the operating system, we can install
it at a later time, as it is available as an open source.

III. PROMISCUOUS MODE
The network interface card works in two modes
 I) Non promiscuous mode (normal mode)
 II) Promiscuous mode
When a packet is received by a NIC, it first compares the
MAC address of the packet to its own. If the MAC address
matches, it accepts the packet otherwise filters it. This is due
to the network card discarding all the packets that do not
contain its own MAC address, an operation mode called non
promiscuous, which basically means that each network card
is minding its own business and reading only the frames
directed to it. In order to capture the packets, NIC has to be
set in the promiscuous mode. Packet sniffers which do
sniffing by setting the NIC card of its own system to
promiscuous mode, and hence receives all packets even they
are not intended for it. So, packet sniffer captures the
packets by setting the NIC card into promiscuous mode. To
set a network card to promiscuous mode, all we have to do
is issue a particular ioctl () call to an open socket on that
card and the packets are passed to the kernel. In figure 4 we
can see network interface card (NIC). Figure 3 shows how
the data sent by device A to device C is also received by
device D which is set in promiscuous mode.

Fig 3: Packet received by device set in promiscuous mode on wireless LAN

Fig 4: Network Interface card

IV. SNIFFER WORKING MECHANISMS
When the packets are sent from one node to another in the
network, a packet has to pass through many intermediate
nodes. A node whose NIC is set in the promiscuous mode
tends to receives the packet. The packet arriving at the NIC
are copied to the device driver memory, which is then
passed to the kernel buffer from where it is used by the user
application. In Linux kernel, libpcap uses “PF_PACKET”
socket which bypasses most packet protocol processing
done by the kernel [3]. Each socket has two kernel buffers
associated with it for reading and writing. By default in
Fedora core 6, the size of each buffer is 109568 bytes. In
our packet sniffer, at user level the packets are copied from
the kernel buffer into a buffer created by libpcap when a live
capture session is created. A single packet is handled by the
buffer at a time for the application processing before next
packet is copied into it [3]. The new approach taken in the
development of our packet sniffer is to improve the
performance of packet sniffer, using libpcap to use same
buffer space between kernel space and application. Figure 5
shows the interface of our packet sniffer while capturing
packets.

Fig 5: Packet sniffer while capturing session

314

Fig 6: Shows the details of selected packet

V. BASIC STEPS FOR THE DEVELOPMENT OF PACKET
SNIFFER ON LINUX PLATFORM

We are going to discuss the basic steps that we have taken
during the development of our packet sniffer.

A. Socket Creation
Socket is a bi-directional communication abstraction via
which an application can send and receive data
There are many types of socket:

SOCK_STREAM: TCP (connection oriented,
guaranteed delivery)
SOCK_DGRAM: UDP (datagram based
communication)
SOCK_RAW: allow access to the network layer. This
can be build ICMP message or Custom IP packet.
SOCK_PACKET: allows access to the link layer (e.g.
Ethernet). When a socket is created, a socket stream,
similar to the file stream, is created, through which data
is read [4].

B. To Set NIC in Promiscuous Mode
To enable the packet sniffer to capture the packets, the NIC
of the node on which sniffer software is running has to be
set on promiscuous mode. In our packet sniffer it was
implemented by issuing an ioctl () call to an open socket on
that card. The ioctl system call takes three arguments;
• The socket stream descriptor.
• The function that the ioctl function is supposed to

perform.
• Reference to the ifreq member [4]

Since this is a potentially security-threatening operation, the
call is only allowed for the root user. Supposing that “sock''
contains an already open socket, the following instructions
will do the trick:

ioctl (sock, SIOCGIFFLAGS, & ether);
ethreq.ifr_flags |= IFF_PROMISC;
ioctl (sock, SIOCGIFFLAGS, & ether);

The first ioctl reads the current value of the Ethernet card
flags; the flags are then ORed with IFF_PROMISC, which
enables promiscuous mode and are written back to the card
with the second ioctl.

C. Protocol Interpretation
In order to interpret the protocol, the developer should have
some basic knowledge of protocol that he wishes to sniff. In
our sniffer which we developed on Linux platform we
interpreted the protocols such as IP, TCP, UDP, ICMP
protocols by including the headers as;

<linux/tcp.h>, <linux/udp.h>, <linux/ip.h> and
<linux/icmp.h>.

In the figures below we are showing some packet header
formats;

Fig 7: TCP protocol header fields

Fig 8: UDP protocol header fields

VI. LINUX FILTER

As network traffic increases, the sniffer will start losing
packets since the PC will not be able to process them
quickly enough. The solution to this problem is to filter the
packets you receive, and print out information only on those
you are interested in. One idea would be to insert an “if
statement'' in the sniffer's source; this would help polish the
output of the sniffer, but it would not be very efficient in
terms of performance. The kernel would still pull up all the
packets flowing on the network, thus wasting processing
time, and the sniffer would still examine each packet header
to decide whether to print out the related data or not. The
optimal solution to this problem is to put the filter as early
as possible in the packet-processing chain (it starts at the

315

network driver level and ends at the application level, see
Figure 9). The Linux kernel allows us to put a filter, called
an LPF, directly inside the PF_PACKET protocol-
processing routines, which are run shortly after the network
card reception interrupt has been served. The filter decides
which packets shall be relayed to the application and which
ones should be discarded.

Fig 9: Filter processing chain

VII. METHODS TO SNIFF ON SWITCH
Now we are going to discuss the methods that can be used
to sniff the packets on the switch, being an intelligent
device.

A. ARP Spoofing
As we know that ARP is used to obtain the MAC address of
the destination machine with which we wish to
communicate. The ARP is stateless, we can send an ARP
reply, even if one has not been asked for and such a reply
will be accepted. Ideally, when you want to sniff the traffic
originating from a machine, you need to ARP spoof the
gateway of the network. The ARP cache of that machine
will now have a wrong entry for the gateway and is said to
be "poisoned". This way all the traffic from that machine
destined for the gateway will pass through your machine.
Another trick that can be used is to poison a hosts ARP
cache by setting the gateway's MAC address to
FF:FF:FF:FF:FF:FF (also known as the broadcast MAC).
There are various utilities available for ARP spoofing. An
excellent tool for this is the arpspoof utility that comes with
the dsniff suite.

B. MAC Flooding

Switches keep a translation table that maps various MAC
addresses to the physical ports on the switch. As a result of
this, a switch can intelligently route packets from one host
to another, but it has a limited memory for this work. MAC
flooding makes use of this limitation to bombard the switch
with fake MAC addresses until the switch can't keep up.
The switch then enters into what is known as a `failopen

mode', wherein it starts acting as a hub by broadcasting
packets to all the machines on the network. Once that
happens sniffing can be performed easily. MAC flooding
can be performed by using macof, a utility which comes
with dsniff suite.

VIII. BOTTLENECK ANALYSIS
With the increase of traffic in the network, the rate of the
packets being received by the node also increases. On the
arrival of the packet at NIC, they have to be transferred to
the main memory for processing. A single packet is
transferred over the bus. As we know that the PCI bus has
actual transfer of not more than 40 to 50 Mbps because a
device can have control over the bus for certain amount of
time or cycles, after that it has to transfer the control of the
bus [2]. And we know that the slowest component of a PC is
disk drive so, bottleneck is created in writing the packets to
disk in traffic sensitive network. To handle the bottle neck
we can make an effort to use buffering in the user level
application. According to this solution, some amount of
RAM can be used as buffer to overcome bottleneck [1].

IX. DETECTION OF PACKET SNIFFER
Since the packet sniffer has been designed as a solution to
many network problems. But one can not ignore its
malicious use. Sniffers are very hard to detect due to its
passiveness but there is always a way, and some of them are
given below;

A. ARP Detection Technique
As we know that sniffing host receives all the packets,
including those that are not destined for it. Sniffing host
makes mistakes by responding to such packets that are
supposed to be filtered by it. So, if an ARP packet is sent to
every host and ARP packet is configured such that it does
not have broadcast address as destination address and if
some host respond to such packets, then those host have
there NIC set into promiscuous mode [5]. As we know that
Windows is not an open source OS, so we can’t analyze its
software filter behavior as we do in Linux. In Linux we can
analyze the behavior of filter by examining the source code
of this OS. So, here we are presenting some addresses to do
it on Windows. They are as follows;

• FF-FF-FF-FF-FF-FF Broadcast address: The packet

having this address is received by all nodes and
responded by them.

• FF-FF-FF-FF-FF-FE fake broadcast address: This
address is fake broadcast address in which last 1 bit is
missing. By this address we check whether the filter
examines all the bits of address and respond to it.

• FF-FF-00-00-00-00 fake broadcast 16 bit address: In
this address we can see those first 16 bits are same as
broadcast address.

316

• FF: 00:00:00:00:00 fake broadcast 8 bits: This address is
fake broadcast address whose first 8 bits are same as the
broadcast address [6].

B. RTT Detection
RTT stands for Round Trip Time. It is the time that the
packet takes to reach the destination along with the time
which is taken by response to reach the source. In this
technique first the packets are sent to the host with normal
mode and RTT is recorded. Now the same host is set to
promiscuous mode and same set of packets are sent and
again RTT is recorded. The idea behind this technique is
that RTT measurement increases when the host is in
promiscuous mode, as all packets are captured in
comparison to host that is in normal mode [7].

C. SNMP Monitoring
SNMP is widely employed to monitor, control, and
configure network elements. By the help of this protocol
network managers locate and correct the network problems.
SNMP client is invoked by the managers on the local node,
and by the help of this client node they contact one or more
SNMP servers. SNMP uses a fetch and store model in
which each server maintains a variable that include
statistics, as count of packet received [4]. By the help of
SNMP one can detect the presence of sniffer in the network
by connecting and disconnecting to the ports.

X. INTRUSION DETECTION USING PACKET SNIFFER

The term "Intrusion Detection" implies discovering attacks
and threats throughout an enterprise or organization, and
responding to those discoveries. Some of the automated
responses typically include notifying a security
administrator via a console, e-mail, stopping the offending
session, shutting the system down, turning off down Internet
links, or executing a predefined command procedure. In
context to our paper, as we know that packet sniffer can be
used for malicious purpose the same can be used for
intrusion detection also. Using this methodology, the
Intrusion Detection software is placed on the system, which
puts the Ethernet card in "promiscuous mode" so that the
software can read and analyze all traffic. It does this by
examining both the packet header fields and packet
contents. The Intrusion Detection software like packet
sniffers includes an engine, which looks for specific types of
network attacks, such as IP spoofing and packet floods.
When the packet sniffer detects a potential problem it
responds immediately by notifying to the administrator by
various mode such as console, beeping a pager, sending an
e-mail, or even shutting down the network session. The
diagram below shows a typical deployment of sniffers for
doing packet analysis. A sniffer is placed outside the
firewall to detect attack attempts coming from the Internet.
A sniffer is also placed inside the network to detect Internet

attacks, which penetrate the firewall and to assist in
detecting internal attacks and threats.

Fig 10: Deployment of packet sniffer for intrusion detection

XI. CONCLUSION & FUTURE WORK

This packet sniffer can be enhanced in future by
incorporating features like making the packet sniffer
program platform independent, filtering the packets using
filter table, filtering the suspect content from the network
traffic and gather and report network statistics. A packet
sniffer is not just a hacker’s tool. It can be used for network
traffic monitoring, traffic analysis, troubleshooting and
other useful purposes. However, a user can employ a
number of techniques to detect sniffers on the network as
discussed in this paper and protect the data from being
sniffed.

REFERENCES

[1] G. Varghese, “Network Algorithmic: An Interdisciplinary Approach to
Designing Fast Networked Devices”, San Francisco, CA: Morgan
Kaufmann, 2005.

[2] J. Cleary, S. Donnelly, I. Graham, "Design Principles for Accurate
Passive Measurement," in Proc. PAM 2000 Passive and Active
Measurement Workshop (Apr. 2000).

[3] A. Dabir, A. Matrawy, “Bottleneck Analysis of Traffic Monitoring
Using Wireshark”, 4th International Conference on Innovations in
Information Technology, 2007, IEEE Innovations '07, 18-20 Nov. 2007,
Page(s):158 - 162

[4] S. Ansari, Rajeev S.G. and Chandrasekhar H.S, “Packet Sniffing: A
brief Introduction”, IEEE Potentials, Dec 2002- Jan 2003, Volume:21,
Issue:5, pp:17 – 19

[5] Daiji Sanai, “Detection of Promiscuous Nodes Using ARP Packet”,
http://www.securityfriday.com/

[6] Ryan Spangler , Packet Sniffer Detection with AntiSniff, University of
Wisconsin – Whitewater, Department of Computer and Network
Administration, May 2003

[7] Zouheir Trabelsi, Hamza Rahmani, Kamel Kaouech, Mounir Frikha,
“Malicious Sniffing System Detection Platform”, Proceedings of the 2004
International Symposium on Applications and the Internet (SAINT’04),
IEEE Computer Society

[8] Hornig, C., “A Standard for the Transmission of IP Data grams over
Ethernet Networks”, RFC-894, Symbolic Cambridge Research Center,
April 1984.

317

