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Accurate and real-time network traffic flow forecast holds an important role for network management. Especially at present, virtual
reality (VR), artificial intelligence (AI), vehicle-to-everything (V2X), and other technologies are closely combined through the
mobile network, which greatly increases the human-computer interaction activities. At the same time, it requires high-
throughput, low delay, and high reliable service guarantee. In order to achieve ondemand real-time high-quality network
service, we must accurately grasp the dynamic changes of network traffic. However, due to the increase of client mobility and
application behavior diversity, the complexity and dynamics of network traffic in the temporal domain and the spatial domain
increase sharply. To accurate capture the spatiotemporal features, we propose the spatial-temporal graph convolution gated
recurrent unit (GC-GRU) model, which integrates the graph convolutional network (GCN) and the gated recurrent unit (GRU)
together. In this model, the GCN structure could handle the spatial features of traffic flow with network topology, and the GRU
is used to further process spatiotemporal features. Experiments show that the GC-GRU model has better prediction
performance than other baseline models and can obtain spatial-temporal correlation in traffic lows better.

1. Introduction

Accurate network traffic prediction is the basis of network
performance optimization and network integrated manage-
ment [1]. The prediction results can be used for traffic
engineering, anomaly detection, and energy consumption
management [2, 3]. Especially in the last decade, the complex-
ity and the diversity of the network and the communication
scenario increase dramatically, which promote researchers
proposed many technologies such as ultra-dense deployment
of cellular cells, device-to-device (D2D) network technology
mobile virtual reality (MVR), and mobile edge computing
to improve network capacity and service quality [4–6].
The successful application of these technologies is tightly
related to the accurate cognition of network traffic features

and future trends. In the context of these scenarios, network
resource optimization is accomplished by two key elements,
traffic model and optimization algorithm. If we can more
accurately and timely understand the dynamic trend of future
traffic, high reliability and low delay communication could be
achieved by dynamic content caching or service processing in
vicinity [7–9].

However, the traditional network traffic prediction
model gradually presents many deficiencies in processing of
increasingly complex network traffic. In the context of the
liner network traffic forecasting model such as autoregressive
integrated moving average (ARIMA) model [10], support
vector regression model (SVR) [11], and Bayesian model
[12, 13], mainly through the linear correlation of traffic in
temporal to achieve traffic modeling and prediction, with
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the emergence of new network technology and new scenar-
ios, new factors that could greatly affect network traffic fea-
tures should be considered:

(1) The trend of network traffic is constrained by net-
work topology, every end-to-end traffic flow travels
the network through a path composed of links, and
a link converges flows from different paths. The
performance change of any node on the transmission
link will spread to the adjacent nodes. The booming
5G, the Internet of Things (IoT), MVR, and V2X
bring more and more mobility to the network, which
also bring great uncertainty in the spatial distribution
of network traffic

(2) The statistical value of network traffic flow shows the
characteristics of proximity, periodicity, and trend in
time. The closer the time interval, the higher the
correlation between the two statistical values. In the
scenarios such as MVR, IoT, or V2X, the terminal
behaviors and traffic demands are more dynamic,
that make the temporal patterns of the traffic too
complicated to be captured [14–16].

To better handle the problem of spatial feature process-
ing caused by terminal mobility and spatial dependence of
applications, many studies use neural networks to network
traffic modeling and prediction based on the big data of
the network traffic [17]. The convolutional neural network
(CNN) and RNN are the most representative in the proposals
[17–19]. However, the method based on CNN also has some
shortcomings. Different from Euclidean data such as image
and grid, the communication network usually uses graph
representation which is not suitable for CNN [17]. Unlike
the Euclidean data, the structure of graph is irregular. It is
difficult for CNN to hold a stable kernel size to realize param-
eter sharing. This kind of model cannot describe the spatial
correlation of network in essence; consequently, the prediction
accuracy of the trained model and the applicability of different
topologies are limited. To solve these problems, we propose
GC-GRU, a novel network model could which could accu-
rately forecast network traffic matrix by comprehensively
understand the complex relation on traffic flow, node topol-
ogy, and time. Our main contribution has three aspects:

(1) This model firstly uses GCN to process network
topology relationship, node input traffic, and net-
work topology that are combined as input of the
model to achieve spatial features capturing. Then,
hidden states are input to a recursive network based
on GRU to find the temporal dynamics. Through
the parameter sharing method of spatial and tempo-
ral features, traffic prediction has a better universal
correlation model for the future network. Our model
is able to generalize over arbitrary topologies, routing
schemes, and variable traffic intensity

(2) We evaluated our model on real topology and traffic
matrices of real traffic dataset. The result shows that
our model can handle the time-varying information

of graph structure well and has higher accuracy than
all baseline methods, which proves the superiority of
the model in network traffic prediction. In addition,
through experimental comparison, we find that our
GC-GRU model can maintain stable prediction per-
formance under different forecast time granularity,
and it shows that it has better robustness

2. Related

Network traffic prediction methods include analytic model
method and data-driven method. The representative
methods of the first kind include queuing theory model, cell
transmission model, and random geometry model [20–23].
Through the model method, a clear relationship between
network traffic and other network parameters could be
established, so as to complete the network planning and
scheduling. For example, Krishnan et al. [23] introduce an
analysis framework of random geometry that describes the
spatial-temporal interference of adjacent locations and calcu-
lates the joint coverage probability of them; in this contest,
the Poisson process is used to model the mobile behavior of
the UE under the station. Kamath et al. [24] proposed a
framework to handle the QoS of heterogeneous services in
the network, in which a multiclass queuing model is used to
analyze the heterogeneous services performance demands
and combined with SDN technology to complete service
classification and network slicing. Such models are either
based on some idealized assumptions or based on realistic
simplification. However, in reality, it is difficult to model
UE arrival process as Poisson process, and the diversity of
applications also makes the link service feature dynamic.
These theoretical models are difficult to model these mobil-
ity, time-varying, and spatial dependence elements compre-
hensively; consequently, it is hard to accurately predict the
current complex network traffic in reality [10, 18]. In addi-
tion, the model-driven approach relies on specific idealized
scenarios; as a result, it lacks the ability of generalization
and migration [25–27].

The data-driven methods are based on the statistical
characteristics of network traffic history data, by using its
self-similarity, long-term relevance, and periodicity to fore-
cast the trend in time domain [1, 28]. This kind of methods
does not specifically analyze the specific dynamics and
behaviors of network elements and has high flexibility. These
methods are mainly including parametric prediction and
nonparametric prediction [10, 29]. The parameter model is
based on the regression function, through the analysis in
mathematical statistics of the history data to determine the
quantitative relationship of interdependence between two
or more parameters, so as to forecast next step traffic volume
according to the regression function.

More representative methods include autoregressive
integral moving average model (ARIMA) and its improved
variants [10, 30, 31]. For example, Paxson and Sally [32] used
the autoregressive integral moving average model (ARIMA)
to predict Ethernet traffic in 1994. Subsequently, in order to
improve the prediction accuracy of the model, many
researchers proposed different kinds of improvements based
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on it, such as seasonal-ARIMA (SARIMA), Kohonen-
ARIMA, and subset ARIMA [10, 33]. Maciej and Anna
[33] found that the latter SARIMA has better prediction
accuracy than the ARIMA model through experimental.
Furthermore, Chen et al. [34] used SARIMA to predict the
short-term flow of the IEEE 802.11 network for the first time
and achieved well prediction results on single traffic flow.
Their advantages are that the mathematical foundations are
relatively mature, and the system performance evaluation is
easy to express mathematically. However, these methods
are not robust. They assume that statistics and parameters’
relationship of the traffic model hold steady which are not
conform to the reality of network traffic nowadays. In addi-
tion, the nonparametric model has its advantages in this
respect. The representative methods such as Bayesian net-
work model [12, 13], support vector regression model
(SVR) [35, 36], K-Nearest Neighbor model [37], and neural
network model [38] use just historical traffic information to
automatically learn statistics.

Recently, the deep learning model has been effectively
devoted to promote complex pattern recognition and analy-
sis in big data systems [28, 39–41]. Meanwhile, with the
improvement of network big data collection ability, network
traffic prediction methods based on the deep learning have
attracted much attention because of its ability on capturing
the nonlinear features of network traffic [1, 41]. For example,
Azzouni and Pujolle [18] use recurrent neural networks
(RNNs) to predict the traffic matrix (TM) and uses the
prediction results to dynamically and actively allocate optical
network resources to save network available capacity and
alleviate the impact of peak traffic. To achieve traffic forecast-
ing in data center, Laisen et al. [13] combined deep structure
and deep trust networks to achieve traffic demand prediction
through temporal dynamic features capturing. Tang et al.
[42] proposed a prediction method of communication key
indicators based on deep learning and combined software-
defined network (SDN) to achieve intelligent dynamic chan-
nel allocation, which improves the channel utilization of
wireless Internet of Things and avoids potential congestion.
These methods mainly take the temporal correlation of
network traffic sequence as prediction basis and the advan-
tages recurrent neural network (RNN) structure to learn
the characteristics in time to achieve adaptive traffic flow or
traffic matrix prediction.

As mentioned before, the factors that affect network
traffic are not only time but also in spatial. Without spatial
relations such as network topology, dynamic content
dependence, and client mobility, accurate forecasting and
estimating could not be achieve. In order to explore the
potential of spatial features on network traffic prediction,
many studies had been proposed. For example, Zhao et al.
[43] proposed a model that combined the multiscale wavelet
analysis with the deep learning approach with; firstly, discrete
wavelet decomposition was used to decompose the original
TM sequence into multilevel time-frequency TM subse-
quences of different time scales; then, a CNNwas used to find
the spatial distribution pattern between network streams
and finally, the LSTM in charge of exploring temporal
dynamics in the TM sequences. In order to estimate the

future location and resource usage of UEs, Siracusano and
La Corte [44] proposed a deep regression (DR) model based
on a tightly connected convolutional neural network (CNN)
to simulate its complex spatiotemporal dynamics to capture
the multiscale of mobile data. LA-ResNet [41] is a model
which combined the residual network and RNN to capture
spatiotemporal correlations of wireless traffic, and the exper-
imental results showed that it had higher accuracy than RNN
models.

Although the CNN method has made great progress in
network traffic prediction, its data operation process makes
it more suitable for processing Euclidean date rather than
graph topology. The complex topological structures of com-
munication network limited its application in this field.
Based on this background, we propose a novel network
GC-GRU, which unifies the network nodes, links, and traffic
input in space, and analyzes the inherent spatiotemporal cor-
relation characteristics combined with the dynamics in time,
so as to complete the accurate network traffic prediction.

3. Method

3.1. Problem Definition. The task of network traffic prediction
is to estimate the future network traffic status as accurately as
possible according to the network historical traffic data. The
traffic information includes traffic volume, time delay, and
packets loss. In this paper, we take traffic volume as main
example in experiment.

Definition 1. In our model, unweighted graph G = ðV , EÞ was
used to denote the network topology, where V = fv1, v2,⋯,
vNg denotes N nodes (they could be switches or routers) in
the network, and E represents the set of communication links
between nodes. The adjacency matrix A describes the detail
relationship among network nodes, where A ∈ RN×N . Its ele-
ment aij = 1 if node vi is connected to v j, aij = 0 otherwise.

Definition 2. We use XN×P to represent the traffic feature
matrix in the network, where N represents nodes counts as
mentioned above, and P denotes the length of historical sam-
pling sequence of traffic. Xt ∈ R

N×i means the traffic on node
connection at time i.

In this way, our spatiotemporal network traffic prediction
problem model is represented as equation (1):

xt+1,⋯, xt+T½ � = f xt−n,⋯, xt−1, xt½ � ;Gð Þ, ð1Þ

where f denotes the mapping function from G and histor-
icalX, to the next T step traffic information.

3.2. Model

3.2.1. Framework Overview. In this part, we will introduce
our solution model GC-GRU, in which the temporal and
spatial features are considered comprehensively. As shown
in Figure 1, GC-GRU includes input layer, spatial feature
processing, temporal feature processing, and a fully con-
nected layer. Firstly, it takes n time series data between
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nodes in the network as the input and use graph convolution
combined with the spatial topological relationship of com-
munication network to obtain the spatial features of traffic;
secondly, we use the processed time series with spatial
features as the input of gated recursive unitary model and
obtain the features in time domain through the information
transmission between cells; finally, we use all connected
network as the input. The prediction results are obtained
through the layer.

As in Figure 1 shows, our model contains two main part:
network topology GCN for spatial feature extraction and
GRU for hidden spatial-temporal features capturing. Firstly,
the GCN is used to lean the spatial features of the network
topology, it takes the traffic feature matrix and network
topology data both as input, in detail, Xt denotes the traffic
on all node connections at time i, and the topology data is
represented by adjacency matrix A introduced in Definition
1. Then, the output of the GCN model is fed into the second
part which is constructed by gated recurrent units, to find out
the traffic dynamics, so as to lean the temporal features. At
last, a fully connected layer network is used to convert
features mapping to original space; then, we get the predicted
results.

3.2.2. Spatial Relation Feature Extraction Model. Accurately
capturing the spatial dependence between nodes in the
network is a key problem in this paper. As mentioned
before, the CNN is suitable for Euclidean space data rather
than non-Euclidean data like network topology [45]. In the
graph representation of the network, each vertex has different
numbers of adjacent vertices, and it is difficult to hold a con-
volution kernel with a same size. In recent years, the graph
convolutional network (GCN) has been widely concerned,
which can realize convolution operation on non-Euclidean
structure, effectively learn the spatial characteristic informa-
tion of nodes, and has been applied in action recognition,
traffic network flow prediction, and so on [46–48].

From the perspective of graph signal processing (GSP),
it applies discrete signal processing (DSP) to the field of
graph signal. Through the transfer of basic concepts of sig-
nal processing such as Fourier transform and filtering, it
studies the basic tasks of signal processing such as compres-
sion, transformation, and reconstruction of graph signal
[49, 50]. In detail, given a graph G = ðV , EÞ, graph signal is
a kind of mapping from node field to real number field

[50], which is expressed as vector in the form of X =

½x1, x2,⋯, xn�
T , and xi represents signal strength on vertex

vi strength. The Fourier transform of X is represented as
FðXÞ =UTX, where U = ½u0, u1,⋯, un−1� ∈ R

n×n represented
the eigenvector. Its inverse Fourier transform is F−1ðX̂Þ =
UX̂, where X̂ represents the frequency domain signal
obtained from the graph Fourier transform [46]. The graph
convolution operation of two groups of graph signals can
be transformed into the corresponding graph filtering opera-
tion. From this point of view, the graph convolution is equiv-
alent to the graph filtering. We take X as signal on vertexes
and g ∈ RN as the filter, and the graph convolution could be
expressed as equation (2):

x∗Gg =F
−1

F xð Þ ⊙F gð Þð Þ =U UTx ⊙UTg
� �

, ð2Þ

where ⊙ represents the Hadamard product [46]. If we
denote a filter as g

θ
= diag ðUTgÞ, equation (2) could be

simplified as

∗
G
g
θ
=Ug

θ
UTX: ð3Þ

This method was first proposed by [51], but it has many
limitations in practical application. Firstly, the computation
depends on the eigen decomposition of Laplacian matrix,
which has high complexity. Secondly, when u is used for
signal transformation, because u is dense, the complexity is
very high, and the method is not localized. Therefore, the
method has not attracted widespread attention.

In order to reduce the computational complexity, Cheby-
shev Spectral CNN (ChebNet) [45] used Chebyshev polyno-
mials of the diagonal matrix of eigenvalues to approximate
the filter g

θ
. g

θ
is a diagonal matrix composed of the para-

meter θ, and its polynomial expression is represented as
equation (4):

g
θ
~L
� �

= θ0I + θ1
~L + θ2

~L
2
+⋯+θk~L

k
, ð4Þ

where ~L = In −D−1/2AD−1/2,D denotes the degree matrix of A
(Dii =∑jAi,j), and In denotes identity matrix. As the normal-
ized Laplacian matrix has the property of real symmetric-
positive semidefinite [51], ~L can be decomposed into ~L =U

ΛUT , where Λ is the diagonal matrix of eigenvalues [50]

GCN GCN GCN GCN

GRU GRU GRU GRU

Xt+m

XtXt-1Xt-n+1Xt-n

Forecasting

Temproal feature

Spatial feature

Inputs feature

. . .

. . .

Figure 1: Framework overview of the GC-GRU model.
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ðΛii = λiÞ. Then, gθ
could expressed as a function of eigen-

value Λ:

g
θ
= g

θ
Λð Þ = 〠

K−1

k=0

θkΛ
k, ð5Þ

and then convolution of g
θ

and graph signals could
expressed as

X∗Ggθ =Ug
θ
Λð ÞUTx = 〠

k−1

k=0

θkL
kx: ð6Þ

In this way, the number of calculation parameters is
reduced from n to k, and there is no need to explicitly cal-
culate the feature matrix U in the calculation process; so,
the computational complexity is greatly reduced. In addi-
tion, k-localized has local connectivity, because it is a k
-order polynomial in Laplacian. As Figure 2 shows, each
point represents a network node (router or switch), and the
line represents link between nodes; for node R1, the GCN
could get the spatial information directly linked to R1 and
their links to other surrounding nodes and encode the net-
work topology and the traffic attributes in nodes, so as to
obtain the spatial correlation.

On the basis above, the first order approximation of
chebNet is introduced into the graph convolution network
to semplice the calculation process [45]. Moreover, in
order to reduce parameters, Kipf [52] further assumes that
θ = θ0 = −θ1, the definition of graph convolution given as
formula (7):

∗
G
g
θ
= θ In +D−1

2AD−1
2

� �

x: ð7Þ

Then, a high availability graph convolution network
without too much matrix multiplication operation is estab-
lished. It can be expressed as

H l+1ð Þ = σ ~D
−1
2Â~D

−1
2H lð Þ

θ
lð Þ

� �

, ð8Þ

where σ denotes the sigmoid function, ~A = A + In, ~D(~D =

∑j
~Aij) represents degree matrix, HðlÞ is the output of layer

l, and θ
ðlÞ denotes the parameters corresponding.

As shown in Figure 3, our spatial feature analysis model
uses a two-layer graph convolution [52] structure. The first
layer is Hð1Þ = σðÂXθ0Þ, θ0 ∈R

n1×p, where n1 is the number
of hidden layer cells, and p is the length of input traffic

matrices. θ0 ∈R
n1×p represents the feature matrix from

the hidden layer to the output layer. The second layer is
Hð2Þ = σðÂHð1Þ

θ1Þ, θ1 ∈R
N×T , where N represents the node

number, and T represents the length of the sequence to be
predicted. The whole graph feature extraction process is
expressed as follows:

f X, Að Þ = σ Âσ ÂXθ0
� �

θ1

� �

: ð9Þ

3.2.3. Temporal Dependence Modeling. This section intro-
duces the method to obtain temporal correlation in net-
work traffic prediction. At present, RNN is the most used
model for time sequence data processing. In order to calcu-
late the gradient, the time reverse propagation algorithm is
used in the training RNN network. However, it has the
defects of gradient disappearance and gradient explosion
[53]. For network traffic prediction, it may lose the ability
of weighted long-term dependence, which makes it having
limitations in long-term prediction. Two famous architec-
tures proposed to solve this problem are LSTM and
GRU,and they are improved variants of RNN, which have
been proved to solve the above problems [18, 28, 54]. Here,
we take the GRU model to find the temporal correlation of
network traffic data which is relatively simple, because of
less parameters and faster training speed.

As Figure 4 shows, xt represents the input at time t; ht−1
represents the hidden state at time t − 1. The candidate acti-
vation ~ht contains the previous information ht−1 and input xt;
ht denotes output state at time t which is a liner combination

of the activation on the ht−1 and the candidate activation ~ht ;
rt is the reset gate, which is in charge of controlling whether
the previous state should be forgotten or not (e.g., if rt ≈ 0,
ht−1 will not be passed to ht); zt is the update gate, and it
decides the extent to which the unit updates its activation
(e.g., if zt ≈ 1, ht−1 almost directly copied ht . Instead, if zt ≈

0, ~ht will be passed directly to ht)

3.2.4. Spatiotemporal Correlation Process. To better predict
the impression of complex spatial dependence and dynamic
time dependence on the distribution of network traffic, we
devote a network traffic spatiotemporal correlation model.
In this model, the gate structure and hidden state of GRU
are reserved, but we use the convolution feature of graph as
input to find the hidden spatiotemporal features.

In the model, the traffic matrix dynamics on network
are associated with the network topology information
through the graph product to find the spatial correlation
of network traffic. Then, the GRU unit is used to further han-
dle the dynamics in temporal, so as to get spatiotemporal

R1 R1

K=1

(a)

R1R1

K=2

(b)

Figure 2: Graph convolutional networks. (a) k = 1. (b) k = 2.
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correlation, and finally realizes the traffic prediction task. As
Figure 5 shows, ht−1 denotes the output before time t, and ht
denotes the output at time t. Xt

′ is the spatial feature matrix
after graph convolution, and GC represents the graph convo-
lution process. zt is the update gate, and rt is the reset gate.
The detail process is shown below:

rt = σ Wr Xt
′, ht−1

h i

+ br

� �

,

zt = σ Wz Xt
′, ht−1

h i

+ bz

� �

,

~ht = tan h W Xt
′, rt ⊙ ht−1

h i

+ b
� �

,

ht = zt ⊙ ht−1 + 1 − ztð Þ ⊙ ~ht:

ð10Þ

W represents the weights, and b represents biases, which
needs to be trained. ⊙ represents the point-wise multiplica-
tion. The loss function is defined as

Loss = Xt − X̂t

�

�

�

� + λLreg, ð11Þ

where Xt and X̂t represent the ground truth volume and the
forecasted volume. λ is a hyperparameter, and λLreg denotes
the L2 regularization term to prevent overfitting.

4. Experiments

4.1. Data Description and Experimental Settings. We evalu-
ate our prediction model by dataset from the Europe
Research and Education Network (GÉANT) [55] . GÉANT

Inputs Layer 1 Layer 2

Outputs

�0 �1

� �

N1 �lters

P features
T steps

N

nodes

Figure 3: Spatial modeling in 2-layer graph convolutional networks (GCN).
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Figure 4: The structure of the GRU model.
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Ct
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Figure 5: The process of spatial-temporal prediction.
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network contains 23 router nodes and 74 undirected links (as
of 2005); in addition, 11460 traffic matrices were recorded in
every 15 minutes. In the experiment, we build a sliding win-
dow on each data sequence for continuous input and learn-
ing. 70% of the data is used at the training phase, and the
rest 30% is used at test phase.

All experiments adopt Pytorch deep learning architec-
ture. The workstation used for experiment is configured with
64 core Intel Xeon 2.40GHz CPU, tow 8G NVIDIA GTX-
2080 graphics, and 192G RAM. The workstation uses the
windows server operating system.

4.2. Evaluation Metrics. In the experiment, 5 metrics are used
to evaluate the performance of GC-GRU model:

(1) Root mean squared error (RMSE):

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M

1

N
〠
M

j=0

〠
N

i=0

y
j
i − y∧

j
i

� �2

v

u

u

t

: ð12Þ

(2) Mean absolute error (MAE):

MAE =
1

N

1

M
〠
M

j=0

〠
N

i=0

y
j
i − ŷ

j
i

�

�

�

�

�

�
, ð13Þ
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Figure 6: (a) Accuracy, R2, and var in training set under different hidden units. (b) MAE and RMSE in the training set under different
hidden units. (c) Accuracy, var, and R2 in test set under different hidden units. (d) MAE and RMSE in the test set under different
hidden units.

Table 1: Instructions of baseline models used for comparison.

No. Model name Brief intrude

1 ARIMA [10] A well-known series data prediction model which the parameter model is consistent with the observation data.

2 SVR [11] A version of support vector machine (SVM) for regression, it is mainly used in nonlinear regression estimation.

3 GCN As mentioned in section 3.2.2

4 LSTM [38] Long-short term memory (LSTM). Here, we set up two LSTM layers and a fully connected layer.
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where ŷ ji denotes the forecasted traffic value of traffic

flow i at time j, and y
j
i denotes ground truth value,

respectively. N is the index of traffic flows, and M
represents the index of time slot

(3) Accuracy:

Accuracy = 1 −
Y − Ŷ

�

�

�

�

F

Yk kF
: ð14Þ

Y and Ŷ represent the set of real values and predicted
values, respectively

(4) Coefficient of determination (R2):

R2 = 1 −
∑M

j=1∑
N
i=1 y

j
i − y∧

j
i

� �2

∑M
j=1∑

N
i=1 y

j
i − �Y

� �2
: ð15Þ

�Y is the average of Y .

(5) Explained variance score (var):

var = 1 −
Var Y − Ŷ

	 


Var Yf g
: ð16Þ

R2 and var are the measures to represent fitting
degree of the predicted value to observation value of
the traffic.

4.3. Model Parameter Settings. In the experiment, the batch
size is set to 32, and the training epoch is 200; the learning

rate is set to 0.001. We set 8, 16, 32, 64, 100, and 128 as the
number of hidden units and record and analyze the experi-
mental results under each configuration. As shown in
Figure 6(a), experiments show that the best prediction accu-
racy and correlation are obtained when the size of hidden
units is 100. Specifically, with the increase of the number of
hidden cells, the prediction accuracy,R2, and var increase,
but with the increase of hidden cells, the increase range of
prediction accuracy and correlation declines, and when the
number of hidden cells reaches 128, the prediction accuracy
and R2 drop. At the same time, Figure 6(b) shows the MAE
and RMSE values under different units’ numbers in the train-
ing stage. It can be seen that contrary to the accuracy and R2,
MAE and RMSE decrease with the increase of the number of
hidden units, which indicates that the error between the
predicted value and the observed value can be reduced by
appropriately increasing the number of hidden units. Simi-
larly, when the number of hidden units is 100, the error is
the smallest. Figures 6(c) and 6(d) show the experimental
results on the test set, which are basically consistent with
the training phase. At the same time, when the number of
hidden units is set to 100, several indicators perform best.
In conclusion, the appropriate number of hidden units can
improve the performance of the model, but not the higher
the better, and too many hidden units may cause over fitting
problem and led to higher computing overhead which would
decrease prediction performance.

4.4. Results. We compared our GC-GRU model with other
reprehensive baselines model, as Table 1 shows.

Based on the GÉANT dataset, we make traffic prediction
at 15, 30, 45, and 60 minutes. As shown in Table 2, it is clearly
observed that our GC-GRU model obtained the best

Table 2: The prediction results of the GC-GRU model and other baselines on GÉANT dataset.

Time Metric ARIMA SVR LSTM GCN GC-GRU

15min

MAE 0.00742 0.00378 0.00317 0.00376 0.00279

RMSE 0.0112 0.00898 0.00796 0.00833 0.00692

Accuracy 0.4935 0.8337 0.8991 0.7635 0.9137

R2 ∗ 0.8138 0.8536 0.7537 0.8811

30min

MAE 0.00693 0.00366 0.00312 0.00384 0.00272

RMSE 0.0098 0.00866 0.00762 0.0088 0.00708

Accuracy 0.5375 0.8523 0.8903 0.7181 0.9113

R2 ∗ 0.7835 0.8027 0.6957 0.8738

45min

MAE 0.00726 0.00397 0.00299 0.00415 0.00259

RMSE 0.01045 0.00857 0.00768 0.00855 0.00715

Accuracy 0.5874 0.8497 0.8701 0.8499 0.8257

R2 ∗ 0.7273 0.7745 0.6625 0.9023

60min

MAE 0.00711 0.00341 0.00296 0.00409 0.00261

RMSE 0.0976 0.00927 0.00748 0.00856 0.00712

Accuracy 0.4973 0.8447 0.6894 0.5693 0.8932

R2 ∗ 0.6438 0.6948 0.6204 0.8032

∗ means the value is very small to be ignored which indicates the model’s prediction effect is poor.
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performance under all evaluation metrics and different pre-
diction time granularity. In general, the prediction perfor-
mance of deep learning methods (LSTM, GC-GRU) is
significantly better than other model baselines (ARIMA,
SVR) under each prediction horizon. For example, compared
with the ARIMA model, the prediction accuracy of the GC-
GRU model and LSTM model is about 46% and 45% higher,

and RMSE error is reduced by 38% and 29%, respectively.
Also, compared with the SVR model, these metrics of the
GC-GRU model and LSTM model are 22% and 11% lower,
respectively, and the prediction accuracy is improved by
15% and 9%. Although the performance of the SVR model
is better than ARIMA, it is also significantly lower than the
LSTM and GC-GRUmethod. This may be caused by the lack
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R
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9075604530150
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Figure 7: Spatiotemporal prediction capability of the GC-GRU model. (a) Comparison of the RMSE of GC-GRU model with the LSTM
model. (b) Comparison of the RMSE of the GC-GRU model with the GCN model.
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Figure 8: MAE comparison between different sliding window lengths L for different perdition horizons.
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of the ability of these methods to process complex nonsta-
tionary time series data. In essence, LSTM and GRU could
capture the temporal features of traffic matric sequences than
the time series model, because their cell states increase with
time. Similarly, we can also clearly notice that the prediction
effect of the GCN model is not good, which shows that it is
not enough to only consider the spatial features of network
traffic by ignoring the time-domain characteristics of net-
work traffic.

4.4.1. Spatiotemporal Prediction Ability. In order to verify
whether the GC-GRU model on the ability of handle spa-
tiotemporal features from the dataset, we further analyzed
the experimental results of the GC-GRU model, LSTM
model, and GCN model. In detail, Figure 7(a) shows the
RMSE of GC-GRU compared with the LSTM model which
only considers the time domain features, the RMSE error of
the GC-GRU model for 15-minute and 60-minute network
traffic prediction is reduced by about 13% and 5%, respec-
tively, and the prediction error is basically controlled at a
low level, which indicates that the GC-GRU model can cap-
ture the time correlation well. In Figure 7(b), the multistep
forecast result of GC-GRU is obviously better than the
GCN model, and the RMSE of GC-GRU model is 16.9%
lower than that of GCN model. For the 60-minute traffic
volume forecast, the RMSE of GC-GRU model is reduced
by 16.8%, which indicates that the GC-GRU model can cap-
ture the spatial correlation. It can be seen that GC-GRU has
better prediction accuracy than the method based on spatial
and temporal factors. Because GCN only considers the spa-
tial feature of the network, the dramatic change of time
domain may cause prediction error. LSTM can make a better
one-step prediction because of its structure memory, but in
the process of training, there is the possibility of modeling
noise into the model, which leads to overfitting. In the GC-
GRU model, we construct a local filter in the Fourier domain
when dealing with the neighborhood node relationship and
constantly move the filter to capture the spatial features, so
that the local parameters can be shared. This process plays
a role in noise suppression, which may reduce the possibility
of overfitting issue.

4.4.2. Prediction Ability for Different Prediction Horizons.
Figure 8 shows the difference of input sliding window
lengths (L) for traffic prediction. Generally speaking, a longer
input window length can improve the accuracy of long-term
prediction because it contains more time-domain features.
For the LSTM model, because of the memory of the hidden
state, when the hidden state is updated for a long time, they
will remember more information; so, the prediction accuracy
is more affected by the history window. In contrast, the GCN
model does not have explicit temporal modeling; conse-
quently, it gets little responded to window size change. The
MAE of our model for different perdition horizons under
different history sliding windows holds small and stable,
which means that the method has strong adaptability to both
prediction horizon and input history horizon. In conclusion,
we know that the GC-GRU model has strong adaptability in
both long-term and short-term forecasting.

5. Conclusion

In view of the new characteristics of network traffic brought
by the dynamic change of spatiotemporal correlation in the
new application scenarios of mobile network, this paper pro-
poses a novel network traffic prediction method based on
traffic spatiotemporal features. It combines GCN and GRU,
in which GCN is in charge of obtaining spatial correlation
of the traffics on each node, and GRU is used to handle the
spatiotemporal features hidden in spatial dynamic series, so
as to achieve spatiotemporal network traffic prediction.
Experimental results on real network traffic datasets show
that the GC-GRU model has better prediction performance
than other baseline models under different prediction hori-
zons. It is not only more suitable for nonlinear network traffic
prediction than ARIMA and SVR but also more suitable for
nonlinear network traffic prediction than spatiotemporal
model. The research results show that the model can capture
the spatiotemporal correlation characteristics of network
traffic, provide accurate network traffic distribution predic-
tion for mobile network interactive applications, and provide
more fine-grained and more accurate scheduling decision-
making basis for wireless access management, content opti-
mization cache, and computing resource scheduling tasks
in these application scenarios [56].

In addition, we will further study the traffic characteris-
tics of mobile networks. In reality, it is not only the traffic size
but also the link delay, jitter, and other factors that reflect the
network characteristics. In the future, we will explore the net-
work demand forecasting method under multiparameter
constraints.
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