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Along with the development of technology and social progress, the Internet is increasingly widely used in life. Mobile com-
munication, �ber optic broadband, and other essential Internet networks have gradually become indispensable in everyday life.
�e task of further improving and optimizing the quality of Internet network links and improving the e�ciency of Internet
networks has been on the agenda.�is paper proposed a deep learning-based network tra�c prediction model, which can capture
the characteristics of network tra�c information changes by inputting past network tra�c data to achieve the e�ect of future
network tra�c prediction.�emodel structure is �exible and variable, which improves the problems of other methods that cannot
capture long time series prediction features and cannot parallelize the output. It also has apparent advantages in time complexity
and model convergence speed without the evident disadvantage of time lag. Based on this network tra�c prediction model, it can
help Internet service providers optimize network resource allocation, improve network performance, and allow Internet data
centers to provide abnormal network warnings and improve user service level agreements.

1. Introduction

With the increasing number of Internet users, the pene-
tration rate of mobile and �xed-line users is high. �e ex-
tensive coverage and structure of the network make it easier
to collect and diversify network tra�c data [1]. To provide
customers with better broadband network quality and en-
terprises with better network optimization equipment, a
comprehensive network tra�c forecasting model is on the
agenda and aims to implement the following features:

(1) Optimization of network resource allocation: Ac-
curate tra�c forecasting models can detect long-
term future tra�c demand, providing guidance for
early planning of resources, freeing up network re-
source consumption, and unlocking the potential for
network tra�c growth.

(2) Improved utilization of network resource: Operators
and network service providers can use a predictive
network tra�c model to improve the mobile expe-
rience of their subscribers. By analyzing network
tra�c resources, the number of base stations in high-
load areas can be improved. It also can reduce the
energy consumption of base stations in low-load
regions to improve network resource utilization.

(3) Optimization of network resource service levels: �e
network prediction model can provide a more ad-
vanced understanding of the network attack tra�c’s
size and guide the server to carry out tra�c re-
�nement cleaning. Similarly, it ensures the regular
operation of user services through load balancing
and fault migration of network resources to improve
the user QoS level.
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Machine learning models have become increasingly
popular in academic and industrial applications over the
last decade as GPU, and edge accelerator processing speeds
have increased, providing a new avenue to assist traditional
industries. Network traffic prediction refers to extracting
feature information from past traffic information to predict
future network data traffic. Several network traffic pre-
diction models have been proposed recently. ARIMA
(autoregressive integrated moving average) [2] is the tra-
ditional time-domain forecasting method which is widely
used in the financial direction. However, in predicting long
time series or complex data, these models do not perform
very well. +e ARIMA model is simple and easy to apply
but requires stable time series data and, by its nature,
cannot capture nonlinear relationships, and the RNN
family of models [3–5] (recurrent neural network (RNN)
and their derivative models, long short term memory
(LSTM) networks, and gated recurrent units (GRU), etc.)
can better discover features in the time domain through its
unique shared memory mechanism. Still, its time com-
plexity is high and cannot parallelize the output. In 2017,
Google proposed the transformer model [6], which does
not use popular processing models such as convolutional
neural networks (CNN) and RNNs but instead uses the
attention mechanism entirely to achieve more accurate
results in the direction of natural language processing
(NLP) and computer vision (CV) combined with the
original self-attention (Attention) mechanism is suitable
for network traffic prediction on the ground, due to its solid
fitting ability, low time complexity, and parallelized output.

+e rest of the paper is organized as follows: Section 2
describes the attention mechanism and model architecture,
while Section 3 focuses on some basic details and model
training parameters. In the next two sections of the paper,
the results of the visual network traffic prediction model are
visualized, summarized, and extended in the future.

2. Model Structure

With time, transformer and BERT (bidirectional encoder
representations from transformers) models [7] came into
prominence in NLP. Attention mechanisms were already
migrated and applied to various aspects of deep learning
models. Even papers state that [8] the self-attentive tool is a
generalized version of CNN. In the direction of deep
learning methods, most time series prediction models use
RNNs and related models. Still, due to their unique shared
memory mechanism, which leads to high time complexity in
the number of parameters and the inability to parallelize the
output, the self-attentive mechanism differs from traditional
neural networks such as DNNs and RNNs in its high fitting
capability. It has the advantages of parallelized creation and
low time complexity, which are ideal for it and is suitable for
network traffic prediction.

2.1. Self-Attention. As shown in Figure 1, in the overall
mechanism of the self-attentive mechanism (input and
output), each result is related to each input, and each

predicted traffic is obtained from all output traffic infor-
mation before prediction.

In the model calculation, there are three independent
variables and one dependent variable:

Independent variables such as Q (query), K (key), and V
(value), which are obtained from the initialization of the
model need to be optimized and iterated afterward. +e
dependent variable which is α self-attentive coefficient is
obtained linearly by the independent variables as an in-
termediate state, which is not displayed in the figure. +e
internal structure of the model calculation can be shown in
Figure 2:

+e computational mechanism is divided into three
stages:

(1) Parameter initialization:+e model is initialized by
the parameters with their respective parametric
quantities (independent variables) Q, K, and V.

(2) Parameter calculation:

(a) +e self-attentive scores are calculated from Q
corresponding to the predicted values and K of
all common inputs.

(b) Matrix multiplication of the self-attentive scores
with V to obtain the initial output state corre-
sponding to each input value.

(3) Parameter summation: All output values from the
second stage are summed to obtain the
corresponding.

2.2. Attention Score. +e previous section mentioned that Q
computes the attention fraction and also K. Generally, the
point multiplication or summation method is commonly
used. Point multiplication and summation are pointed
multiplication and summation operations between tensors
in linear algebra, and the structure of the calculation is
shown in Figure 3.

+e input network traffic data are initialized to produce
the corresponding Q and K. When Q and K are operated;
they are directly dotted in the dotted multiplication method
or summed in the summation method and then passed
through the Tanh function to obtain the corresponding
attention fraction.

2.3. Multihead Attention. +e transformer proposes the
multiheaded attention mechanism [9]. Its main idea is to
map the input vectors to different subspaces by increasing
the number of parameters Q, K, and V of the self-at-
tention mechanism, allowing the model to understand the
input sequence from different perspectives. +e com-
parison of the multiheaded attention mechanism and self-
attention mechanism is shown in Figure 4 as machine
translation.

By observing the overall model structure in Figure 5, the
model input to the encoder is a time series T with multi-
dimensional features, which flows through the numerical
embedding layer and the positional embedding layer and
then enters multiple multihead self-attentive mechanisms
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and the numerical regularization layer and then extracts the
input K and V from the last layer to the decoder.

+e input of the decoder has the same structure as the
encoder’s input—the input length is smaller than that of the
encoder. +e Q of the result of the multiheaded attention
layer through the mask is combined with the output of the

encoder into multiple multiheaded attention layers and the
data value regularization layer. Finally, the prediction result
is output.

3. Training

3.1. Datasets. In this experiment, Vietnam’s two years of 4G
base station data are used as the training dataset using the
random sliding window method, as shown in Figure 6. We
used the base station traffic for the past 168 days to predict
the data traffic for the next 32 days.

3.2. Loss Function. +e model is back-propagated and op-
timized using mean absolute error (MAE) in the training
dataset. Both mean square error (MSE) andMAE are used in
the validation dataset to determine the model’s merit. +eir
functional expressions are as follows:
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Figure 1: Structure of the self-attention mechanism.
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3.3. Optimizer. We used the R-Adam optimizer [10] with
learning rate� 1e−3, betas� (0.9, 0.999), eps� 1e−8, weight-
decay� 0, compatible with the traditional Adam [11], and
SGD optimizers control the variance of the adaptive rate to
achieve faster convergence and robustness.

3.4. Metrics. We use a fault-tolerant accuracy algorithm to
keep the predicted data at the actual data’s Tr (tolerate-rate)
edge:

Accuracy �
1
n



n

i�1
(1 if Tr∗Y≤ Y≤Tr∗Y else 0). (3)

3.5. Other Details

3.5.1. Hardware. We train our model on an Nvidia GPU
(RTX 5000), using an Intel CPU under Linux, Ubuntu, with
all datasets on “cuda” and all raw parameters in the model
initialized to a zero matrix.

3.5.2. Activation Function. Unlike the transformer model,
we replace the ReLU [12] (rectified linear unit) activation
function with the GELU (Gaussian error linear units) ac-
tivation function for high-performance neural networks,
which incorporates the idea of randomness regularization,
combining nonlinearity with stochastic regularization.

4. Result

+is section explains the time series prediction results of
using the past 168 hours of data traffic to predict the next 32
hours of data and shows the advantages of the transformer in
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Figure 5: Model structure.
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the network traffic prediction model more visually through
visual images.

4.1.NetworkTrafficPredictionModel Results. Figure 7 shows
the prediction results of a batch, with the horizontal axis
being the time series and the vertical axis being the network
traffic size (normalized).

+e blue curve is the accurate data, and the orange line is
the transformer prediction data. As can be seen from the
graph, the overall flowmagnitude and trend predicted by the
short time series are accurate. +e overall time lag of the
model is almost nonexistent, and the prediction curve grows
in parallel with the natural curve, which can be applied to
entire network prediction systems.

4.2.Comparisonwith theResults ofLSTM. Figure 8 illustrates
that the network traffic prediction model fits the actual data
better than the LSTM model and has better prediction re-
sults at the abnormal time points 22–27. From points 10, 19,
21, etc., we can see that the transformer model is less affected
by time lag than the LSTM model and is more suitable for
practical use.

By performing gradient operation on the output in order
to make the model converge, so as to achieve the smallest
value of the loss function, the gap between the predicted
value of the model and the actual value becomes smaller, and
the predicted value of the model will be reduced. In light of
this, we calculated the MAE, MSE, and fault tolerant rate of
these models base on equations (1) and (2). As shown in
Table 1, compared with other deep learning models, the
MAE and MSE of proposed model is smaller, and the fault
tolerance accuracy is (prediction accuracy) higher, by about
30%.

5. Conclusion

In this paper, the transformer deep learning model is used to
predict network traffic, which is the theoretical foundation
and basis for resource preallocation. Practical comparison
proves that the training model adopted has a faster con-
vergence speed, higher accuracy, and is easier to handle
multidimensional feature data. We apply it to time series
prediction based on real-life network traffic data using an
attention mechanism with high fitting capability and parallel
output. +e proposed network prediction model can better
understand the size of network traffic and provide a theo-
retical basis for the refined allocation of server resources.
+rough the analysis of network traffic resources, the
number of base stations in high-load areas can be optimized
and the energy consumption of base stations in low-load
areas can be reduced, and thus improve the utilization of
network resources.

Data Availability

In this experiment, Vietnam’s two years of 4G base station
data are used as the training datathat are set using the
random sliding window method. https://www.kaggle.com/
naebolo/predict-traffic-of-lte-network.
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Table 1: Performance of the proposed model vs. other deep
learning models.

Model Mae MSE Fault tolerant rate (%)
RNN 0.05117 0.05476 10.675
GRU 0.05175 0.05484 11.144
LSTM 0.05277 0.05438 10.900
Proposed model 0.03993 0.03653 13.109
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