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Abstract—The past few years have witnessed a wide deployment of software defined networks facilitating a separation of the control

plane from the forwarding plane. However, the work on the control plane largely relies on a manual process in configuring forwarding

strategies. To address this issue, this paper presents NetworkAI, an intelligent architecture for self-learning control strategies in SDN

networks. NetworkAI employs deep reinforcement learning and incorporates network monitoring technologies such as the in-band

network telemetry to dynamically generate control policies and produces a near optimal decision. Simulation results demonstrated the

effectiveness of NetworkAI.
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✦

1 INTRODUCTION

RECENTLY, Software Defined Networking (SDN) has
received a large amount of attention from both a-

cademia and industry. The SDN paradigm decouples con-
trol plane from data plane and provides a logically-
centralized control plane, wherein the network intelligence
and state are logically centralized, and the underlying net-
work infrastructure is abstracted for the network appli-
cations and services [1]. This logically-centralized control
mechanism provides the efficient use of network resources
for network operators and the programmability brought by
SDN simplifies the configuration and management of net-
works. Therefore, network operators can easily and quickly
configure, manage and optimize network resource in SDN
architecture [2]. However, even though a separation of the
control plane from the forwarding plane facilitates large
scale and dynamic networks, a challenge that remains un-
tackled is that the work on the control plane relies heavily
on a manual process in configuring forwarding strategies.

Finding the near-optimal control strategy is the most
critical and ubiquitous problem in a network. The majority
of approaches to solve this problem today usually adopt-
ed the white-box approaches [3], [4]. With the expansion
of network size and the rapid growth of the number of
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network applications, current networks have become highly
dynamic, complicated, fragmented, and customized. These
requirements pose several challenges when applying these
traditional white-box algorithms. Specifically, a white-box
approach generally requires an idealized abstraction and
simplification of the underlying network; however, this
idealized model often poses difficulties when dealing with a
real complex network environment. In addition, the white-
box method presents poor scalability under different scenar-
ios and applications.

Owing to the success of Machine Learning (ML) related
applications, such as robotic control, autonomous vehicles,
and Go [5], a new approach for network control through
ML has emerged. This new networking paradigm using is
firstly proposed by A. Mestres et al., which is referred to as
Knowledge-Defined Networking (KDN) [6]. However, KDN
and some other similar works [7], [8] just proposed some
concept, no detail was described in these papers and no
actual work has been implemented.

In this paper, we propose NetworkAI, an architecture
exploiting software-defined networking, network monitor
technologies (e.g., traffic identification, In-band Network
Telemetry(INT)), and reinforcement learning technologies
for controlling networks in an intelligent way. NetworkAI
implements a network state upload link and a decision
download link to accomplish a close-loop control of network
and builds a centralized intelligent agent aiming at learning
the policy by interacting with the whole network. The SDN
paradigm decouples control plane from data plane and
provides a logically-centralized control to whole underlying
network. Some new network monitor technologies, such as
In-band Network Telemetry(INT), [9] can achieve millisec-
ond uploading of the network state and provide real-time
packet and flow-granularity information to a centralized
platform [10]. In addition, a network analytical platform,
such as the PNDA [11], provides big data processing ser-
vices via some technologies such as Spark and Hadoop. SD-
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N and monitor technologies offer a completely centralized
view and control to build the interaction framework of a
network, thus enabling the application of ML running in a
network environment to address the network control issues.

NetworkAI applies DRL to effectively solve real-time
large-scale network control problems without relying on
too much manual process and any assumptions of the
underlying network. RL involves agents that learn to make
better decisions from experiences by interacting with the
environment [9]. During training, the intelligent agent be-
gins with no prior knowledge of the network task at hand
and learns by reinforcement based on its ability to perform
a task. Particularly, with the development of deep learning
(DL) techniques, the success of combined application of RL
and DL to large-scale system control problems (such as GO
[5] and playing games) proves that the deep reinforcement
learning (DRL) algorithm can deal with the complicated
system control problem. DRL represents its control policy
as a neural network that can transfer raw observations (e.g.,
delay, throughput, jitter) to the decision [12]. Deep learning
(DL) can effectively compress the network state space thus
enabling RL to solve large-scale network decision-making
problems that were previously found difficult in handling
high-latitude states and motion space.

In NetworkAI, the SDN and new network monitor tech-
nologies are employed herein to construct a completely
centralized view and control for geographical distributed
network and build a centralized intelligent agent to generate
a network control policy via DRL. The NetworkAI can
intelligently control and optimize a network to meet the d-
ifferentiated network requirements in a large-scale dynamic
network.

Different from the traditional white-box approaches, this
paper proposes a new network paradigm (i.e. NetworkAI)
in applying ML to solve network control problem. The main
contribution of this paper can be summarized as follows:
• We employ the SDN and INT to implement a net-

work state upload link and a decision download link to
accomplish a close-loop control of a network and build a
centralized intelligent agent aiming at learning the policy
by interaction with a whole network.
• We apply DRL to effectively solve real-time large

scale network control problems without too much manual
process and any assumptions of underlying network, where
the DRL agent can produce a near-optimal decision in real
time.

The rest of this paper is organized as follows. In Section
2, we review state-of-the-art works in area of applying ML
to network control. In Section 3, we introduce the each plane
of NetworkAI architecture briefly. In Section 4, we elaborate
the NetworkAI operation mechanism and the policy gen-
eration algorithm. In Section 5, a use case that shows the
applicability of such a paradigm is described. In Section
6, we conclude the paper by analyzing the open research
challenges associated with the NetworkAI paradigm.

2 RELATED WORKS

There are a number of works focusing on how SDN net-
works can be made more intelligent in network design and
management. Some new network paradigms are designed

in order to achieve intelligent control of SDN. A recent work
[6] refers to this paradigm as KDN. In KDN, a knowledge
plane is added on top of control plane, which in order to
provide automated network control of networking. [7], [8]
proposed similar architectures named data-driven network.
However, these studies only aim to put forward a concept,
but do not describe in detail and thus no actual work has
been implemented.

In addition, different machine learning approaches have
been applied to achieve intelligent managing network ap-
plication in the SDN. There is a large amount of literature
on applying supervised learning to solve specific problems
for a variety of network applications, such as resource
allocations [13], web services [14], [15], Internet telepho-
ny [16], and video streaming [17]. However, supervised
learning methods suffer from data bias and slow reaction
problems [18] in a dynamic network control application.
At the same time, RL has also been used to solve network
control problems, such as routing selection [19], [20], CDN
selection [18], and virtual network embedding [21]. How-
ever, such proposals use table-based RL agents to solve
small sized problems. When the size of a network increases,
memory and computation related complexities are the main
challenges in using traditional RL.

3 NETWORK ARCHITECTURE

In this section, we firstly introduce the NetworkAI archi-
tecture and elaborate how it operates. The model of the
NetworkAI is shown in Fig.1. This model consists of three
planes called the forwarding plane, the control plane, and
the AI plane. And then, we will give a detailed description
of each layer.

Fig. 1. The NetworkAI architecture

3.1 Forwarding Plane

The function of the forwarding plane is forwarding, process-
ing, and monitoring data packets. The network hardware,
which is composed of line-rate programmable forwarding
hardware, only focuses on simply data forwarding without
embedding any control strategies. The control rules are
issued by the SDN controller via southbound protocols such
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as OpenFlow [22] or P4 [23]. When a packet comes into
the node, it will be forwarded and processed according to
these rules. Besides, there are some monitoring processes
embedded in nodes. The network monitor data will be
collected and sent to the analytical platform. Thus, it can
offer complete network state information to facilitate the AI
plane to make decisions.

3.2 Control Plane

The function of the control plane is to connect the AI plane
and the forwarding plane. This plane provides abstractions
for accessing lower-level geographical distributed forward-
ing plane and pools the underlying resources (such as link
bandwidth, network adapter, and CPU capacity) to the AI
plane. The function of the SDN controller is to manage
the network through standard southbound protocols and
interact with the AI plane through the northbound inter-
faces. This logically-centralized plane eases the burden of
the network control problem imposed by a geographical
distributed network. Thus, the policies generated by the AI
plane can be quickly deployed into the network.

3.3 AI Plane

The function of the AI plane is to generate policies. In the
NetworkAI paradigm, the AI plane takes advantage of SDN
and monitor techniques to obtain a global view and control
of the entire network. The AI agent learns the policy through
interaction with the network environment. While learning
the policy is a slow process, the network analytical platform
provides a big data storage and computing capacity. Funda-
mentally, the AI agent processes the network state collected
by the forwarding plane, then transforming the data to a
policy through RL and using that policy to make decisions
and optimization.

4 NETWORK CONTROL LOOP

In the NetworkAI architecture, we design the network state
upload link and the decision download link to accomplish
a close-loop control of network. The NetworkAI architec-
ture operates with a control loop to provide an interactive
framework for a centralized agent to automatically generate
strategies. Now, in this section, we will detail how the
NetworkAI architecture implement a control loop of the
whole network and how the intelligent agent learns the
policy by RL approach.

4.1 Action Issue

In traditional distributed networks, the control plane of the
network node is closely coupled with the forwarding plane
which has only partial control and view over the complete
network. This partial view and control can lead to no global
convergence of learning result. The AI agent need to contin-
ually converge to a new result when network state changed
which will lead to a bad performance in real-time control
problem. For purpose of achieving global optimum, the
controlling and managing of the whole network is premise.

SDN is a paradigm which separates the control plane
from the forwarding plane and therefore breaks the vertical

integration. The SDN controller treats the entire network as
a whole. In this manner, the SDN acts as a logical-centralized
agent to control the whole network. The SDN controller
issues a control action through an open and standard inter-
face (e.g., OpenFlow, P4). These open interfaces enable the
controller to dynamically control heterogeneous forwarding
devices, which is difficult to achieve in traditional distribut-
ed networks.

Fig. 2. The action issuing process

As demonstrated in Fig. 2, the agent can issue control
actions to the forwarding plane via southbound protocols
according to the decisions made at the AI plane, the network
node at the forwarding plane operates based on the updated
rules imposed by the SDN controller [6]. In this manner, we
realized the global controllability of the entire network.

4.2 Network State Upload

In the SDN network architecture, the controller can send an
action decision to the underlying network with an aim to
acquire a complete network control. Furthermore, obtaining
the complete real-time view of the whole network is also
crucial to make near-optimal decisions. The most relevant
data that should be collected is network state information
and traffic information. To this end, we designed the upload
link to access fine-grained network and traffic information.
In this subsection, we will introduce how the NetworkAI
architecture achieves network state upload.

1. Network Information Network information mainly
refers to the status of the network device (information below
the L2 layer), including the network physical topology,
hop latency, and queue occupancy. In our architecture, we
borrow in-band telemetry technology to achieve fine-grain
network monitoring.

Obtaining fine grained network monitoring data of dy-
namic networks is a concern of NetworkAI. The traditional
monitor technologies are commonly based on out-band ap-
proaches. In this way, monitoring traffic is sent as dedicated
traffic, independent from the data traffic (”probe traffic”),
such as SNMP, synthetic probes. These methods bring to
much probe traffic in networking and overhead compu-
tation to control plane in large-scale dynamic networking
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which extremely degrades the performance of real-time
controlling.

In-band network telemetry is a framework designed to
allow the collection and reporting of network state by the
data plane, without requiring intervention or computation
by the control plane. The core idea of INT is to write the
network status into the header of a data packet to guarantee
the granularity of monitoring the network at the packet level
[24]. The telemetry data is straightforward adding to the
packet. Therefore, the end-to-end monitoring data can be
retrieved from the forwarding node through Kafka or IPFIX
directly to AI plane’s big data platform without intervening
by the control plane.

Fig. 3. The collection process of network information

The INT monitoring technology model is illustrated in
Fig. 3. From the Fig. 3, we can see that a source node
embeds instructions in the packets, listing the types of
network information needs to be collected from the network
elements (e.g., hop latency, egress port TX link utilization,
and queue occupancy). Each network element inserts the
requested network state in the packet as it traverses the
network. When the packet is sent to the INT Sink, the load
data is sent to the user and the telemetry data is sent to the
network analytical plane.

Data collection can be realized based on the actual traffic.
INT provides the ability to observe and collect real-time and
end-to-end network information across physical networks.
In addition, the mechanism of INT vanishes the overhead
communication of probe traffic and overhead computation
of control plane. Due to borrowing from INT technology,
the AI plane can obtain millisecond fine grain network
telemetry data, which gives the possibility to react network
in time.

2. Traffic Information Traffic information mainly include
service-level information (e.g., QoS/QoE), anomaly traffic
detection information(e.g., elephant flow), etc. In network,
different applications produce various traffic types with
diverse features and service requirements. In order to bet-
ter manage and control networking, the identification of
network traffic plays a significant role [25].For instance,
elephant flow is an extremely large continuous flow estab-
lished by a TCP (or other protocol) flow [26]. Elephant flows
can occupy network bandwidth and bring seriously conges-
tion to the network. Therefore, it is of great significance for

AI plane to detect or even predict the elephant flow in time
and take the necessary action to avoid network congestion.

In our architecture, as illustrated in Fig. 4, several mon-
itor processes embedded in some nodes to transfer the
raw traffic data(e.g., flow granularity data, relevant traffic
feature, and Deep Packet Inspection (DPI) information) to
the traffic information via data mining methods, such as
traffic classification and traffic anomaly detection [27], [28].
Then, the traffic information will be upload to the network
analytical plane to assist AI plane in decision making.

Fig. 4. The collection process of traffic information

4.3 Policy Generation

With the aim to apply ML method to realize an intel-
ligent network control, we have already constructed the
interaction framework between an AI agent and the net-
work environment. In this section, we will describe how
to use ML method to generate the network policy. The
machine learning methods contain three approaches, su-
pervised learning, unsupervised learning and reinforcement
learning. Compared to supervised and unsupervised learn-
ing, reinforcement learning is more suitable for close-loop
control problems. In particular, with the development of
DL, the success of combining DL and RL for applications
in decision-making domains (Playing Atari with Deep Rein-
forcement Learning by DeepMind at NIPS 2013 and the 2016
Google AlphaGo success on Go) demonstrates that DRL can
effectively solve large-scale system control problems. Thus,
we apply RL method to solve the large-scale network control
problem.

RL based learning tasks are usually described as a
Markov decision process, as shown in Fig. 5. At each step, an
agent observes the current state st from the network envi-
ronment and the agent takes an action at according to a pol-
icy π(a|s). Following the action, the network environment
transfer to state st+1 and the agent observes a reward signal
rt from environment. The goal of the reinforcement learning
is to obtain the optimal behavior policy that maximizes
the expected long-term reward. Specifically, in the network
scenario, the state is represented by the network state and
flow information, the action is by network behaviors (e.g.,
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Fig. 5. The reinforcement learning process

CDN selection, routing selection) and the reward is based
on the optimal target.

The RL agent uses a state-action value function Q(s, a)
to measure the actions expected for a long-term reward on
the state s. Starting from a random Q-function, in q-learning
algorithm, the agent continuously updates its Q-values by:

Q(st, at)
α

← rt+1 + λQ(st+1, at+1) (1)

where x
α

← y ≡ x ← x + α(y − x) and λ is the discount
parameter. Using these evolving Q-values, the agent chooses
the action with the highest Q(s, a) to maximize its expected
future rewards.

Fig. 6. The compress process of mass states

Particularly, the combination of DL and RL takes a
step further in complex system control. The traditional RL
algorithm records the reward of (state, action) through the
table-based method, which will lead to complexity issues
that the RL is not designed for, namely memory complexity,
computational complexity, and sample complexity, as its
use was inherently limited to low-dimensional problem-
s [29]. Specifically, in a large-scale and highly dynamic
network, there are too many (state, action) pairs. It is
often impractical to maintain the Q-value for all possible
(state, action) pairs. Hence, it is common to use a param-
eterized function Q(s, a; θ) to approximate Q(s, a). Deep
neural networks have powerful function approximation and
representation learning capabilities [30]. The DL algorithm
can automatically extract low-dimensional features from
high-dimensional data. Therefore, DL can effectively com-
press the network state space, as illustrated in Fig. 6, thus
enabling RL to solve large-scale network decision-making
problems that were previously found difficult in handling
high-latitude states and motion space.

Based on such reinforcement learning framework, the
data flow in NetworkAI is described as follow. The network
monitor data and traffic information will be collected by the
upload link, the decision for each flow calculated in AI plane
send to SDN controller via northbound Interface. The SDN
control then issue the rule through southbound interface.
Thus, this data flow achieves RL agent through interaction
with the underlying network. Different applications just
need craft the reward signal to guide the agent toward good
policy to meet their objectives.

In our architecture, we apply deep reinforcement learn-
ing to generate network policy. Combining RL with DL
leads to a general artificial intelligence solution for solving
complex network control problems. We believe that intro-
ducing DRL for network decision making presents two main
advantages.

First, the DRL algorithm is a black-box approach. The
DRL agent only need to have different network decision
tasks and optimization goals in designing action spaces
and rewards without changing the mathematical model.
In addition, because an artificial neural network has the
characteristic of expressing arbitrary nonlinear mappings,
the DRL agent can understand a nonlinear, complex, multi-
dimensional network control problem without the need
of any simplifications. On the contrary, traditional white-
box approaches require assumptions and simplifications of
the underlying network aiming at building the equivalent
mathematical model and tailoring for a problem that has to
be optimized.

Second, the DRL agent does not need to converge again
when network state changed. Once the DRL agent trained,
an approximate optimal solution can be calculated in single
step through matrix multiplication where the time complex-
ity is only approximately O(n2), where n is represented
by number of network nodes. In contrast, the heuristic
algorithms need take many steps to converge to a new
result, where leads to high computational time cost. For
example, the time complexity of ant colony algorithm is
O(n × (n − 1) × mt), where n is represented by number
of network nodes , m is number of ants , t is number of
iterations. Therefore, DRL offers a tremendous advantage
for the real-time control of a dynamic network.

Above all, the NetworkAI achieves applying RL ap-
proach for the real-time control of the network. The SD-
N, INT and traffic identification technologies are used to
implement the network state upload link and the decision
download link respectively with an aim to obtain a central-
ized view and control of a complex network systems. In
addition, DRL agent in AI plane can effectively solve com-
plexity network control problem without the need of any
simplifications of real network environment. Furthermore,
that a near-optimal solution can quickly be calculated once
it is trained represents an important advantage for the real-
time control of the network. Thus, the NetworkAI facilitates
an automated control of a large-scale network.

5 USE CASE

The main objective of this use case is to demonstrate that
it is possible to model the behavior of a network with the
proposed NetworkAI architecture. In particular, we present
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a simple example in the context of QoS routing, where
the NetworkAI was used to make intelligent decisions to
select the best routing path aiming at satisfying the QoS
requirements.

The traditional Internet design is based on end-to-end
arguments with an aim to minimize the network support-
s. This type of architecture is perfectly suited for data
transmission where the primary requirement is reliability
[7]. However, with the proliferation of various applications
(such as multimedia transmission application, where timely
delivery is preferred over reliability), the demands of each
application are different. Thus, the network should support
QoS in a multi-application traffic scenario. However, the
question of how to support end-to-end QoS is an on-going
problem.

QoS routing mainly involves path selection that meets
the QoS requirements arising from different service flows.
It is a mechanism of routing based on QoS requests of a
data flow and the available network resources. The typical
QoS indicators for applications in the network are different,
as demonstrated in Table. 1 in which we list the QoS
requirements for several applications.

TABLE 1
The QoS indicator for several applications

❵
❵

❵
❵

❵
❵
❵
❵
❵❵

Application
QoS

Delay Throughput Jitter Losses

realtimemultimedia
√ √ √

AugmentedReality

or V irtual Reality

√ √ √ √

V oIP
√ √

scheduling in datacenters
√ √ √ √

internet of vehicles
√ √

The dynamic QoS routing can be seen as a Constrained
Shortest Path (CSP) problem, which is an NP-complete
problem [31]. Although researchers from both academia
and industry have proposed many solutions to solve the
QoS limitations of the current networking technologies [19],
[20], [31], many of these solutions either failed or were not
implemented because these approaches come with many
challenges. The tradition heuristic methods bring high com-
putational time cost in network control, which is difficult to
apply to real-time dynamic network environment.

The NetworkAI paradigm can address many of the
challenges posed by the QoS-Routing problem. RL approach
can calculate an near-heuristic solution in one step, which
can benefit for real-time control to large-scale network.
And the closed-loop architecture in NetworkAI provide an
interaction framework which achieves applying DRL in geo-
distributed network. In our experiment, we applied the
Deep Q-learning algorithm in a central agent, aimed to
select the best routing path to minimize the network delay
[32].

Methodology We simulated a network with 36 nodes
and 50 full-duplex links, with uniform link capacities and
different transmission delay. One of these nodes applied

Fig. 7. The experiment example

DQN and the others run short path algorithm. In addition,
we devised 10 traffic intensity (TI) levels, ranging from 1
to 10, which represent the volumes of the network traffic at
different times. The traffic generated randomly in each node
and volumes is subject to poisson distribution.

As shown in Fig . 7, it is a part of the whole experi-
ment topology. We applied DQN to guide node i’s routing
action. In our experiment, state is represented by the link
delay, node processing delay, which is up to 8620 states.
Action is represented by the tuple of node which univocally
determine the paths for the source-destination node pairs.
As shown in Fig . 7, the action space for the node i to
destination j is (i, k, j), (i, l, j) and (i,m, j). In addition,
reward is represent by the delay from the source to the
destination node.

In our experiment, we employed a neural network that
has five fully connected hidden layers with a sigmoid ac-
tivation function as well as a trained DQN on the gym
platform [33] and Keras [34]. In addition, we devised 10
traffic intensity (TI) levels, ranging from 1 to 10, which
represent the volumes of the network traffic at different
times. The DRL agent was trained for 200K steps for each
TI.

Experimental Results and Analysis The DRL learning
process is demonstrated in Fig. 8. This relevant outcome
is that the DRL performance increases with training steps
and the DRL agent be convergence when the training step
more than 200K. The reason is that the DRL learning is a
process that the result is close to a near-optimal strategy
by interacting with the environment. The second simulation
results are demonstrated in Fig. 9. It can be seen that the
average transmission time of the network increases with
the increase of network traffic load. When the load level
is low, with the increase of network load, the increase of
average transmission time is stable. But when the network
load continues to increase, the average transmission time
increases sharply, due to the fact that the network capacity
is close to saturation.

In our experiment, the benchmark algorithm is the short-
est path algorithm. When the network load is low, there is
no congestion in the network and the shortest path is the
optimal path. So, the benchmark result is better. With the
increase of network load, congestion occurs on the shortest
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Fig. 8. The DRL learning process

Fig. 9. The average delivery time over different network loads

path of the network, and the network agent will have to
choose non-congested links for transmission. Thus, in this
situation, the DRL performance performs much better than
the benchmark.

6 CHALLENGES AND DISCUSSIONS

In this paper, we proposed a new network paradigm named
NetworkAI. We introduce this architecture to effectively
solve the two main problems when apply ML in network,
how to run ML on distributed network and how to gener-
ate complex strategies. Through the technologies of SDN,
monitor technologies, and RL, the intelligent agent can au-
tomatically generate network strategies for network control
and management. Moreover, through a use case, we have
demonstrated that a fully automated DRL agent can provide
routing policy that tends to minimize the network delay.

Compared with the traditional network architectures,
we apply SDN and monitor technologies to implement
a completely centralized view and control for distributed
network systems and build a closed control loop for real-
time upload of network state info and download of actions.

At the same time, DRL is introduced to effectively
generate control policy in network systems. Benefit from
the DL method with powerful function approximation and
representation learning capabilities, the massive state space

of the network can be effectively compressed. In addition,
due to the black-box feature of RL approach, for different
network decision tasks and optimization goals, only the ac-
tion space and reward have to be designed. Furthermore, the
near-optimal solution can be calculated in single step once
the DRL trained. Compared with the traditional heuristic
algorithms, this feature presents a huge advantage for real-
time network applications.

The NetworkAI paradigm brings significant advantages
to networking. However, it also meets some challenges that
need to be addressed further.

6.1 Communication Overhead

The communication overhead for retrieving and issuing
data is a serious problem in SDN architecture. While the
convenience brought by centralized framework, it leads to
too much interaction between centralized controller and
distributed forwarding unit. The performance of NetworkAI
will be degraded as a result of the rapid flow table update
to all forwarding unit. To address it, NetworkAI can bor-
row some technologies from SDN. One possible solution is
segment routing technology, which implements the source
routing and tunnel method to effectively reduce the flow
table update. Another way to alleviate this problem is to
employ a cluster of controller to handle larger flow tables
[35].

6.2 Training Cost

RL approach provides flexible tools to address network
control problems. Nonetheless, RL method involve a large
amount of training cost, especially in network scenario
where exists mass applications and services. When new
businesses or services appears, the agent requires a sig-
nificant level of training cost which weaken the flexibility
of NetworkAI. In this context, the NetworkAI paradigm
requires mechanisms to reduce the training cost to satisfy
mass of new network applications. A notable approach
to address this problem is adding prior knowledge to
accelerate the training process, such as transfer learning,
imitation learning [36]. In this sense, these trick may reduce
the training cost when new businesses or services appear
and essentially in taking a step further in performance of
NetworkAI.

6.3 Testbeds

To evaluate the performance of new network designs and
algorithms, testbeds are more convincing for network ex-
periments compared with simulators and emulation plat-
forms, because testbeds can incorporate real traffic and real
network facilities [37]. Building a complex experimental en-
vironment will be the most critical issue for applying AI in
a network. In particular, due to the fact that the NetworkAI
architecture is aimed at a complex, highly dynamic multi-
application network environment, it is difficult to obtain
convincing experiments through the network simulator.
Therefore, in the immediate future, we plan to build a large-
scale real NetworkAI testbed to expand our experiments.
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7 CONCLUSIONS

In this paper, we introduced the concept of NetworkAI, a
novel paradigm that combines SDN, INT, and DRL to auto-
matically control and optimize a network. We also present-
ed a QoS-Routing use case and preliminary experimental
evidence with an aim to demonstrate the feasibility of the
proposed paradigm. Finally, we discussed some important
challenges that need to be addressed. We advocate that
addressing such challenges requires a truly interdisciplinary
effort between the research fields of artificial intelligence,
network science, and computer networks.
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