
2132 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 5, OCTOBER 2020

Network Utility Maximization Under Maximum

Delay Constraints and Throughput Requirements

Qingyu Liu , Member, IEEE, Haibo Zeng , Member, IEEE, and Minghua Chen , Senior Member, IEEE

Abstract— We consider a multi-path routing problem of max-
imizing the aggregate user utility over a multi-hop network,
subject to link capacity constraints, maximum end-to-end delay
constraints, and user throughput requirements. A user’s utility is
a concave function of the achieved throughput or the experienced
maximum delay. The problem is important for supporting real-
time multimedia traffic and is uniquely challenging due to the
need of simultaneously considering maximum delay constraints
and throughput requirements. In this paper, we first show that it
is NP-complete either (i) to construct a feasible solution strictly
meeting all constraints, or (ii) to obtain an optimal solution after
relaxing either the maximum delay constraints or the throughput
requirements. We then develop a polynomial-time approximation
algorithm named PASS. The design of PASS leverages a
novel understanding between non-convex maximum-delay-aware
problems and their convex average-delay-aware counterparts,
which can be of independent interest and suggests a new
avenue for solving maximum-delay-aware network optimization
problems. We prove that PASS always obtains approximate
solutions (i.e., with theoretical performance guarantees), at the
cost of violating both the maximum delay constraints and the
throughput requirements by up to constant ratios. We also
develop two variants of PASS, named PASS-M and PASS-T,
to generate approximate solutions at the cost of violating either
the maximum delay constraints or the throughput requirements
by up to problem-dependent ratios. We evaluate our solutions
using extensive simulations on Amazon EC2 datacenters sup-
porting video-conferencing traffic. Compared to the existing
algorithms and a conceivable baseline, our solutions obtain up
to 100% improvement of utilities, by meeting the throughput
requirements but relaxing the maximum delay constraints to the
extent acceptable for practical video conferencing applications.

Index Terms— Delay-sensitive multiple-unicast network flow,
delay-aware multi-path routing, network utility maximization.

I. INTRODUCTION

W
E CONSIDER a multiple-unicast communication sce-

nario where there exist multiple network users, each

of which streams a network flow from its source to its

Manuscript received July 5, 2019; revised January 7, 2020 and May 10,
2020; accepted June 14, 2020; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor I.-H. Hou. Date of publication July 20, 2020; date
of current version October 15, 2020. The work of Qingyu Liu and Haibo
Zeng was supported in part by the NSF under Grant 1812963. The work
of Minghua Chen was supported in part by the Start-Up Grant at the City
University of Hong Kong under Project 9380118. A preliminary version of
the work was presented at the ACM International Symposium on Mobile Ad
Hoc Networking and Computing 2019. (Corresponding authors: Qingyu Liu;

Haibo Zeng; Minghua Chen.)

Qingyu Liu and Haibo Zeng are with the Department of Electrical and
Computer Engineering, Virginia Tech, Blacksburg, VA 24060 USA (e-mail:
qyliu14@vt.edu; hbzeng@vt.edu).

Minghua Chen is with the School of Data Science, City University of
Hong Kong, Hong Kong (e-mail: minghua.chen@cityu.edu.hk).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TNET.2020.3007842

destination over a multi-hop network, possibly using multiple

paths. We study the problem of maximizing the aggregate user

utility, subject to link capacity constraints, maximum delay

constraints, and user throughput requirements. A user’s utility

is a concave function of the achieved throughput or the experi-

enced maximum delay. The maximum delay of a user denotes

the maximum Source-to-Destination (S2D) delay, or equiva-

lently the delay of the slowest S2D path that carries traffic.

Our study is motivated by the increasing interests of sup-

porting delay-critical traffic in various applications, e.g., video

conferencing [14]–[16]. It is reported that 51 million users

per month attend WebEx meetings [17], and 3 billion minutes

of calls per day use Skype [18]. Low S2D delay is vital for

such video conferencing applications. As recommended by the

International Telecommunication Union (ITU) [19], a delay

of less than 150ms can provide transparent interactivity while

delays above 400ms are unacceptable for video conferencing.

We note that the maximum S2D delay, instead of the average

one, is a critical concern for provisioning low delay services,

since there may exist traffic which experiences an arbitrarily

large S2D delay even for the solution that minimizes average

S2D delay performance [10], [11]. In sharp contrast, all the

traffic can be timely streamed from its source to its destination

following any solution that has an acceptable maximum S2D

delay performance, because the maximum S2D delay is

defined as an upper bound of S2D delays of all traffic.

We consider a delay model where data transmission rate

over a link is upper bounded by the link capacity, and data

experiences a constant delay in traversing a link. End-to-end

networking delay is known to be composed of processing

delay, queuing delay, and propagation delay. Our constant

delay model well captures the traffic-independent propagation

delay, but does not consider the traffic-dependent processing

delay or queuing delay. Although our constant delay model

is special, our study under this model has both practical and

theoretical significance, due to the following concerns:

(i) The constant delay model is suitable for a number

of important real-world applications, particularly the rout-

ing of video conferencing traffic over inter-datacenter net-

works. According to recent reports from Google [20] and

Microsoft [21], for most real-world inter-datacenter networks,

cloud providers typically over-provision inter-datacenter link

capacity by 2 − 3 times on a dedicated backbone [20], and

the average link-capacity utilization even for busy links is

30−60% [21]. As such, most inter-datacenter flows can always

be accommodated at their target rates [15]. The objective

of flow assignment is thus to optimize many other critical

performance metrics, e.g., network utility and delay, according

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:44:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1487-7682
https://orcid.org/0000-0003-1162-759X
https://orcid.org/0000-0003-4763-0037

LIU et al.: NETWORK UTILITY MAXIMIZATION UNDER MAXIMUM DELAY CONSTRAINTS AND THROUGHPUT REQUIREMENTS 2133

TABLE I

COMPARE OUR WORK WITH EXISTING STUDIES

to their throughput needs. For these inter-datacenter networks,

link data transmission rate cannot exceed link capacity, and the

constant propagation delay dominates the delay for the data to

traverse a link (it is practically justified by a real-world imple-

mentation on globally distributed Amazon EC2 datacenters in

Section VI-A of [15]). These observations justify our delay

model for the critical problem of routing video-conferencing

traffic over real-world inter-datacenter networks.

(ii) The constant delay model is a first-step of modeling net-

works and helps obtain flows which do not congest links (link

queuing delay remains negligible), by setting the link capacity

lower than the link bandwidth. As the first study on net-

work utility maximization with throughput requirements and

maximum delay constraints, we assume a traffic-independent

delay model to establish fundamental understandings of the

problem. This delay model is not uncommon in the literature,

e.g., it is used in [6], [7], [12], [13], [15]. Later in Section V,

we generalize our results to the general traffic-dependent delay

model and illustrate the challenges.

In this paper, we study a fundamental multiple-unicast

network flow problem of maximizing the aggregate user

utility subject to link capacity constraints, maximum delay

constraints, and user throughput requirements. We summarize

existing studies in Table I, and present detailed discussions

in Section II. Briefly speaking, our study is the first work

on the general network utility maximization problem under

maximum delay constraints and user throughput requirements.

In our problem, a user’s utility is either a function of its

achieved throughput or a function of its experienced maximum

delay. For this general problem, we derive many fundamental

results, which we believe can advance state-of-the-art and

serve as benchmarks for future research in the area. Specifi-

cally, we make the following contributions for our problem.

⊲ We prove that it is NP-complete either (i) to con-

struct a feasible solution meeting all constraints, or (ii) to

obtain an optimal solution after we relax maximum delay

constraints or throughput requirements, due to the need of

simultaneously considering maximum delay constraints and

user throughput requirements. Thus, it is non-trivial to develop

polynomial-time approximation algorithms even after we relax

the maximum delay constraints or the throughput require-

ments.

⊲ We design an algorithm named PASS (Polynomial-

time Algorithm Supporting utility-maximal flows Subject to

throughput/delay constraints). We leverage a novel understand-

ing between non-convex maximum-delay-aware problems and

their convex average-delay-aware counterparts, which suggests

a new avenue for solving maximum-delay-aware network

optimization problems. PASS obtains an approximate solution

in polynomial time, after relaxing both maximum delay con-

straints and throughput requirements by up to constant ratios.

(i) For the approximation ratio of PASS, we show that it

is a constant for maximizing the throughput-based utilities,

but it depends on the utility functions for maximizing the

delay-based utilities; (ii) For the derived violation ratios of

constraints of PASS, we show that there exist instances where

solutions of PASS will violate constraints by ratios that are

close to our derived ratios.

⊲ By slightly modifying PASS, we design two other

algorithms PASS-M and PASS-T. PASS-M (resp. PASS-

T) obtains an approximate solution with a problem-dependent

approximation ratio in polynomial time, after only relaxing

throughput requirements (resp. maximum delay constraints)

by up to problem-dependent ratios. We further prove that

there does not exist either a constant ratio that can bound

the violation of constraints, or a constant approximation ratio

which can bound the performance gap as compared to the

optimal, for PASS-M and PASS-T, for all problem instances

in theory. Therefore, problem-dependent ratios are the best

possible results for PASS-M and PASS-T.

⊲ We evaluate the empirical performance of our algorithms

in simulations of supporting video-conferencing traffic across

Amazon EC2 datacenters. Compared to the existing algorithms

as well as a conceivable baseline, our solutions can obtain

up to 100% improvement of utilities, by meeting throughput

requirements but relaxing maximum delay constraints to the

extent acceptable for video conferencing applications.

II. RELATED WORK

There exist many network utility maximization studies with

throughput concerns, e.g., [2]–[5], but only a few consider

maximum delays. Since the maximum delay of a single-

unicast flow is non-convex in the flow decision variables,

even maximum-delay-aware problems under simple settings

are usually NP-hard, e.g., the single-unicast maximum delay

minimization problem, and challenging to solve [6].

Misra et al. [6] study the single-unicast maximum delay

minimization problem subject to a throughput require-

ment, and design a Fully-Polynomial-Time Approximation

Scheme (FPTAS). Zhang et al. [7] generalize the FPTAS

of [6] and develop an FPTAS to minimize maximum delay

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:44:19 UTC from IEEE Xplore. Restrictions apply.

2134 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 5, OCTOBER 2020

subject to throughput, reliability, and differential delay con-

straints also in the single-unicast scenario. Both FPTASes

require to solve flow problems iteratively in time-expanded

networks, by employing a binary-search based idea applicable

only in the single-unicast setting. It is thus unclear how

to extend their techniques to our general multiple-unicast

scenario.

Cao et al. [12] develop an FPTAS that can maximize

throughputs subject to maximum delay constraints in a

multiple-unicast setting. This FPTAS is generalized by Yu

et al. [13] to solve other throughput maximization prob-

lems. To satisfy maximum delay constraints while optimizing

throughputs, FPTASes of [12], [13] require to solve flow

problems iteratively in time-expanded networks, which is

time-consuming. Moreover, the design of FPTASes in [12],

[13] leverages the primal-dual algorithm, where their primal

problems and associated dual problems need to be cast as

linear programs. It is unclear how to extend their techniques

to our general scenario where the utility of a unicast can be a

concave function of the throughput.

We note that there exist other maximum-delay-aware stud-

ies in the literature. However, they only develop heuristic

approaches. For example, Liu et al. [15] target the multi-

cast maximum delay optimization problem. Their heuristic

approach suffers from two limitations: (i) the running time

could be high because the number of variables increases

exponentially with the network size, and (ii) there is no

theoretical performance guarantee of the achieved solution.

Overall, with the constant link delay model, existing

maximum-delay-aware studies focus on either the throughput-

constrained maximum delay minimization problem or the

maximum-delay-constrained throughput maximization prob-

lem, which are just special cases of our problem. To design

approximation algorithms, they rely on a technique of

iteratively solving problems in expanded networks, lead-

ing to impractically high time complexities (e.g., at least

O(|E|3|V |4L) to minimize single-unicast maximum delay

where |V | is the number of nodes, |E| is the number of links,

and L is the input size of the given problem instance [6]). It is

unclear how to generalize their techniques to our multiple-

unicast utility maximization scenario, where the utility of a

unicast is a concave function of the achieved throughput or the

experienced maximum delay. In sharp contrast, we develop an

approximation algorithm for our problem of maximizing utili-

ties, by leveraging a novel understanding between non-convex

maximum-delay-aware problems and their convex average-

delay-aware counterparts, resulting in a small time complexity

(e.g., O(|E|3L) to minimize single-unicast maximum delay in

a dense network (Theorem 2)).

Instead of modeling link delay as a constant as in [6], [7],

[12], [13], [15], there exist studies which model the link delay

as a traffic-dependent function. For example, Correa et al. [8],

[9] minimize maximum delay with delay-function-dependent

approximation ratios. Liu et al. [10], [11] minimize maximum

delay with constant approximation ratios. Our delay model is

the same as those in [6], [7], [12], [13], [15] but different

from [8]–[11]. We remark that maximum-delay-aware prob-

lems are fundamentally different with different delay models.

For example, to minimize the single-unicast maximum delay,

it is APX-hard (hence no PTAS exists unless P = NP) with

the traffic-dependent delay model [9], but an FPTAS1 exists

with the constant delay model [6].

In the literature there also exist many studies which consider

unreliable links where data transmission over a link only

succeeds with a probability: (i) in a single-hop network,

Hou et al. [23] propose scheduling policies for a set of

sources to be feasible with respect to delay constraints and

throughput requirements. In [24], Hou et al. extend their

previous work and study the utility maximization problem.

Deng et al. [25] further conduct a study on a similar problem

but assuming a more general traffic pattern; (ii) in a multi-hop

network, Hou [26] develops scheduling policies with delay and

throughput taken into account. Singh and Kumar [27] study a

similar problem of maximizing throughput subject to delay

constraints. Those studies [23]–[27] are of little relevance

with ours, because they assume the route is pre-determined,

while we optimize route for maximizing network utility. Deng

et al. [28] study a joint routing and scheduling problem which

requires a small amount of link capacity redundancy to satisfy

delay constraints and throughput requirements. Their focus

is on designing online policies with good performance in

terms of competitive ratio, which is very different from ours.

Singh and Kumar [29] study a joint routing, scheduling, and

power control problem of maximizing throughput under delay

constraints, and in [30], Singh et al. consider a similar prob-

lem further subject to wireless link interference constraints.

Studies [29], [30] both focus on designing distributed policies,

and they leverage stochastic frameworks to take all random-

ness, e.g., the unreliability of links, into account. Hence they

fundamentally differ from our study where no probabilistic

information is involved.

III. PRELIMINARY

A. System Model

We consider a multi-hop network modeled as a directed

graph G � (V, E) with |V | nodes and |E| links. Each link

e ∈ E has a constant capacity ce ≥ 0 and a constant delay

de ≥ 0. For each link e ∈ E, data streamed to e experiences a

delay of de, and the rate of streaming data to e must be within

the capacity ce. We are given K users, where for each user i,
a source si ∈ V needs to stream a single-unicast network flow

to a destination ti ∈ V \{si}, possibly using multiple paths.

We denote Pi as the set of simple paths2 from si to ti, and

P � ∪K
i=1Pi. For any p ∈ P , its path delay dp is defined as

dp �
∑

e∈E:e∈p

de,

We denote a multiple-unicast network flow solution as f �

{fi, i = 1, 2, . . . , K}, where a single-unicast flow fi is defined

as the assigned flow rate over Pi, i.e., fi � {xp : xp ≥ 0, p ∈

1Unless P = NP, it holds that FPTAS � PTAS in that the runtime of a
PTAS is required to be polynomial in problem input but not 1/ǫ, while the
runtime of an FPTAS is polynomial in both the problem input and 1/ǫ [22].

2A simple path is a path which does not have repeating nodes.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:44:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NETWORK UTILITY MAXIMIZATION UNDER MAXIMUM DELAY CONSTRAINTS AND THROUGHPUT REQUIREMENTS 2135

Pi}. For fi, we define

xe
i �

∑

p∈Pi:e∈p

xp

as the aggregate link rate of e ∈ E of the unicast i (or the user

i equivalently). Similarly, we denote xe as the total aggregate

link rate of link e ∈ E, and

xe �

K
∑

i=1

xe
i =

∑

p∈P :e∈p

xp.

We further denote the flow rate, or the throughput equiv-

alently, achieved by a single-unicast flow fi by |fi|,

|fi| �
∑

p∈Pi

xp =
∑

e∈Out(si)

xe
i =

∑

e∈In(ti)

xe
i ,

where Out(v) (resp. In(v)) is the set of outgoing (resp.

incoming) links of v. The maximum delay experienced by

fi is defined as

M(fi) � max
p∈Pi:xp>0

dp,

i.e., the delay of the longest (slowest) path with positive rates

from si to ti.
3 The total delay of fi is

T (fi) �
∑

p∈Pi

(xp · dp) =
∑

e∈E

(xe
i · de).

i.e., the summation of delays experienced by all flow units

from si to ti. With T (fi), we can define the average delay

experienced by fi as A(fi) � T (fi)/|fi|, i.e., the total delay

normalized by the amount of flow. We let A(fi) = 0 if |fi| =
0. Our definitions of throughput, maximum delay, and average

delay are the same as those in related studies [6]–[10].

For each fi, we denote its throughput-based utility as

U t
i (|fi|), which is a function that rewards fi based on the

achieved throughput. We assume that U t
i (|fi|) is concave, non-

negative, and non-decreasing with |fi| ≥ 0. Our assumptions

on U t
i (|fi|) are realistic, as it is practically reasonable that

the rate of increase in the throughput-based utility shall

decrease with the throughput increasing rate, considering that

larger the throughput is, more severely the network will be

congested. As discussed in Section II, in the literature there

exist many works of optimizing throughput-based network

utility, e.g., [2]–[5], where their utility functions satisfy our

assumptions.

For each fi, we denote its maximum-delay-based utility as

−Ud
i (M(fi)), where the disutility Ud

i (M(fi)) is a function

that penalizes fi based on the experienced maximum delay.

We assume that Ud
i (M(fi)) is convex, non-negative, and non-

decreasing with M(fi) ≥ 0. Our assumptions on Ud
i (M(fi))

are realistic, as it is practically reasonable that the rate of

increase in the delay-based disutility (the rate of decrease in

the delay-based utility) shall increase with the delay increasing

rate, considering that in real world our tolerance of com-

munication delay becomes less as the delay becomes larger.

To our best knowledge, we are the first to optimize delay-

based network utility with the user’s utility to be a general

function of the experienced maximum delay.

3We call a path p ∈ Pi with xp > 0 as a flow-carrying path of fi.

B. Problem Definition

We study the following problem of Maximizing aggregate

user Utilities subject to link capacity constraints, maximum

Delay constraints, and Throughput requirements (MUDT),

(MUDT) : obj: either max

K
∑

i=1

U t
i (|fi|), (1a)

or max −

K
∑

i=1

Ud
i (M(fi)), (1b)

s.t. |fi| ≥ Ri, ∀i = 1, 2, . . . , K, (1c)

M(fi) ≤ Di, ∀i = 1, 2, . . . , K, (1d)

f = {f1, f2, . . . , fK} ∈ X , (1e)

where X defines a feasible multiple-unicast flow f meeting

flow conservation constraints and link capacity constraints, i.e.,

X �

{

∑

e∈Out(si)

xe
i =

∑

e∈In(ti)

xe
i = |fi|, ∀1 ≤ i ≤ K;

∑

e∈Out(v)

xe
i =

∑

e∈In(v)

xe
i , ∀v ∈ V \{si, ti}, ∀1 ≤ i ≤ K;

K
∑

i=1

xe
i ≤ ce, ∀e ∈ E; vars: xe

i ≥ 0, ∀e, ∀i

}

.

In formula (1), the objective (1a) (resp. (1b)) maximizes

the aggregate throughput-based utility (resp. maximum-delay-

based utility), the throughput requirements (1c) ensure that

the throughput achieved by each user i is no smaller than

Ri, the maximum delay constraints (1d) restrict the max-

imum delay experienced by each user i to be no greater

than Di, and the feasibility constraint (1e) defines a feasible

multiple-unicast network flow solution, meeting link capacity

constraints.

C. A Generalization to Popular Communication Problems

MUDT is fundamentally critical as it generalizes several

popular communication settings. Two representative settings

are the Throughput-Constrained maximum Delay Minimiza-

tion problem (TCDM) and the maximum-Delay-Constrained

Utility Maximization (DCUM) problem.

TCDM aims to find a network flow to minimize the

weighted summation of maximum delays of all users, subject

to link capacity constraints and throughput requirements.

(TCDM) : min
K

∑

i=1

(wi · M(fi)) (2a)

s.t. |fi| ≥ Ri, ∀i = 1, 2, . . . , K, (2b)

f = {f1, f2, . . . , fK} ∈ X , (2c)

where in the objective (2a), a non-negative weight wi is associ-

ated with the maximum delay of fi for each i = 1, 2, . . . , K .

TCDM is NP-hard, since as its special case when K = 1,

the problem has been proven to be NP-hard [6]. Maximum

delay minimization problems that are special cases of TCDM

have been studied in [6], [8]–[10].

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:44:19 UTC from IEEE Xplore. Restrictions apply.

2136 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 5, OCTOBER 2020

DCUM aims to find a network flow to maximize aggregate

user utility, subject to link capacity constraints and maximum

delay constraints. It has the following formulation.

(DCUM) : max

K
∑

i=1

U t
i (|fi|) (3a)

s.t. M(fi) ≤ Di, ∀i = 1, 2, . . . , K, (3b)

f = {f1, f2, . . . , fK} ∈ X . (3c)

DCUM is NP-hard, because as its special case when K = 1
and U t

1(|f1|) = |f1|, the problem can be proven to be NP-hard

following a similar proof as introduced in the Appendix of [6].

As an example, [12] studies a throughput maximization

problem that is a special case of DCUM.

By extending existing NP-hardness analysis on problems

that are special cases of MUDT, in the following we give

a theorem, which suggests that it is non-trivial to develop

polynomial-time approximation algorithms for MUDT even

subject to relaxed constraints.

Theorem 1: For MUDT, it is NP-complete (i) to construct

a feasible solution that meets all constraints, or (ii) to obtain

an optimal solution that meets throughput requirements but

relaxes maximum delay constraints, or (iii) to obtain an

optimal solution that meets maximum delay constraints but

relaxes throughput requirements.

Proof: The proof is an easy adoption of Appendix of [6],

and we refer it to Part A of supplementary materials.

IV. PROPOSED APPROXIMATION ALGORITHMS

We design an algorithm PASS to solve MUDT approxi-

mately in a polynomial time, at the cost of violating both

throughput requirements and maximum delay constraints by

constant ratios. We slightly modify PASS to get another

two algorithms PASS-M and PASS-T, to obtain approxi-

mate solutions that can either strictly satisfy maximum delay

constraints or strictly satisfy throughput requirements. Note

again that in sharp contrast, existing maximum-delay-aware

studies either minimize throughput-constrained maximum

delay or maximize maximum-delay-constrained throughput,

which are special cases of our problem MUDT. They rely on

a time-consuming technique of solving problems iteratively

in the time-expanded network to provide approximate solu-

tions. Our PASS leverages a novel understanding between

non-convex maximum-delay-aware problems and their convex

average-delay-aware counterparts, which can be of indepen-

dent interest and suggest a new avenue for solving maximum-

delay-aware network optimization problems.

A. Algorithmic Structure of PASS

We note that the non-convex maximum delays bring dif-

ficulties for solving MUDT. The key idea of PASS is to

replace the non-convex maximum delays in MUDT by the

convex average delays, and solve the average-delay-aware

counterpart instead. (i) We denote the average-delay-aware

counterpart of the MUDT that maximizes throughput-based

utilities, i.e., problem (1) with an objective of (1a), as MUAT-

T. MUAT-T has the following formulation:

(MUAT-T) : obj: max
K

∑

i=1

U t
i (|fi|), (4a)

s.t. |fi| ≥ Ri, ∀i = 1, . . . , K, (4b)

T (fi) ≤ Di · |fi|, ∀i = 1, . . . , K, (4c)

f = {f1, f2, . . . , fK} ∈ X . (4d)

(ii) We denote the average-delay-aware counterpart of

the MUDT that maximizes maximum-delay-based utilities,

i.e., problem (1) with an objective of (1b), as MUAT-M.

MUAT-M has the following formulation:

(MUAT-M) : obj: max −

K
∑

i=1

Ud
i (T (fi)/|fi|) , (5a)

s.t. |fi| = Ri, ∀i = 1, . . . , K, (5b)

T (fi) ≤ Di · |fi|, ∀i = 1, . . . , K, (5c)

f = {f1, f2, . . . , fK} ∈ X . (5d)

Note that in our formulation of MUAT-M, the through-

put requirements (5b) are equality constraints. However,

the throughput requirements (1c) of MUDT are inequality con-

straints. The motivation of using equality constraints instead

of inequality ones in MUAT-M is as follows. If the throughput

requirements are equality constraints, |fi| of each user i is a

constant of Ri. This allows to replace the variable |fi| with

the constant Ri, and makes the objective in (5a) a concave

function of the variables. Otherwise, |fi| is a variable, and (5a)

is no longer concave. In the following lemma, we prove that

MUAT-M is the average-delay-aware counterpart of MUDT

that maximizes maximum-delay-based utilities.

Lemma 1: MUAT-M is the average-delay-aware counterpart

of MUDT that maximizes the maximum-delay-based utilities,

in the sense that (i) it is the average-delay-aware counterpart

of the following problem:

obj: max −

K
∑

i=1

Ud
i (M(fi)) , (6a)

s.t. |fi| = Ri, ∀i = 1, . . . , K, (6b)

M(fi) ≤ Di, ∀i = 1, . . . , K, (6c)

f = {f1, f2, . . . , fK} ∈ X , (6d)

(ii) and the above problem formulated in (6) is equivalent to

MUDT formulated in (1) with an objective of (1b).

Proof: Refer to Appendix A.

Algorithm 1 presents PASS. It solves the average-delay-

aware counterpart of MUDT and obtains the corresponding

multiple-unicast flow solution f = {fi, i = 1, . . . , K}
(Line 5). Then for each i = 1, . . . , K , we delete a rate of

ǫ · |fi| iteratively from the slowest flow-carrying paths of fi

(Line 8). In the end, the remaining flow is the solution of

PASS.

B. Performance Guarantee of PASS

Lemma 2: In Algorithm 1 with an arbitrary ǫ ∈ (0, 1),
suppose f̂ = {f̂i, i = 1, 2, . . . , K} is the solution to the

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:44:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NETWORK UTILITY MAXIMIZATION UNDER MAXIMUM DELAY CONSTRAINTS AND THROUGHPUT REQUIREMENTS 2137

Algorithm 1 Our Proposed Algorithm PASS

1: input: Problem (1), ǫ ∈ (0, 1)
2: output: f = {fi, i = 1, 2, . . . , K}
3: procedure

4: Formulate either problem (4) or problem (5) that

is the average-delay-aware counterpart of prob-

lem (1)
5: Solve the average-delay-aware problem and get the

solution f = {fi, i = 1, 2, . . . , K}
6: xdelete

i = ǫ · |fi|, ∀i = 1, 2, . . . , K
7: for i = 1, 2, . . . , K do

8: while xdelete
i > 0 do

9: Find the slowest flow-carrying path pi ∈ Pi

10: if xpi > xdelete
i then

11: xpi = xpi − xdelete
i , xdelete

i = 0
12: else

13: xdelete
i = xdelete

i − xpi , xpi = 0
14: return the remaining flow f = {fi, i = 1, 2, . . . , K}

average-delay-aware counterpart of MUDT (Line 5), and f̄ =
{f̄i, i = 1, 2, . . . , K} is the solution returned in the end

(Line 14). We have

ǫ ·M(f̄i) ≤ A(f̂i), ∀i = 1, 2, . . . , K. (7)

Proof: Refer to Appendix B.

Different from the proof in Appendix B, we remark that

our Lemma 2 can be proved by Markov inequality as well.

Lemma 2 suggests that the maximum delay of each single-

unicast flow after deleting rate is bounded by a constant ratio

as compared to the average delay of the corresponding single-

unicast flow before deleting rate. This is a critical observation

that theoretically relates the non-convex maximum delays with

the convex average delays. In fact, by following our proof, it is

easy to verify that Lemma 2 holds for any f̂ and f̄ , as long as

f̂ is the flow before deleting ǫ-fraction rate from each single-

unicast and f̄ is the remaining flow after deleting ǫ-fraction

rate from each single-unicast. The reason why PASS solves

the average-delay-aware counterpart of MUDT to get the flow

f̂ is to provide the theoretical performance guarantee on the

maximum delay constraint in a polynomial time.

Theorem 2: Given a feasible problem (1), suppose we use

PASS (Algorithm 1) with an arbitrary ǫ ∈ (0, 1) to solve it.

Then PASS must return a solution f̄ = {f̄i, i = 1, . . . , K} in

polynomial time, meeting the following relaxed constraints

∣

∣f̄i

∣

∣ ≥ (1 − ǫ) · Ri, ∀i = 1, 2, . . . , K, (8a)

M
(

f̄i

)

≤ Di/ǫ, ∀i = 1, 2, . . . , K, (8b)

f̄ = {f̄1, f̄2, . . . , f̄K} ∈ X . (8c)

Suppose f∗ = {f∗
i , i = 1, 2, . . . , K} is the optimal solution to

problem (1). If the throughput-based utility maximization (1a)

is the objective, f̄ provides the following approximation ratio

K
∑

i=1

U t
i

(
∣

∣f̄i

∣

∣

)

≥ (1 − ǫ) ·

K
∑

i=1

U t
i (|f∗

i |) ; (9)

If the maximum-delay-based utility maximization (1b) is the

objective, f̄ provides the following approximation ratio

K
∑

i=1

Ud
i

(

M
(

f̄i

))

≤ α(ǫ) ·

K
∑

i=1

Ud
i (M (f∗

i)) , (10)

where α(ǫ) is defined as follows

α(ǫ) � max
i∈{1,...,K}, 0<x≤Di

(

Ud
i (x/ǫ)

Ud
i (x)

)

.

Proof: Refer to Appendix C.

It is clear that PASS obtains an approximate solution, at the

cost of violating throughput requirements (1c) by a constant

ratio of (1− ǫ), and violating maximum delay constraints (1d)

by a constant ratio of (1/ǫ). If the objective is to maximize

throughput-based utilities, the approximation ratio is (1 − ǫ)
which is a constant; otherwise if the objective is to maximize

delay-based utilities, it is α(ǫ) which depends on the input

delay-based utility functions. As an example, consider the n-

order polynomial functions, i.e., Ud
i (M(fi)) =

∑n

j=0 ci,j ·

(M(fi))
j where {ci,j, j = 0, 1, . . . , n} are non-negative

weights. We have α(ǫ) = (1/ǫ)n for such polynomial utility

functions, given any ǫ ∈ (0, 1) and any Di ≥ 0:

Ud
i (x/ǫ)

Ud
i (x)

=

∑n

j=0 ci,j · (x/ǫ)j

∑n

j=0 ci,j · xj

=

(

1

ǫ

)n

·

∑n

j=0 ci,j · x
j · ǫn−j

∑n

j=0 ci,j · xj

≤

(

1

ǫ

)n

·

∑n

j=0 ci,j · x
j

∑n

j=0 ci,j · xj
=

(

1

ǫ

)n

.

To obtain an approximate solution, according to Theorem 2,

theoretically PASS needs to either violate delay constraints

severely if throughput requirements are only allowed to be

violated mildly, or violate throughput requirements severely if

delay constraints are only allowed to be violated mildly. In

fact, we remark that our derived ratios (1 − ǫ) and (1/ǫ) of

violating constraints have high quality and hence are useful

for PASS. This is because they are constants independent of

instances. Although they appear to be loose in some instances,

in the following lemma we show that for any ǫ ∈ (0, 1), there

always exists an instance where the solution of PASS violates

constraints by ratios that are very close to them.

Lemma 3: Given any ǫ ∈ (0, 1), there exists an MUDT

instance, where the following holds for the solution f̄ =
{f̄i, i = 1, 2, . . . , K} of PASS (Algorithm 1)

∣

∣f̄i

∣

∣ ≤ (1 − ǫ) · Ri, ∀i = 1, 2, . . . , K,

M
(

f̄i

)

≥ (d1/ǫe − 1) · Di, ∀i = 1, 2, . . . , K.

Proof: Refer to Part B of supplementary materials.

We explain why there is a tradeoff between the ratio (1/ǫ)
of violating maximum delay constraints and the ratio (1 − ǫ)
of violating throughput requirements over the next a few

sentences. PASS resorts to solving the average-delay-aware

counterpart to find a useful solution to the maximum-delay-

aware problem MUDT. However, the proof of Lemma 3 sug-

gests that there is an instance where the average-delay-optimal

solution violates the maximum delay constraints severely,

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:44:19 UTC from IEEE Xplore. Restrictions apply.

2138 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 5, OCTOBER 2020

Fig. 1. Approximation ratio of our PASS (z-axis), given a minimum violation
ratio on the throughput requirements (x-axis) and a maximum violation ratio
on the maximum delay constraints (y-axis).

satisfying throughput requirements. This is because the delays

of paths of the solution vary severely. To reduce the violation

of maximum delay constraints, for this instance we need to

delete a huge amount of flow rate from the average-delay-

optimal solution, leading to a severe violation of throughput

requirements.

C. Applications of PASS

According to Theorem 2, we can control ǫ ∈ (0, 1) to use

PASS to obtain a solution with an approximation ratio of

either (1 − ǫ) or α(ǫ), at the cost of violating throughput

requirements by a ratio of (1−ǫ) and violating maximum delay

constraints by a ratio of (1/ǫ). Now we look at PASS from a

different perspective. Instead of controlling an approximation

parameter ǫ, suppose we can separately control a minimum

violation ratio x ∈ (0, 1) of throughput requirements and a

maximum violation ratio y ∈ (1, +∞) of maximum delay

constraints. We restrict that an acceptable solution f should

satisfy the following:

|fi| ≥ x · Ri, M(fi) ≤ y · Di, ∀i = 1, 2, . . . , K. (11)

We remark that we can use PASS to figure out such a solution:

let us assume ǭ to be the input approximation parameter of

PASS. Based on Theorem 2, the following holds for the

solution f̄ of PASS:
∣

∣f̄i

∣

∣≥(1− ǭ) · Ri, M
(

f̄i

)

≤ Di/ǭ, ∀i = 1, 2, . . . , K. (12)

By comparing (12) with (11), it is clear if the following holds,

f̄ will satisfy the constraints in (11):

1 − ǭ ≥ x, 1/ǭ ≤ y,

implying that 1/y ≤ ǭ ≤ 1 − x. Therefore when 1/y ≤
1 − x, (i) PASS can figure out a solution meeting the

constraints in (11), with an approximation ratio of (1 − 1/y)
for maximizing throughput-based utilities, by setting ǭ =
1/y; (ii) and PASS can figure out a solution meeting the

constraints in (11), with an approximation ratio of α(1 − x)
for maximizing delay-based utilities, by setting ǭ = 1 − x.

If 1/y > 1 − x, PASS cannot obtain a solution to satisfy the

constraints in (11). Considering an example with linear delay-

based utilities, i.e., Ud
i (M(fi)) = wi ·M(fi), i = 1, 2, . . . , K ,

we have α(1−x) = 1/(1−x). We illustrate the approximation

Algorithm 2 PASS-M: Modify PASS to Strictly Meet Max-

imum Delay Constraints

1: input: Problem (1)

2: output: f = {fi, i = 1, 2, . . . , K}
3: procedure

4: Solve the average-delay-aware counterpart of

problem (1), and get the solution f = {fi, i =
1, 2, . . . , K}

5: for i = 1, 2, . . . , K do

6: while M(fi) > Di do

7: Find the slowest flow-carrying path pi ∈ Pi

8: Let xpi = 0
9: return the remaining flow f = {fi, i = 1, 2, . . . , K}

ratio of (1 − 1/y) (resp. 1/(1 − x)) of this example with the

x and y in Figure 1(a) (resp. in Figure 1(b)).

For certain applications, the throughput requirements or the

maximum delay constraints are hard constraints that cannot

be violated. We note that one can use pre-scaled maximum

delay constraints and throughput requirements as the input to

PASS to generate feasible solutions as the output. Moreover,

in the following, by slightly modifying PASS, we respectively

develop (i) an algorithm PASS-M to achieve approximate

solutions that can strictly meet maximum delay constraints,

and (ii) an algorithm PASS-T to achieve approximate solu-

tions that can strictly meet throughput requirements.

D. Modifying PASS to Meet Maximum Delay Constraints

We introduce PASS-M in Algorithm 2. Different from

PASS that deletes ǫ · |fi| rate from slowest flow-carrying paths

of each fi, PASS-M deletes rate from slowest flow-carrying

paths of fi till its maximum delay meets the constraint Di.

Theorem 3: Given a feasible problem (1), suppose we use

PASS-M (Algorithm 2) to solve it. Then PASS-M must return

a solution f̄ = {f̄i, i = 1, 2, . . . , K} in polynomial time,

meeting the following relaxed constraints
∣

∣f̄i

∣

∣ ≥ (1 − ǫmax) · Ri, ∀i = 1, 2, . . . , K, (13a)

M
(

f̄i

)

≤ Di, ∀i = 1, 2, . . . , K, (13b)

f̄ = {f̄1, f̄2, . . . , f̄K} ∈ X , (13c)

where ǫmax is defined as follows

ǫmax = max
1≤i≤K

{(
∣

∣

∣
f̂i

∣

∣

∣
−

∣

∣f̄i

∣

∣

)

/
∣

∣

∣
f̂i

∣

∣

∣

}

,

where f̂ = {f̂i, i = 1, 2, . . . , K} is the optimal solution to

the average-delay-aware problem in Line 4 of Algorithm 2.

Suppose f∗ = {f∗
i , i = 1, 2, . . . , K} is the optimal solution to

problem (1). If the throughput-based utility maximization (1a)

is the objective, f̄ provides the following approximation ratio

K
∑

i=1

U t
i

(∣

∣f̄i

∣

∣

)

≥ (1 − ǫmax) ·

K
∑

i=1

U t
i (|f∗

i |) ; (14)

If the maximum-delay-based utility maximization (1b) is the

objective, f̄ provides the following approximation ratio

K
∑

i=1

Ud
i

(

M
(

f̄i

))

≤ α(ǫmin) ·

K
∑

i=1

Ud
i (M (f∗

i)) , (15)

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:44:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NETWORK UTILITY MAXIMIZATION UNDER MAXIMUM DELAY CONSTRAINTS AND THROUGHPUT REQUIREMENTS 2139

where ǫmin is defined as follows

ǫmin = min
1≤i≤K

{(∣

∣

∣
f̂i

∣

∣

∣
−

∣

∣f̄i

∣

∣

)

/
∣

∣

∣
f̂i

∣

∣

∣

}

.

Proof: It is a direct extension of Theorem 2. Detailed

proof refers to Part C of supplementary materials.

Comparing Theorem 2 with Theorem 3, to solve MUDT,

(i) PASS achieves an approximate solution at the cost of

violating both throughput requirements and maximum delay

constraints by constant ratios, while (ii) PASS-M obtains an

approximate solution and strictly meets maximum delay con-

straints, but at the cost of violating throughput requirements

by a problem-dependent ratio. We highlight that although our

derived problem-dependent ratios of PASS-M can be figured

out only after we use PASS-M to solve MUDT, and can be

arbitrarily bad for certain problem instances, they are the best

effort for PASS-M as shown in the lemma below.

Lemma 4: Suppose f̄ = {f̄i, i = 1, 2, . . . , K} is the solu-

tion of PASS-M (Algorithm 2). Given any positive number σ
that is arbitrarily close to 0, there exists an MUDT instance,

where the following holds for f̄ :

∣

∣f̄i

∣

∣ < σ · Ri, ∀i = 1, 2, . . . , K. (16)

Suppose f∗ = {f∗
i , i = 1, 2, . . . , K} is the optimal solution to

MUDT. Given any positive number σ that is arbitrarily close

to 0, there also exists an MUDT instance where the following

holds for f̄ : If the throughput-based utility maximization is

the objective, we have the following in this instance:

K
∑

i=1

U t
i

(∣

∣f̄i

∣

∣

)

< σ ·

K
∑

i=1

U t
i (|f∗

i |) ; (17)

If the maximum-delay-based utility maximization is the objec-

tive, we have the following in this instance:

K
∑

i=1

Ud
i

(

M
(

f̄i

))

>
1

σ
·

K
∑

i=1

Ud
i (M (f∗

i)) . (18)

Proof: Refer to Part D of supplementary materials.

Lemma 4 suggests that there exist instances where the

throughput of PASS-M is arbitrarily small and the utility of

PASS-M is arbitrarily far from optimal. Therefore, we cannot

derive a constant approximation ratio or a positive constant to

bound the throughput requirements violation of PASS-M for

all instances of MUDT. Our derived problem-dependent ratios

are thus the best possible results for PASS-M.

E. Modifying PASS to Meet Throughput Requirements

In order to strictly meet throughput requirements, our

PASS-T uses the optimal solution to the average-delay-aware

counterpart of MUDT directly as a solution to the maximum-

delay-aware problem MUDT, i.e.,

⊲ PASS-T: directly solve the average-delay-aware counter-

part of problem (1).

Theorem 4: Given a feasible problem (1), we denote ḡ =
{ḡ1, ḡ2, . . . , ḡK} as the solution returned if we use PASS

(Algorithm 1) to solve it with an ǫ ∈ (0, 1). Now suppose

we use PASS-T to solve problem (1). Then PASS-T must

return a solution f̄ = {f̄i, i = 1, 2, . . . , K} in polynomial

time, meeting the following relaxed constraints
∣

∣f̄i

∣

∣ ≥ Ri, ∀i = 1, 2, . . . , K, (19a)

M
(

f̄i

)

≤
λ

ǫ
· Di, ∀i = 1, 2, . . . , K, (19b)

f̄ = {f̄1, f̄2, . . . , f̄K} ∈ X , (19c)

where λ is defined as follows

λ = max

{

1, max
1≤i≤K

{

M(f̄i)/M(ḡi)
}

}

.

Suppose f∗ = {f∗
i , i = 1, 2, . . . , K} is the optimal solution to

problem (1). If the throughput-based utility maximization (1a)

is the objective, f̄ provides the following approximation ratio

K
∑

i=1

U t
i

(∣

∣f̄i

∣

∣

)

≥

K
∑

i=1

U t
i (|f∗

i |) ; (20)

If the maximum-delay-based utility maximization (1b) is the

objective, f̄ provides the following approximation ratio

K
∑

i=1

Ud
i

(

M
(

f̄i

))

≤ α(λ) · α(ǫ) ·
K

∑

i=1

Ud
i (M (f∗

i)) . (21)

Proof: It is a direct extension of Theorem 2. Detailed

proof refers to Part E of supplementary materials.

Theorem 4 suggests that we can figure out an approximation

ratio of PASS-T with the knowledge of an arbitrary solution

of PASS. Comparing Theorem 2 with Theorem 4, to solve

MUDT, (i) PASS achieves an approximate solution at the cost

of violating both throughput requirements and maximum delay

constraints by constant ratios, while (ii) PASS-T obtains an

approximate solution and strictly meets throughput require-

ments, at the cost of violating maximum delay constraints by

a problem-dependent ratio. Similar to PASS-M, although our

derived problem-dependent ratios can be figured out only after

we use PASS-T to solve MUDT, and can be unbounded for

certain problem instances, they are the best effort for PASS-T

as presented in the following lemma.

Lemma 5: Suppose f̄ = {f̄i, i = 1, 2, . . . , K} is the

solution of PASS-T. Given an arbitrarily large number σ, there

exists an MUDT instance, where the following holds for f̄ :

M
(

f̄i

)

> σ · Di, ∀i = 1, 2, . . . , K. (22)

Suppose f∗ = {f∗
i , i = 1, 2, . . . , K} is the optimal solution to

MUDT. Given an arbitrarily large number σ, there also exists

an MUDT instance where the following holds for f̄ : If the

maximum-delay-based utility maximization is the objective,

we have the following in this instance:

K
∑

i=1

Ud
i

(

M
(

f̄i

))

> σ ·

K
∑

i=1

Ud
i (M (f∗

i)) . (23)

Proof: Refer to Part F of supplementary materials.

Lemma 5 suggests that for PASS-T, we cannot derive a

constant approximation ratio for maximizing the maximum-

delay-based utility, or a positive constant to bound the maxi-

mum delay constraints violation, for all instances of MUDT.

Therefore, our derived problem-dependent ratios are the best

possible results for PASS-T.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:44:19 UTC from IEEE Xplore. Restrictions apply.

2140 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 5, OCTOBER 2020

F. Applicability to Other Maximum-Delay-Aware Problems

As shown in the formulation (1), MUDT has an objective of

either (1a) or (1b), both of which maximize the aggregate user

utility. We develop algorithms PASS, PASS-M, and PASS-T

to solve MUDT approximately in previous sections. In this

section we consider two other user-utility-sensitive objectives

which cover the objectives of MUDT as special cases. Our

algorithms PASS, PASS-M, and PASS-T can optimize the

general objectives under maximum delay constraints and user

throughput requirements approximately, too.

A general extension of the function
∑K

i=1 U
t
i (|fi|)

is U t(|f1|, |f2|, . . . , |fK |) that arbitrarily depends on the

achieved throughput |fi| of each user i, i = 1, 2, . . . , K . Now

we consider the following optimization objective:

max U t (|f1|, |f2|, . . . , |fK |) , (24)

where U t(|f1|, |f2|, . . . , |fK |) is non-negative, non-decreasing,

and concave with each |fi|, i = 1, 2, . . . , K . Following the

same proofs to Theorems 2, 3, and 4, it is easy to verify that we

can use PASS, PASS-M, and PASS-T to approximately solve

the problem with an objective of (24) subject to throughput

requirements (1c), maximum delay constraints (1d), and fea-

sibility constraints (1e), in polynomial time. A representative

example of the general objective (24) which differs from the

aggregate user utility maximization objective (1a) of MUDT

is to maximize the worst utility among all users, i.e.,

max min
1≤i≤K

{

U t
i (|fi|)

}

.

Similarly, we also consider the following delay-aware opti-

mization objective that generalizes the aggregate user utility

maximization objective (1b) of MUDT:

max − Ud (M(f1),M(f2), . . . ,M(fK)) , (25)

where Ud(M(f1),M(f2), . . . ,M(fK)) is non-negative, non-

decreasing, and convex with each M(fi), i = 1, 2, . . . , K . It is

easy to verify that we can use PASS, PASS-M, and PASS-T

to approximately solve the problem with an objective of (25)

subject to throughput requirements (1c), maximum delay con-

straints (1d), and feasibility constraints (1e), in polynomial

time. Note that by optimizing the general objective (25),

the approximation ratio α(ǫ) of PASS should be defined in

the following way:

α(ǫ) � max
∀i=1,2,...,K: 0<xi≤Di

(

Ud(x1/ǫ, x2/ǫ, . . . , xK/ǫ)

Ud(x1, x2, . . . , xK)

)

.

A representative example of the general objective (25) is to

maximize the worst utility among all users, i.e.,

max min
1≤i≤K

{

−Ud
i (M(fi))

}

.

Overall, we are the first to study the general network utility

maximization problem under maximum delay constraints and

throughput requirements, and propose algorithms with strong

theoretical performance guarantees. The design of our algo-

rithms further suggests a new avenue for solving a broad

range of maximum-delay-aware network optimization prob-

lems. We believe that our fundamental results advance state-

of-the-art, and can serve as benchmarks for future research.

V. EXTENSION TO OTHER DELAY MODELS

In previous sections we study MUDT under a traffic-

independent constant delay model. In this section we consider

a traffic-dependent delay model where link delay is a func-

tion of link traffic. It covers the constant delay model as a

special case. We highlight that when directly extending our

algorithms from the traffic-independent delay model to the

traffic-dependent one, (i) they maintain the same theoretical

performance guarantee; however, (ii) their time complexities

become exponential instead of polynomial.

Let us assume that the delay of link e is de(xe) which is

a function of the link aggregate traffic xe. It generalizes the

constant link delay de in Section III. Due to practical concerns,

we assume de(xe) to be non-negative, non-decreasing, differ-

entiable, and convex with xe. Now we focus on the MUDT

under the traffic-dependent delay model.

Note that in our assumption de(xe) is non-decreasing with

xe. As presented in the last paragraph of Appendix B, clearly

our Lemma 2 holds under the traffic-dependent delay model.

Then following the same proof to Theorem 2 (resp. Theorem 3,

Theorem 4), it is provable that the solution of PASS (resp.

PASS-M, PASS-T) under the traffic-dependent delay model

provides the same approximation ratio satisfying the same

relaxed constraints, as compared to its performance guarantee

under the constant delay model.

However, under the traffic-dependent delay model, the time

complexities of PASS, PASS-M, and PASS-T are all expo-

nential. This is because in such a model we have

T (fi) =
∑

e∈E

(xe
i · de (xe)) =

∑

e∈E

(

xe
i · de

(

K
∑

i=1

xe
i

))

.

Here T (fi) becomes non-convex with xe
i . Therefore,

the average-delay-aware counterpart of MUDT is a non-

convex optimization problem. None of PASS, PASS-

M, or PASS-T hence has a polynomial time complexity,

as they all rely on solving the average-delay-aware counterpart

to figure out useful solutions to MUDT.

Overall, our proposed avenue for maximum-delay-aware

network optimization can be extended to the general setting

of traffic-dependent delay, providing strong theoretical perfor-

mance guarantee. This critical observation further highlights

the theoretical significance of our results. Future directions

include (i) developing efficient polynomial-time algorithms for

MUDT under traffic-dependent delay model, by approximating

the non-convex average-delay-aware counterpart of MUDT;

and (ii) exploring real-world time-sensitive applications to

which our proposed results can be directly applied.

VI. PERFORMANCE EVALUATION

Now we simulate a delay-critical video conferencing traf-

fic over a real-world continent-scale inter-datacenter network

topology of 6 globally distributed Amazon EC2 datacenters

(see Figure 2). The network is modeled as a complete undi-

rected graph. Each undirected link is treated as two directed

links that operate independently and have identical delays and

capacities, a common way to model an undirected graph by

a directed one, e.g. in [31]. We set link delays and capacities

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:44:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NETWORK UTILITY MAXIMIZATION UNDER MAXIMUM DELAY CONSTRAINTS AND THROUGHPUT REQUIREMENTS 2141

Fig. 2. Topology of the 6 Amazon EC2 datacenters [15].

TABLE II

INFORMATION OF (de, ce) IN THE AMAZON EC2 NETWORK [15], [16]
(de IS IN MS AND ce IS IN MBPS) (OR: OREGON, VA: VIRGINIA, IR:

IRELAND, TO: TOKYO, SI: SINGAPORE, SP: SAO PAULO)

Fig. 3. Simulation results of using PASS to minimize the summation of
maximum delays under throughput requirements.

according to practical evaluations on Amazon EC2 from [15],

[16] (see Table II). We assume two unicasts (K = 2), one

from Virginia to Singapore, the other from Oregon to Tokyo.

Linear programs are solved using CPLEX [32].

A. Minimizing Maximum Delay

We first use our algorithms to minimize maximum delay,

subject to link capacity constraints and throughput require-

ments (i.e., to solve TCDM with formula (2)). We assume

K = 2, w1 = w2, and R1 = R2 = R in (2).

We compare PASS with the optimal solution, a conceiv-

able greedy baseline, and PASS-T respectively. Because link

delays are all integers (see Table II), the delay of any path must

be an integer. Therefore, we can obtain the optimal solution

minimizing the summation of maximum delays, by enumer-

ating all possible maximum delays of individual unicasts to

figure out the minimal performance such that a feasible flow

exists in the time-expanded network. Note that this approach

theoretically has an exponential time complexity, and is the

foundation of the FPTAS [6] designed for the single-unicast

maximum delay minimization problem. The baseline greedily

obtains the routing solution from the unicast 1 to the unicast K

Fig. 4. Simulation results of using PASS to maximize throughput under
maximum delay constraints with various ǫ, where D1 = D2 = 150.

one by one. In the iteration of the unicast i, it assigns as much

rate as possible to the shortest paths from si to ti iteratively

respecting the link capacity constraints, till the throughput

requirement Ri is satisfied. Similar heuristic approaches have

been used in other delay-aware network flow studies, e.g.,

in [33], yet without performance guarantee.

First, we evaluate the maximum delay of PASS with

different values of ǫ (see Figure 3(a)). We set R = 230 and

vary ǫ from 1% to 99% by a step of 1%. According to the

figure, (i) PASS-T obtains the optimal solution to our problem,

(ii) the delay of the baseline is strictly larger than optimal,

and (iii) the delay of PASS is a staircase function with ǫ.

We remark that the delay of PASS can be smaller than optimal

in many instances because PASS only supports (1−ǫ)-fraction

of the throughput requirement, while the optimal solution

supports the full throughput requirement.

Second, we evaluate the maximum delay of PASS with the

throughput requirement R (see Figure 3(b)). We set ǫ = 3%
since a 3% throughput loss is very acceptable for video confer-

encing with protection/recovery capabilities [34]. We vary R
from 116Mbps to 239Mbps with a step of 1Mbps. We remark

that 116Mbps is the smallest throughput when the baseline

needs multiple paths, and 239Mbps is the largest throughput

that can be routed. Figure 3(b) suggests that PASS outputs a

smaller maximum delay compared with the baseline in most

instances. On average, the maximum delay of the baseline

(402ms) is over 11% more than that of the optimal (362ms)

and of the PASS (359ms). In the worst case (R ∈ [116, 138]),
the maximum delay of the baseline is over 40% more than

that of the optimal and of the PASS. In addition, PASS-T

obtains the optimal solution to our problem in most instances,

except for instances where R ∈ [212, 223].

B. Maximizing Throughput

We then use our algorithms to maximize throughput, subject

to link capacity constraints and maximum delay constraints

(i.e., to solve DCUM with formula (3)). We assume K = 2,

U t
1(|f1|) = |f1|, U

t
2(|f2|) = |f2|, and D1 = D2 = D in the

formula (3). We compare PASS with the optimal solution,

a conceivable baseline, and PASS-M, respectively. Similar to

the greedy approach introduced in Section VI-A, the baseline

assigns as much rate as possible to the shortest paths respecting

both link capacity constraints and maximum delay constraints

iteratively from unicast 1 to unicast 2 one by one. Besides,

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:44:19 UTC from IEEE Xplore. Restrictions apply.

2142 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 5, OCTOBER 2020

Fig. 5. Simulation results of using PASS to maximize the weighted
summation of throughputs subject to both maximum delay constraints and
throughput requirements, with ǫ = 3%, R1 = R2 = 80 and D1 = D2 =
150.

similar to Section VI-A, we can obtain the optimal solution

by solving problems in the time-expanded network.

We set D = 150ms due to the following concerns. (i) An

end-to-end delay less than 150ms can provide a transparent

interactivity for video conferencing [19]. (ii) A delay larger

than 150ms (as long as it is less than 400ms) is still acceptable

for video conferencing [19], and hence a solution that violates

the maximum delay constraint may still be useful if it can

achieve a substantial amount of throughput improvement.

We vary ǫ from 1% to 99% with a step of 1%. The

throughput results are illustrated in Figure 4(a), and Fig-

ure 4(b) provides the achieved maximum delay ratios,

i.e., max{M(f1),M(f2)}/D where f = {f1, f2} is the

solution. In our simulations, both the baseline and PASS-

M obtain the optimal throughput while strictly meeting the

maximum delay constraints. For ǫ ≤ 49%, the throughput

of PASS is strictly larger than the optimal, while violating

maximum delay constraints (e.g., 8% more than D when

ǫ = 49%). For ǫ ≥ 51%, the solution of PASS meets

maximum delay constraints, but the achieved throughput is

strictly smaller than optimal. It is impressive that with a small

ǫ, e.g., ǫ = 1%, the throughput of PASS is over 90% more

than the optimal, while at the same time the maximum delays

of PASS are less than 331ms which is still acceptable for

video conferencing. For instances where ǫ ≤ 49%, when ǫ is

decreased by 1%, on average a 2.0% throughput improvement

as compared to the optimal can be achieved at the cost of a

2.2% violation to the maximum delay constraints.

C. Maximizing Network Utility

Finally we use PASS to maximize network utility sub-

ject to link capacity constraints, maximum delay constraints,

and throughput requirements (i.e., to solve MUDT with for-

mula (1)). We maximize the weighted summation of through-

puts of individual users, i.e., U t
i (|fi|) = wi · |fi|, i = 1, 2, and

we assume R1 = R2 = 80, D1 = D2 = 150.

We vary the weight w1 (resp. w2) from 1 to 10 with a step

of 1, thus leading to 100 simulation instances each of which is

characterized by a specific hw1, w2i, 1 ≤ w1 ≤ 10, 1 ≤ w2 ≤
10. For each instance, we respectively run PASS, PASS-M,

PASS-T, the conceivable baseline introduced in Section VI-

B, and compare their solutions with the optimal. Note that we

obtain the optimal solution by solving multiple-unicast flow

problems in the time-expanded network.

We present the aggregate throughput results of different

algorithms of the 100 simulation instances in Figure 5(a).

In Figure 5(b), we give the throughput improvement of differ-

ent algorithms as compared to the optimal. Note that PASS,

PASS-M, and PASS-T can obtain utilities strictly greater than

optimal, because they all optimize utility subject to relaxed

constraints, while the optimal utility is achieved by a feasible

solution strictly meeting all the constraints.

From Figure 5 we learn that PASS and PASS-T obtain a

large improvement on the aggregate user throughput compared

to the optimal (over 100% more than the optimal), while

the aggregate user throughput achieved by PASS-M and the

baseline is close-to-optimal. According to Theorem 2, theo-

retically PASS can violate both throughput requirements and

maximum delay constraints. Empirically, (i) the throughput

achieved by PASS is 138 (resp. 302) on average for the

first unicast (resp. second unicast), both satisfying throughput

requirements R1 = R2 = 80. (ii) The maximum delay

experienced by PASS is 195 (resp. 301) on average for

the first unicast (resp. second unicast), violating maximum

delay constraints D1 = D2 = 150. But considering that

video conferencing applications can accept a delay less than

400ms [19], the solution of PASS is acceptable. According to

Theorem 3, theoretically PASS-M can meet maximum delay

constraints while violate throughput requirements. Empirically,

the throughput achieved by PASS-M is 71 (resp. 154) on

average for the first unicast (resp. second unicast). It is

clear that the first unicast flow violates throughput require-

ment. According to Theorem 4, theoretically PASS-T can

meet throughput requirements while violate maximum delay

constraints. Empirically, the maximum delay experienced by

PASS-T is 222 (resp. 322) on average for the first unicast

(resp. second unicast), violating the maximum delay con-

straints but within 400ms that is the largest acceptable delay.

VII. CONCLUSION

We consider the problem of maximizing aggregate user

utilities subject to link capacity constraints, maximum delay

constraints, and throughput requirements. A user’s utility

is a concave function of the achieved throughput or the

experienced maximum delay. We first prove that it is NP-

complete either (i) to construct a feasible solution meeting

all constraints, or (ii) to obtain an optimal solution after

we relax maximum delay constraints or throughput require-

ments. We then design the first polynomial-time approximation

algorithm named PASS to obtain an approximate solution,

at the cost of violating both maximum delay constraints and

throughput requirements by up to constant ratios. By slightly

modifying PASS, we develop two algorithms PASS-M and

PASS-T to obtain approximate solutions at the cost of

violating either maximum delay constraints or throughput

requirements by up to problem-dependent ratios. Our results

can serve as benchmarks for future research in the area.

The design of our algorithms leverages a new understanding

between maximum-delay-aware problems and their average-

delay-aware counterparts. It suggests a new avenue for solving

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:44:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NETWORK UTILITY MAXIMIZATION UNDER MAXIMUM DELAY CONSTRAINTS AND THROUGHPUT REQUIREMENTS 2143

a broad range of maximum-delay-aware network optimization

problems.

APPENDIX

A. Proof to Lemma 1

Proof: We prove that (6) is feasible if and only if (1)

with an objective of (1b) is feasible, and they share the same

optimal solution.

Only if part. Suppose the problem formulated in (6) is fea-

sible. Because any feasible solution to the problem formulated

in (6) must also be feasible to MUDT formulated in (1) with

an objective of (1b), it holds that MUDT formulated in (1)

with an objective of (1b) must be feasible.

If part. Suppose MUDT formulated in (1) with an objective

of (1b) is feasible, and f = {f1, . . . , fK} is an arbitrary

feasible solution to it. For each unicast i = {1, . . . , K},

if |fi| > Ri, we delete flow rate from fi till |fi| = Ri;

otherwise we do nothing. Then we can always obtain a

solution g = {g1, . . . , gK} from f such that |gi| = Ri

for all i, meeting constraints (6b) and (6d). It is clear that

M(gi) ≤ M(fi) because link delay is a constant, which

implies that g satisfies (6c). Thus g is feasible to the problem

formulated in (6), implying that the problem formulated in (6)

is theoretically feasible.

We prove that the two problems share the same optimal

solution by contradiction. Suppose g∗ = {g∗i , i = 1, 2, . . . , K}
is the optimal solution to the problem formulated in (6),

f∗ = {f∗
i , i = 1, 2, . . . , K} is the optimal solution to MUDT

formulated in (1) with an objective of (1b), and

K
∑

i=1

Ud
i (M(g∗i)) >

K
∑

i=1

Ud
i (M(f∗

i)) .

Note that
∑K

i=1 U
d
i M(g∗i) <

∑K

i=1 U
d
i (M(f∗

i)) does not

holds because g∗ is feasible to MUDT.

As introduced in the previous proof, we can construct a

g from f∗ where g is feasible to the problem formulated

in (6), and M(gi) ≤ M(fi), ∀i = 1, 2, . . . , K . Considering

that utility functions are non-decreasing, we have

K
∑

i=1

Ud
i (M(f∗

i)) ≥

K
∑

i=1

Ud
i (M(gi)) ,

implying that

K
∑

i=1

Ud
i (M(g∗i)) >

K
∑

i=1

Ud
i (M(gi)) ,

which is contradicted with that g∗ is optimal to (6). Therefore,

the two problems share the same optimal solution.

After we replace the maximum delays in (6) by the average

delays, clearly we get MUAT-M formulated in (5). Because we

prove that (6) is feasible if and only if (1) with an objective

of (1b) is feasible, and they share the same optimal solution,

it holds that MUAT-M is the average-delay-aware counterpart

of MUDT that maximizes delay-based utilities.

B. Proof to Lemma 2

Proof: According to Algorithm 1, for any i = 1, 2, . . . , K ,

f̄i is obtained by iteratively deleting ǫ · |f̂i| rate from f̂i.

Suppose that there are in total Ni iterations to get f̄i by

deleting rate from f̂i (namely assume Ni to be the number

of iterations of the while-loop of line 8). And we use fn
i to

represent the flow of the unicast i at the beginning of the n-th

iteration (or equivalently, at the end of the (n−1)-th iteration).

Obviously, f1
i = f̂i, fNi+1

i = f̄i. We denote Pn
i as the set

of of all flow-carrying paths in flow fn
i , and pn

i ∈ Pn
i as the

slowest flow-carrying path in Pn
i . In the n-th iteration of the

unicast i, PASS delete some rate, say xn
i > 0, from pn

i .

Since all link delays are non-negative constants, the path

delay cannot increase with reduced flow rate. Thus,

M
(

fn+1
i

)

≤M (fn
i) , ∀n = 1, 2, . . . , Ni, ∀i=1, 2, . . . , K.

(26)

For any 1 ≤ n ≤ Ni, the following held for any i

T (fn
i)

=
∑

e∈E:e�∈pn
i

[xe
i de] +

∑

e∈E:e∈pn
i

[xe
i de]

=
∑

e∈E:e�∈pn
i

[xe
i de] +

∑

e∈E:e∈pn
i

[(xe
i − xn

i) de + xn
i de]

(a)
=

∑

e∈E:e�∈pn
i

[xe
i de] +

∑

e∈E:e∈pn
i

[(xe
i − xn

i)de] + xn
i M(fn

i)

(b)
= T (fn+1

i) + xn
i M(fn

i)
(c)

≥ T (fn+1
i) + xn

i M
(

f̄i

)

. (27)

In (27), equality (a) holds because
∑

e∈pn
i

de is the path

delay of the slowest flow-carrying path pn
i . Equality (b) holds

because flow fn+1
i is the flow when fn

i deletes xn
i rate from

path pn
i . Inequality (c) comes from (26) and fNi+1

i = f̄i.

We then do summation for (27) over n ∈ [1, Ni], and get

T
[

f̂i

]

= T
(

f1
i

)

≥ T
(

fNi+1
i

)

+

(

Ni
∑

n=1

xn
i

)

· M(f̄i)

= T
[

f̄i

]

+ ǫ ·
∣

∣

∣
f̂i

∣

∣

∣
· M

(

f̄i

)

,

which proves our Lemma 2 since it holds that T (f̄i) ≥ 0.

Finally, note that our constant delay model is sufficient but

not necessary for our Lemma 2 to hold. Following the similar

proof, it is easy to verify that our Lemma 2 holds if for each

link we have that the link delay does not increase when the

flow rate assigned to the link decrease.

C. Proof to Theorem 2

Proof: First, we prove the polynomial time complexity.

Both problem (4) and (5) can be solved in polynomial time,

since (i) they are convex programs with a polynomial size,

and (ii) convex programming problems can be solved up to

an arbitrarily small additive error in polynomial time (e.g.,

see [35], [36] for details). For example, the time complexity

is O(|E|3 K3L) where L is the input size of the instance of

the problem (4) or (5) if they are linear programs [37].

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:44:19 UTC from IEEE Xplore. Restrictions apply.

2144 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 5, OCTOBER 2020

After solving the average-delay-aware problem, we get

K single-unicast flows each of which is defined on edges.

By the classic flow decomposition technique [38], we can then

achieve K single-unicast flows f̂ = {f̂i, i = 1, 2, . . . , K} each

of which is defined on paths within a time of O(|V |2|E|K).
Note that the flow decomposition outputs at most |E| paths for

each f̂i, and hence there are at most |E| iterations to obtain

each f̄i by deleting rate from f̂i. Overall, Algorithm 1 has a

polynomial time complexity that is even independent to ǫ.

Second, we prove the existence of f̄ .

(i) Suppose (1a) is the objective of the problem (1). Because

problem (1) is feasible and f∗ is its optimal solution, f∗ must

satisfy all the constraints of problem (1), implying that f∗ also

satisfies the constraints (4b) and (4d) of the problem (4) that is

the average-delay-aware counterpart of the problem (1). Now

consider that we have T (g) ≤ M(g)·|g| for any single-unicast

flow g, for any i = 1, 2, . . . , K , the following holds

T (f∗
i) ≤ M(f∗

i) · |f∗
i |

(a)

≤ Di · |f
∗
i |,

where the inequality (a) comes from that f∗ meets the con-

straints (1d). Therefore, f∗ is also a feasible solution to the

problem (4). Due to the existence of f∗, (4) must be feasible

and hence Algorithm 1 must return a solution f̄ .

(ii) Suppose (1b) is the objective of the problem (1).

Because problem (1) is feasible and f∗ is its optimal solution,

f∗ must meet all the constraints of problem (1), e.g., we have

|f∗
i | ≥ Ri, ∀i = 1, 2, . . . , K . Now we construct another net-

work flow f based on f∗ as follows: for each i = 1, 2, . . . , K ,

we obtain fi directly from f∗
i , by deleting flow rate from arbi-

trary flow-carrying paths of f∗
i till |f∗

i | = Ri. The existence of

f∗ implies the existence of f . For problem (5), it is clear that

f meets the throughput requirements (5b). Since f∗ meets the

constraint (1e), f must satisfy the constraint (5d). Since we

delete certain flow rate from f∗
i to obtain fi, the maximum

delay does not increase, i.e., we have

M(fi) ≤ M(f∗
i), ∀i = 1, 2, . . . , K, (28)

further implying the following for any i = 1, 2, . . . , K

T (fi) ≤ M(fi) · |fi|

= M(fi) · Ri ≤ M(f∗
i) · Ri ≤ Di · Ri,

i.e., f meets (5c). Therefore, f is a feasible solution to the

problem (5). Due to the existence of f , (5) must be feasible

and hence Algorithm 1 must return a solution f̄ .

Third, we prove that f̄ satisfies the relaxed constraints (8).

Suppose f̂ is the solution to the average-delay-aware problem

in line 5. Clearly that f̂ meets the following:
∣

∣

∣
f̂i

∣

∣

∣
≥ Ri, ∀i = 1, 2, . . . , K, (29a)

A
(

f̂i

)

≤ Di, ∀i = 1, 2, . . . , K, (29b)

f̂ = {f̂1, f̂2, . . . , f̂K} ∈ X . (29c)

We know f̄i is the solution by deleting a rate of ǫ · |f̂i|
from f̂i for each i = 1, 2, . . . , K . It is clear that f̄ satisfies the

constraints (8a) and (8c). Based on Lemma 2 and the satisfied

constraints (29b), we have the following for any i

M(f̄i) ≤ A(f̂i)/ǫ ≤ Di/ǫ,

implying that the constraints (8b) are satisfied.

Finally, we prove the approximation ratio of f̄ . If (1a) is

the objective of problem (1), we have

K
∑

i=1

U t
i

(∣

∣f̄i

∣

∣

)

=

K
∑

i=1

U t
i

(

(1 − ǫ) ·
∣

∣

∣
f̂i

∣

∣

∣

)

(a)

≥ (1 − ǫ) ·

K
∑

i=1

U t
i

(∣

∣

∣
f̂i

∣

∣

∣

) (b)

≥ (1 − ǫ) ·

K
∑

i=1

U t
i (|f∗

i |)

where the inequality (b) holds because in the second part of

this proof, we have proved that f∗ is a feasible solution to

the average-delay-aware problem (4), while f̂ is its optimal

solution. Inequality (a) comes from the following inequalities

for each i = 1, 2, . . . , K

U t
i

(

(1 − ǫ) ·
∣

∣

∣
f̂i

∣

∣

∣

)

= U t
i

(

ǫ · 0 + (1 − ǫ) ·
∣

∣

∣
f̂i

∣

∣

∣

)

(c)

≥ ǫ · U t
i (0) + (1 − ǫ) · U t

i

(
∣

∣

∣
f̂i

∣

∣

∣

)

(d)

≥ (1 − ǫ) · U t
i

(∣

∣

∣
f̂i

∣

∣

∣

)

,

where the inequality (c) holds due to the concavity of the

function U t
i (·), and the inequality (d) comes from that the

function U t
i (·) is non-negative.

If (1b) is the objective of problem (1), first

Ud
i (x) · α(ǫ) ≥ Ud

i (x/ǫ), ∀0 < x < Di, ∀i = 1, 2, . . . , K.

(30)

Note that the non-decreasing property of Ud
i (·) implies that

α(ǫ) ≥ 1. We assume f is the feasible solution to the

average-delay-aware problem (5) that is constructed from f∗

as discussed in the second part of this proof. Then

K
∑

i=1

Ud
i

(

M(f̄i)
)

≤

K
∑

i=1

Ud
i

(

A
(

f̂i

)

/ǫ
)

(a)

≤ α(ǫ) ·

K
∑

i=1

Ud
i

(

A
(

f̂i

)) (b)

≤ α(ǫ) ·

K
∑

i=1

Ud
i (A (fi))

≤ α(ǫ) ·

K
∑

i=1

Ud
i (M (fi))

(c)

≤ α(ǫ) ·

K
∑

i=1

Ud
i (M(f∗

i)),

where the inequality (a) comes from the inequalities (30),

the inequality (b) holds since f is feasible to (5) while f̂
is optimal to (5), and the inequality (c) is true because of the

inequality (28) and the non-decreasing property of Ud
i (·).

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:44:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NETWORK UTILITY MAXIMIZATION UNDER MAXIMUM DELAY CONSTRAINTS AND THROUGHPUT REQUIREMENTS 2145

REFERENCES

[1] Q. Liu, H. Zeng, and M. Chen, “Network utility maximization under
maximum delay constraints and throughput requirements,” in Proc.
20th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., Jul. 2019,
pp. 391–392.

[2] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for
communication networks: Shadow prices, proportional fairness and
stability,” J. Oper. Res. Soc., vol. 49, no. 3, pp. 237–252, Apr. 1998.

[3] S. H. Low and D. E. Lapsley, “Optimization flow control. I. Basic
algorithm and convergence,” IEEE/ACM Trans. Netw., vol. 7, no. 6,
pp. 861–874, Dec. 1999.

[4] J. Wang, L. Li, S. H. Low, and J. C. Doyle, “Can shortest-path routing
and TCP maximize utility,” in Proc. 22nd Annu. Joint Conf. IEEE

Comput. Commun. Soc. (INFOCOM), 2003, pp. 2049–2056.
[5] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods

for network utility maximization,” IEEE J. Sel. Areas Commun., vol. 24,
no. 8, pp. 1439–1451, Aug. 2006.

[6] S. Misra, G. Xue, and D. Yang, “Polynomial time approximations for
multi-path routing with bandwidth and delay constraints,” in Proc. IEEE

28th Conf. Comput. Commun. (INFOCOM), Apr. 2009, pp. 558–566.
[7] W. Zhang, J. Tang, C. Wang, and S. de Soysa, “Reliable adaptive multi-

path provisioning with bandwidth and differential delay constraints,” in
Proc. IEEE Int. Conf. Comput. Commun., Mar. 2010, pp. 1–9.

[8] J. R. Correa, A. S. Schulz, and N. E. S. Moses, “Computational
complexity, fairness, and the price of anarchy of the maximum latency
problem,” in Proc. Int. Conf. Integer Program. Combinat. Optim., 2004,
pp. 59–73.

[9] J. R. Correa, A. S. Schulz, and N. E. Stier-Moses, “Fast, fair, and
efficient flows in networks,” Oper. Res., vol. 55, no. 2, pp. 215–225,
Apr. 2007.

[10] Q. Liu, L. Deng, H. Zeng, and M. Chen, “A tale of two metrics in
network delay optimization,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr. 2018, pp. 2123–2131.

[11] Q. Liu, L. Deng, H. Zeng, and M. Chen, “A tale of two metrics in
network delay optimization,” IEEE/ACM Trans. Netw., vol. 28, no. 3,
pp. 1241–1254, Jun. 2020.

[12] Z. Cao, P. Claisse, R.-J. Essiambre, M. Kodialam, and T. V. Lakshman,
“Optimizing throughput in optical networks: The joint routing and power
control problem,” IEEE/ACM Trans. Netw., vol. 25, no. 1, pp. 199–209,
Feb. 2017.

[13] R. Yu, G. Xue, and X. Zhang, “Application provisioning in FOG
computing-enabled Internet-of-Things: A network perspective,” in Proc.

IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2018, pp. 783–791.
[14] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li, “Celerity: A low-

delay multi-party conferencing solution,” in Proc. 19th ACM Int. Conf.

Multimedia (MM), 2011, pp. 493–502.
[15] Y. Liu, D. Niu, and B. Li, “Delay-optimized video traffic routing in

software-defined interdatacenter networks,” IEEE Trans. Multimedia,
vol. 18, no. 5, pp. 865–878, May 2016.

[16] M. H. Hajiesmaili, L. T. Mak, Z. Wang, C. Wu, M. Chen, and
A. Khonsari, “Cost-effective low-delay design for multiparty cloud
video conferencing,” IEEE Trans. Multimedia, vol. 19, no. 12,
pp. 2760–2774, Dec. 2017.

[17] (2017). WebEx. [Online]. Available: https://blog.webex.com/2016/01/five-
reasons-to-join-a-webex-now/

[18] (2017). Skype. [Online]. Available: https://news.microsoft.com/
bythenumbers/skype-calls

[19] Series G: Transmission Systems and Media, Digital Systems and Net-
works, Int. Telecommun. Union, Geneva, Switzerland, 2003.

[20] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” in Proc. ACM SIGCOMM, 2013, pp. 3–14.

[21] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” in Proc. ACM SIGCOMM, 2013, pp. 15–26.

[22] WIKI. (2017). Polynomial Time Approximation Scheme.
[Online]. Available: https://en.wikipedia.org/wiki/Polynomial-time_
approximation_scheme

[23] I.-H. Hou, V. Borkar, and P. R. Kumar, “A theory of QoS for wireless,”
in Proc. IEEE 28th Conf. Comput. Commun. (INFOCOM), Apr. 2009,
pp. 1–9.

[24] I.-H. Hou and P. R. Kumar, “Utility maximization for delay con-
strained QoS in wireless,” in Proc. IEEE Int. Conf. Comput. Commun.,
Mar. 2010, pp. 1–9.

[25] L. Deng, C.-C. Wang, M. Chen, and S. Zhao, “Timely wireless flows
with general traffic patterns: Capacity region and scheduling algorithms,”
IEEE/ACM Trans. Netw., vol. 25, no. 6, pp. 3473–3486, Dec. 2017.

[26] I.-H. Hou, “Packet scheduling for real-time surveillance in multihop
wireless sensor networks with lossy channels,” IEEE Trans. Wireless

Commun., vol. 14, no. 2, pp. 1071–1079, Feb. 2015.

[27] R. Singh and P. R. Kumar, “Decentralized throughput maximizing
policies for deadline-constrained wireless networks,” in Proc. 54th IEEE

Conf. Decis. Control (CDC), Dec. 2015, pp. 3759–3766.
[28] H. Deng, T. Zhao, and I.-H. Hou, “Online routing and scheduling

with capacity redundancy for timely delivery guarantees in multihop
networks,” IEEE/ACM Trans. Netw., vol. 27, no. 3, pp. 1258–1271,
Jun. 2019.

[29] R. Singh and P. R. Kumar, “Throughput optimal decentralized schedul-
ing of multihop networks with end-to-end deadline constraints: Unreli-
able links,” IEEE Trans. Autom. Control, vol. 64, no. 1, pp. 127–142,
Jan. 2019.

[30] R. Singh, P. R. Kumar, and E. Modiano, “Throughput optimal
decentralized scheduling of multi-hop networks with end-to-end
deadline constraints: II wireless networks with interference,” 2017,
arXiv:1709.01672. [Online]. Available: http://arxiv.org/abs/1709.01672

[31] B. Grimmer and S. Kapoor, “Nash equilibrium and the price of anarchy
in priority based network routing,” in Proc. 35th Annu. IEEE Int. Conf.

Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.
[32] (2017). Cplex Optimizer. [Online]. Available: https://www-01.

ibm.com/software/commerce/optimization/cplex-optimizer/
[33] F. Devetak, J. Shin, T. Anjali, and S. Kapoor, “Minimizing path delay

in multipath networks,” in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2011, pp. 1–5.

[34] I. M. Weinstein. (2008). Polycom’s Lost Packet Recovery (LPR) Capa-

bility Wainhouse Research. [Online]. Available: http://docs.polycom.
com/global/documents/whitepapers/lost_packet_recovery_eval_report.pdf

[35] F. Potra and Y. Ye, “A quadratically convergent polynomial algorithm for
solving entropy optimization problems,” SIAM J. Optim., vol. 3, no. 4,
pp. 843–860, Nov. 1993.

[36] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and

Combinatorial Optimization. Springer, 2012.
[37] Y. Ye, “An O(n3L) potential reduction algorithm for linear program-

ming,” Math. Program., vol. 50, nos. 1–3, pp. 239–258, 1991.
[38] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”

Can. J. Math., vol. 8, no. 3, pp. 399–404, 1956.

Qingyu Liu (Member, IEEE) received the M.S.
degree in computer science and technology from
Tsinghua University in 2014 and the Ph.D. degree
in electrical and computer engineering from Virginia
Tech in 2019. He was a Visiting Student in infor-
mation engineering with The Chinese University of
Hong Kong from August 2017 to December 2017.
He is currently a Post-Doctoral Associate with Vir-
ginia Tech. His research interests include optimiza-
tion and algorithm design in the fields of network
communication and transportation.

Haibo Zeng (Member, IEEE) received the Ph.D.
degree in electrical engineering and computer sci-
ences from the University of California at Berkeley.
He was a Senior Researcher with General Motors
Research and Development until October 2011 and
an Assistant Professor with McGill University until
August 2014. He is currently with the Department
of Electrical and Computer Engineering, Virginia
Tech. His research interests include embedded sys-
tems, cyber-physical systems, and real-time sys-
tems. He received four best paper/best student paper

awards in the above fields.

Minghua Chen (Senior Member, IEEE) received
the B.E. and M.S. degrees from the Department
of Electronic Engineering, Tsinghua University, and
the Ph.D. degree from the Department of Electrical
Engineering and Computer Sciences, University of
California at Berkeley, in 2006. He was an Asso-
ciate Professor with the Department of Information
Engineering, The Chinese University of Hong Kong,
before joining the City University of Hong Kong.
He is currently a Professor with the School of
Data Science, City University of Hong Kong. His

research interests include energy systems (e.g., smart power grids and
energy-efficient data centers), intelligent transportation systems, distributed
optimization, delay-constrained networking, machine learning in networked
and societal systems, and capitalizing the benefit of data-driven prediction in
algorithm/system design. He received several best paper awards, including the
IEEE ICME Best Paper Award in 2009, the IEEE Transactions on Multimedia
Prize Paper Award in 2009, and the ACM Multimedia Best Paper Award
in 2012.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2021 at 02:44:19 UTC from IEEE Xplore. Restrictions apply.

