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Summary

Networked and Event-Triggered Control Systems

In this thesis, control algorithms are studied that are tailored for platforms
with limited computation and communication resources. The interest in such
control algorithms is motivated by the fact that nowadays control algorithms
are implemented on small and inexpensive embedded microprocessors and that
the sensors, actuators and controllers are connected through multipurpose com-
munication networks. To handle the fact that computation power is no longer
abundant and that communication networks do not have infinite bandwidth,
the control algorithms need to be either robust for the deficiencies induced by
these constraints, or they need to optimally utilise the available computation
and communication resources. In this thesis, methodologies for the design and
analysis of control algorithms with such properties are developed.

Networked Control Systems: In the first part of the thesis, so-called net-
worked control systems (NCSs) are studied. The control algorithms studied
in this part of the thesis can be seen as conventional sampled-data controllers
that need to be robust against the artefacts introduced by using a finite band-
width communication channel. The network-induced phenomena that are con-
sidered in this thesis are time-varying transmission intervals, time-varying de-
lays, packet dropouts and communication constraints. The latter phenomenon
causes that not all sensor and actuator data can be transmitted simultane-
ously and, therefore, a scheduling protocol is needed to orchestrate when to
transmit what data over the network. To analyse the stability of the NCSs, a
discrete-time modelling framework is presented and, in particular, two cases are
considered: in the first case, the transmission intervals and delays are assumed
to be upper and lower bounded, and in the second case, they are described
by a sequence of continuous random variables. Both cases are relevant. The
former case requires a less detailed description of the network behaviour than
the latter case, while the latter results in a less conservative stability analysis
than the former. This allows to make a tradeoff between modelling accuracy
(of network-induced effects) and conservatism in the stability analysis. In both
cases, linear plants and controllers are considered and the NCS is modelled as a
discrete-time switched linear parameter-varying system. To assess the stability
of this system, novel polytopic overapproximations are developed, which allows
the stability of the NCS to be studied using a finite number of linear matrix
inequalities. It will be shown that this approach reduces conservatism signifi-
cantly with respect to existing results in the literature and allows for studying
larger classes of controllers, including discrete-time dynamical output-based
controllers. Hence, the main contribution of this part of the thesis is the de-
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velopment of a new and general framework to analyse the stability of NCSs
subject to four network-induced phenomena in a hardly conservative manner.

Event-Triggered Control Systems: In the second part of the thesis, so-
called event-triggered control (ETC) systems are studied. ETC is a control
strategy in which the control task is executed after the occurrence of an external
event, rather than the elapse of a certain period of time as in conventional
periodic sampled-data control. In this way, ETC can be designed to only
provide control updates when needed and, thereby, to optimally utilise the
available computation and communication resources. This part of the thesis
consists of three main contributions in this appealing area of research.

The first contribution is the extension of the existing results on ETC to-
wards dynamical output-based feedback controllers, instead of state-feedback
control, as is common in the majority of the literature on ETC. Furthermore,
extensions towards decentralised event triggering are presented. These exten-
sions are important for practical implementations of ETC, as in many control
applications full state measurements are not available for feedback, and sen-
sors and actuators are often physically distributed, which prohibits the use of
centralised event-triggering conditions. To study the stability and the L∞-
performance of this ETC system, a modelling framework based on impulsive
systems is developed. Furthermore, for the novel output-based decentralised
event-triggering conditions that are proposed, it is shown how nonzero lower
bounds on the minimum inter-event times can be guaranteed and how they can
be computed.

The second contribution is the proposition of the new class of periodic
event-triggered control (PETC) algorithms, where the objective is to combine
the benefits that, on the one hand, periodic sampled-data control and, on the
other hand, ETC offer. In PETC, the event-triggering condition is monitored
periodically and at each sampling instant it is decided whether or not to trans-
mit the data and to use computation resources for the control task. Such an
event-triggering condition has several benefits, including the inherent existence
of a minimum inter-event time, which can be tuned directly. Furthermore, the
fact that the event-triggering condition is only verified at the periodic sampling
times, instead of continuously, makes it possible to implement this strategy in
standard time-sliced embedded software architectures. To analyse the stabil-
ity and the L2-performance for these PETC systems, methodologies based on
piecewise-linear systems models and impulsive system models will be provided,
leading to an effective analysis framework for PETC.

Finally, a novel approach to solving the codesign problem of both the feed-
back control algorithm and the event-triggering condition is presented. In par-
ticular, a novel way to solve the minimum attention and anytime attention
control problems is proposed. In minimum attention control, the ‘attention’
that a control task requires is minimised, and in anytime attention control, the
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performance under the ‘attention’ given by a scheduler is maximised. In this
context, ‘attention’ is interpreted as the inverse of the time elapsed between two
consecutive executions of a control task. The two control problems are solved
by formulating them as linear programs, which can be solved efficiently in an
online fashion. This offers a new and elegant way to solve both the minimum
attention control problem and the anytime attention control problem in one
unifying framework.

The contributions presented in this thesis can form a basis for future research
explorations that can eventually lead to mature system theories for both NCSs
and ETC systems, which are indispensable for the deployment of NCSs and
ETC systems in a large variety of practical control applications.
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Introduction

1.1 Networked and Event-Triggered Control Systems

1.2 Objectives and Contributions

1.3 Outline of the Thesis

1.4 Publications

1.1 Networked and Event-Triggered Control

Systems

A current trend in control engineering is to no longer implement control algo-
rithms on dedicated computation platforms having dedicated communication
channels. Instead, control algorithms are nowadays implemented on embedded
microprocessors [91], which communicate with the sensors and actuators using
(shared) communication networks. This results in larger flexibility and main-
tainability of the control system, as modifying control algorithms and adding
control loops becomes easier. These advantages form some of the reasons why
this control architecture is applied in conventional passenger cars, in which
more and more data is transmitted over a controller area network (CAN) [84].
Furthermore, besides the enhanced flexibility and maintainability, the embed-
ded and networked control architecture allows the control system to have less
wiring, with the extremum of being completely wireless. This is especially bene-
ficial for large-scale systems, e.g., mines [141], manufacturing/production lines
[97], chemical plants [123], water distribution networks [25] and distributed
power generation systems [18]. In some cases even, wiring the control systems
is impossible, e.g., in cooperative control of unmanned aerial vehicles (UAVs)
[110], vehicle platoons on motorways [48, 106], or in tele-operated haptic sys-
tems [70, 93]. Hence, control systems that use embedded microprocessors and
communication networks can already be found in a large variety of practical
applications and the deployment of these control systems is believed to even
grow in the near future. In fact, the development of control strategies that are
tailored for embedded microprocessors and communication networks is con-
sidered as one of the important challenges in control theory [98], as this will
further reinforce this trend.
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Despite the aforementioned advantages, using embedded microprocessors
and (shared) communication networks causes the closed-loop system to exhibit
behaviour that it would not exhibit when employing dedicated computation
platforms and dedicated communication channels. This is caused by the fact
that the computation power is not abundant on embedded microprocessors,
and communication networks do not have infinite bandwidth. Furthermore, the
control task has to share computation and communication resources with other
tasks, which makes the availability of these resources time varying and possibly
uncertain. Still, control algorithms are typically designed under the assumption
that sufficient computation and/or communication resources are available, as
this allows control algorithms to be designed and analysed using well-developed
‘classical’ techniques, see, e.g., [8, 27, 118, 148]. This leads, however, to over-
utilisation of the available resources and requires over-provisioned hardware,
which is not desirable in a competitive market where the overall cost price of
a system should often be as low as possible.

Therefore, control algorithms are needed that are designed to ensure a de-
sired control performance, while taking the restrictions of the implementation
explicitly into account. There are, in principle, two ways of doing this: (i) de-
signing control algorithm with a traditional structure that are robust against
the consequences induced by the imperfect implementation environment (to a
certain extent), or (ii) designing control algorithms that reduce the computa-
tion and communication resources needed to execute the control task. In the
literature, the former approach is studied in the field of networked control sys-
tems (NCSs), and the latter is studied in the field of event-triggered control
systems (ETCSs). Both these approaches are studied in this thesis. The mo-
tivation for studying both these approaches in a single thesis comes from the
fact that they both take scarcity of the resources available for control explicitly
into account.

1.1.1 Networked Control Systems

NCSs are systems in which the control loops are closed over a real-time com-
munication network. The fact that controllers, sensors, and actuators are con-
nected through a multipurpose network introduces new challenges, caused by
the packet-based data exchange between different parts of the network. Com-
pared to a traditional control system, see Figure 1.1a, the fact that the com-
munication network has only a finite bandwidth causes the outputs of the con-
troller u and the outputs of the plant y not to be exactly equal to the inputs
of the plant û and the inputs of the controller ŷ, respectively, see Figure 1.1b.
Therefore, the control algorithm has to be robust against the artefacts intro-
duced by the communication network that cause u 6= û and y 6= ŷ. Generally
speaking, these artefacts can be categorised into the following five types.
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(a) Traditional Control System (b) Networked Control System
with y 6= ŷ and u 6= û

Figure 1.1: A Traditional versus a Networked Control System Schematic.

Quantisation of the transmitted signals: Quantisation occurs because
the transmitted data is sent in packets that only have a finite word length.

Packet dropouts: Transmissions may fail, due to collisions of packets with
others or because the data gets corrupted in the physical layer of the network,
causing a message to never arrive or to become unreadable.

Varying sampling/transmisson intervals (jitter): In NCSs, each net-
work node has only a limited processing power and the local clocks typically
have a low accuracy. Therefore, the time instants at which the data is sampled
and transmitted is inaccurate, which causes the transmission/sampling interval
to be uncertain and time varying.

Varying transmission delays (latencies): Sampling and transmitting
data, and executing the control algorithm take a certain (nonzero) amount
of time. Besides the fact that these operations cannot be performed infinitely
fast, the network and the computation resources can also be partially occupied
by other tasks and the data can be routed differently at every transmission.
This introduces nonzero and time-varying transmission delays.

Communication constraints: When several sensors and actuators have to
communicate over a shared network, it is generally impossible to transmit all
sensor and actuator signals simultaneously. This introduces the need for a
scheduling protocol that orchestrates when a node is given access to the net-
work and is allowed to transmit its data.

It is generally known that any of these phenomena can degrade closed-loop
performance or, even worse, can harm closed-loop stability of the control sys-
tem, see, e.g., [31]. It is therefore important to know how these effects influence
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stability and performance in a quantitative way. Extensive overviews of the ex-
isting literature that studies these phenomena are given in Chapters 2 and 3.
A general observation obtained from these literature surveys is that most of
the results in the literature only consider a few of the aforementioned phenom-
ena, while ignoring the others. As in reality all these phenomena are present
simultaneously, it is important to have a single framework for the modelling,
the stability analysis and the controller synthesis for NCSs in which the joint
presence of all the aforementioned phenomena can be studied.

1.1.2 Event-Triggered Control Systems

Event-triggered control (ETC), see [6, 9, 59, 64], is a control strategy in which
the control task is executed after the occurrence of an external event, rather
than after the elapse of a fixed period of time as in conventional periodic control.
As such, the ETC algorithm consists of two parts: the feedback controller that
computes the plant inputs based on sampled and transmitted plant outputs,
and the event-triggering mechanism (ETM) that determines when, and which,
outputs of the plant and the controller have to be transmitted, see Figure 1.2.
A typical ETM invokes transmissions of (some of) the outputs of the plant and
the controller when a certain event-triggering condition is violated and, when
properly designed, it is such that these transmissions only take place when
needed from a stability and performance point of view, thereby reducing the
utilisation of the available computation and communication resources.

Closely related to ETC is self-triggered control [130]. In self-triggered con-
trol, the ETM is such that the time instant that the violation of the event-
triggering condition is pre-computed using previously sampled and transmit-
ted data and knowledge on the plant dynamics. This has the advantage that
there is no need for (continuously) monitoring violations of the event-triggering
condition and the ETM as depicted in Figure 1.2 can be considered to be em-
ulated in software. The name ‘self-triggered’ comes from the fact that it is not
really an ‘external event’, but rather the controller itself that determines the
next time instant to transmit. Self-triggered control uses similar techniques to
analyse stability and performance, and can be considered as a special case of
ETC.

Although the advantages of ETC are well-motivated and practical appli-
cations show its potential, relatively few theoretical results exist that study
ETCS in a mathematically rigourous way. An overview of the few existing re-
sults on ETC will be given in Chapter 4. The main reason for the absence of a
comprehensive theory is the fact that the system behaviour of ETCSs is intrin-
sically hybrid, i.e., it has both continuous as well as discrete behaviour, which
makes their analysis difficult. Still, the recent developments in hybrid system
theory, see, e.g., [50, 55], offer opportunities for maturing the event-triggered
system theory, so that it can support the deployment of ETC in practice. Be-
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Figure 1.2: An Event-Triggered Control System Schematic.

sides the absence of a mature system theory for ETC, also the ETC strategies
that currently exist in the literature have limitations that hamper their wide
application in practice.

A first limitation is that most of the existing results on ETC consider state-
feedback controllers, which is an unrealistic assumption as in many control
applications full state measurements are not available for feedback. Further-
more, in most works in ETC, a centralised ETM is used, meaning that the
ETM has an event-triggering condition, which invokes, when violated, simul-
taneous transmissions of all the outputs of the plant and controller. Typically,
such a centralised ETM requires access to all the sensor and actuator data to
decide when to transmit data, which might be prohibitive as actuators, sensors
and controllers can be physically distributed. Therefore, the existing results
on ETC have to be extended so that dynamical output-based controllers and
decentralised ETMs can be studied. In such a decentralised ETM, only parts of
the inputs and outputs are transmitted when a local event-triggering condition,
which uses only locally available sensor or actuator data, is violated. Note that
there exist some preliminary results on ETC that use dynamical output-based
feedback controllers, however an analysis of the minimum time between two
subsequent events, the so-called minimum inter-event time, is not available for
these works. Having such a (nonzero) minimum inter-event time is important,
as this allows us to guarantee an upper bound on the number of events within
a certain time interval. Being able to bound the number of events within a cer-
tain time interval is important as our primary reason to make control systems
event-triggered is to save computation and communication resources.

The second limitation is that the implementation of event-triggered con-
trollers on digital platforms requires continuous monitoring of all the outputs.
As often proposed in the literature, this can be done using dedicated analogue
hardware. However, if instead ETC could be implemented without the need for
dedicated hardware and it could work on more traditional time-sliced architec-
ture of the embedded software, deploying ETC in practice becomes a lot easier.
In other words, an ETC algorithm is needed that can be implemented using
more traditional time-sliced software architectures, while still preserving the
benefits of reduced utilisation of computation and communication resources.
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A final limitation of the existing results on ETC is that all these results use
an ‘emulation-based approach’, by which we mean that the feedback controller
is designed assuming an ideal (non-event-triggered) implementation, while, sub-
sequently, the ETM is designed (based on the feedback controller resulting from
the first step of the design procedure). As a consequence, during the design
of the feedback controller, no knowledge of the ETM is incorporated at all.
Clearly, simultaneously designing both could leads to more optimal ETCSs
than the ones obtained using a sequential design approach.

Overcoming the limitations discussed above, together with a corresponding
systematic analysis and design framework, greatly enhances the dissemination
of ETC in control engineering practice significantly.

1.2 Objectives and Contributions

From the discussion above, we can conclude that both fields of NCSs and ETCSs
have several major open problems and the theories for NCSs and ETCSs are far
from being comprehensive. We will, therefore, address these aforementioned
open problems in this thesis, thereby making a significant step towards such
comprehensive theories.

1.2.1 Networked Control Systems

As discussed in Section 1.1.1, there is currently a strong need for a unifying
framework that allows the stability and the performance of NCSs to be stud-
ied when it is simultaneously subject to all the mentioned network-induced
phenomena. Some results exist that are able to study the joint presence of
several network-induced phenomena. In particular, time-varying transmission
intervals, time-varying delays and communication constraints are studied in
[26, 62]. However, these results use a continuous-time controller, which can
of course be discretised, but it is of high practical relevance to directly study
discrete-time controllers. In addition, the results presented in [26, 62] have
a certain level of conservatism and cannot exploit specific structure, such as
linearity, being present in the control problem at hand.

In this thesis, we will, therefore, develop a framework for stability analysis
of NCSs that are subject to time-varying transmission intervals, time-varying
delays and communication constraints. The occurrence of packet dropouts can
be included by (implicitly) modelling them as prolongations of the transmis-
sion intervals, see, e.g. [113]. The framework is sufficiently rich to allow for
extensions in the direction of the inclusion of, for instance, quantisation and
analysis of the closed-loop performance, but these are left for future research
(even though some preliminary work regarding the inclusion of quantisation
is reported in [89]). The framework we will present is based on discrete-time
switched and parameter-varying models for NCSs, where the switching is due
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to the scheduling protocol, which is needed because of the communication con-
straints, and the varying parameters are due to the unknown and time-varying
transmission intervals and delays. The fact that we use a discrete-time mod-
elling framework allows the considered dynamical output-based controller to be
given in continuous time, as is commonly done in the existing NCS literature, as
well as in discrete time, which is more useful in the practical implementation of
NCSs, as already argued above. We will focus on linear plants and controllers
and consider two cases. In the first case, the transmission intervals and delays
are assumed to be within certain (given) bounds and, in the second case, they
are described by a sequence of random continuous variables, satisfying a (given)
probability distribution. Note that the former case requires less information of
the network behaviour than the latter case (for instance, the probability den-
sity function does not have to be known exactly, but only its support), while
the latter results in a less conservative stability analysis than the former as it
can incorporate more detailed knowledge. This makes both cases relevant. We
will provide techniques for assessing the stability of the NCS using polytopic
overapproximations and linear matrix inequalities (LMIs) [19]. Moreover, we
will show that this approach reduces conservatism significantly with respect to
existing results in the literature, meaning that we can now guarantee stability
for NCSs for which such guarantees could not be given before.

1.2.2 Event-Triggered Control Systems

In Section 1.1.2, we observed that the theory on ETC is far from being com-
prehensive and that, in striving for such a comprehensive theory, several con-
tributions are needed. We will make some of those contributions in this thesis.

The first contribution is the development of dynamical output-based event-
triggered controllers. As mentioned in Section 1.1.2, the fact that the controller
is based on output feedback instead of state feedback requires nontrivial exten-
sions of existing ETMs in order to guarantee a nonzero minimum time between
two subsequent events. Furthermore, since sensors and actuators, which can
be grouped into nodes, can be physically distributed, centralised ETMs are
often prohibitive and, therefore, there is a need for decentralised ETMs. We
will propose a novel output-based decentralised ETC strategy that has nonzero
minimum inter-event times and we will study the closed-loop stability and the
L∞-performance of the resulting ETCS. We provide a computational proce-
dure to compute a lower bound on the minimum inter-event time of each node.
Furthermore, we will model the event-triggered control system as an impul-
sive system, thereby explicitly describing the behaviour of the event-triggered
control system, which leads to improved stability guarantees, compared to the
existing results in the ETC literature.

The second contribution in the area of ETC is the proposition of an ETC
strategy that alleviates the need for dedicated hardware for its implementation.
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We will do this by striking a balance between periodic sampled-data control
and event-triggered control, which will lead to so-called periodic event-triggered
control (PETC) algorithms that preserve the advantages of reduced resource
usage on the one hand, while the event-triggering conditions have a periodic
character on the other hand. The most important benefit of the strategy is that
it can be implemented using a more traditional time-sliced software architec-
ture. To analyse the stability and the L2-performance of the proposed PETC
algorithm, we will propose novel methodologies. These methodologies will be
based on discrete-time piecewise-linear system models, on discrete-time per-
turbed system models and on impulsive system models, leading to an effective
analysis framework for PETC.

Finally, we will make a first step towards solving the codesign problem for
ETC, i.e., the joint design of the feedback controller and the ETM. In partic-
ular, we aim at designing a control algorithm that yields both the controller
output and the next sampling and transmission instant, given a sampled mea-
surement. Hence, the resulting control algorithm can be perceived as a self-
triggered control algorithm [130], but the method also has strong relations to
another existing approach in the literature, see [3, 21], being ‘minimum atten-
tion control’, where ‘attention’ is interpreted as the inverse of the time elapsed
between two consecutive transmissions of the controller outputs. In minimum
attention control, the ‘attention’ that a control task requires is minimised given
certain performance requirements. A related problem is that of ‘anytime at-
tention control’ [3], where the control objective is to maximise the performance
under the ‘attention’ given by a scheduler. Hence, anytime attention control
aims at finding a control value that optimises a certain performance criterion,
given a sampled measurement and a given next sampling and transmission in-
stant. We will show that the problem formulation of minimum attention control
is similar to that of anytime attention control and, therefore, we will provide
a unifying framework leading to the same solution strategy for both problems.
Both resulting control algorithms will be in the form of a linear program that
can be solved efficiently online.

1.3 Outline of the Thesis

This thesis consists of two parts, which in turn, consist of two and three chap-
ters, respectively. Each of these chapters is based entirely on a research paper
and is therefore self contained. As a consequence, each individual chapter can
be read independently.

Part I: Networked Control Systems

Chapter 2: In this chapter, we present the discrete-time modelling approach
to analyse stability of NCSs subject to time-varying transmission intervals,
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time-varying delays, communication constraints, and assume that the trans-
mission intervals and delays are upper and lower bounded. This chapter is
based on [40], of which a preliminary version appeared as [41].

Chapter 3: This chapter extends the framework presented in Chapter 2 to
study stability of NCSs, in which now the transmission intervals and delays
are modelled as a sequence continuous random variables, and the occurrence
of packet dropouts is modelled as a Markov chain. This chapter is based on
[39], of which a preliminary version appeared as [38].

Part II: Event-Triggered Control Systems

Chapter 4: The contribution of this chapter is to extend the existing results
in the literature on state-feedback controllers to dynamical output-based con-
trollers and providing an analysis framework based on impulsive systems. This
chapter is based on [37], of which a preliminary version appeared as [36].

Chapter 5: The new class of periodic event-triggered controllers is intro-
duced in this chapter. This chapter is based on [57], of which a preliminary
version appeared as [58].

Chapter 6: In Chapter 6, we present a novel approach to design minimum
attention and anytime attention control algorithms for linear systems. This
chapter is based on [42].

Finally, we reflect on the work presented in this thesis by drawing conclusions
and giving recommendations for future research in Chapter 7.

Besides the topics covered in this thesis, the research presented in to this
thesis also led to a framework to analyse and design stochastic model pre-
dictive controllers [17], a methodology to synthesise decentralised observer-
based controllers [13, 14], a comparison of several modelling approaches for
packet dropouts [113], a comparison of several convex overapproximation tech-
niques [63], and first results on the inclusion of quantisation in the discrete-time
modelling framework for NCSs [89].

1.4 Publications

The research leading to this thesis, also lead to the following publications.
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Journals Publications:

• M.C.F. Donkers, W.P.M.H. Heemels, N. van de Wouw and L. Hetel,
Stability Analysis of Networked Control Systems using a Switched Linear
Systems Approach. IEEE Trans. Autom. Control, 56:2101–2115, 2011.

• M.C.F. Donkers, W.P.M.H. Heemels, D. Bernadini, A. Bemporad and
V. Shneer. Stability Analysis of Stochastic Networked Control Systems.
Accepted for Automatica, 2011.

• M.C.F. Donkers and W.P.M.H. Heemels, Output-Based Event-Triggered
Control with Guaranteed L∞-gain and Improved and Decentralised Event-
Triggering. Conditionally accepted for IEEE Trans. Autom. Control,
2011.

• W.P.M.H. Heemels, M.C.F. Donkers and A.R. Teel, Periodic Event-Trig-
gered Control. Submitted for journal publication, 2011.

• N.W. Bauer, M.C.F. Donkers, W.P.M.H. Heemels and N. van de Wouw,
Decentralized observer-based control via networked communication. Sub-
mitted for journal publication, 2011.

• S.J.L.M. van Loon, M.C.F. Donkers, W.P.M.H. Heemels and N. van de
Wouw, Stability analysis of networked and quantized control systems: A
Switched Linear Systems Approach. Submitted for journal publication,
2011.

Book Chapters:

• M.C.F. Donkers, L. Hetel, W.P.M.H. Heemels, N. van de Wouw and
M. Steinbuch, Stability Analysis of Networked Control Systems using
a Switched Linear Systems Approach. In Lecture Notes in Computer
Science. Hybrid Systems: Computation and Control, pages 150–164,
Springer Verlag, 2009.

Refereed Conference Contributions:

• N.W. Bauer, M.C.F. Donkers, W.P.M.H. Heemels and N. van de Wouw,
An approach to observer-based decentralized control under periodic pro-
tocols. In Proc. American Control Conf., pages 2125 – 2131, 2010.

• D. Bernadini, M.C.F. Donkers, A. Bemporad and W.P.M.H. Heemels,
A Model Predictive Control Approach for Stochastic Networked Control
Systems, In Proc. IFAC Workshop Distributed Estimation & Control in
Networked Systems, pages 7 – 12, 2010.
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Proc. American Control Conf., pages 3684 – 3689, 2010.
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Overapproximation Methods for Stability Analysis of Networked Control
Systems. In Proc. Conf. Hybrid Systems: Computation and Control,
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Stability Analysis of Networked

Control Systems using a Switched

Linear Systems Approach1

2.1 Introduction

2.2 NCS Model and Problem Statement

2.3 Obtaining a Convex Overapproximation

2.4 Stability of Switched Systems with Parametric Uncertainty

2.5 Nonconservativeness of the Overapproximation

2.6 Illustrative Example

2.7 Conclusions

Abstract – In this chapter, we study the stability of networked control
systems (NCSs) that are subject to time-varying transmission intervals, time-
varying transmission delays, packet dropouts and communication constraints.
Communication constraints impose that, per transmission, only one node can
access the network and send its information. The order in which nodes send
their information is orchestrated by a network protocol, such as, the round-
robin (RR) and the try-once-discard (TOD) protocol. In this chapter, we
generalise the mentioned protocols to novel classes of so-called ‘periodic’ and
‘quadratic’ protocols. By focussing on linear plants and controllers, we present
a modelling framework for NCSs based on discrete-time switched linear un-
certain systems. This framework allows the controller to be given in discrete
time as well as in continuous time. To analyse stability of such systems for a
range of possible transmission intervals and delays, we propose a new proce-
dure to obtain a convex overapproximation in the form of a polytopic system
with norm-bounded additive uncertainty. We show that this approximation
can be made arbitrarily tight in an appropriate sense. Based on this overap-
proximation, we derive stability results in terms of linear matrix inequalities
(LMIs). We illustrate our stability analysis on the benchmark example of a
batch reactor and show how this leads to tradeoffs between different protocols,
allowable ranges of transmission intervals and delays.

1This chapter is based on [40].
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2.1 Introduction

Networked control systems (NCSs) are systems in which control loops are closed
over a real-time communication network. The fact that controllers, sensors, and
actuators are not connected through point-to-point connections, but through
a multipurpose network offers advantages, such as increased system flexibility,
ease of installation and maintenance, and decreased wiring and cost. However,
networking the control system also introduces new challenges, caused by the
packet-based data exchange between different parts of the network. Therefore,
control algorithms are needed that can handle the communication imperfec-
tions and constraints caused by the packet-based communication. The control
community is widely aware of this fact, as is evidenced by the broad attention
NCSs have received recently, see, e.g., the overview papers [67, 128, 144, 147].

In general, network-induced communication imperfections and constraints
can be categorised into five types:

(i) Quantisation errors in the transmitted signals, due to the finite word
length of the transmitted packets.

(ii) Packet dropouts, due to unreliable transmissions.

(iii) Variable sampling/transmission intervals.

(iv) Variable transmission delays.

(v) Communication constraints, i.e., not all sensor and actuator signals can
be transmitted at the same time.

It is generally known that any of these phenomena can degrade closed-loop
performance or, even worse, can harm closed-loop stability of the control sys-
tem. It is therefore important to know how these effects influence the stability
properties.

Systematic approaches to analyse stability of NCSs subject to only one of
these network-induced imperfections are well developed. For instance, the ef-
fects of quantisation are studied in [22, 35, 61, 86, 101], of packet dropouts
in [88, 117, 119], of time-varying transmission intervals and delays in [12, 45,
69, 96, 122], and [31, 43, 49, 68, 76, 100, 146], respectively, and of communi-
cation constraints in [20, 34, 72, 109]. However, since in NCSs typically all
the aforementioned limitations and constraints are present simultaneously, it
is relevant to study the consequences of all these phenomena in a common
framework. Unfortunately, fewer results are available that study combinations
of these imperfections. References that simultaneously consider two types of
network-induced imperfections are given in Table 2.1. Furthermore, [102] con-
siders imperfections of type (i), (iii), (v) and [29] studies type (ii), (iii) and (iv)
simultaneously. In this chapter, we will focus on the stability of NCSs with
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Table 2.1: References that study two network-induced imperfections simulta-
neously.

& (iv) (v)

(i) [87]

(ii) [30, 145]

(iii) [99, 142] [24, 41, 103, 132, 134]

time-varying transmission intervals and delays and the presence of communi-
cation constraints, i.e., type (iii), (iv) and (v) phenomena.

Stability of NCSs subject to communication constraints, time-varying trans-
mission intervals and transmission delays has already been considered in [26,
62]. The communication constraints impose that, per transmission, only one
node can access the network and send its information and, hence, a protocol
is needed to orchestrate when a certain communication node is given access
to the network. Given a protocol, such as the round-robin (RR) and the
try-once-discard (TOD) protocol, the mentioned papers provide criteria for
computing the so-called maximum allowable transmission interval (MATI) and
the maximum allowable delay (MAD). Stability is guaranteed as long as the
actual transmission intervals and delays are always smaller than the MATI
and MAD, respectively. The difference between the work in [62] and [26], is
that in the latter a delay compensation scheme is proposed. This delay com-
pensation requires time stamping of the messages and sending future control
signals in larger packets, which is not needed in the more basic emulation
based approach, as in [62] and the earlier work without transmission delays
in [24, 41, 102, 103, 125, 132, 134]. Furthermore, the results in [26] have the
drawback that they are not applicable to the commonly used Round-Robin
protocol, while [62] is.

The work presented in [26, 62] both apply to general nonlinear plants and
controllers and are based on a continuous-time modelling paradigm related to
impulsive systems as in [50]. However, neither [26], nor [62] include the possibil-
ity that the controller is formulated in discrete time. The case of discrete-time
controllers has been considered in [34], however, assuming that the transmis-
sion interval is constant and that delays are absent. Another feature of [26, 62]
is that, in these works, zero lower bounds on the transmission intervals hk and
delays τk are considered (i.e., hk ∈ (0, hMATI], τk ∈ [0, τMAD]). The ability to
handle discrete-time controllers and nonzero lower bounds on the transmission
intervals and delays is highly relevant from a practical point of view, because
controllers are typically implemented in a digital and, thus, discrete-time form.
Furthermore, finite communication bandwidth always introduce nonzero lower
bounds on the transmission intervals and transmission delays. This motivates
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the need for studying these situations as well, preferably in a nonconservative
manner. Although the work presented in [26, 62] is very general and can ac-
commodate for many nonlinear NCSs, their results cannot reduce conservatism
when a certain structure is present in the NCS, such as linearity of the controller
and plant.

In this chapter, we focus on linear plants and linear controllers and study
the stability of the corresponding NCS in the presence of communication con-
straints, time-varying transmission intervals and time-varying delays, where
the latter two possibly have a nonzero lower bound. We will also comment
on how to accommodate for packet dropouts. Moreover, we allow for both a
continuous-time as well as a discrete-time controller, which requires a different
modelling paradigm than in [26, 62], and in the work without transmission
delays, [24, 41, 103, 132, 134]. In particular, we provide techniques for assess-
ing stability of the NCS with time-varying transmission intervals hk ∈ [h, h]
and time-varying transmission delays τk ∈ [τ , τ ] for two well-known protocols,
namely, the round-robin (RR) protocol and the try-once-discard (TOD) pro-
tocol, and their generalisations. These generalisations consist of the classes of
‘periodic’ and ‘quadratic’ protocols, which are formally introduced here. In
contrast with [26, 62], we apply a discrete-time modelling framework that leads
to a switched linear system model with exponential uncertainty. To properly
handle this exponential uncertainty, we provide a polytopic overapproximation
for this system. This overapproximation is obtained using a novel procedure
that combines ideas from gridding [45, 122] and norm bounding [12, 43, 69].
Unlike other methodologies for obtaining a convex overapproximation, see, e.g.,
[12, 31, 43, 45, 49, 69, 122] and the overview paper [63], we provide a proof
that the newly proposed procedure can be made arbitrarily tight in an ap-
propriate sense. Using this overapproximated system, we can assess stability
using newly developed conditions based on linear matrix inequalities (LMIs).
We will show the effectiveness of the presented approach on the benchmark
example of a batch reactor as used in [24, 34, 41, 62, 103, 125, 134], as well.
Moreover, we will show that the linearity of plant and controller can indeed be
exploited, which leads to a significant reduction of conservatism with respect
to the existing approaches.

The remainder of this chapter is organised as follows. After introducing the
necessary notational conventions used in this chapter, we introduce the model
of the NCS in Section 2.2 and propose a method to write it as a discrete-time
switched linear uncertain system. We also state a precise problem formulation.
Subsequently, in Section 2.3, we provide a procedure to overapproximate the
NCS model by a polytopic system with norm-bounded uncertainty. In Section
2.4, we provide conditions for stability of the NCS in terms of LMIs and reflect
in Section 2.5 on the conservatism this approach introduces. Finally, we illus-
trate the stability results using a numerical benchmark example in Section 2.6
and draw conclusions in Section 2.7. Appendix A.1 contains the proofs of the
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more technical lemmas and theorems.

2.1.1 Nomenclature

The following notational conventions will be used. R+ denotes the set of non-
negative real numbers. diag(A1, . . . , An) denotes a block-diagonal matrix with
the entries A1, . . . , An on the diagonal and A⊤ ∈ R

m×n denotes the transposed
of matrix A ∈ R

n×m. For a vector x ∈ R
n, we denote by xi the i-th and by

‖x‖ :=
√
x⊤x its Euclidean norm. We denote by ‖A‖ :=

√

λmax(A⊤A) the
spectral norm of the matrix A ∈ R

n×m, which is the square-root of the maxi-
mum eigenvalue of the matrix A⊤A. For brevity, we sometimes write symmetric

matrices of the form
[

A B

B⊤ C

]

, as
[

A B
⋆ C

]

. Finally, by lims↓t and lims↑t, we de-

note the limit as s approaches t from above and below, respectively, and the
convex hull and interior of a set A are denoted by coA and intA, respectively.

2.2 NCS Model and Problem Statement

In this section, we present the model describing the networked control systems
(NCSs), subject to communication constraints, time-varying transmission in-
tervals and delays. We will later comment on how this model can accommodate
for packet dropouts. Let us consider the linear time-invariant (LTI) continuous-
time plant given by

{
d
dtx

p(t) = Apxp(t) +Bpû(t)

y(t) = Cpxp(t),
(2.1)

where xp ∈ R
np denotes the state of the plant, û ∈ R

nu the most recently
received control variable, y ∈ R

ny the (measured) output of the plant and
t ∈ R+ the time. The controller, also an LTI system, is assumed to be given in
either continuous time by

{
d
dtx

c(t) = Acxc(t) +Bcŷ(t)

u(t) = Ccxc(t) +Dcŷ(t),
(2.2a)

or in discrete time by
{

xc
k+1 = Acxc

k +Bcŷk

u(tk) = Ccxc
k +Dcŷ(tk).

(2.2b)

In these descriptions, xc ∈ R
nc denotes the state of the controller, ŷ ∈ R

ny

the most recently received output of the plant and u ∈ R
nu denotes the con-

troller output. At transmission instant tk, k ∈ N, (parts of) the outputs of
the plant y(tk) and controller u(tk) are sampled and are transmitted over the
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Figure 2.1: Illustration of a typical evolution of y and ŷ.

network. We assume that they arrive at instant rk, called the arrival instant.
The situation described above is illustrated in Fig. 2.1. In the case we have
a discrete-time controller (2.2b), the states of the controller xc

k+1 are updated
using ŷk := limt↓rk

ŷ(t), i.e., as in [34], directly after ŷ is updated. Note that in
this case, the update of xc

k+1 in (2.2b) has to be performed in the time interval
(rk, tk+1].

Let us now explain in more detail the functioning of the network and de-
fine these ‘most recently received’ ŷ and û exactly, see also [24, 34, 41, 62,
103, 132, 134]. The plant is equipped with sensors and actuators that are
grouped into N nodes. At each transmission instant tk, k ∈ N, one node,
denoted by σk ∈ {1, . . . , N}, obtains access to the network and transmits its
corresponding values. These transmitted values are received and implemented
on the controller or the plant at arrival instant rk. As in [62], a transmission
only occurs after the previous transmission has arrived, i.e., tk+1 > rk > tk,
for all k ∈ N. In other words, we consider the sampling interval to be lower
bounded and the delays to be smaller than the transmission interval. After
each transmission and reception, the values in ŷ and û are updated with the
newly received values, while the other values in ŷ and û remain the same, as no
additional information is received. This leads to the constrained data exchange
expressed as

{

ŷ(t) = Γy
σk
y(tk) + (I − Γy

σk
)ŷ(tk)

û(t) = Γu
σk
u(tk) + (I − Γu

σk
)û(tk)

(2.3)

for all t ∈ (rk, rk+1]. The matrix Γσk
:= diag(Γy

σk
,Γu

σk
) is a diagonal matrix,

given by
Γi = diag(γi,1, . . . , γi,ny+nu

). (2.4)

when σk = i. In (2.4), the elements γi,j , with i ∈ {1, . . . , N} and j ∈
{1, . . . , ny}, are equal to one, if plant output yj is in node i, elements γi,j+ny

,
with i ∈ {1, . . . , N} and j ∈ {1, . . . , nu}, are equal to one, if controller output
uj is in node i, and are zero elsewhere.

The value of σk ∈ {1, . . . , N} in (2.3) indicates which node is given access
to the network at transmission instant tk, k ∈ N. Indeed, (2.3) reflects that
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the values in û and ŷ corresponding to node σk are updated just after rk, with
the corresponding transmitted values at time tk, while the others remain the
same. A scheduling protocol determines the sequence (σ0, σ1, . . .) and particu-
lar protocols will be made explicit later.

The transmission instants tk, as well as the arrival instants rk, k ∈ N are
not necessarily distributed equidistantly in time. Hence, both the transmission
intervals hk := tk+1 − tk and the transmission delays τk := rk − tk are varying
in time, as is also illustrated in Fig. 2.1. We assume that the variations in
the transmission interval and delays are bounded and are contained in the sets
[h, h] and [τ , τ ], respectively, with h > h > 0 and τ > τ > 0. Since we assumed
that each transmission delay τk is smaller than the corresponding transmission
interval hk, we have that (hk, τk) ∈ Θ, for all k ∈ N, where

Θ :=
{
(h, τ) ∈ R

2 | h ∈ [h, h], τ ∈ [τ ,min{h, τ})
}
. (2.5)

Remark 2.2.1. In the above reasoning, we implicitly assumed that packet loss
does not occur, similar to, e.g., [24, 34, 132, 134]. However, we could accommo-
date for packet dropouts by modelling them as prolongations of the transmission
interval, as done in [62, 103]. This means that if we assume that there is a
bound δ ∈ N on the maximum number of successive dropouts, and we have sta-
bility of the NCS for (hk, τk) ∈ Θ, for all k ∈ N, in the case without dropouts,
then the NCS with dropouts is still guaranteed to be stable for (hk, τk) ∈ Θ′, for
all k ∈ N, where

Θ′ :=
{

(h, τ) ∈ R
2 | h ∈ [h, h

′
], τ ∈ [τ ,min{h, τ})

}

(2.6)

in which h
′
:= h

δ+1 .

2.2.1 The NCS as a Switched Uncertain System

To analyse stability of the NCS described above, we transform it into a discrete-
time model. In this framework, we need a discrete-time equivalent of (2.1) and
also of (2.2a) in case a continuous-time controller is used. To arrive at this
description, let us first define the network-induced error as

{

ey(t) := ŷ(t) − y(t)

eu(t) := û(t) − u(t).
(2.7)

The discrete-time switched uncertain system can now be obtained by describing
the evolution of the states between tk and tk+1 = tk +hk. In order to do so, we
define xp

k := xp(tk), uk := u(tk), ûk := limt↓rk
û(t) and eu

k := eu(tk). Since û,
as in (2.3), is a piecewise-constant left-continuous signal, i.e., lims↑t û(s) = û(t),
we can write ûk−1 = limt↓rk−1

û(t) = û(rk) = û(tk). This allows us to write
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the exact discretisation of (2.1) as follows:

xp
k+1 = eAphkxp

k +

∫ hk

0

eAp(hk−s)Bpû(tk + s)ds

= eAphkxp
k +

∫ τk

0

eAp(hk−s)dsBpûk−1 +

∫ hk

τk

eAp(hk−s)dsBpûk. (2.8)

As (2.3) and (2.7) yield ûk−1 = uk + eu
k and ûk−1 − ûk = Γu

σk
eu
k , (2.8) can be

rewritten as

xp
k+1 = eAphkxp

k +

∫ hk

hk−τk

eApsdsBpûk−1 +

∫ hk−τk

0

eApsdsBpûk

= eAphkxp
k +

∫ hk

0

eApsdsBpûk−1 +

∫ hk−τk

0

eApsdsBp(ûk − ûk−1)

= eAphkxp
k +

∫ hk

0

eApsdsBp(uk + eu
k) −

∫ hk−τk

0

eApsdsBpΓu
σk
eu
k . (2.9)

A discretised equivalent of (2.2a) is obtained in a similar fashion by defining
xc

k := xc(tk), yk := y(tk), ey
k := ey(tk), ŷk := limt↓rk

ŷ(t), and observing
ŷk−1 = ŷ(tk), and is given by

xc
k+1 = eAchkxc

k +

∫ hk

0

eAcsdsBc(yk + ey
k) −

∫ hk−τk

0

eAcsdsBcΓy
σk
ey
k. (2.10)

We now present three different models, each describing a particular NCS.
The first and the second model cover the situation where both the plant and the
controller outputs are transmitted over the network, differing by the fact that
the controller is given by (2.2a) and (2.2b), respectively. In the third model,
it is assumed that the controller is given by (2.2a) and that only the plant
outputs y are transmitted over the network and u are sent continuously via an
ideal nonnetworked connection. We include this particular case, because it is
often used in examples in the NCS literature (see, e.g., the benchmark example
in [24, 34, 41, 62, 103, 134]) and it allows us to compare our methodology to
the existing ones.

A) The NCS model with controller (2.2a): For an NCS having controller
(2.2a), the complete NCS model is obtained by combining (2.3), (2.7), (2.9),
and (2.10) and defining

x̄k :=
[

xp⊤
k xc⊤

k ey⊤
k eu⊤

k

]⊤
. (2.11)
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This results in the discrete-time model given by

x̄k+1 =
[

Ahk
+ Ehk

BDC Ehk
BD − Ehk−τk

BΓσk

C(I − Ahk
− Ehk

BDC) I − D−1Γσk
+ C(Ehk−τk

BΓσk
− Ehk

BD)

]

︸ ︷︷ ︸

=:Ãσk,hk,τk

x̄k,

(2.12)

in which Ãσk,hk,τk
∈ R

n×n, with n = np + nc + ny + nu, and

Aρ :=

[
eApρ 0
0 eAcρ

]

, B :=

[
0 Bp

Bc 0

]

, C :=

[
Cp 0
0 Cc

]

, (2.13a)

D :=

[
I 0
Dc I

]

, Eρ :=

[∫ ρ

0
eApsds 0
0

∫ ρ

0
eAcsds

]

, ρ ∈ R. (2.13b)

B) The NCS model with controller (2.2b): For an NCS having controller
(2.2b), the complete NCS model is obtained by combining (2.2b), (2.3), (2.7),
and (2.9), also resulting in (2.12), in which now

Aρ :=

[
eApρ 0

0 Ac

]

, B :=

[
0 Bp

Bc 0

]

, C :=

[
Cp 0
0 Cc

]

, (2.14a)

D :=

[
I 0
Dc I

]

, Eρ :=

[∫ ρ

0
eApsds 0
0 I

]

, ρ ∈ R. (2.14b)

C) The NCS model if only y is transmitted over the network: In
this case we assume that only the outputs of the plant are transmitted over the
network and the controller communicates its values continuously and without
delay. We therefore have that u(t) = û(t), for all t ∈ R+, which allows us to
combine (2.1) and (2.2a), yielding

[
ẋp(t)
ẋc(t)

]

=

[
Ap BpCc

0 Ac

] [
xp(t)
xc(t)

]

+

[
BpDc

Bc

]

ŷ(t). (2.15)

Since ŷ is still updated according to (2.3), we can describe the evolution of the
states between tk and tk+1 = tk + hk in a similar fashion as in (2.9). In this
case, (2.11) reduces to

x̄k :=
[

xp⊤
k xc⊤

k ey⊤
k

]⊤
, (2.16)

resulting in (2.12), in which

Aρ := e

(
[

Ap BpCc

0 Ac

]

ρ
)

, B :=

[
BpDc

Bc

]

, C :=
[
Cp 0

]
, (2.17a)

D := I, Eρ :=

∫ ρ

0

e

(
[

Ap BpCc

0 Ac

]

s
)

ds, ρ ∈ R. (2.17b)
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2.2.2 Protocols as a Switching Function

Based on the previous modelling steps, the NCS is formulated as a discrete-time
switched uncertain system (2.12). In this framework, protocols are considered
as the switching function determining σk. We consider two commonly used
protocols, see [24, 41, 62, 103, 125, 132, 134], namely the try-once-discard
(TOD) and the round-robin (RR) protocol and generalise these into two novel
classes of protocols, named ‘quadratic’ and ‘periodic’ protocols.

A) Quadratic Protocols: A quadratic protocol is a protocol, for which the
switching function can be written as

σk = arg min
i∈{1,...,N}

x̄⊤k Pix̄k, (2.18)

where Pi, i ∈ {1, . . . , N}, are certain given matrices. In case two nodes have the
same minimal values, one of them can be chosen arbitrarily. In fact, the well-
known TOD protocol, sometimes also called the maximum-error-first (MEF)
protocol, belongs to this class of protocols. In this protocol, the node that has
the largest network-induced error, i.e., the difference between the most recently
transmitted values and its current values of the signals corresponding to the
node, is granted access to the network. We can arrive at the TOD protocol by
adopting the following structure in the Pi matrices:

Pi = P̄ − diag(0,Γi), (2.19)

in which Γi, i ∈ {1, . . . , N}, is given by (2.4). Furthermore, if we define ẽi
k :=

Γiek, where ek := [ey⊤
k , eu⊤

k ]⊤, (2.18) becomes

σk = arg min
{
−e⊤k Γ1ek, . . . ,−e⊤k ΓNek

}
= arg max

{
‖ẽ1k‖, . . . , ‖ẽN

k ‖
}
, (2.20)

which is the TOD protocol.

B) Periodic Protocols: Another class of protocols that is considered in
this chapter is the class of so-called periodic protocols. A periodic protocol is
a protocol that satisfies for some Ñ ∈ N

σk+Ñ = σk (2.21)

for all k ∈ N. Ñ is then called the period of the protocol. Actually, the
well-known RR protocol belongs to this class and is defined by

{σ1, . . . , σN} = {1, . . . , N}, (2.22)

and period Ñ = N , i.e., during each period of the protocol every node has
access to the network exactly once.
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The above modelling approach now provides a description of the NCS sys-
tem in the form of a discrete-time switched linear uncertain system given by
(2.12) and one of the protocols, characterised by (2.18) or (2.21). The sys-
tem switches between N linear uncertain systems and the switching is due to
the fact that only one node accesses the network at each transmission instant.
The uncertainty is caused by the fact that the transmission intervals and the
transmission delays (hk, τk) ∈ Θ are varying over time.

2.2.3 Stability of the NCS

The problem studied in this chapter is to determine the stability of the continu-
ous-time NCS, given by (2.1), (2.2a) or (2.2b), (2.3), and (2.7), with proto-
cols satisfying (2.18) or (2.21) given the bounds [h, h] and [τ , τ ], or to find
bounds that guarantee stability. Let us now formally define stability for this
continuous-time NCS.

Definition 2.2.2. The continuous-time NCS given by (2.1), (2.2a) or (2.2b),
(2.3), and (2.7), with protocols satisfying (2.18) or (2.21), having states x̄(t) :=
[
xp⊤(t) xc⊤(t) ey⊤(t) eu⊤(t)

]⊤ ∈ R
n, is said to be uniformly globally ex-

ponentially stable (UGES) if there exist cc, βc > 0, such that for any initial
condition x̄(0), any sequence of transmission intervals (h0, h1, . . .), and any se-
quence of transmission delays (τ0, τ1, . . .), with (hk, τk) ∈ Θ, for all k ∈ N, it
holds that

‖x̄(t)‖ 6 cc‖x̄(0)‖e−βct, ∀ t ∈ R+. (2.23)

Stability of the continuous-time NCS can be analysed by assessing stability
of the discrete-time uncertain switched linear system (2.12) with switching
functions satisfying (2.18) or (2.21), as we will show. Let us now formally
define stability of this discrete-time system.

Definition 2.2.3. System (2.12) with switching sequences satisfying (2.18) or
(2.21) is said to be uniformly globally exponentially stable (UGES) if there
exist cd, βd > 0, such that for any initial condition x̄0 ∈ R

n, any sequence
of transmission intervals (h0, h1, . . .), and any sequence of transmission delays
(τ0, τ1, . . .), with (hk, τk) ∈ Θ, for all k ∈ N, it holds that

‖x̄k‖ 6 cd‖x̄0‖e−βdk, ∀ k ∈ N. (2.24)

Since the discrete-time switched uncertain linear system (2.12) with switch-
ing sequences satisfying (2.18) or (2.21) is formulated in discrete time, we can
only assess stability at the transmission instants. However, states of the plant
(2.1) and controller (2.2a) actually evolve in continuous time. In the next
lemma, we state that UGES of the discrete-time NCS model implies UGES of
the continuous-time NCS.
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Lemma 2.2.4. The discrete-time system (2.12) with switching sequences sat-
isfying (2.18) or (2.21) is UGES, if and only if the continuous-time NCS given
by (2.1), (2.2a) or (2.2b), (2.3), and (2.7), with protocols satisfying (2.18) or
(2.21) is UGES.

Proof. The proof is given in Appendix A.1.

This lemma states that it suffices to consider the discrete-time model (2.12)
with switching sequences satisfying (2.18) or (2.21) to assess UGES of the
continuous-time NCS system.

2.3 Obtaining a Convex Overapproximation

In the previous section, we obtained an NCS model in the form of a switched
uncertain system. However, the form as in (2.12) is not really convenient to de-
velop efficient techniques for stability analysis due to the nonlinear dependence
of Ãσk,hk,τk

on the uncertain parameters hk and τk. Therefore, we will provide
a procedure that overapproximates system (2.12) by a polytopic system with
a norm-bounded additive uncertainty of the form

x̄k+1 =
(

L∑

l=1

αl
kĀσk,l + B̄∆kC̄σk

)
x̄k, (2.25)

where Āσ,l ∈ R
n×n, B̄ ∈ R

n×m, C̄σ ∈ R
m×n, for σ ∈ {1, . . . , N} and l ∈

{1, . . . , L}, with L the number of vertices of the polytope. Furthermore, αk =
[α1

k . . . α
L
k ]⊤∈ A, k ∈ N, denotes an unknown time-varying vector with

A =
{

α ∈ R
L
∣
∣
∣

L∑

l=1

αl = 1, αl
> 0, l ∈ {1, . . . , L}

}

(2.26)

and ∆k ∈ ∆, k ∈ N, where ∆ is a norm-bounded set of matrices in R
m×m

that describes the additive uncertainty. This additive uncertainty can have
some specific structure, as we will see below. The model (2.25) should be an
overapproximation of (2.12) in the sense that for all σ ∈ {1, . . . , N}, it holds
that

{
Ãσ,h,τ

∣
∣ (h, τ) ∈ Θ

}
⊆

{ L∑

l=1

αlĀσ,l + B̄∆C̄σ

∣
∣
∣α ∈ A,∆ ∈ ∆

}

. (2.27)

In this chapter, we use the gridding idea of [45, 122] to obtain, for a fixed
σ, Āσ,l by evaluating Ãσ,h,τ of (2.12) at a collection of selected pairs of trans-

mission intervals and transmission delays (h̃l, τ̃l) ∈ Θ, l ∈ {1, . . . , L}. Hence,
we take Āσ,l := Ãσ,h̃l,τ̃l

in (2.25), with l ∈ {1, . . . , L}. However, contrary to
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[45, 122], we choose to allow for convex combinations of the vertices, whereas
in [45, 122] the system switches between the vertices only. Moreover, we con-
struct a norm-bounded additive uncertainty ∆ ∈ ∆ to capture the remaining
approximation error, as done in, e.g., [12, 43, 69]. By comparing Ãσ,h,τ with
the convex combinations of the vertices instead of with the vertices alone, we
obtain smaller bounds on the additive uncertainty than in [12, 43, 45, 122].

By specifying (h̃l, τ̃l), l ∈ {1, . . . , L}, and thereby determining Āσ,l, it only
remains to show how to choose B̄∆C̄σ in (2.25) and ∆ in order to satisfy (2.27).
This additive uncertainty is used to capture the approximation error between
the original system (2.12) and the polytopic system

x̄k+1 =

L∑

l=1

αl
kĀσk,lx̄k. (2.28)

In order for (2.27) to hold, for each triple (σ, h, τ), with σ ∈ {1, . . . , N} and
(h, τ) ∈ Θ, there should exist some α ∈ A and ∆ ∈ ∆, such that

Ãσ,h,τ −
L∑

l=1

αlĀσ,l = B̄∆C̄σ. (2.29)

Hence, we should determine the worst-case distance between the real system
(2.12) and the polytopic system (2.28), leading to an upper bound on the
approximation error. To obtain such an upper bound, we partition Θ into M
triangles S1, . . . ,SM , see Fig. 2.2, and we compare Ãσ,h,τ , for (h, τ) ∈ Sm,

with {∑3
j=1 α̃

jĀσ,lmj
| ∑3

j=1 α̃
j = 1, α̃j > 0, j ∈ {1, 2, 3}}, where (h̃lmj

, τ̃lmj ),

j = {1, 2, 3}, denote the vertices (with vertex index lmj ∈ {1, . . . , L}, j ∈
{1, 2, 3} and m ∈ {1, . . . ,M}) of triangle Sm. This allows us to construct the
right-hand side of (2.29) by computing the worst-case distance. Note that it is
always possible to partition Θ into triangles, as Θ is a convex polytope. We will,
however, also provide a systematic procedure to obtain a suitable partitioning.

A specific feature of the overapproximation presented in this chapter is that,
contrary to [12, 31, 43, 45, 49, 69, 122], it can be made arbitrarily tight, i.e.,
besides that (2.27) holds, it also holds that

{ L∑

l=1

αlĀσ,l + B̄∆C̄σ

∣
∣
∣α ∈ A,∆ ∈ ∆

}

⊆ co
{
Ãσ,h,τ

∣
∣ (h, τ) ∈ Θ

}
+ { ∆̄ | ‖∆̄‖ 6 ε }, (2.30)

for each σ ∈ {1, . . . , N}, in which ε > 0 can be chosen arbitrarily small. This
can be achieved by increasing the number of pairs (h̃l, τ̃l) ∈ Θ, l ∈ {1, . . . , L},
in a well-distributed fashion. The fact that (2.30) can be ensured to hold for an
arbitrarily small ε > 0 is important, as it allows us to show that the existence of
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Figure 2.2: The partitioning of Θ into triangles Sm.

a Lyapunov function of a particular type for (2.12) is equivalent to the existence
of a Lyapunov function of the same type for (2.25). Since we will indeed show
that (2.30) can be guaranteed for any choice of ε > 0, we can let the introduced
conservatism in the overapproximation vanish. We will formalise this result in
Section 2.5.

We now formalise the procedure to obtain a convex overapproximation as
outlined above. The procedure results in a tight overapproximation, by adding
pairs (h̃l, τ̃l) ∈ Θ until ε 6 εu is achieved for an user-specified threshold εu > 0,
such that (2.30) holds with ε 6 εu.

Procedure 2.3.1.

Step 1 Choose a desired εu > 0. Furthermore, select distinct pairs (h̃l, τ̃l) ∈ Θ,
l ∈ {1, . . . , L}, such that co G = Θ, where G = ∪L

l=1{(h̃l, τ̃l)}. Now
partition Θ into M triangles Sm, m ∈ {1, . . . ,M}, such that, for each
Sm ∈ H, where H = {S1, . . . ,SM}, it holds that

Sm = co{(h̃lm1
, τ̃lm1 ), (h̃lm2

, τ̃lm2 ), (h̃lm3
, τ̃lm3 )}, (2.31)

where lmj ∈ {1, . . . , L}, j ∈ {1, 2, 3}. Hence, (h̃lmj
, τ̃lmj ) ∈ G, j ∈

{1, 2, 3} are the vertices of the triangle Sm. Moreover, for all m, p ∈
{1, . . . ,M} and p 6= m, intSp ∩ intSm = ∅, ∪M

m=1Sm = Θ, and
intSm 6= ∅, i.e., the triangles form a (nonoverlapping) partitioning of
Θ and have nonempty interiors.

Step 2 Define

Āσ,l := Ãσ,h̃l,τ̃l
(2.32)

for all σ ∈ {1, . . . , N} and (h̃l, τ̃l) ∈ G, l ∈ {1, . . . , L}.

Step 3 To bound the approximation error, first construct the matrix Λ̄, that,
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depending on the NCS model defined in Section 2.2.1, is given by

Λ̄ =







diag(Ap, Ac), if (2.12) is as in Section 2.2.1.A,

diag(Ap, 0), if (2.12) is as in Section 2.2.1.B,
[
Ap BpCc

0 Ac

]

, if (2.12) is as in Section 2.2.1.C.

(2.33)

Decompose the matrix Λ̄ into its real Jordan form [71], i.e., Λ̄ :=
TΛT−1, where T is an invertible matrix and

Λ = diag(Λ1, . . . ,ΛK) (2.34)

with Λi ∈ R
ni×ni , i ∈ {1, . . . ,K}, the i-th real Jordan block of Λ̄.

Step 4 Compute for each real Jordan block Λi, i ∈ {1, . . . ,K}, the worst-case
approximation error of all triangles Sm ∈ H, m ∈ {1, . . . ,M}, i.e.,

δA
i = max

m∈{1,...,M}
max

∑3
j=1α̃j=1,α̃j>0

δ̃A
i,m,α̃, (2.35a)

δEh

i = max
m∈{1,...,M}

max
∑3

j=1α̃j=1,α̃j>0
δ̃Eh

i,m,α̃, (2.35b)

δ
Eh−τ

i = max
m∈{1,...,M}

max
∑3

j=1α̃j=1,α̃j>0
δ̃

Eh−τ

i,m,α̃ , (2.35c)

in which α̃ = [α̃1 α̃2 α̃3]⊤ and

δ̃A
i,m,α̃ =

∥
∥
∥e

Λi

∑3
j=1 α̃j h̃lm

j −
3∑

j=1

α̃je
Λih̃lm

j

∥
∥
∥, (2.36a)

δ̃Eh

i,m,α̃ =
∥
∥
∥

3∑

j=1

α̃j

∫ ∑3
j=1 α̃j h̃lm

j

h̃lm
j

eΛisds
∥
∥
∥, (2.36b)

δ̃
Eh−τ

i,m,α̃ =
∥
∥
∥

3∑

j=1

α̃j

∫ ∑3
j=1 α̃j(h̃lm

j
−τ̃lm

j
)

h̃lm
j

−τ̃lm
j

eΛisds
∥
∥
∥. (2.36c)

For a detailed explanation of the origin of the approximation error
bounds, see the proof of Theorem 2.3.2.

Step 5 Define

C̄σ :=





T−1 0
T−1BDC T−1BD

0 −T−1BΓσ



 (2.37)

and

B̄ :=

[
T T T

−CT −CT −CT

]

· diag(δA
1 I1, . . . , δ

A
KIK , δ

Eh

1 I1, . . . ,

δEh

K IK , δ
Eh−τ

1 I1, . . . , δ
Eh−τ

K IK) (2.38)
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with Ii the identity matrix of size ni, complying with the i-th real Jor-
dan Block, and compute

ε = ‖B̄‖ max
σ∈{1,...,N}

{‖C̄σ‖}. (2.39)

Step 6 In case that ε > εu, meaning that the user-specified tightness of the
overapproximation in the sense of (2.30) is not achieved we add a pair
(h̃L+1, τ̃L+1) ∈ Θ to G. In order to determine the specific pair to be
added, compute the point (h, τ) ∈ Sm, where the maximum approxima-
tion error is achieved by solving

(m⋆, α̃⋆) ∈ arg max
m∈{1,...,M},

∑3
j=1

α̃j=1,α̃j>0

δ̃j⋆

i⋆,m,α̃ (2.40)

in which
(i⋆, j⋆) ∈ arg max

i∈{1,...,K},

j∈{A,Eh,Eh−τ }

δj
i , (2.41)

and add this new pair (h̃L+1, τ̃L+1) =
∑3

j=1 α̃
⋆j(h̃lj

m⋆
, τ̃lj

m⋆
) to the set

G, i.e., update G according to

G := G ∪ {(h̃L+1, τ̃L+1)}, (2.42)

and redefine L := L + 1. Furthermore, subdivide the corresponding
triangle Sm⋆ into smaller triangles and replace Sm⋆ by the smaller
triangles in the set H, i.e.,

H :=
(
H\Sm⋆

)
∪ co{(h̃L+1, τ̃L+1), (h̃lm1

, τ̃lm1 ), (h̃lm2
, τ̃lm2 )}

∪ co{(h̃L+1, τ̃L+1), (h̃lm1
, τ̃lm1 ), (h̃lm3

, τ̃lm3 )}
∪ co{(h̃L+1, τ̃L+1), (h̃lm2

, τ̃lm2 ), (h̃lm3
, τ̃lm3 )}, (2.43)

redefine2 M := M + 2, and repeat the procedure from Step 2.

Step 7 In case ε 6 εu, the user-specified tightness of the overapproximation is
achieved and the resulting uncertainty set ∆ ⊆ R

3(np+nc)×3(np+nc) is
given by

∆ =
{
diag(∆1, . . . ,∆3K) | ∆i+jL ∈ R

ni×ni , ‖∆i+jL‖ 6 1,

i ∈ {1, . . . ,K}, j ∈ {0, 1, 2}
}
. (2.44)

2In case one of the smaller triangles satisfies int co{(h̃L+1, τ̃L+1), (h̃lm
i

, τ̃lm
i

), (h̃lm
j

, τ̃lm
j

)} =

∅ for some i, j ∈ {1, 2, 3}, meaning that (h̃L+1, τ̃L+1) lies on one of the edges of Sm⋆ , then this
triangle is not added to the set H, and the number of triangles in the partitioning increases
according M := M + 1.



2.4. Stability of Switched Systems with Parametric Uncertainty 31

Theorem 2.3.2. Consider the NCS given by (2.12) where (hk, τk) ∈ Θ, k ∈
N, with Θ as in (2.5). If system (2.25) is obtained by following Procedure
2.3.1 for some user-specified εu > 0, then (2.27) holds and thus (2.25) is an
overapproximation of (2.12). Furthermore, the overapproximation is ε-tight,
in the sense that (2.30) holds, with ε given by (2.39) and ε 6 εu.

Proof. The proof is given in Appendix A.1.

Remark 2.3.3. In the special case that h = h or that τ = τ , Procedure 2.3.1
has to be modified slightly. This is because we proposed to form triangles Sm,
m ∈ {1, . . . ,M}, having the property that intSm 6= ∅, which is not possible when
h = h or τ = τ . Instead, in this case, we partition Θ into M line-segments
S1, . . . ,SM , such that, for each Sm, m ∈ {1, . . . ,M}, it holds that

Sm = co{(h̃lm1
, τ̃lm1 ), (h̃lm2

, τ̃lm2 )}, (2.45)

where (h̃lmj
, τ̃lmj ), j ∈ {1, 2}, now denote the vertices of the line segment Sm.

All other properties of Sm, m ∈ {1, . . . ,M}, still hold and the remainder of the
procedure can be applied mutatis mutandis.

UGES of the NCS system given by (2.1), (2.2a) or (2.2b), (2.3), and (2.7),
with protocols satisfying (2.18) or (2.21), with (hk, τk) ∈ Θ, k ∈ N, can now
be guaranteed by proving UGES of (2.25), with switching sequences satisfying
(2.18) or (2.21), αk ∈ A, and ∆k ∈ ∆, k ∈ N, using the result of Lemma 2.2.4
and the fact that (2.25) is a (tight) overapproximation of (2.12).

2.4 Stability of Switched Systems with Para-

metric Uncertainty

In the previous sections, we discussed the NCS model and introduced a way
to overapproximate it by a switched polytopic system with norm-bounded un-
certainty. Given this switched uncertain system, we can analyse whether a
switching sequence, as induced by a protocol, renders the switched system
UGES.

We will start with so-called quadratic protocols that include the well-known
TOD protocol as a particular case. The analysis is based on extensions of the
ideas in [47], in which only switched linear systems without any form of uncer-
tainty are considered. Hence, generalisations are needed to include switched
polytopic systems with norm-bounded uncertainties as in (2.25). After the sta-
bility analysis for the quadratic protocols and the TOD protocol as a special
case, we will also show how we can analyse stability for periodic protocols,
having the RR protocol as a special case.
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2.4.1 Quadratic Protocols

In this section, we assume that the switching function is given by (2.18). To
analyse the stability of (2.25) having this switching function, we introduce the
non-quadratic Lyapunov function

V (x̄k) = min
i∈{1,...,N}

x̄⊤k Pix̄k = min
ν∈N

x̄⊤k

N∑

i=1

νiPix̄k, (2.46)

where

N :=
{

ν ∈ R
N

∣
∣
∣

N∑

i=1

νi = 1, νi > 0, i ∈ {1, . . . , N}
}

. (2.47)

Furthermore, we introduce the class M of so-called Metzler matrices Π = {πji}
given by

M :=
{

Π ∈ R
N×N

∣
∣
∣

N∑

j=1

πji = 1, πji > 0, i, j ∈ {1, . . . , N}
}

, (2.48)

and the set of matrices

R =
{
diag(r1I1, . . . , rKIK , rK+1I1, . . . , r2KIK ,

r2K+1I1, . . . , r3KIK) ∈ R
3(np+nc)×3(np+nc) | ri > 0

}
, (2.49)

where Ii is an identity matrix of size ni.
The main result of this section is presented in the following theorem.

Theorem 2.4.1. Assume that there exist a matrix Π = {πji} ∈ M, positive
definite matrices Pi, and matrices Ri,l ∈ R, i ∈ {1, . . . , N} and l ∈ {1, . . . , L},
satisfying








Pi 0 Ā⊤
i,l

∑N
j=1 πjiPj C̄⊤

i Ri,l

⋆ Ri,l B̄⊤ ∑N
j=1 πjiPj 0

⋆ ⋆
∑N

j=1 πjiPj 0

⋆ ⋆ ⋆ Ri,l







≻ 0, (2.50)

for all i ∈ {1, . . . , N} and l ∈ {1, . . . , L}. Then, the switching law (2.18)
renders the system (2.25) UGES. Consequently, the NCS given by (2.1), (2.2a)
or (2.2b), (2.3), and (2.7) is also UGES if the switching law (2.18) is employed
as the protocol.

Proof. The proof is given in Appendix A.1.

Remark 2.4.2. The results of Theorem 2.4.1 can be exploited in two ways:
(i) For the design of a stabilising protocol. Then the conditions in (2.50) are
not LMIs, but bilinear matrix inequalities (BMIs) due to the presence of the
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product of πji and Pj. Although literature on solving BMIs is available, see, e.g.,
[51, 56, 73], solving BMIs is considered to be of a high numerical complexity.
(ii) Stability analysis for a given protocol. In the situation that the matrices
Pi, i ∈ {1, . . . , N}, are completely given for a particular quadratic protocol, the
conditions (2.50) are LMIs in Π ∈ M and Ri,l ∈ R, for all i ∈ {1, . . . , N} and
l ∈ {1, . . . , L}.

2.4.2 The TOD Protocol

In Section 2.2.2, we showed that by suitable choice of Pi, i ∈ {1, . . . , N}, as in
(2.19), the TOD protocol is a specific quadratic protocol. We can therefore use
the result of Theorem 2.4.1 to determine the allowable range of transmission
intervals and transmission delays of the NCS using the TOD protocol. This
result is formalised in the following corollary, in which

M :=
{

diag(0,

N∑

j=1

πjiΓj) ∈ R
n×n

∣
∣
∣

N∑

j=1

πji = 1, πji > 0, i, j ∈ {1, . . . , N}
}

.

(2.51)

Corollary 2.4.3. Assume that there exist matrices Π̄i ∈ M, i ∈ {1, . . . , N},
a matrix P , matrices Ri,l ∈ R, i ∈ {1, . . . , N} and l ∈ {1, . . . , L}, satisfying







P − diag(0,Γi) 0 Ā⊤
i,l(P − Πi) C̄⊤

i Ri,l

⋆ Ri,l B̄⊤(P − Πi) 0
⋆ ⋆ P − Πi 0
⋆ ⋆ ⋆ Ri,l






≻ 0, (2.52)

for all i ∈ {1, . . . , N} and l ∈ {1, . . . , L}, with Γi, as in (2.4). Then, the system
(2.25) with (2.20) is UGES. Consequently, the NCS, given by (2.1), (2.2a) or
(2.2b), (2.3), and (2.7), with the TOD protocol (2.20) is also UGES.

Proof. The proof follows directly from Theorem 2.4.1 and the fact that Pi is
structured as in (2.19). Therefore, it holds that

∑N
j=1 πjiPj =: P − Πi.

2.4.3 Periodic protocols and the RR Protocol

We will now analyse another class of communication protocols, namely the
periodic protocols, with the RR protocol as a special case. Hence, we need
to analyse stability of the system (2.25) with a switching sequence induced by
(2.21) or (2.22). This system is essentially a Ñ -periodic uncertain system. For
this system, we introduce positive definite matrices Pi, i ∈ {1, . . . , N}, and a
time-dependent periodic Lyapunov function given by

Vk(x̄k) = x̄⊤k Pkx̄k, and Vk+Ñ (x̄k+Ñ ) = Vk(x̄k). (2.53)

We can now present the main result of this section.
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Theorem 2.4.4. Assume that there exist positive definite matrices Pi, i ∈
{1, . . . , Ñ}, and matrices Ri,l ∈ R, i ∈ {1, . . . , N} and l ∈ {1, . . . , L}, satisfying







Pi 0 Ā⊤
σi,l

Pi+1 C̄⊤
σi
Ri,l

⋆ Ri,l B̄⊤Pi+1 0
⋆ ⋆ Pi+1 0
⋆ ⋆ ⋆ Ri,l






≻ 0, (2.54)

where PÑ+1 := P1, for all i ∈ {1, . . . , Ñ} and l ∈ {1, . . . , L}. Then, the system
(2.25) with (2.22) is UGES and consequently, the NCS as given by (2.1), (2.2a)
or (2.2b), (2.3), and (2.7) with a periodic protocol (2.21) is UGES.

Proof. The proof follows the same lines of reasoning as the proof of Theo-
rem 2.4.1.

2.5 Nonconservativeness of the Overapproxi-

mation

Given the results of the previous sections, it is now natural to ask if and how
conservative the presented methodology is. The answer is given by the following
result, showing that if the original system (2.12) (without any overapproxima-
tion), with protocol (2.18) or (2.21), is UGES in the sense that a Lyapunov
function of a particular type exists, given by (2.46) or (2.53), respectively, the
presented procedure based on the overapproximation will guarantee stability
and will find a respective Lyapunov function, given that the overapproxima-
tion of (2.12) is sufficiently tight, i.e., (2.30) holds for a sufficiently small ε > 0.
Therefore, making a convex overapproximation, according to Procedure 2.3.1,
introduces no conservatism in the stability analysis as presented in the previous
section.

In the following theorem, we will show the result for the NCS model (2.12)
with protocol (2.18). A similar result holds for the NCS model (2.12) with
protocol (2.21).

Theorem 2.5.1. Suppose system (2.12), with protocol (2.18), has a Lyapunov
function of the form (2.46), i.e., there exist a matrix Π = {πji} ∈ M and
positive definite matrices Pi, i ∈ {1, . . . , N}, such that

Ã⊤
i,h,τ

N∑

j=1

πjiPjÃi,h,τ − Pi � −γI, (2.55)

for all i ∈ {1, . . . , N} and (h, τ) ∈ Θ, and some γ > 0. Then, there exists an ε0,
such that for any ε-tight overapproximation satisfying (2.30), with 0 < ε 6 ε0,
the conditions of Theorem 2.4.1 hold.
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Proof. The proof is given in Appendix A.1.

This result states that the convex overapproximation does not introduce
conservatism when analysing UGES using mode-dependent quadratic Lyapunov
functions.

2.6 Illustrative Example

In this section, we illustrate the presented theory using a well-known benchmark
example in the NCS literature, see, e.g., [24, 34, 62, 103, 134], consisting of a
model of a batch reactor. The linearised batch reactor is given by (2.1), with

[
Ap Bp

Cp

]

=








1.380 −0.208 6.715 −5.676 0 0
−0.581 −4.290 0 0.675 5.679 0

1.067 4.273 −6.654 5.893 1.136 −3.146
0.048 4.273 1.343 −2.104 1.136 0

1 0 1 −1
0 1 0 0







. (2.56)

The continuous-time controller considered in [24, 34, 62, 103, 134] is given by
(2.2a), with

[
Ac Bc

Cc Dc

]

=





0 0 0 1
0 0 1 0
−2 0 0 −2
0 8 5 0



. (2.57)

First, we will analyse the continuous-time NCS as also used in [24, 62,
103, 134]. As done in these references, we consider the TOD and RR protocol
and assume that the controller is directly connected to the actuator, i.e., only
the two outputs are transmitted via the network. Since communication delays
are only considered in [62], and gives in absence of delays (i.e., τ = τ =
0) the same results as in [24], we compare our results with [62]. This will
show that our results provide significantly less conservative bounds on the
uncertain transmission intervals and transmission delays than earlier results in
the literature. Secondly, we illustrate that our framework can equally well deal
with discrete-time controllers, a larger number of nodes than used in previous
examples in the literature, and a nonzero lower bound on the transmission
interval.

2.6.1 Continuous-Time Controller

In order to assess the bounds on the allowable transmission intervals and de-
lays, we first define our NCS model as in Section 2.2.1.C. This model appropri-
ately describes the situation as discussed in this example, where only the plant
outputs y are transmitted over the network and u are sent continuously via
a nonnetworked connection. Then, we derive the uncertain polytopic system
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Figure 2.3: Tradeoff curves between allowable transmission intervals and trans-
mission delays for two different protocols.

(2.25) that overapproximates the NCS model (2.12), using Procedure 2.3.1. As
in [62], we try to obtain combinations of h and τ for which the NCS is stable,
and we assume that τ = 0, and we take h = 10−3. We cannot make h too
small, because, by doing so, Ãσk,hk,τk

, as in (2.12), approaches the identity
matrix and LMI solvers run into numerical problems, as the system becomes
close to unstable. Note that [24, 62, 103, 134] also use nonzero lower bound
on the transmission intervals to prevent Zeno behaviour, although, this lower
bound can be taken arbitrarily small. Using Procedure 2.3.1, we obtain a con-
vex overapproximation, in which we choose εu = 2 as decreasing εu does not
change the results in this example. Using the obtained overapproximation, we
can check for which combinations of h and τ , the LMIs in Corollary 2.4.3 and
Theorem 2.4.4 are feasible. This results for each τ in the maximum achievable
h (or vice versa) for which the LMIs in Corollary 2.4.3 and Theorem 2.4.4 are
satisfied. This results in tradeoff curves, as shown in Figure 2.3. These trade-
off curves can be used to impose or select a suitable network with a certain
communication delay and a certain allowable transmission interval.

Moreover, in Figure 2.3, also the tradeoff curves as obtained in [62] are
given. We conclude that our proposed methodology is less conservative than
the one in [62]. More interestingly, in case there is no delay, i.e., τ = τ = 0,
the maximum allowable transmission interval h obtained in [24], which pro-
vide the least conservative results known in literature so far, was h = 0.0108,
while we obtain h = 0.0665. In [134], h was estimated (using simulations) to
be approximately 0.08 for the TOD protocol. Furthermore, for the RR proto-
col, [24] provides the bound h = 0.009 in the delay-free case, while we obtain
h = 0.0645. Also in [134], for a constant transmission interval, i.e. h = h, the
bound 0.0657 was obtained for the RR protocol. The case where the trans-
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Figure 2.4: Tradeoff curves between allowable transmission intervals and trans-
mission delays.

mission interval is constant, provides an upper bound on the true maximum
allowable transmission interval (MATI). We can therefore conclude that for
this example, our methodology reduces conservatism significantly in compari-
son to existing methodologies and even approximates known estimates of the
true MATI closely.

2.6.2 Discrete-Time Controller

Next, we compute h, h, τ , and τ for the NCS with a discrete-time controller as in
(2.2b). Contrary to the example presented above, and all examples considered
in [24, 62, 103, 134], we now designate a node to each single sensor and actuator,
resulting in an NCS with four nodes. By doing so, we try to point out that
our methodology is also suitable to study more complex problems. In this
example, the controller is given by an exact discretisation of the continuous-
time controller (2.2a) with matrices (2.57) using a zero-order hold and assuming
a nominal transmission interval hnom = 0.01 and a bounded variation hvar

around this nominal transmission interval. We assume that τ = 0 and h 6= 0,
i.e., transmissions can be infinitely fast, but do not occur infinitely often. In
this example, we select h = hnom − hvar and h = hnom + hvar, where 2hvar > 0
determines the range of allowable transmission intervals and we only consider
the RR protocol.

After obtaining a convex overapproximation using Procedure 2.3.1, in which
we have taken εu = 0.02, and assessing stability using the results of Theorem
2.4.4, we can now plot for each τ , the largest range, determined by h = hnom −
hvar and h = hnom + hvar, for which UGES is guaranteed. In this example, we
take hnom = 0.01, which results in the tradeoff curve as shown in Figure 2.4.
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2.7 Conclusions

In this chapter, we studied the stability of networked control systems (NCSs)
that are subject to communication constraints, time-varying transmission inter-
vals and time-varying delays, and packet dropouts. We analysed the stability
of the NCS when the communication sequence is determined by one of the
protocols in the newly introduced classes of quadratic protocols or periodic
protocols, having the well-known try-once-discard (TOD) and the round-robin
(RR) as special cases. This analysis was based on a discrete-time switched
linear uncertain system to model the NCS. A new and efficient convex over-
approximation was proposed that allows us to analyse stability using a finite
number of linear matrix inequalities. We presented an automated procedure to
obtain the overapproximation and we formally showed that the convex overap-
proximation can be made arbitrarily tight and does not introduce conservatism.
On a benchmark example, we illustrated the advantages and the effectiveness
of the developed theory. In particular, we showed that stability can be guaran-
teed for a much larger maximum allowable transmission interval and maximum
allowable transmission delay, when compared to the existing results in the lit-
erature. In addition, our results can be applied for stability analysis of NCS
with discrete-time controllers and nonzero lower bounds on the transmission
intervals and delays, which could not be analysed before even though they are
highly relevant for practical implementations of networked controllers.

Future work focusses on studying the case where delays are not restricted
to be smaller than the transmission interval, on the inclusion of quantisation
effects of the sensor and actuator signals on the closed-loop stability and per-
formance, and on co-design methods of the controller and the protocol.
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Abstract – In this chapter, we study the stability of networked control systems
(NCSs) that are subject to time-varying transmission intervals, time-varying
transmission delays, packet dropouts and communication constraints. Commu-
nication constraints impose that, per transmission, only one sensor or actuator
node can access the network and send its information. Which node is given ac-
cess to the network at a transmission time is orchestrated by a so-called network
protocol. The transmission intervals and transmission delays are described by
a sequence of continuous random variables, which is in contrast with many
existing stochastic approaches that only allow a finite or countable number
of transmission intervals and/or delays. The complexity that the continuous
character of the probability distribution introduces, is overcome using a novel
convex overapproximation technique that preserves the available probabilistic
information. By focussing on linear plants and controllers and quadratic, pe-
riodic and stochastic protocols, we present a modelling framework for NCSs
based on discrete-time linear switched and parameter-varying systems. Stabil-
ity (in the mean-square) of these systems is analysed using a new stochastic
computational technique and a finite number of linear matrix inequalities. On
a benchmark example of a batch reactor, we illustrate the developed theory.

1This chapter is based on [39].
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3.1 Introduction

Modelling, analysis, and controller design of networked control systems (NCSs)
have recently received considerable attention in the literature, as is evidenced
by the overview papers, e.g., [4, 67, 144, 147], and the book [16]. The main
reason for this attention is the many advantages that NCSs offer, such as re-
duced system wiring and increased flexibility. A drawback of networking the
control system is, however, that it becomes subject to time-varying delays,
time-varying transmission intervals, packet dropouts, and that communication
is constrained, (i.e., it is no longer possible to transmit all sensor and actuator
signals at every transmission instant). Most of the literature studies the effects
of only some of the phenomena, while ignoring the others. Clearly, it is impor-
tant to consider the combined presence of time-varying delays and time-varying
transmission intervals, packet dropouts and communication constraints, as in
any practical NCS they will be present simultaneously.

Despite the importance of studying the combined presence of the mentioned
network-induced phenomena, only few results exist that provide a framework
that allows studying these phenomena simultaneously. For instance, time-
varying transmission intervals and communication constraints (and, less explic-
itly, packet dropouts) has been considered in [103, 134] and time-varying trans-
mission intervals, time-varying delays, (again less explicitly, packet dropouts)
and communication constraints in [26, 40, 62]. The mentioned papers provide
methods for computing the so-called maximum allowable transmission inter-
val (MATI) and maximum allowable delays (MAD), given a certain network
protocol that determines which sensor and/or actuator information is sent at
a transmission instant. Stability is guaranteed as long as the actual trans-
mission intervals and delays are always smaller than the MATI and MAD,
respectively. Three other network induced phenomena, namely time-varying
transmission intervals, time-varying delays and packet dropouts, are consid-
ered in [29, 99, 142], in which stability is analysed for the case that the number
of consecutive dropouts are upper bounded, and bounds on the transmission
intervals and delays are available.

A common feature of the aforecited references is that conditions for sta-
bility are derived, given bounds on the various network phenomena. In many
situations, however, transmission intervals, delays and packet dropouts can
be described as random phenomena, modelled using probability distributions.
Unfortunately, fewer stability results are available in this context. A com-
mon approach found in literature, see, e.g., [96, 114, 115, 138, 143, 146], is to
take a finite or countable set of possible transmission intervals and delays and
attribute probabilities to each element of the set. In this way, a discrete prob-
ability distribution is obtained and the NCS can be effectively modelled as a
Markov jump system [32]. It is, however, not possible to make any statements
about stability when a continuous probability distribution is given and, con-
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sequently, the number of elements in the set is not finite or countable. Other
approaches are taken in [105], in which a delay-dependent controller is pro-
posed, and in [95], which discusses so-called ‘model-based control’. We will,
as in [5, 124], focus on the more basic ‘emulation-based’ approach, i.e., we as-
sume the controller to be designed to stabilise the plant without considering
the network and we study how this controller behaves in the presence of the
stochastic network.

In this chapter, we focus on linear plants and linear controllers and study the
stability (in the mean-square) of NCSs in the presence of communication con-
straints, time-varying transmission intervals, time-varying delays and dropouts,
which the latter three are described by an independent and identically dis-
tributed sequence of random variables and in which the delays are assumed to
be smaller than the transmission intervals. Contrary to [96, 114, 115, 138, 143,
146], we allow for continuous probability distributions with possibly infinite
supports, as in [5, 124]. In particular, the techniques we provide are applicable
to any distribution whose tail is exponentially bounded and, thereby, includes
the exponential distribution that was studied in [124] as a special case. Fur-
thermore, we consider three classes of protocols, namely: the class of quadratic
network protocols, of which the well-known try-once-discard (TOD) protocol
is a special case, the class of periodic protocols, which includes the round-
robin (RR) protocol and was also studied in [5], and the stochastic protocol,
which was introduced in [124]. Next to treating a more general setup than in
[5, 124], the essential difference between [5, 124] and the work presented in this
chapter is that [5, 124] use a continuous-time modelling paradigm, while we
apply a discrete-time modelling framework that leads to a switched linear sys-
tem model that is stochastically parameter varying. We propose novel convex
overapproximation techniques, which are used to handle continuous probability
distributions, and newly developed linear matrix inequalities (LMIs) to guar-
antee stability (in the mean-square) of NCSs with the transmission intervals
and delays satisfying a continuous probability distribution. Note that in this
chapter, we consider the simultaneous presence of all the aforementioned net-
work effects, whereas in [5, 96, 114, 115, 124, 138, 143, 146] only some of them
are considered. We will show the effectiveness of the presented approach on
the benchmark example of a batch reactor as also used in [5, 40, 62, 124].

The remainder of this chapter is organised as follows. After introducing the
necessary notational conventions used in this chapter, we introduce the model
of the NCS in Section 3.2 and propose a method to write it as a discrete-time
switched linear parameter-varying system. We also state a precise problem
formulation. In Section 3.3, we provide a procedure to obtain a convex over-
approximation of NCS systems with time-varying transmission intervals and
time-varying transmission delays, which preserves the probabilistic informa-
tion present in the probability distribution. This result will be used in the
conditions for stability of NCS that we present in Section 3.4. In Section 3.5,
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we will formally proof the fact that employing the convex overapproximation
technique presented in this chapter does not introduce any conservatism. Fi-
nally, we illustrate the stability results using a numerical benchmark example
in Section 3.6 and draw conclusions in Section 3.7. Appendix A.2 contains the
proofs of the lemmas and theorems.

3.1.1 Nomenclature

The following notational conventions will be used. diag(A1, . . . , AN ) denotes a
block-diagonal matrix with the entries A1, . . . , AN on the diagonal, A⊤ ∈ R

m×n

denotes the transposed of the matrix A ∈ R
n×m, and λmax(A) and λmin(A)

denote the maximum and minimum eigenvalue of a symmetric matrix A ∈
R

n×n, respectively. For a vector x ∈ R
n, we denote by xi the i-th component

and by ‖x‖ :=
√
x⊤x its Euclidean norm. For a matrix A ∈ R

n×m, we denote
by ‖A‖ :=

√

λmax(A⊤A) its spectral norm. For brevity, we sometimes write

symmetric matrices of the form
[

A B

B⊤ C

]

, as
[

A B
⋆ C

]

. By lims↓t and lims↑t,

we denote the limit as s approaches t from above or below, respectively. The
convex hull and interior of a set A are denoted by coA and intA, respectively,
and the indicator function of a set A ⊆ R

n is the function 1A : R
n → {0, 1} that

satisfies 1A(x) = 1 if x ∈ A, and 1A(x) = 0 if x /∈ A. A polytope is the convex
hull of finitely many points. The probability distribution of a random variable
x, taking values in R

n, is given in terms of the probability measure µ, which
satisfies µ(Rn) = 1. We assume that the measure µ can be decomposed into a
continuous component µc and a discrete component µd, i.e., µ = µc +µd, where
µc(A) =

∫

A pc(ω)dω for some Lebesgue-integrable probability density function
(pdf) pc : R

n → R+ and where µd(A) =
∑

i∈{j |aj∈A} pd,i, for some finite or

countable set of isolated atom points {ai | i ∈ I} and a corresponding set of
weights {pd,i | i ∈ I}, where I ⊆ N. This probability measure µ defines the
probability that the event x ∈ A occurs, denoted by Pr(x ∈ A) := µ(A),
and defines the expected value of f(x), for a mapping f : R

n → R
m, as

E(f(x)) :=
∫

Rn f(ω)pc(ω)dω +
∑∞

i=1 f(ai)pd,i.

3.2 NCS Model and Problem Statement

In this section, we present the model describing networked control systems
(NCSs) subject to communication constraints, time-varying transmission in-
tervals and delays. We will later comment on how this model can accom-
modate for packet dropouts. Let us consider the linear time-invariant (LTI)
continuous-time plant given by

{
d
dtx

p(t) = Apxp(t) +Bpû(t)

y(t) = Cpxp(t),
(3.1)
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Figure 3.1: Illustration of a typical evolution of y and ŷ.

where xp ∈ R
np denotes the state of the plant, û ∈ R

nu the most recently
received control variable, y ∈ R

ny the (measured) output of the plant and
t ∈ R+ the time. The controller, also an LTI system, is assumed to be given in
either continuous time by

{
d
dtx

c(t) = Acxc(t) +Bcŷ(t)

u(t) = Ccxc(t) +Dcŷ(t),
(3.2a)

or in discrete time by
{

xc
k+1 = Acxc

k +Bcŷk

u(tk) = Ccxc
k +Dcŷ(tk).

(3.2b)

In these descriptions, xc ∈ R
nc denotes the state of the controller, ŷ ∈ R

ny the
most recently received output of the plant and u ∈ R

nu denotes the controller
output. At transmission instant tk, k ∈ N, (parts of) the outputs of the plant
y(tk) and the controller u(tk) are sampled and are transmitted over the network.
We assume that they arrive after a delay τk at instant rk := tk + τk, called
the arrival instant, see Fig. 3.1. In the case we have a discrete-time controller
(3.2b), the states of the controller xc

k+1 are updated using ŷk := limt↓rk
ŷ(t),

i.e., as in [34, 40], directly after ŷ is updated. Note that in this case, the update
of xc

k+1 in (3.2b) has to be performed in the time interval (rk, tk+1].
Let us now explain in more detail the functioning of the network and define

these ‘most recently received’ ŷ and û exactly. The plant is equipped with
sensors and actuators that are grouped into N nodes. At each transmission
instant tk, k ∈ N, one node, denoted by σk ∈ {1, . . . , N}, gets access to the
network and transmits its corresponding values. These transmitted values are
received and implemented on the controller and/or the plant at arrival instant
rk. As in [62], a transmission only occurs after the previous transmission has
arrived, i.e., tk+1 > rk > tk, for all k ∈ N, where t0 = 0. In other words, we
consider the delays to be smaller than the transmission interval. After each
transmission and reception, the values in ŷ and û are updated with the newly
received information, while the other values in ŷ and û remain the same, as no
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additional information is received. This leads to the constrained data exchange
expressed as

{

ŷ(t) = Γy
σk
y(tk) + (I − Γy

σk
)ŷ(tk)

û(t) = Γu
σk
u(tk) + (I − Γu

σk
)û(tk)

(3.3)

for all t ∈ (rk, rk+1]. The matrix Γσk
:= diag(Γy

σk
,Γu

σk
) is a diagonal matrix,

given by
Γi = diag(γi,1, . . . , γi,ny+nu

), (3.4)

when σk = i. In (3.4), the elements γi,j , with i ∈ {1, . . . , N} and j ∈
{1, . . . , ny}, are equal to one, if plant output yj is in node i, elements γi,j+ny

,
with i ∈ {1, . . . , N} and j ∈ {1, . . . , nu}, are equal to one, if controller output
uj is in node i, and are zero elsewhere.

The value of σk ∈ {1, . . . , N} in (3.3) indicates which node is given access
to the network at transmission instant tk, k ∈ N. Indeed, (3.3) reflects that
the values in û and ŷ corresponding to node σk are updated just after rk, with
the corresponding transmitted values at time tk, while the others remain the
same. A scheduling protocol determines the sequence (σ0, σ1, . . .) and particu-
lar protocols will be made explicit below.

In this chapter, we consider the case that both the transmission intervals
hk := tk+1 − tk > 0, k ∈ N, and the transmission delays τk := rk − tk > 0,
k ∈ N, are varying in time. Since we assumed that tk+1 > rk, for all k ∈ N, we
have that τk < hk. Furthermore, we assume that the transmission intervals and
transmission delays are described by an independent and identically distributed
(iid) sequence of (possibly) continuous random variables. These assumptions
are made explicit below.

Assumption 3.2.1. For each k ∈ N, the transmission interval hk and the
transmission delay τk are continuous random variables, characterised by a prob-
ability distribution that satisfies Pr

(
(h, τ) ∈ Θ

)
= 1, where

Θ ⊆
{
(h, τ) ∈ R

2 | h > 0, 0 6 τ < h
}
. (3.5)

Furthermore, the sequence of transmission intervals and delays {(hk, τk)}k∈N

is iid.

3.2.1 Incorporating Packet Dropouts

In the model presented above, we only considered communication constraints,
time-varying transmission intervals and delays. It can, however, easily be
adapted to accommodate for packet dropouts as well. To do so, we divide
the transmissions into successful and failed ones, and model the sequence of
transmissions by a two-state Markov process, as was also done in [2, 74, 140].
This model, which is depicted in Fig. 3.2, is also known as the Gilbert-Elliot
model and has two states, namely, the ‘packet received’ state (dk = 1) and
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Figure 3.2: The Gilbert-Elliot model of packet dropouts.

the ‘packet dropped’ state (dk = 0). The conditional probability that a packet
is received or dropped dk ∈ {0, 1} at time tk, given that the previous one is
dropped or received dk−1 ∈ {0, 1}, is given by

Pr(dk = i|dk−1 = j) = ψi,j (3.6)

for all k ∈ N\{0}, where ψ0,j + ψ1,j = 1 for all j ∈ {0, 1}, and it is assumed
that d0 = 1.

In this Gilbert-Elliot model, the probability that exactly δ successive pack-
ets are dropped before one is received equals ψ1,0ψ

δ−1
0,0 ψ0,1 for δ > 0 and the

probability that two subsequent packets arrive equals ψ1,1. Now by only con-
sidering the successful transmissions and redefining the transmission interval
as the time between two subsequent successful transmissions, as also done in
[62, 103], packet dropouts can be incorporated in the NCS model. As a result,
the probability that the interval between two subsequent successful transmis-
sion and the transmission delay satisfy (h, τ) ∈ Q, for some Q ⊆ R

2, becomes

Pr
(
(h, τ) ∈ Q

)
= ψ1,1Pr

(
(h1, τ) ∈ Q

)
+

∞∑

δ=1

ψ1,0ψ
δ−1
0,0 ψ0,1Pr

(
(

δ+1∑

i=1

hi, τ) ∈ Q
)
.

(3.7)

In the remainder of the chapter, we will assume that the given probability
distribution incorporates the information on the packet-dropout probability as
outlined above.

3.2.2 The NCS as a Time-Varying Switched System

To analyse the stability of the NCS described above, we transform it into a
discrete-time model. In this framework, we need a discrete-time equivalent of
(3.1). To arrive at this description, let us first define the network-induced error
as {

ey(t) := ŷ(t) − y(t)

eu(t) := û(t) − u(t).
(3.8)

The stochastically parameter-varying discrete-time switched system can now be
obtained by describing the evolution of the states between tk and tk+1 = tk+hk.
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In order to do so, we define xp
k := xp(tk), uk := u(tk), ûk := limt↓rk

û(t) and
eu
k := eu(tk). Since û, as in (3.3), is a left-continuous piecewise constant signal,

i.e. lims↑t û(s) = û(t), we can write ûk−1 = limt↓rk−1
û(t) = û(rk) = û(tk).

Now using the fact that (3.3) and (3.8) yield ûk−1 = uk + eu
k and ûk−1 − ûk =

Γu
σk
eu
k , we can write the exact discretisation of (3.1) as follows:

xp
k+1 = eAphkxp

k +

∫ hk

0

eApsdsBp(uk + eu
k) −

∫ hk−τk

0

eApsdsBpΓu
σk
eu
k . (3.9)

A discretised equivalent of (3.2a) is obtained in a similar fashion. By defining
xc

k := xc(tk), yk := y(tk), ey
k := ey(tk), ŷk := limt↓rk

ŷ(t), and observing that
ŷk−1 = ŷ(tk), it holds that

xc
k+1 = eAchkxc

k +

∫ hk

0

eAcsdsBc(yk + ey
k) −

∫ hk−τk

0

eAcsdsBcΓy
σk
ey
k. (3.10)

We now present three different models each describing a particular setup
for the NCS. The first and the second model cover the situation where both
the plant and the controller outputs are transmitted over the network, differing
by the fact that the controller is given by (3.2a) and (3.2b), respectively. In
the third model, it is assumed that the controller is given by (3.2a) and that
only the plant outputs y are transmitted over the network and u are sent
continuously via an ideal nonnetworked connection. We include this particular
case, because it is often used in examples in the NCS literature, (see, e.g., the
benchmark example in [5, 34, 40, 41, 62, 103, 124, 134]).

A) The NCS model with controller (3.2a): For an NCS having controller
(3.2a), the complete NCS model is obtained by combining (3.3), (3.8), (3.9),
and (3.10) and defining

x̄ :=
[
xp⊤ xc⊤ ey⊤ eu⊤]⊤

. (3.11)

This results in the discrete-time model

x̄k+1 =
[

Ahk
+ Ehk

BDC Ehk
BD − Ehk−τk

BΓσk

C(I − Ahk
− Ehk

BDC) I − D−1Γσk
+ C(Ehk−τk

BΓσk
− Ehk

BD)

]

︸ ︷︷ ︸

=:Ãσk,hk,τk

x̄k,

(3.12)
with x̄k = x̄(tk), in which Ãσk,hk,τk

∈ R
n×n, with n = np + nc + ny + nu, and

Aρ :=

[
eApρ 0
0 eAcρ

]

, B :=

[
0 Bp

Bc 0

]

, C :=

[
Cp 0
0 Cc

]

(3.13a)

D :=

[
I 0
Dc I

]

, Eρ :=

[∫ ρ

0
eApsds 0
0

∫ ρ

0
eAcsds

]

, ρ ∈ R. (3.13b)
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B) The NCS model with controller (3.2b): The complete NCS model
is obtained by combining (3.2b), (3.3), (3.8), and (3.9), and defining x̄ :=
[xp⊤ xc⊤ ey⊤ eu⊤]⊤. This also results in the discrete-time model (3.12), in
which now

Aρ :=

[
eApρ 0

0 Ac

]

, B :=

[
0 Bp

Bc 0

]

, C :=

[
Cp 0
0 Cc

]

, (3.14a)

D :=

[
I 0
Dc I

]

, Eρ :=

[∫ ρ

0
eApsds 0
0 I

]

, ρ ∈ R. (3.14b)

C) The NCS model if only y is transmitted over the network: In
this case we assume that only the outputs of the plant are transmitted over the
network and the controller communicates its values continuously and without
delay. We therefore have that u(t) = û(t), for all t ∈ R+, which allows us to
combine (3.1) and (3.2a), yielding

[
ẋp(t)
ẋc(t)

]

=

[
Ap BpCc

0 Ac

] [
xp(t)
xc(t)

]

+

[
BpDc

Bc

]

ŷ(t). (3.15)

Since ŷ is still updated according to (3.3), we can describe the evolution of the
states between tk and tk+1 = tk + hk in a similar fashion as in (3.9). In this
case, (3.11) reduces to

x̄ :=
[
xp⊤ xc⊤ ey⊤]⊤

, (3.16)

also resulting in (3.12), in which now

Aρ := e

(
[

Ap BpCc

0 Ac

]

ρ
)

, B :=

[
BpDc

Bc

]

, C :=
[
Cp 0

]
, (3.17a)

D := I, Eρ :=

∫ ρ

0

e

(
[

Ap BpCc

0 Ac

]

s
)

ds, ρ ∈ R. (3.17b)

3.2.3 Protocols as a Switching Function

Based on the previous modelling steps, the NCS is formulated as a stochas-
tically parameter-varying discrete-time switched linear system (3.12). In this
framework, protocols are considered as the switching function determining σk,
k ∈ N. We consider three classes of protocols, namely quadratic and periodic
protocols, as introduced in [40], and stochastic protocols, as introduced in [124].

A) Quadratic Protocols: A quadratic protocol is a protocol, for which the
switching function can be written as

σk = arg min
i=1,...,N

x̄⊤k Pix̄k, (3.18)
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where Pi, i ∈ {1, . . . , N}, are certain given matrices. In case two or more
nodes have the same minimal values, one of them can be chosen arbitrarily. As
was shown in [40], the well-known try-once-discard (TOD) protocol, see, e.g.,
[62, 134], belongs to this class of protocols. In the TOD protocol, the node that
has the largest network-induced error, i.e., the largest difference between the
latest transmitted values and the current values of the signals corresponding to
the node, is granted access to the network. The TOD protocol can be modelled
as in (3.18) by adopting the following structure in the Pi matrices:

Pi = P̄ − diag(0,Γi), (3.19)

in which Γi, i ∈ {1, . . . , N}, is given by (3.4) and P̄ is some arbitrary ma-
trix. Indeed, if we define ẽi

k := Γiek, being the error corresponding to node i
(extended with zeros on the entries that do not correspond to node i), where

ek := [ey⊤
k , eu⊤

k ]⊤, (3.18) becomes

σk = arg min
{
−e⊤k Γ1ek, . . . ,−e⊤k ΓNek

}
= arg max

{
‖ẽ1k‖, . . . , ‖ẽN

k ‖
}
, (3.20)

which is the TOD protocol.

B) Periodic Protocols: Another class of protocols that is considered in
this chapter is the class of so-called periodic protocols. A periodic protocol is
a protocol that satisfies for some Ñ ∈ N

σk+Ñ = σk, for all k ∈ N. (3.21)

Ñ is then called the period of the protocol. The well-known round-robin (RR)
protocol belongs to this class of protocols and is defined by

{σ1, . . . , σN} = {1, . . . , N}, (3.22)

and period Ñ = N , i.e., during each period of the protocol every node has
access to the network exactly once.

C) Stochastic Protocols: The third class of protocols that is considered in
this chapter is the class of stochastic protocols. Contrary to the quadratic and
periodic protocol, in which the resulting switching function is deterministic, the
stochastic protocol determines σk ∈ {1, . . . , N} through a Markov chain. The
conditional probability that node i, i ∈ {1, . . . , N}, gets access to the network
at time tk, given the value of σk−1 ∈ {1, . . . , N}, is given by

Pr(σk = i|σk−1 = j) = πij for all k ∈ N\{0}, (3.23)

where
∑N

i=1 πij = 1 for all j ∈ {1, . . . , N}, and σ0 ∈ {1, . . . , N} is assumed to
be given.
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For each of the three classes of protocols, the above modelling approach now
provides a description of the NCS in the form of a stochastically parameter-
varying discrete-time switched linear system given by (3.12) and one of the
protocols, characterised by (3.18), (3.21) or (3.23).

3.2.4 Stability of the NCS

The problem studied in this chapter is to analyse stability of the stochastically
parameter-varying discrete-time switched linear system (3.12) with protocols
(3.18), (3.21) or (3.23) and the transmission intervals and transmission delays
satisfying Assumption 3.2.1. Let us now formally define stability for the NCS.

Definition 3.2.2. The continuous-time NCS given by (3.1), (3.2b), (3.3), and
(3.8), with protocols satisfying (3.18), (3.21) or (3.23), is said to be uniformly
globally mean-square exponentially stable (UGMSES) if there exist cc, βc > 0,
such that for any initial condition x̄(0), for a sequence of random variables
{(hk, τk)}k∈N, and for all t ∈ R+ it holds that

E
(
‖x̄(t)‖2

)
6 cc‖x̄(0)‖2e−βct. (3.24)

Stability of the continuous-time NCS can be analysed by assessing stability
of the discrete-time uncertain switched linear system (3.12) with switching
functions satisfying (3.18), (3.21) or (3.23), as we will show below. Before
doing so, let us formally define stability of this discrete-time system.

Definition 3.2.3. System (3.12) with switching sequences satisfying (3.18),
(3.21) or (3.23) is said to be uniformly globally mean-square exponentially
stable (UGMSES) if there exist cd, βd > 0, such that for any initial condition
x̄0 ∈ R

n, for a sequence of random variables {(hk, τk)}k∈N, and for all k ∈ N,
it holds that

E
(
‖x̄k‖2

)
6 cd‖x̄0‖2e−βdk. (3.25)

Since the switched uncertain linear system (3.12) with switching sequences
satisfying (3.18), (3.21) or (3.23) is formulated in discrete time, we can only
assess stability at the transmission instants. However, we will show that UGM-
SES of the discrete-time model implies UGMSES of the continuous-time NCS
in the sense of Definition 3.2.2 under an assumption on the probability distri-
bution. To prove this, we first need a technical lemma.

Lemma 3.2.4. The continuous-time system, given by (3.1), (3.2a) or (3.2b),
(3.3) and (3.8) with protocols satisfying (3.18), (3.21) or (3.23) is UGMSES,
if the discrete-time system (3.12) with switching sequences satisfying (3.18),
(3.21) or (3.23) is UGMSES, Assumption 3.2.1 is satisfied, the probability dis-
tribution for (h, τ) satisfies E(eλ̄h) < ch, for some λ̄ > 0 and some ch > 0, and
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there exists a function γ : R+ → R+, satisfying E(γ(h)) < cγ , for some cγ > 0,
such that the solutions of (3.1), (3.2a) or (3.2b), (3.3) and (3.8) satisfy

‖x̄(tk + t̃)‖2
6 γ(hk)‖x̄(tk)‖2, (3.26)

for all t̃ ∈ (0, hk], k ∈ N.

Proof. The proof is given in Appendix A.2.

In order to prove the main result of this section, we make the following
assumption on the probability distribution for (h, τ).

Assumption 3.2.5. There exists a constant λ̄, such that λ̄ > max{0, λmax(Λ̄
⊤+

Λ̄)}, with

Λ̄ =







diag(Ap, Ac), if (3.12) is as in Section 3.2.2.A,

diag(Ap, 0), if (3.12) is as in Section 3.2.2.B,
[
Ap BpCc

0 Ac

]

, if (3.12) is as in Section 3.2.2.C,

(3.27)

such that the probability distribution of (h, τ) satisfies E(eλ̄h) < ch, for some
ch > 0.

Assumption 3.2.5 excludes all probability distributions whose tails are not
exponentially bounded, so-called heavy-tailed probability distributions, see,
e.g., [7]. However, when the random variable (h, τ) has an exponentially
bounded probability distribution, such as the Uniform, the Normal, and the
Gamma distribution, stability can be analysed using the results presented in
this chapter. This makes the results presented in this chapter more general
than the results of [124], in which only exponential distributions are discussed.
In the next theorem, we state that UGMSES of the discrete-time NCS model
implies UGMSES of the continuous-time NCS, given that Assumptions 3.2.1
and 3.2.5 are satisfied.

Theorem 3.2.6. Assume the discrete-time system (3.12) with switching se-
quences satisfying (3.18), (3.21) or (3.23) is UGMSES and Assumptions 3.2.1
and 3.2.5 are satisfied. Then, the corresponding continuous-time NCS given by
(3.1), (3.2b), (3.3), and (3.8), with protocols satisfying (3.18), (3.21) or (3.23)
is also UGMSES.

Proof. The proof can be found in Appendix A.2.

This theorem states that it suffices to consider the discrete-time model
(3.12) with switching sequences satisfying (3.18), (3.21) or (3.23) to assess
UGMSES of the continuous-time NCS system.



3.3. Obtaining a Convex Overapproximation 51

3.3 Obtaining a Convex Overapproximation

In the previous section, we obtained an NCS model in the form of a stochasti-
cally parameter-varying discrete-time switched linear system. In the stability
conditions developed in the next section, we will employ techniques originally
developed for the situation in which the time-varying transmission intervals
and delays are contained in some bounded set Θ̄, i.e., (hk, τk) ∈ Θ̄ for all k ∈ N

without any probability information, as discussed in Chapter 2. As in Chapter
2, the matrix Ãσk,hk,τk

depends nonlinearly on the uncertain parameters hk

and τk, which is not convenient for stability analysis. To make the system
amenable for analysis, in Chapter 2 a procedure was given to overapproximate
Ãσk,hk,τk

by a polytopic system with norm-bounded additive uncertainty, i.e.,

x̄k+1 =
( ∑L

l=1 α
l
kĀσk,l + B̄∆kC̄σk

)
x̄k, (3.28)

where Āσ,l ∈ R
n×n, B̄ ∈ R

n×q, C̄σ ∈ R
q×n, for σ ∈ {1, . . . , N} and l ∈

{1, . . . , L}, with L the number of vertices of the polytope. The vector αk =
[α1

k . . . α
L
k ]⊤ ∈ A, k ∈ N, is time varying with

A =
{

α ∈ R
L
∣
∣
∑L

l=1 α
l = 1, αl > 0 ∀ l ∈ {1, . . . , L}

}

(3.29)

and ∆k ∈ ∆, k ∈ N, where

∆ =
{

diag(∆1, . . . ,∆Q) ∈ R
q×q

∣
∣
∣ ∆i ∈ R

qi×qi , ‖∆i‖ 6 1 ∀ i ∈ {1, . . . , Q}
}

.

(3.30)

The system (3.28) is constructed to be an overapproximation of (3.12), in the
sense that for all σ ∈ {1, . . . , N}, it holds that

{

Ãσ,h,τ | (h, τ) ∈ Θ
}

⊆
{

∑L
l=1 α

lĀσ,l + B̄∆C̄σ

∣
∣α ∈ A,∆ ∈ ∆

}

. (3.31)

The approach presented in Chapter 2, based on (3.31), is not suitable in the
context here, as this would remove all information present in the probability
distribution of (h, τ). We therefore propose a new procedure that also pre-
serves the probabilistic information contained in the probability distribution.
Therefore, we propose to partition Θ into triangles Sm, m ∈ {1, . . . ,M}, and
make overapproximations of Ãσk,hk,τk

for each individual triangle Sm. This
allows us to assign a probability p̄m = Pr

(
(h, τ) ∈ Sm

)
to each triangle and

adopt this information in the subsequent stability analysis. Roughly speak-
ing, the (possibly) continuous probability distribution is approximated by a
discrete probability distribution that assigns probabilities to (h, τ) to each tri-
angle Sm in the partitioning of Θ. Since it is in general not possible to achieve
a partitioning satisfying ∪M

m=1Sm = Θ, (as we use a finite number of bounded
triangles Sm, m ∈ {1, . . . ,M}, and Θ may be an unbounded set), we introduce
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a parameter h⋆ and partition only the set {(h, τ) ∈ Θ |h 6 h⋆} into triangles
Sm, i.e., ∪M

m=1Sm := {(h, τ) ∈ Θ |h 6 h⋆}. This will result in a ‘tail’ of the
probability distribution Q := Θ\ ∪M

m=1 Sm that is not partitioned into trian-
gles. We will, however, propose a stability analysis method that incorporates
this tail Q, by exploiting that this parameter h⋆ can be chosen a sufficiently
large. Now inside each triangle Sm, the matrix set {Ãσ,h,τ | (h, τ) ∈ Sm} is
overapproximated, according to the procedure presented in [40], in the sense
that for each Sm, m ∈ {1, . . . ,M}, and for all σ ∈ {1, . . . , N} it holds that

{

Ãσ,h,τ | (h, τ) ∈ Sm

}

⊆
{

∑L
l=1 α

lĀσ,m,l + B̄m∆C̄σ |α ∈ A,∆ ∈ ∆
}

, (3.32)

where now Āσ,m,l ∈ R
n×n, B̄m ∈ R

n×q.
A specific feature of the approach presented in this chapter is that, similar to

[40], the approximation can be made arbitrarily tight, by selecting a sufficiently
large h⋆ > 0, and by making every triangle Sm sufficiently small. To properly
explain what we mean by triangles that are ‘sufficiently small’, let us introduce
the notion of diameter of a set S ⊆ R

2 as

diamS := sup
v,w∈S

‖v − w‖. (3.33)

By choosing h⋆ > 0 sufficiently large, and by choosing the diameter of the
triangles Sm, m ∈ {1, . . . ,M}, smaller than ε, i.e., by choosing diamSm 6

ε, for some sufficiently (small) ε > 0, we can show that the existence of a
Lyapunov function of a particular type for (3.12) is equivalent to the existence
of a Lyapunov function of the same type for (3.28) for all σ ∈ {1, . . . , N} and
all m ∈ {1, . . . ,M}. Therefore, we can let the introduced conservatism in the
overapproximation vanish by making the partitioning sufficiently refined. We
will formalise this result in Section 3.5.

Let us now formalise the procedure to obtain the convex overapproximation
as outlined above. For a formal proof that the following procedure indeed
results in an overapproximation, in the sense that (3.32) holds, the reader is
referred to Chapter 3.

Procedure 3.3.1.

• Given constants h⋆ > 0 and ε > 0, choose M triangles Sm ⊆ Θ, m ∈
{1, . . . ,M}, satisfying

Sm =co{(h̃m,1,τ̃m,1), (h̃m,2, τ̃m,2),(h̃m,3, τ̃m,3)}, (3.34)

where (h̃m,l, τ̃m,l), l ∈ {1, 2, 3} denote the vertices of the triangle Sm,
such that

1. Pr
(
(h, τ) ∈ (Sp ∩ Sm)

)
= 0, for all m, p ∈ {1, . . . ,M} and p 6= m,
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2. diamSm 6 ε, for all m ∈ {1, . . . ,M},
3. ∪M

m=1Sm := {(h, τ) ∈ Θ |h 6 h⋆}.
• Compute p̄m = Pr

(
(h, τ) ∈ Sm

)
for all m ∈ {1, . . . ,M}.

• Define
Āσ,m,l := Ãσ,h̃m,l,τ̃m,l

, (3.35)

for all σ ∈ {1, . . . , N} and (h̃m,l, τ̃m,l), m ∈ {1, . . . ,M}, l ∈ {1, 2, 3}.
• To bound the approximation error, decompose the matrix Λ̄, as in (3.27),

into its real Jordan form [71], i.e., Λ̄ := TΛT−1, where T is an invertible
matrix and

Λ = diag(Λ1, . . . ,ΛK) (3.36)

with Λi ∈ R
ni×ni , i ∈ {1, . . . ,K}, the i-th real Jordan block of Λ̄. Now

compute for each real Jordan block Λi, i ∈ {1, . . . ,K}, the worst case
approximation error, i.e.

δA
i,m = max

α∈A

∥
∥
∥e

Λi

∑3
l1=1 αl1 h̃m,l1 −

3∑

l2=1

αl2eΛih̃m,l2

∥
∥
∥, (3.37a)

δEh

i,m = max
α∈A

∥
∥
∥

3∑

l1=1

αl1

∫ ∑3
l2=1 αl2 h̃m,l2

h̃m,l1

eΛisds
∥
∥
∥, (3.37b)

δ
Eh−τ

i,m = max
α∈A

∥
∥
∥

3∑

l1=1

αl1

∫ ∑3
l2=1 αl2 (h̃m,l2

−τ̃m,l2
)

h̃m,l1
−τ̃m,l1

eΛisds
∥
∥
∥. (3.37c)

For a detailed explanation of the origin of the approximation error bounds,
the reader is referred to Chapter 2.

• Finally, define

C̄σ :=





T−1 0
T−1BDC T−1BD

0 −T−1BΓσ



 (3.38)

and

B̄m :=

[
T T T

−CT −CT −CT

]

· diag(δA
1,mI1, . . . , δ

A
K,mIK ,

δEh

1,mI1, . . . , δ
Eh

K,mIK , δ
Eh−τ

1,m I1, . . . , δ
Eh−τ

K,m IK), (3.39)

with Ii the identity matrix of size ni, complying with the i-th real Jor-
dan block. The additive uncertainty set ∆ ⊆ R

3(np+nc)×3(np+nc) is now
given by

∆ =
{
diag(∆1, . . . ,∆3K) | ∆i+jK ∈ R

ni×ni , ‖∆i+jK‖ 6 1

∀ i ∈ {1, . . . ,K}, j ∈ {0, 1, 2}} . (3.40)
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Remark 3.3.2. In the special case that there exists an hnom or a τnom such that
p(h, τ) = 0, either for all h 6= hnom or for all τ 6= τnom, i.e., the transmission
interval or delay is constant, Procedure 3.3.1 can be modified slightly. This is
because we proposed to form triangles Sm ⊆ Θ ⊂ R

2, m ∈ {1, . . . ,M}, whereas
Θ can be considered a line segment in this case. Instead of triangles, we propose
to form line-segments Sm ⊆ Θ, m ∈ {1, . . . ,M}, in this case such that for each
Sm, m ∈ {1, . . . ,M}, it holds that

Sm = co{(h̃m,1, τ̃m,1), (h̃m,2, τ̃m,2)}, (3.41)

where (h̃m,l, τ̃m,l), l ∈ {1, 2}, now denote the vertices of the line segment Sm.
All other properties of Sm, m ∈ {1, . . . ,M} still hold and the remainder of the
procedure can be applied mutatis mutandis.

In this chapter, we will adopt the procedure to obtain an overapproxima-
tion of the NCS model from Chapter 2, resulting in the procedure presented
above. All the theory presented in the next section also applies if the overap-
proximation is obtained by other techniques, see, e.g., [63] for an overview and
a thorough comparison of all the existing overapproximation techniques. How-
ever, in Chapter 2, it was proven that the overapproximation adopted here can
be made arbitrarily tight and, therefore, does not introduce any conservatism.

3.4 Stability of NCSs with Stochastic Uncer-

tainty

In Section 3.2, we discussed the NCS model and, in Section 3.3, we proposed a
technique to overapproximate it by a switched polytopic system with a norm-
bounded uncertainty. In this section, we will use the overapproximation derived
in the previous section to develop conditions to verify UGMSES of the NCS
model (3.12) with switching sequences satisfying (3.18), (3.21) or (3.23) and the
transmission intervals and delays are given by an sequence of random variables
satisfying Assumption 3.2.1 and 3.2.5.

We will start with so-called quadratic protocols and analyse stability us-
ing the ideas in [47], in which only switched linear systems without any form
of uncertainty are considered. Then, we will also show how we can analyse
stability for periodic protocols. Finally, the stability analysis for the stochas-
tic protocols is presented using ideas from [32], in which stability analysis for
discrete-time Markov jump linear systems is analysed, again without any form
of uncertainty. In all cases, we need two intermediate results.

Lemma 3.4.1. Let Assumption 3.2.1 hold. The system (3.12) with switch-
ing functions satisfying (3.18), (3.21) or (3.23) is UGMSES if there exist a
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Lyapunov function V : R
n × N → R+ and scalars b1, b2, b3 > 0 satisfying2

b1‖x̄‖2
6 V (x̄, k) 6 b2‖x̄‖2 (3.42a)

E[V (Ãσk,hk,τk
x̄, k + 1)] − V (x̄, k) 6 −b3‖x̄‖2 (3.42b)

for all x̄ ∈ R
n and all k ∈ N.

Proof. The proof is given in Appendix A.2.

Lemma 3.4.2. Let Assumptions 3.2.1 and 3.2.5 hold, and let a symmetric
matrix P̃ and a set Q ⊆ Θ be given. It holds for each i ∈ {1, . . . , N} that

E
(
Ã⊤

i,h,τ P̃ Ãi,h,τ1Q(h, τ)
)
� λmax(P̃ )υiE

(
ρ(h)1Q(h, τ)

)
I, (3.43)

in which

υi = (‖Ãi,0,0‖ + ‖B̃‖ ‖C̃i‖)2 (3.44)

with Ãi,h,τ , as defined in (3.12),

B̃ :=

[
I I I

−C −C −C

]

, C̃i :=





I 0
BDC BD

0 BΓi



, (3.45)

and

ρ(h) = max{1,
(
e

1
2λmax(Λ̄⊤+Λ̄)h + 1

)2
,

∫ h

0

eλmax(Λ̄⊤+Λ̄)sds}. (3.46)

Proof. The proof is given in Appendix A.2.

3.4.1 Quadratic Protocols

In this section, we analyse the class of quadratic protocols given by (3.18) of
which the TOD protocol is a special case. To analyse the stability of (3.12)
having this switching function, we introduce the non-quadratic Lyapunov func-
tion

V (x̄k) = min
i=1,...,N

x̄⊤k Pix̄k = min
ν∈N

x̄⊤k

N∑

i=1

νiPix̄k, (3.47)

where

N :=
{

ν ∈ R
N

∣
∣
∣

N∑

i=1

νi = 1, νi > 0 ∀ i ∈{1, . . . , N}
}

. (3.48)

2Note that for quadratic and periodic protocols, the expected value is taken with respect
to hk and τk. For stochastic protocols, however, the expected value is taken with respect to
hk, τk and σk+1, as the Lyapunov function V on time k + 1, depends on σk+1, which is a
random variable, see (3.23).
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Furthermore, we introduce the class M of so-called Metzler matrices Π = {πji},
i, j ∈ {1, . . . , N}, given by

M :=
{

Π ∈ R
N×N

∣
∣
∣

N∑

j=1

πji = 1 ∀ i ∈ {1, . . . , N}, πji > 0 ∀ i, j ∈ {1, . . . , N}
}

,

(3.49)

and the set of matrices given by

R ∈ R =
{
diag(r1I1, . . . , rKIK , rK+1I1, . . . , r2KIK ,

r2K+1I1, . . . , r3KIK) ∈ R
3(np+nc)×3(np+nc) | ri > 0

}
, (3.50)

where Ii is an identity matrix of size ni.
The main result of this section is presented in the following theorem, in

which conditions for UGMSES for the NCS system with a quadratic protocol
are given.

Theorem 3.4.3. Let Assumptions 3.2.1 and 3.2.5 hold and let the system
(3.12) with a switching function satisfying (3.18), a probability distribution for
(h, τ) and positive definite matrices Pi as in (3.18) be given. Suppose there
exist a convex overapproximation obtained by Procedure 3.3.1, a matrix Π =
{πji} ∈ M, positive scalars µi satisfying

∑N
j=1 πjiPj � µiI, matrices Ui,m, and

matrices Ri,m,l ∈ R, for i ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, and l ∈ {1, . . . , L},
satisfying the LMIs








Ui,m 0
√
p̄mĀ

⊤
i,m,l

∑N
j=1 πjiPj C⊤

i Ri,m,l

⋆ Ri,m,l
√
p̄mB̄

⊤
m

∑N
j=1 πjiPj 0

⋆ ⋆
∑N

j=1 πjiPj 0

⋆ ⋆ ⋆ Ri,m,l







≻0, (3.51)

for all i ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, l ∈ {1, . . . , L}, in which p̄m =
Pr

(
(h, τ) ∈ Sm

)
, and satisfying

Pi −
M∑

m=1

Ui,m − µiυiE
(
ρ(h)1Q(h, τ)

)
I � 0, (3.52)

for all i ∈ {1, . . . , N}, in which Q := Θ\(∪M
m=1Sm) , and υi and ρ(h) are

defined as in (3.44) and (3.46), respectively. Then, the switching law (3.18)
renders the system (3.12) UGMSES. Consequently, the continuous-time NCS
given by (3.1), (3.2b), (3.3), and (3.8) is also UGMSES if the switching law
(3.18) is employed as the protocol.

Proof. The proof is given in Appendix A.2.
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We will briefly comment on Theorem 3.4.3. Firstly, the stability of (3.12)
is guaranteed for hk and τk, k ∈ N, satisfying a continuous probability dis-
tribution, because the probability distribution is ‘approximated’ by assigning
p̄m := Pr

(
(h, τ) ∈ Sm

)
to each polytope Sm, m ∈ {1, . . . ,M}. Secondly, in case

the h⋆ can be chosen such that Pr
(
(h, τ) ∈ Q

)
= 0, where Q := Θ\(∪M

m=1Sm),

the conditions in (3.52) simplify since E
(
ρ(h)1Q(h, τ)

)
= 0. This is possible,

if there exists an upper-bound on the transmission intervals. Finally, for the
TOD protocol the matrices Pi still contain a free variable P̄ . This freedom P̄
in modelling the TOD protocol can be exploited as the conditions in (3.51) are
still LMIs in P̄ as well. This can be shown by applying the ideas of Corollary
2.4.3 of Chapter 2.

3.4.2 Periodic protocols

We will now analyse another class of network protocols, namely the periodic
protocols, with the RR protocol as a special case. Hence, we need to anal-
yse stability of the system (3.28) with a switching sequence satisfying (3.21).
This system is essentially a Ñ -periodic uncertain system. For this system, we
introduce positive definite matrices Pi, i ∈ {1, . . . , N}, and a time-dependent
periodic Lyapunov function given by

V (x̄k, k) = x̄⊤k Pk mod Ñ x̄k, (3.53)

where kmod Ñ denotes k modulo Ñ , which is the remainder of the division of
k by Ñ .

Theorem 3.4.4. Let Assumptions 3.2.1 and 3.2.5 hold and let the system
(3.12) with a switching function satisfying (3.21) and a probability distribution
for (h, τ) be given. Suppose there exist a convex overapproximation obtained by
Procedure 3.3.1, positive definite matrices Pi, positive scalar µi, satisfying Pi �
µiI, matrices Ui,m, and matrices Ri,m,l ∈ R, i ∈ {1, . . . , Ñ}, m ∈ {1, . . . ,M},
and l ∈ {1, . . . , L}, satisfying the LMIs







Ui,m 0
√
p̄mĀ

⊤
σi,m,lPi+1 C⊤

σi
Ri,m,l

⋆ Ri,m,l
√
p̄mB̄

⊤
mPi+1 0

⋆ ⋆ Pi+1 0
⋆ ⋆ ⋆ Ri,m,l






≻ 0, (3.54)

for all i ∈ {1, . . . , Ñ}, m ∈ {1, . . . ,M}, l ∈ {1, . . . , L}, where PÑ+1 := P1 and

p̄m = Pr
(
(h, τ) ∈ Sm

)
, and satisfying

Pi −
M∑

m=1

Ui,m − µi+1υiE
(
ρ(h)1Q(h, τ)

)
I � 0, (3.55)
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for all i ∈ {1, . . . , Ñ}, in which Q := Θ\(∪M
m=1Sm), µN+1 := µ1, and υi and

ρ(h) are defined as in (3.44) and (3.46), respectively. Then, the switching law
(3.21) renders the system (3.12) UGMSES. Consequently, the continuous-time
NCS given by (3.1), (3.2b), (3.3), and (3.8) is also UGMSES if the switching
law satisfying (3.21) is employed as the protocol.

Proof. The proof follows the same lines of reasoning as the proof of Theo-
rem 3.4.3 and is therefore omitted.

3.4.3 Stochastic Protocols

Finally, we will analyse stability for the stochastic protocol. Hence, we need
to analyse stability of the system (3.28) with a switching sequence satisfying
(3.23), which can be done by introducing positive definite matrices Pi, i ∈
{1, . . . , N}, and a node-dependent Lyapunov function of the form

V (x̄k, k) = x̄⊤k Pσk
x̄k. (3.56)

Theorem 3.4.5. Let Assumptions 3.2.1 and 3.2.5 hold and let the system
(3.12) with a switching function satisfying (3.23) and a probability distribution
for (h, τ) be given. Suppose there exist a convex overapproximation obtained
by Procedure 3.3.1, positive definite matrices Pi, positive scalars µi satisfying
∑N

j=1 πjiPj � µiI, matrices Ui,m, and matrices Ri,m,l ∈ R, i ∈ {1, . . . , N},
m ∈ {1, . . . ,M}, and l ∈ {1, . . . , L}, satisfying (3.51), for all i ∈ {1, . . . , N},
m ∈ {1, . . . ,M}, l ∈ {1, . . . , L}, in which p̄m = Pr

(
(h, τ) ∈ Sm

)
, and satisfying

(3.52), for all i ∈ {1, . . . , N}, in which Q := Θ\(∪M
m=1Sm), and υi and ρ(h) are

defined as in (3.44) and (3.46), respectively. Then, the switching law (3.23)
renders the system (3.12) UGMSES. Consequently, the NCS given by (3.1),
(3.2b), (3.3), and (3.8) is also UGMSES if the switching law (3.23) is employed
as the protocol.

Proof. The proof follows the same lines of reasoning as the proof of Theo-
rem 3.4.3 and is therefore omitted.

As was also observed in [47] for switched linear systems, the conditions of
Theorem 3.4.3 and Theorem 3.4.5 are similar, with the only difference that
in Theorem 3.4.5 the scalars πij , i, j ∈ {1, . . . , N} are given by the stochastic
protocol, see (3.23), whereas in Theorem 3.4.3 the matrices Pi, i ∈ {1, . . . , N},
are given by the quadratic protocol.

3.5 Nonconservatism of the Stability Analysis

Given the results of the previous sections, it is now natural to ask if and how
conservative the presented methodology is. The answer is given by the fol-
lowing result, showing that if the original system (3.12) (without any overap-
proximation), with protocol satisfying (3.18), (3.21) or (3.23), is mean-square
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stable in the sense that a Lyapunov function exists, given by (3.47), (3.53), or
(3.56), respectively, the presented procedure based on the overapproximation
will guarantee mean-square stability and will find a respective Lyapunov func-
tion, given a sufficiently large h⋆ > 0, and a sufficiently small ε > 0. Therefore,
making a convex overapproximation, according to Procedure 3.3.1, introduces
no conservatism in the stability analysis (given a certain class of Lyapunov
functions) presented in the previous section.

In the following theorem, we will show the result for the NCS model (3.12)
with protocol (3.18). Similar results hold for the NCS model (3.12) with pro-
tocol (3.21) and protocol (3.23).

Theorem 3.5.1. Suppose system (3.12), with protocol (3.18), has a Lyapunov
function of the form of (3.47), i.e., there exist a matrix Π = {πji} ∈ M and
positive definite matrices Pi, i ∈ {1, . . . , N}, such that

E
(
Ã⊤

i,h,τ

N∑

j=1

πjiPjÃi,h,τ

)
− Pi � −γI, (3.57)

for all i ∈ {1, . . . , N}, and some γ > 0. Then, there exists an h⋆
0 > 0 such

that for any h⋆ > h⋆
0 there is an ε0 (depending on h⋆

0) such that for any con-
vex overapproximation obtained using Procedure 3.3.1 with constants h⋆ and ε,
where 0 < ε < ε0, the conditions of Theorem 3.4.3 hold.

Proof. The proof is given in Appendix A.2.

This result states that the convex overapproximation does not introduce
conservatism when analysing stability using mode-dependent quadratic Lya-
punov functions, provided that h⋆ (capturing the tail of the probability distri-
bution) is sufficiently large, and the triangles Sm, m ∈ {1, . . . ,M}, are suffi-
ciently small.

3.6 Illustrative Example

In this section, we illustrate the presented theory using a well-known benchmark
example in the NCS literature [5, 40, 62, 124, 134], consisting of a linearised
model of a batch reactor. The details of the linearised model of the batch
reactor model and the controller can be found in the aforementioned references.

In [5, 40, 62, 124, 134], it was assumed that the controller is given in contin-
uous time and it is directly connected to the actuator, i.e., only the two outputs
are transmitted via the network. We will consider here the TOD protocol and
assume, for simplicity, that delays are absent, i.e., Pr

(
(h, τ) ∈ Θ

)
= 1, where

Θ = {(h, τ) ∈ R
2 |h > 0, τ = 0}. Furthermore, we let Pr

(
(h, τ) ∈ S

)
=

∫

Ŝ p(h)dh, for some S ⊆ Θ, where Ŝ = {h ∈ R | (h, 0) ∈ S} and p(h) denotes
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a marginal probability density function (mpdf). In this example, we consider
two different mpdf for the transmission intervals, namely the uniform mpdf

p(h) =

{
1

c2−c1
for c1 6 h 6 c2

0 elsewhere
(3.58)

with c1 = 10−5 and c2 = 0.11 and the Gamma mpdf

p(h) =

{
1

(c3−1)! (c4)c3
hc3−1e−

h
c4 for h > 0

0 elsewhere
(3.59)

with c3 = 10 and c4 = 0.006. The resulting mpdfs are shown in Fig. 3.3.
In order to assess stability, we first define our NCS model as in Section

3.2.2.C. This model appropriately describes the situation as discussed in this
example, where only the plant outputs y are transmitted over the network
and the controller outputs u are sent continuously via a nonnetworked con-
nection. We then derive the uncertain polytopic system (3.28) and p̄m, us-
ing Procedure 3.3.1. For the uniform distribution, we choose h⋆ = 0.11 and
ε = 0.11

80 , yielding Sm = [( 0.11
80 (m − 1), 0), ( 0.11

80 m, 0)], m ∈ {1, . . . , 80}, and
for the Gamma distribution, we choose h⋆ = 0.25 and ε = 0.25

30 , yielding
Sm = [( 0.25

30 (m − 1), 0), ( 0.25
30 m, 0)], m ∈ {1, . . . , 30}. The values for the pa-

rameters h⋆ and ε are chosen such that, increasing h⋆ and decreasing ε does
not significantly change the results in this example. We can now derive the
uncertain polytopic system (3.28), satisfying (3.32). To obtain Āi,l,m, B̄m, and
C̄i, we use the overapproximation technique presented in [40], in which we use
two grid points for each Sm. In Fig. 3.3, we also illustrate for the Gamma dis-
tribution the partitioning of h in polytopes Sm and the resulting (scaled) p̄m.
We now check the matrix inequalities of Theorem 3.4.3, using the structure of
the Pi-matrices as in (3.19). Using this procedure we obtain a feasible solution
of LMIs of Theorem 3.4.3, on the basis of which we conclude that the TOD
protocol stabilises the NCS when the transmission intervals are given by an
iid sequence of random variables satisfying the aforementioned probability dis-
tributions. The computation time required to compute the overapproximation
and to find feasible solutions to the LMIs on a standard desktop computer3

is 180 seconds for the uniform distribution and 36 seconds for the Gamma
distribution.

Chapter 2, we obtained a ‘robust’ range of allowable transmission intervals,
i.e., hk ∈ [10−3, 0.066], k ∈ N, which includes all probability distributions for
which it holds that Pr

(
(h, τ) ∈ Θ

)
= 1 where Θ := {(h, τ) ∈ R

2 | 10−3 <
h 6 0.066, τ = 0}. Therefore, we can conclude that incorporating probabilistic

3The authors have used a Windows PC running at 3GHz with 4GB RAM, and Matlab

2007b and SeDuMi 1.3 for this numerical example. The number of LMIs that need to be
verified is 2× 2× 80+2+2 = 324 for the Uniform distrubution, and 2× 2× 30+2+2 = 124
for the Gamma distribution.
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0 0.05 0.1 0.15 0.2 0.25

Probability p̄m for the Gamma Distribution
Gamma mpdf p(h) with c3 = 10 and c4 = 0.006
Uniform mpdf p(h) with c1 = 0 and c2 = 0.11

Transmission Interval h

Figure 3.3: Illustration of the considered mpdfs, and the approximation of the
Gamma distribution.

information on the distribution of the transmission intervals is very useful as
it can be used to prove stability for situations not contained in the case that
was studied in Chapter 2.

3.7 Conclusions

In this chapter, we studied networked control systems (NCSs) that are subject
to communication constraints, time-varying transmission intervals and time-
varying delays, and packet dropouts. In particular, we analysed the stability of
the NCS when the transmission intervals and transmission delays are described
by an independent and identically distributed sequence of continuous random
variables, and the communication sequence is determined by a quadratic, pe-
riodic, or stochastic protocol. This analysis was based on a stochastically
parameter-varying discrete-time switched linear system model of the NCS. We
derived conditions for stability (in the mean-square sense) by adopting tech-
niques for convex overapproximation, which are now used as a way to handle
continuous probability distributions. This convex overapproximation technique
was extended such that the probabilistic information as present in the probabil-
ity distribution is preserved, and yields LMI-based conditions for stability. On
a benchmark example, we showed that by incorporating probabilistic informa-
tion on the transmission intervals and delays and packet dropouts, stability can
now be guaranteed for situations not covered by earlier results in the literature.

Future work will focuss on studying the case where delays are not restricted
to be smaller than the transmission interval, on the inclusion of quantisation
effects of the sensor and actuator signals, and on co-design methods of the
controller and the protocol.
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Output-Based Decentralised

Event-Triggered Control with

Guaranteed L∞-gain1

4.1 Introduction

4.2 Event-Triggered Control

4.3 Stability and L∞-gain

4.4 A Lower Bound on the Inter-Event Times

4.5 Improved Event-Triggering Conditions

4.6 Illustrative Examples

4.7 Conclusions

Abstract – Most event-triggered controllers available nowadays are based
on static state-feedback controllers. As in many control applications full state
measurements are not available for feedback, it is the objective of this chapter
to propose event-triggered dynamical output-based controllers. The fact that
the controller is based on output feedback instead of state feedback does not
allow for straightforward extensions of existing event-triggering mechanisms if
a minimum time between two subsequent events has to be guaranteed. Further-
more, since sensor and actuator nodes can be physically distributed, centralised
event-triggering mechanisms are often prohibitive and, therefore, we will pro-
pose a decentralised event-triggering mechanism. This event-triggering mecha-
nism invokes transmission of the outputs in a node when the difference between
the current values of the outputs in the node and their previously transmitted
values becomes ‘large’ compared to the current values and an additional thresh-
old. For such event-triggering mechanisms, we will study closed-loop stability
and L∞-performance and provide bounds on the minimum time between two
subsequent events generated by each node, the so-called inter-event time of a
node. This enables us to make tradeoffs between closed-loop performance on
the one hand and communication load on the other hand, or even between
the communication load of individual nodes. In addition, we will model the
event-triggered control system using an impulsive system.As a result, we will

1This chapter is based on [37].
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be able to guarantee stability and performance for improved event-triggered
controllers with larger minimum inter-event times than existing results in the
literature. We illustrate the developed theory using three numerical examples.

4.1 Introduction

In many control applications nowadays, the controller is implemented on a dig-
ital platform. In such an implementation, the control task consists of sampling
the outputs of the plant and computing and implementing new actuator sig-
nals. Typically, the control task is executed periodically, since this allows the
closed-loop system to be analysed and the controller to be designed using the
well-developed theory on sampled-data systems, see, e.g., [8, 27]. Although
periodic sampling is preferred from an analysis and design point of view, it is
sometimes less preferable from a resource allocation point of view. Namely,
executing the control task at times when no disturbances are acting on the
system and the system is operating desirably is clearly a waste of computation
resources. Moreover, in case the measured outputs and/or the actuator signals
have to be transmitted over a shared (and possibly wireless) network, unnec-
essary utilisation of the network (or power consumption of the wireless radios)
is introduced. To mitigate the unnecessary waste of communication and com-
putation resources, an alternative to periodic control, namely, event-triggered
control has been proposed, see [6, 9, 59, 64]. Event-triggered control is a control
strategy in which the control task is executed after the occurrence of an exter-
nal event, generated by some well-designed event-triggering mechanism, rather
than the elapse of a certain period of time as in conventional periodic control.
As experimental results show, see, e.g., [6, 9, 59, 64, 65, 83, 85, 111, 127], event-
triggered control is capable of reducing the number of control task executions,
while retaining a satisfactory closed-loop performance.

Although the advantages of ETC are well-motivated and practical appli-
cations show its potential, relatively few theoretical results exist that study
ETC systems, see, e.g., [10, 44, 46, 60, 66, 81, 90, 94, 107, 126, 136]. In these
references, several different event-triggering mechanisms and control strategies
are proposed. For instance, in [10, 66], an impulsive control action is applied to
the system that resets the state to the origin every time the state of the plant
exceeds a certain threshold. The analysis is performed for first-order stochastic
systems, as analysis of larger-dimensional systems is difficult, and it is shown
that the variance of the state is smaller when compared to a sampled-data con-
troller, while having approximately the same number of control updates. An-
other interesting approach to event-triggered control is presented in [44, 46, 90],
in which the system is controlled in open loop, using an ‘input generator’ that
uses a prediction of the plant states to produce a control signal. These predicted
states are only corrected in case the true plant state deviates too much from
its predicted value. Such a deviation can be caused by disturbances, [46, 90],
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or by the fact that the plant model is incorrect [44].

A more basic ‘emulation-based approach’ is taken in [60, 81, 107, 126, 136].
By emulation-based, we mean that the controller is designed without consid-
ering the event-triggered nature of the control system, and, subsequently, an
event-triggering mechanism is designed to ensure that the event-triggered con-
trol system is stable, has some guaranteed lower bound on the performance and
some guaranteed upper bound on the number of events within a certain time in-
terval. The differences between the work discussed in [60, 81, 107, 126, 136] lies
in the fact that in [60, 136] the influence of unknown disturbances are studied,
whereas in [81, 107, 126] only stabilisation is considered. Another difference is
the condition that generates the events. In [60], events are generated in case
the state of the plant is a larger than a certain threshold, in [126, 136] when the
relative difference between the state of the plant and the previously sampled
state violates a certain threshold, and in [81, 107] when the absolute differ-
ence between the state of the plant and the previously sampled state violates
a certain threshold.

An important observation to be made about the aforecited works is that
most of them consider state-feedback controllers, which assumes that all the
plant states can be measured. To the best of the authors’ knowledge, the
only theoretical result on event-triggered control using dynamical output-based
controllers is presented in [81]. However, an analysis of the minimum time be-
tween two subsequent events, the so-called inter-event time, is not available
for [81] and, thereby, guarantees on the upper bound on the number of events
cannot be made. Furthermore, extending the event-triggering mechanisms in
[126, 136] to output-based controllers is not straightforward, since for these
event-triggering mechanisms, no minimum inter-event time can be shown to
exist, even though they have a guaranteed minimum inter-event time for state-
feedback controllers. For any event-triggered control system to be useful, we
need such a lower bound on the inter-event time, as our primary reason to
make control systems event-triggered is to save computation and communica-
tion resources.

In this chapter, we analyse stability and L∞-performance of event-triggered
control systems for given dynamical output-based controllers. We consider the
case where the sensors and actuators, which can be grouped into nodes, and
controllers can be physically distributed. This causes a centralised event-
triggering mechanism to be prohibitive. Namely, a centralised event-triggering
mechanism determines when to transmit data based on (current) information
from all the outputs of the plant and controller, which requires this information
to be available for this centralised event-triggering mechanism at all times and
without any delays. This means that node data has to be transmitted to this
centralised event-triggering mechanism continuously, which is undesirable when
the objective is to reduce utilisation of communication resources. To resolve
this issue, we will propose a decentralised event-triggering mechanism, in which
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events are triggered on the basis of local information only, and sharing of node
data between different (physically distributed) parts of the control system is
not needed. Inspired by [126], we propose an event-triggering mechanism that
invokes transmission of the controller or the plant outputs of a node when the
difference between the current values in the node and its previously transmitted
values becomes ‘large’ compared to the current values and an additional thresh-
old. This additional threshold ensures that each node has a nonzero minimum
inter-event time, which allows us to guarantee a bound on the total number
of transmissions. Interestingly, the event-triggering mechanism presented in
this chapter can be seen as a unification of the event-triggering mechanisms
proposed in [126, 136] and [81, 94, 107].

As a second contribution of this chapter, we propose to model the event-
triggered control system as an impulsive system, see, e.g., [50, 55].Furthermore,
we extend the framework presented in [126] towards output-feedback controllers
and L∞-performance, and we formally show that the impulsive systems frame-
work provides stability guarantees for event-triggering mechanisms that result
in larger minimum inter-event times than the extended results of [126]. These
stability conditions will be based on linear matrix inequalities (LMIs), so that
efficient verification is possible. We will provide three numerical examples to
demonstrate various aspects of the developed theory. In particular, we will
illustrate that the guaranteed lower bounds on the minimum inter-event times
are indeed improved with respect to existing results in literature and that the
inclusion of a nonzero threshold in the event-triggering mechanism is necessary
to guarantee a positive minimum inter-event time for each node.

The remainder of this chapter is organised as follows. After introducing the
necessary notational conventions, we introduce the model of the decentralised
output-based event-triggered control system in Section 4.2. We analyse its sta-
bility and its L∞-gain properties in Section 4.3, and in Section 4.4 we provide
a way to compute the lower bound on the minimum inter-event time of each
node. In Section 4.5, we extend the work of [126] towards output-based dy-
namical controllers and L∞-performance, and present a theorem that states
that the impulsive system formulation of the event-triggered control problem
allows us to guarantee stability and performance for event-triggered controllers
with at least the same minimum inter-event times as the results based on the
reasoning of [126]. Finally, the presented theory is illustrated by numerical
examples in Section 4.6 and we draw conclusions in Section 4.7. Appendix A.3
contains the proofs of the more technical lemmas and theorems.

4.1.1 Nomenclature

For a vector x ∈ R
n, we denote by ‖x‖ :=

√
x⊤x its 2-norm, and by xJ the

subvector formed by all components of x in the index set J ⊆ {1, . . . , n}.
For a symmetric matrix A ∈ R

n×n, λmax(A) and λmin(A) denote the max-
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imum and minimum eigenvalue of A, respectively. For a matrix A ∈ R
n×m,

we denote by A⊤ ∈ R
m×n the transposed of A, and by ‖A‖ :=

√

λmax(A⊤A)
its induced 2-norm. Furthermore, by AJ• and A•J , we denote the subma-
trices formed by taking all the rows of A in the index set J ⊆ {1, . . . , n},
and by taking all the columns of A in the index set J ⊆ {1, . . . ,m}, respec-
tively. By diag(A1, . . . , AN ), we denote a block-diagonal matrix with the entries
A1, . . . , AN on the diagonal, and for brevity we write symmetric matrices of

the form
[

A B

B⊤ C

]

as
[

A ⋆

B⊤ C

]

.

For a signal w : R+ → R
n, where R+ denotes the set of nonnegative real

numbers, we denote by ‖w‖Lp
= (

∫ ∞
0

‖w(t)‖pdt)1/p its Lp-norm for p ∈ N,
provided that the integral is finite, and by ‖w‖L∞

= ess supt∈R+
‖w(t)‖ its

L∞-norm. Furthermore, we define the set of signals with a finite Lp-norm
as Lp := {w : R+ → R

n | ‖w‖Lp
< ∞} for p ∈ N ∪ {∞}. Finally, for

a signal w : R+ → R
n we denote the limit from above at time t ∈ R+ by

w+(t) = lims↓t w(s), provided that it exists.

4.2 Event-Triggered Control

In this section, we present the event-triggered control problem and model the
event-triggered control system as an impulsive system.

4.2.1 Problem Formulation

Let us consider a linear time-invariant (LTI) plant given by

{
d
dtxp = Apxp +Bpû+Bww,

y = Cpxp,
(4.1)

where xp ∈ R
np denotes the state of the plant, û ∈ R

nu the input applied to
the plant, w ∈ R

nw an unknown disturbance and y ∈ R
ny the output of the

plant. The plant is controlled using a continuous-time LTI controller given by

{
d
dtxc = Acxc +Bcŷ,

u = Ccxc,
(4.2)

where xc ∈ R
nc denotes the state of the controller, ŷ ∈ R

ny the input of
the controller, and u ∈ R

nu the output of the controller. We assume that the
controller is designed to render (4.1) and (4.2) with y(t) = ŷ(t) and u(t) = û(t),
for all t ∈ R+, asymptotically stable, i.e., an ‘emulation-based’ approach is
taken.

In this chapter, however, we consider the case where the controller is imple-
mented in a sampled-data fashion, which causes y(t) 6= ŷ(t) and u(t) 6= û(t) for
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almost all t ∈ R+. In particular, we study decentralised event-triggered control
which means that the outputs of the plant and controller are grouped into N
nodes and the outputs of node i ∈ {1, . . . , N} are only sent at the transmission
instants tiki

, ki ∈ N. Hence, at transmission instant tiki
, node i transmits its

respective entries in y and u, and the corresponding entries in ŷ and û are
updated accordingly, while the other entries in ŷ and û remain the same. Such
constrained data exchange can be expressed as

v̂+(tiki
) = Γiv(t

i
ki

) + (I − Γi)v̂(t
i
ki

), (4.3)

in which v = [y⊤ u⊤]⊤, v̂ = [ŷ⊤ û⊤]⊤, and

Γi = diag(γ1
i , . . . , γ

ny+nu

i ), (4.4)

for all i ∈ {1, . . . , N}. In between transmissions, we use a zero-order hold, i.e.,

d
dt v̂(t) = 0, for all t ∈ R+\

( ⋃N
i=1{tiki

| ki ∈ N}
)
. (4.5)

In (4.4), the elements γj
i , with i ∈ {1, . . . , N} and j ∈ {1, . . . , ny}, are equal

to 1 if plant output yj is in node i and are 0 elsewhere, the elements γ
j+ny

i ,
with i ∈ {1, . . . , N} and j ∈ {1, . . . , nu}, are equal to 1 if controller output uj

is in node i and are 0 elsewhere. We assume that for each j ∈ {1, . . . , ny +nu},
it holds that

∑N
i=1 γ

j
i > 0, i.e., we assume that each sensor and actuator is at

least in one node2. Furthermore, we assume that at time t = 0, it holds that
v̂(0) = v(0). This can be accomplished by transmitting all sensor and actuator
data at the time the system is deployed3. In the case that tiki

= tjkj
for some

ki, kj ∈ N and some i, j ∈ {1, . . . , N}, we assume that the updates as in (4.3)
take place simultaneously or directly after one another in a negligible amount
of time. Obviously, the order of updating is irrelevant as can be seen from
(4.3). Moreover, note that performing multiple successive transmissions at one
time instant has exactly the same effect as doing these updates simultaneously.

In a conventional sampled-data implementation, the transmission times are
distributed equidistantly in time and are the same for each node, meaning
that tiki+1 = tiki

+ h, for all ki ∈ N and all i ∈ {1, . . . , N}, and for some

constant transmission interval h > 0, and that tik = tjk, for all k ∈ N and
all i, j ∈ {1, . . . , N}. In event-triggered control, however, these transmissions
are orchestrated by a decentralised event-triggering mechanism, as is shown
in Figure 4.1. We consider a decentralised event-triggering mechanism that
invokes transmissions of node data when the difference between the current

2In case a sensor or actuator is not in any node, meaning that this sensor or actuator is,
effectively, not part of the control loop, we simply remove the corresponding input or output
from the plant and controller model.

3This assumption could be removed, but it would introduce additional technicalities later.
For reasons of readability, we opted to work under this rather mild and natural assumption.
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Figure 4.1: Event-triggered Control Schematic, indicating the event-triggering
mechanisms (ETM).

values of outputs and their previously transmitted values becomes too large in
an appropriate sense. In particular, the event-triggering mechanism proposed
in this chapter, results in transmitting the outputs of the plant or the controller
in node i ∈ {1, . . . , N} at times tiki

, satisfying

tiki+1 = inf
{
t > tiki

| ‖eJi
(t)‖2 = σi‖vJi

(t)‖2 + εi

}
, (4.6)

and ti0 = 0, for some σi, εi > 0. In these expressions, eJi
and vJi

denote the
subvectors formed by taking the elements of the signals e and v, respectively,
that are in the set Ji = {j ∈ {1, . . . , ny + nu} | γj

i = 1}, and

e(t) = v̂(t) − v(t) (4.7)

denotes the error induced by the event-triggered implementation of the con-
troller at time t ∈ R+. Hence, the event-triggering mechanism (4.6), which is
based on local information available at each node, is such that when for some
i ∈ {1, . . . , N}, it holds that ‖eJi

(t)‖2 = σi‖vJi
(t)‖2 + εi, i.e., the norm of the

error induced by the event-triggered implementation of the signals in node i
becomes ‘too large’ for the first time, node i transmits its corresponding signal
in v(t) and, thus, the signal v̂(t) is updated according to (4.3). This implies
that e+(tiki

) = (I − Γi)e(t
i
ki

) and thus e+Ji
(tiki

) = 0. Using this update law,
and the aforementioned assumption that v̂(0) = v(0), yielding e(0) = 0, we can
observe that the error induced by the event-triggered control scheme satisfies

‖eJi
(t)‖2

6 σi‖vJi
(t)‖2 + εi, (4.8)

for all t ∈ R
+ and all i ∈ {1, . . . , N}.

The main objective of this chapter is to determine σi and εi for all i ∈
{1, . . . , N}, such that the closed-loop event-triggered system is stable in an
appropriate sense and a certain level of disturbance attenuation is guaranteed,
while the number of transmissions of the outputs of the plant and the controller
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is minimised. Note that for εi = 0, i ∈ {1, . . . , N}, the event-triggering condi-
tions in (4.6) can be seen as an extension of the event-triggering mechanism of
[126] for output-based controllers, and for σi = 0, i ∈ {1, . . . , N}, it is equiv-
alent to the event-triggering mechanism of [81, 94, 107]. As such, the event-
triggering mechanism in (4.6) unifies two earlier proposals, while additionally,
output-based controllers and decentralised event triggering are considered.

Remark 4.2.1. In this chapter, we assume that the controller is given in con-
tinuous time as in (4.2). To implement this controller on a digital platform,
the following options can be considered: (i) the controller output is obtained by
numerical integration, or (ii) the controller output is obtained using a discrete-
time equivalent of the continuous-time controller, based on a sampling interval
that is (sufficiently) smaller than the smallest inter-event time (see Theorem
4.4.1 below). This, however, means that the event-triggered control strategy pre-
sented in this chapter is particularly useful when the objective is to save commu-
nication resources and/or battery power of wireless radios, which is important
for many (wireless) networked control systems, see, e.g., [4, 16, 67, 147], and
is less useful for saving computation resources.

Remark 4.2.2. The event-triggering mechanism as discussed above works sat-
isfactory in case the controller is given as in (4.2). However, some issues can
arise in case that the controller is given by

{
d
dtxc = Acxc +Bcŷ,

u = Ccxc +Dcŷ,
(4.9)

with Dc 6= 0. Namely, suppose that node i contains sensors and node j con-
tains actuators, and that it holds that tiki

= tjkj
, for some ki, kj ∈ N, meaning

that sensor and actuator data is transmitted simultaneously and thus both ŷ
and û are updated. Now since ŷ directly affects u, according to (4.9), we could
have that the event-triggering condition of (actuator) node j is again satisfied
immediately, resulting in another transmission of actuator node j. Hence, in
this case we would have that node j transmits twice at one time instant, which
might not be desirable. In [36], this issue is resolved by introducing a trans-
mission protocol that dictates that when one local event-triggering condition is
violated, all nodes transmit their data in a synchronised way, in which it is
assumed that sensor data is transmitted and implemented, just before the ac-
tuator data is transmitted. Although this prevents u to be transmitted twice,
this requires that transmissions of all nodes are synchronised, which might be
difficult to achieve.
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4.2.2 An Impulsive System Formulation

In this section, we reformulate the event-triggered control system as an impul-
sive system, see, e.g., [50, 55], of the form

d
dt x̄ = Āx̄+ B̄w, when x̄ ∈ C (4.10a)

x̄+ = Ḡix̄, when x̄ ∈ Di, i ∈ {1, . . . , N}, (4.10b)

where x̄ ∈ X ⊆ R
nx denotes the state of the system and w ∈ R

nw an external
disturbance. The flow and the jump sets are denoted by C ⊆ R

nx and Di ⊆ R
nx ,

i ∈ {1, . . . , N}, respectively, and X = C∪(
⋃N

i=1 Di). Note that the transmission
times tiki

, ki ∈ N, as in (4.6), are now related to the event times at which the
jumps of x̄, according to (4.10b) for i ∈ {1, . . . , N}, take place.

To arrive at a system description of the event-triggered control system (4.1),
(4.2), (4.3), (4.5), and (4.6) of the form (4.10), we combine (4.1), (4.2), (4.3),
(4.5) and (4.7), and define x̄ := [x⊤ e⊤]⊤ ∈ R

nx , where x = [x⊤p x
⊤
c ]⊤ and

nx := np + nc + ny + nu, yielding the flow dynamics of the system

d
dt x̄ =

[
A+BC B

−C(A+BC) −CB

]

︸ ︷︷ ︸

=:Ā

x̄+

[
E

−CE

]

︸ ︷︷ ︸

=:B̄

w, (4.11)

in which

A =

[
Ap 0
0 Ac

]

, B =

[
0 Bp

Bc 0

]

, C =

[
Cp 0
0 Cc

]

, E =

[
Bw

0

]

. (4.12)

The system ‘flows’ as long as the event-triggering conditions are not met, i.e.,
as long as (4.8) holds for all i ∈ {1, . . . , N}, which can be reformulated as x̄ ∈ C,
with

C = {x̄ ∈ R
nx | x̄⊤Qix̄ 6 εi ∀ i ∈ {1, . . . , N}}, (4.13)

and

Qi =

[
−σiC

⊤ΓiC 0
0 Γi

]

, (4.14)

because x̄⊤Qix̄ 6 εi is equivalent to ‖Γie(t)‖2 6 σi‖Γiv(t)‖2 + εi, as in (4.8).
As mentioned before, when node i transmits its data, a reset according to
e+ = (I − Γi)e occurs, while x remains the same, i.e., x+ = x, see (4.3). This
can be expressed by

x̄+ =

[
I 0
0 I − Γi

]

︸ ︷︷ ︸

=:Ḡi

x̄, (4.15)

for all x̄ ∈ Di, i ∈ {1, . . . , N}, in which

Di = {x̄ ∈ R
nx | x̄⊤Qix̄ = εi}, (4.16)

according to (4.6). Combining (4.11), (4.13), (4.15) and (4.16) yields an im-
pulsive system of the form (4.10).
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4.2.3 Special Cases: State Feedback and Centralised
Event Triggering

In the existing literature, the event-triggered control problem has mostly been
considered for state-feedback controlled systems, see, e.g., [126, 136]. In this
case, the controller is given by

u = Kx̂p, (4.17)

where x̂p ∈ R
np denotes the most recently sampled state of the plant and is

defined in a similar fashion as v̂. We can regard this as a special case of the
setup presented above. Namely, to formulate the event-triggered control system
with controller (4.17) as an impulsive system, we combine (4.1), (4.3), (4.5),
(4.6) and (4.17), where we take Cp = I in (4.1), as all states are measurable,
and take v := y = xp, v̂ := ŷ = x̂p in (4.3), (4.5) and (4.6). In this case,
the resulting impulsive model is given by (4.10), with (4.11), (4.13), (4.15) and
(4.16), in which x̄ := [x⊤p e⊤]⊤ and

A = Ap, B = BpK, C = I, E = Bw. (4.18)

To arrive at the event-triggering mechanism that was studied [126], we take
N = 1 and Γ1 = I (i.e., a centralised event-triggering mechanism), and ε1 = 0.

Remark 4.2.3. Although we study event-triggering conditions of the form
(4.6), which is an extension of the one presented in [126], we can in principle
study every event-triggering mechanism with conditions that can be written in
the form x̄⊤Qix̄ = εi, such as the ones presented in [135].

4.3 Stability and L∞-gain

In this section, we will study stability of the event-triggered control system
in the sense of Lyapunov and its L∞-gain. We will first review some basic
stability and L∞-gain results for impulsive systems of the form (4.10).

4.3.1 Stability and L∞-gain of Impulsive Systems

Let us define the notions of stability and of Lyapunov function candidate that
can be used to analyse impulsive systems of the form (4.10).

Definition 4.3.1.[50] Consider the impulsive system, given by (4.10) with
w = 0 and a compact set A ⊂ X .

• The set A is said to be stable for the impulsive system (4.10) with w = 0,
if for each ε > 0 there exists δ > 0, such that minx⋆∈A ‖x̄(0) − x⋆‖ 6 δ
implies minx⋆(t)∈A ‖x̄(t)−x⋆(t)‖ 6 ε, for all solutions x̄ to the impulsive
system (4.10) with w = 0 and all t for which the solution x̄ is defined.
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• The set A is said to be globally attractive if each solution x̄ to the impul-
sive system (4.10), with w = 0, satisfies minx⋆(t)∈A ‖x̄(t)−x⋆(t)‖ → 0 as
t→ ∞.

• The set A is globally asymptotically stable for (4.10), with w = 0, if it
is stable and globally attractive.

Definition 4.3.2.[50] Consider the impulsive system, given by (4.10) with
w = 0, and a compact set A ⊂ X . The function W : X → R is a Lyapunov
function candidate for the system (4.10) and the set A if the function W

(i) is continuous and nonnegative on (C ∪ ⋃N
i=1 Di)\A ⊂ X ,

(ii) is locally Lipschitz on an open set O satisfying C\A ⊂ O ⊂ X ,

(iii) satisfies lim
x̄→A,x̄∈X

W (x̄) = 0, and

(iv) the sublevel sets of W on X are compact, i.e., the sets {x̄ ∈ X |W (x̄) 6

cW } are compact for all cW > 0.

To prove global asymptotic stability of the set A of the system (4.10), we
will make use of the following lemma.

Lemma 4.3.3. Consider the impulsive system (4.10) with w = 0 and a compact
set A ⊂ X satisfying Ḡix̄ ∈ A for all x̄ ∈ Di ∩A, i ∈ {1, . . . , N}. Assume that
for w = 0 and for all x̄ ∈ X , a minimum inter-event time hi

min > 0 exists for
each i ∈ {1, . . . , N}, i.e., tiki+1 − tiki

> hi
min for all ki ∈ N, and assume there

exists a Lyapunov function candidate W for the impulsive system (4.10) with
w = 0 and the set A ⊂ X , such that

dW (x̄)
dx̄ Āx̄ < 0, for almost all x̄ ∈ C\A, (4.19a)

W (Ḡix̄) −W (x̄) 6 0, for all x̄ ∈ Di\A, i ∈ {1, . . . , N}. (4.19b)

Then, A is a globally asymptotically stable set for the system (4.10) with w = 0.

Proof. The proof is given in Appendix A.3.

Let us now define the notion of the L∞-gain of a system, which was studied
for LTI systems in, e.g., [1], for which we introduce a performance variable
z ∈ R

nz given by
z = C̄x̄+ D̄w, (4.20)

for some matrices C̄ and D̄ of appropriate dimensions.

Definition 4.3.4. The L∞-gain from w to z of the system (4.10), with (4.20),
is defined as

κ = inf{κ̄ ∈ R+ | ∃δ : X → R+, such that ‖z‖L∞
6 κ̄‖w‖L∞

+ δ(x̄(0)),

for all x̄(0) ∈ X , w ∈ L∞}, (4.21)
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in which x̄ is a solution to (4.10) with initial condition x̄(0) ∈ X , and distur-
bance w ∈ L∞.

4.3.2 Stability and L∞-gain of the Event-Triggered
Control System

Using the results presented above for impulsive systems of the form (4.10),
we now present the main result of this section. The main result consists of
conditions for stability of a set A, and an explicit expression of this set A, and
an upper bound on the L∞-gain for the event-triggered control system (4.10),
with (4.11), (4.13), (4.14), (4.15) and (4.16), and (4.20). We will also present
conditions that guarantee that A is a globally asymptotically stable set for this
event-triggered control system, for the case where disturbances are absent (i.e.,
for w = 0).

Theorem 4.3.5. Consider the event-triggered control system (4.10),
with (4.11), (4.13), (4.14), (4.15) and (4.16), and (4.20). Moreover, assume
that for all x̄(0) ∈ X and all w ∈ L∞, a minimum inter-event time hi

min > 0 ex-
ists for each i ∈ {1, . . . , N}, i.e., tiki+1−tiki

> hi
min for all ki ∈ N. Now suppose

there exist a positive definite matrix P ∈ R
(np+nc)×(np+nc), a positive semidef-

inite matrix U ∈ R
nx×nx , scalars α, β, κ > 0, and µi, νi > 0, i ∈ {1, . . . , N},

satisfying

[∑N
i=1 µiQi − Ā⊤P̄ − P̄ Ā− αP̄ ⋆

B̄⊤P̄ βI

]

� 0, (4.22a)

[
αP̄ − C̄⊤C̄ ⋆
−D̄⊤C̄ (κ2 − β)I − D̄⊤D̄

]

� 0, (4.22b)

P̄ − Ḡ⊤
i P̄ Ḡi − νiQi � 0, (4.22c)

for all i ∈ {1, . . . , N}, in which P̄ := diag(P, 0) + U . Then,

A = {x̄ ∈ C ∪ (
⋃N

i=1 Di) | x̄⊤P̄ x̄ 6
∑N

i=1
µiεi

α } (4.23)

is a globally asymptotically stable set for (4.10) with w = 0. Moreover, the
L∞-gain of (4.10), with (4.20), is smaller than or equal to κ and δ(x̄(0)) in

(4.21) can be taken as δ(x̄(0)) = (αx̄⊤(0)P̄ x̄(0) +
∑N

i=1 µiεi)
1/2 for x̄(0) ∈ X .

Proof. The proof is given in Appendix A.3.

Let us now comment on the results presented in Theorem 4.3.5. The first
comment is that the assumption in the hypotheses of Theorem 4.3.5 on the
existence of a strictly positive minimum inter-event time for each i ∈ {1, . . . , N}
is automatically guaranteed, if εi > 0 for all i ∈ {1, . . . , N} and the LMIs in
(4.22) are feasible. This will be shown in Theorem 4.4.1 below. In case that
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εi = 0 for some i ∈ {1, . . . , N}, the assumption on the existence of a strictly
positive minimum inter-event time for each i ∈ {1, . . . , N} can be violated
and the inter-event time tiki+1 − tiki

can converge to zero. In this case, an
infinite number of events can occur in a finite-length time interval (i.e., the
impulsive system (4.10) exhibits Zeno behaviour). This can happen at times t
when ‖vJi

(t)‖ = 0 and x̄(t) 6= 0, as we will show in Example 2 in Section 4.6.
Therefore, we should generally take εi > 0 for all i ∈ {1, . . . , N} to guarantee
minimum inter-event times greater than zero.

Another comment regarding Theorem 4.3.5 is that feasibility of (4.22) is
only determined by the choice of suitable α, β, κ, and σi, i ∈ {1, . . . , N}, as Qi

depends on σi, and feasibility is not affected by the choice of εi, i ∈ {1, . . . , N}.
Hence, once (4.22) is feasible, practical stability (for w = 0) and the upper
bound κ on the L∞-gain are guaranteed. The ‘size’ of the set A as in (4.23),
(when w = 0), is affected by α, κ and σi, through the resulting P , as well
as εi. Hence, after choosing α, κ and σi that render the set A of the event-
triggered control system globally asymptotically stable and that guarantee the
desired upper bound κ on the L∞-gain, the parameters εi can be freely chosen
to adjust the size of the set A. As we can see from (4.8), this will affect the
number of events, enabling us to make trade-offs between the size of the set
A (related to the ultimate bound x reaches as t → ∞ for w = 0) and the
number of transmissions in each channel. Indeed, larger εi, i ∈ {1, . . . , N},
result in fewer events, and thus fewer transmissions, but in a larger set A,
(i.e., a larger ultimate bound) when w = 0. In fact if εi, i ∈ {1, . . . , N}, all
approach zero (from above) we have that A → {0}. Hence, the set A can be
made arbitrary small (at the cost of more transmissions). The naive choice to
take εi = 0, for all i ∈ {1, . . . , N}, seems appealing as it would yield A = {0}.
However, as argued already above, this might result in zero minimum inter-
event times. In some cases, such as the case of a state-feedback controlled
system with centralised event triggering as discussed in Section 4.2.3, a strictly
positive minimum inter-event times can guaranteed even for ε1 = 0, and we
have that A = {0} is globally asymptotically stable. We will further discuss
the minimum inter-event times below. Finally, note that the function δ is also
affected by εi, also expressing that larger εi will result in a larger ultimate
bound (even for w 6= 0).

In case disturbances are absent (w = 0), we can arrive at simpler condi-
tions to guarantee that A is a globally asymptotically stable set for the event-
triggered control system (4.10), with (4.11), (4.13), (4.14), (4.15) and (4.16).

Corollary 4.3.6. Consider the event-triggered control system (4.10), with
(4.11), (4.13), (4.14), (4.15) and (4.16), and w = 0. Moreover, assume that
for all x̄(0) ∈ X , a minimum inter-event time hi

min > 0 exists for each i ∈
{1, . . . , N}, i.e., tiki+1 − tiki

> hi
min for all ki ∈ N. Now suppose there exist a

positive definite matrix P ∈ R
(np+nc)×(np+nc), a positive semidefinite matrix
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U ∈ R
nx×nx , scalars α > 0, and µi, νi > 0, i ∈ {1, . . . , N}, satisfying

N∑

i=1

µiQi − Ā⊤P̄ − P̄ Ā− αP̄ � 0, (4.24a)

αP̄ − diag(I, 0) � 0 (4.24b)

and (4.22c) for all i ∈ {1, . . . , N}, where P̄ := diag(P, 0) + U and I denotes
the identity matrix of size (np + nc) × (np + nc). Then, the set A as in (4.23)
is a globally asymptotically stable set for (4.10) with w = 0. Furthermore,

lim supt→∞ ‖x(t)‖ 6 (
∑N

i=1 µiεi)
1/2.

Proof. The proof follows the same lines of reasoning as the proof of Theorem
4.3.5. The fact that ‖x(t)‖ → (

∑N
i=1 µiεi)

1/2 as t → ∞ follows from (A.87),
with w = 0, and the fact that (4.24b), implies that ‖x(t)‖2 6 αV (x̄(t)) for all
t ∈ R+.

Remark 4.3.7. In this chapter, we particularly study the L∞-gain from w to
z of the system (4.10), with (4.20), instead of the Lp-gain from w to z, for
some p ∈ N, defined as

κ = inf{κ̄ ∈ R+ | ∃δ : X → R+, such that ‖z‖Lp
6 κ̄‖w‖Lp

+ δ(x̄(0)),

for all x̄(0) ∈ X , w ∈ Lp}, (4.25)

in which x̄ is a solution to (4.10) for initial condition x̄(0) ∈ X , and input
w ∈ Lp. The reason for focussing on L∞-gains is that we are generally inter-
ested in εi > 0, i ∈ {1, . . . , N}, as this guarantees nonzero minimum inter-event
times (see Theorem 4.4.1 below). In this case, A ⊃ {0}, and thus x̄(t) will not
converge asymptotically to the origin for w = 0, and therefore z(t) will typi-
cally not converge to zero when t → ∞. Hence, ‖z‖Lp

= ∞ for all p 6= ∞.
Consequently, a finite Lp-gain for p ∈ N cannot be guaranteed in case εi > 0,
i ∈ {1, . . . , N}. Since the L∞-gain does not require z(t) → 0 when t→ ∞, but
merely that z(t) is bounded for all t ∈ R+, we can arrive at a finite L∞-gain
for the event-triggered control system discussed in this chapter. Note that in
case εi = 0, i ∈ {1, . . . , N}, for which in some circumstances it is possible
to guarantee that hi

min > 0, (e.g., the case of a state-feedback controlled sys-
tem with centralised event triggering as discussed in Section 4.2.3), the Lp-gain
might be finite since in this case A = {0}. In particular, the L2-gain is guaran-
teed to be smaller than κ for the system (4.10), with (4.20) and εi = 0 for all
i ∈ {1, . . . , N}, if there exist a positive definite matrix P ∈ R

(np+nc)×(np+nc), a
positive semidefinite matrix U ∈ R

nx×nx , such that P̄ := diag(P, 0)+U , scalars
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α > 0, and µi, νi > 0, i ∈ {1, . . . , N}, satisfying





∑N
i=1 µiQi − Ā⊤P̄ − P̄ Ā− αP̄ ⋆ ⋆

B̄⊤P̄ κ2I ⋆
C̄ D̄ I



 � 0, (4.26a)

P̄ − Ḡ⊤
i P̄ Ḡi − νiQi � 0, (4.26b)

for all i ∈ {1, . . . , N}. Of course, this result only holds if all the minimum inter-
event times hi

min, i ∈ {1, . . . , N}, are strictly positive, as was also required in
Theorem 4.3.5.

4.4 A Lower Bound on the Inter-Event Times

In this section, we will show that for each node i ∈ {1, . . . , N}, the inter-event
times tiki+1 − tiki

, ki ∈ N, of the event-triggered control system are bounded
from below by a strictly positive constant. The existence of a lower bound
on the inter-event times for every node means that the total number of trans-
missions in a finite time interval is bounded from above, which guarantees a
certain maximum utilisation of the communication resources. We will show
that, although the stability and L∞-gain properties of the system hold glob-
ally, the guaranteed lower bound on the inter-event times is a local property,
in the sense that it depends on the magnitude of the initial condition and the
disturbance.

The analysis is based on studying the solutions of (4.10), with (4.11), (4.13),
(4.14), (4.15) and (4.16), from tiki

to tiki+1. To do so, we study the solutions of
the auxiliary system

d
dt

[
x

eJi

]

=
[

I 0

0 Γ̄⊤
i

]

Ā
[

I 0
0 Γ̄i

][
x

eJi

]

+
[

I 0

0 Γ̄⊤
i

](

Ā
[

0
Γ̄c

i

]

eJ c
i

+ B̄w
)

(4.27)

with e+Ji
(tiki

) = 0, from tiki
to tiki+1, for each i ∈ {1, . . . , N}. In (4.27),

the submatrices Γ̄i := I•Ji
and Γ̄c

i := I•J c
i
, i ∈ {1, . . . , N}, are formed by

taking the columns of the identity matrix I that are in the set Ji = {j ∈
{1, . . . , ny + nu} | γj

i = 1}, and in the set J c
i = {1, . . . , ny + nu}\Ji, re-

spectively, and are used to select the signals in e that correspond to node
i ∈ {1, . . . , N}, i.e., eJi

= Γ̄⊤
i e, and that do not correspond to this node, i.e.,

eJ c
i

= (Γ̄c
i )
⊤e, respectively. The auxiliary system (4.27), i ∈ {1, . . . , N}, is ob-

tained from (4.11), by considering eJ c
i

as external inputs. Hence, the fact that
the dynamics of eJ c

i
depend on x and eJi

is ignored in (4.27), yielding that the

solutions to (4.10), with (4.11), (4.13), (4.14), (4.15) and (4.16), from tiki
to

tiki+1 are included in the solutions of (4.27) and e+Ji
(tiki

) = 0 from tiki
to tiki+1,

for each i ∈ {1, . . . , N}. This fact, and the fact that eJ c
i

in (4.27) satisfies
(4.8), will be exploited to derive the lower bound on the minimum inter-event
time.
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We now present the main result of this section.

Theorem 4.4.1. Consider the event-triggered control system given by (4.10),
with (4.11), (4.13), (4.14), (4.15) and (4.16), with εi > 0 for all i ∈ {1, . . . , N}.
For every δx > 0 and every δw > 0, there exists a strictly positive lower bound
on the minimum inter-event times hi

min(δx, δw) for each node i ∈ {1, . . . , N},
i.e., tiki+1−tiki

> hi
min, for all ki ∈ N, for every solution to (4.10) with ‖x̄(0)‖ 6

δx, and ‖w‖L∞
6 δw. An explicit expression for a lower bound hi

min is given
by

min
{

h > 0
∣
∣
∣λmax

([
I

0

]⊤
e

[

I 0
0 Γi

]

Ā⊤h
Qie

Ā
[

I 0
0 Γi

]

h[
I

0

])

>
ζi(h)

η

}

, (4.28)

in which

ζi(h) = εi − ‖Qi‖
(
2
√

ηρi(h)
∥
∥e

Ā
[

I 0
0 Γi

]

h[
I

0

]∥
∥ + ρi(h)

)
, (4.29)

with

ρi(h) = h

∫ h

0

eϑsds
(

‖B̄‖δw +
∥
∥Ā

[
0
Γ̄c

i

]∥
∥

√
∑

j∈Ii
σj‖ΓjC‖2η + εj

)2

, (4.30)

and η =
λmax(P̄ )αδ2

x+βδ2
w+

∑ N
i=1 µiεi

αλmin(P ) , ϑ = λmax

(
Ā

[
I 0
0 Γi

]
+

[
I 0
0 Γi

]⊤
Ā⊤)

, and Ii :=

{1, . . . , N}\{i}.

Proof. The proof is given in Appendix A.3.

The minimum in (4.28) in Theorem 4.4.1 can be solved by computing the
maximum eigenvalue of the h-dependent matrix in the condition in (4.28) for
increasing h > 0 and check when the inequality is satisfied for the first time.
This determines for node i ∈ {1, . . . , N} the lower bound on the inter-event
times hi

min, as in (4.28). Even though a minimum inter-event times is guaran-
teed for each node, no guarantees can be made about the time between two
events in different nodes. Still, the lower bound on the inter-event times for
all nodes allows guarantee to be made about the total number of events within
a certain time interval. The obtained lower bounds decrease as δx (related to
‖x̄(0)‖) increases or as δw (related to ‖w‖L∞

) increases, implying that the con-
trol task has to be executed more often if the system’s initial state is further
away from the origin and in case the norm of the disturbance is larger. We
will illustrate this observation in Example 3 of Section 4.6. In the special case
that Cp and Cc are invertible and the event triggering is centralised, i.e., the
number of nodes N = 1 and Γ1 = I, (implying that Q1 has full rank), and
no disturbances are present, (implying that δw = 0), the minimum inter-event
time h1

min > 0 even for ε1 = 0. Furthermore, we have that ρ1(h) = 0, (due to
δw = 0 and I1 = ∅) and thus that ζ1(h) = 0, for all h ∈ R+, meaning that
the obtained bound is independent of δx, (and thus independent of x̄(0) ∈ X ).
If additionally the controller is given by a state-feedback controller (4.17), the
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resulting condition recovers the one presented in Theorem 5.1 in [92]. In this
case, the bounds are tight in the sense that for some k1 ∈ N, we have that
t1k1+1 − t1k1

= h1
min.

4.5 Improved Event-Triggering Conditions

In the previous sections, we modelled the event-triggered control system as an
impulsive system and presented conditions to guarantee its stability and an up-
per bound on the L∞-gain. The reason to take an impulsive system approach is
that it explicitly describes the behaviour of the event-triggered control system.
This has the favourable consequence that it yields less conservative conditions
than the (direct extensions of the) existing results in the literature, such as
[126, 136]. To formally demonstrate this statement, we first extend the rea-
soning of [126] towards dynamical output-based controllers and by including
L∞-performance, and secondly, we show that the obtained stability conditions
can be seen as a special case of the conditions in Theorem 4.3.5 (i.e., using the
impulsive system description of the event-triggered control system).

To extend the work of [126], let us consider the following auxiliary system:







d
dtx = (A+BC)x+

[
B E

]
[
e
w

]

,

[
v
z

]

=

[
C
Cx

]

x+

[
0 0
0 D̄

] [
e
w

]

,

(4.31)

which is obtained from (4.11) and (4.20) by considering the error e as an exter-
nal input, instead of as a state variable as in (4.10), and by assuming that the
performance output, as in (4.20), is given by z = Cxx+ D̄w, implying that C̄
in (4.20) has the form C̄ = [Cx 0]. As important observation is that in (4.31),
the dynamics of e, given by d

dte = − d
dtv = −C(A + BC)x − CBe, is ignored

in (4.31), while it is captured explicitly in the impulsive system (4.10), with
(4.11), (4.13), (4.14), (4.15) and (4.16).

System (4.31), with e = 0 and w = 0, is a globally asymptotically stable
LTI system, because of the assumption made in Section 4.2 that the controller
stabilises the plant when v̂(t) = [ŷ⊤(t) û⊤(t)]⊤ = [y⊤(t) u⊤(t)]⊤ = v(t) for all
t ∈ R+, meaning that A + BC is Hurwitz, i.e., it has all the eigenvalues in
the left-half complex plane. This ensures that there exist a positive definite
storage function of the form V (x) = x⊤Px, see, e.g., [139], a (sufficiently small)
positive scalar α, (sufficiently large) positive scalars β, κ, satisfying β > κ2,
and (sufficiently small) positive scalars σi, i ∈ {1, . . . , N}, that satisfy the
dissipation inequality

d
dtV (x(t)) 6 −αV (x(t)) + β‖w(t)‖2 +

N∑

i=1

(
1
σi
‖eJi

(t)‖2 − ‖vJi
(t)‖2

)
(4.32)
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and the inequality

‖z(t)‖2 + (β − κ2)‖w(t)‖2
6 αV (x(t)). (4.33)

Now since (4.8) holds, for all i ∈ {1, . . . , N} and all t ∈ R+, we have that

N∑

i=1

(
‖vJi

(t)‖2 + εi

σi
− 1

σi
‖eJi

(t)‖2
)

> 0, (4.34)

and all t ∈ R+. Combining this expression with (4.32) yields that

d
dtV (x(t)) 6 −αV (x(t)) + β‖w(t)‖2 +

N∑

i=1

εi

σi
, (4.35)

which allows us to show that for w = 0 and for V (x(t)) >
∑N

i=1
εi

σiα
, it holds

that d
dtV (x(t)) < 0, which means that the state x of (4.31), with (4.8), con-

verges asymptotically to the set A = {x ∈ R
np+nc |V (x) 6

∑N
i=1

εi

σiα
}. Fur-

thermore, using (4.33) and ideas from [1], we can show that the system (4.31),
with (4.8), has a finite L∞-gain from disturbance w to performance output z.
We will formalise this idea in the following theorem.

Theorem 4.5.1. Assume that there exist scalars α, β, κ, σi > 0, i ∈ {1, . . . , N},
and a positive definite matrix P ∈ R

(np+nc)×(np+nc), satisfying





−Z − αP − ∑N
i=1 C

⊤ΓiC ⋆ ⋆

B⊤P
∑N

i=1
1
σi

Γi ⋆

E⊤P 0 βI



 � 0, (4.36a)

[
αP − C⊤

x Cx ⋆
D̄⊤Cx (κ2 − β)I − D̄⊤D̄

]

� 0. (4.36b)

with Z := (A+BC)⊤P + P (A+BC). Then, the set

A = {x ∈ R
np+nc |x⊤Px 6

∑N
i=1

εi

σiα
} (4.37)

is a globally asymptotically stable set of the system (4.31) with (4.8) and for
w = 0. Furthermore, the L∞-gain from w to z is smaller than or equal to κ
and δ in (4.21) can be taken as δ(x(0)) = (αx⊤(0)Px(0) +

∑N
i=1

εi

σi
)1/2 for all

x ∈ R
np+nc .

Proof. The proof follows directly from the discussion above and the fact that
(4.36a) and (4.36b) imply (4.32) and (4.33), respectively. It also follows directly
from Theorem 4.5.2 that we will present below.
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In case the system is controlled by a state-feedback controller (as discussed
in Section 4.2.3), the event triggering mechanism is centralised (i.e., N = 1 and
Γ1 = I), and when disturbances are absent (E = 0 and D̄ = 0), the conditions
presented in Theorem 4.5.1 provide LMI-based stability conditions that can
be used to analyse the stability of the event-triggered control system studied
in [126]. Even though the results in [126] are valid for nonlinear systems as
well, while we focus in this chapter on linear systems, Theorem 4.5.1 provides a
computational procedure that allows us to obtain large values for σi and, thus,
large values for the inter-event times, whereas [126] only presents existence
results and does not provide a constructive (optimisation-based) way to obtain
suitable choices for σi. Note that obtaining a LMI-based stability analysis
for the case studied in [126] is not the main result of this section. Namely,
the main result of this section is presented below. This main result states
that if Theorem 4.5.1 guarantees global asymptotic stability of the set A, as
in (4.37), and guarantees an upper bound κ on the L∞-gain for the system
(4.31) with (4.8), for some scalars σi and the scalars εi, i ∈ {1, . . . , N}, then,
global asymptotic stability of the same set A and the same upper-bound κ
on the L∞-gain can also be guaranteed for the impulsive system (4.10) using
Theorem 4.3.5.

Theorem 4.5.2. Consider the model of the event-triggered control system
(4.31), with (4.8), and the impulsive system formulation of the event-triggered
control system (4.10), with (4.11), (4.13), (4.14), (4.15) and (4.16), and (4.20)
with C̄ = [Cx 0]. If there exists a positive definite matrix P , and scalars
α, β, κ, σi > 0, i ∈ {1, . . . , N}, satisfying the conditions of Theorem 4.5.1, then
P̄ := diag(P, 0), U = 0, µi = 1

σi
and νi = 0, for all i ∈ {1, . . . , N}, satisfy the

conditions of Theorem 4.3.5 for the same α, β, and κ.

Proof. The proof is given in Appendix A.3.

Theorem 4.5.2 formally shows that the conditions based on impulsive system
(4.10) are never more conservative than the ones based on system (4.31), as the
matrix P̄ in Theorem 4.3.5 can have a more general form than P̄ := diag(P, 0),
(which was used in the hypothesis of Theorem 4.5.2). Hence, this creates
the opportunity to guarantee stability for event-triggering conditions with a
larger inter-event time or a smaller upper-bound on the L∞-gain. Furthermore,
Theorem 4.5.2 also guarantees that the conditions in Theorem 4.3.5 can always
be satisfied if all σi, i ∈ {1, . . . , N}, are chosen sufficiently small. Namely,
for the auxiliary system (4.31) the existence of storage function of the form
V (x) = x⊤Px satisfying (4.32) for some positive α, β and σi, i ∈ {1, . . . , N},
is guaranteed. Hence, the hypothesis of Theorem 4.5.1 can always be satisfied
for some sufficiently small α and σi, i ∈ {1, . . . , N}, and some sufficiently large
β and κ, which, in turn, implies feasibility of the conditions in Theorem 4.3.5.
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4.6 Illustrative Examples

In this section, we illustrate the presented theory using three numerical ex-
amples. The first example is taken from [126], in which an unstable plant
is stabilised using an event-triggered implementation of a state-feedback con-
troller and a centralised event-triggering mechanism. We will show that by
formulating the event-triggered control system as an impulsive system and em-
ploying the theory as developed in this chapter, we can guarantee stability
for event-triggered control systems with larger minimum inter-event times. In
the second example, we stabilise an unstable plant using a dynamical output-
based controller and a decentralised event-triggering mechanism to illustrate
that indeed output-based controllers and decentralised event triggering can be
designed that perform well. In the last example, we consider a stable plant
that is subject to disturbances and show that outputs of the plant and the
controller are only transmitted when disturbances are acting on the system or
during transients, while no transmissions occur when disturbances are absent
and the system is in steady state. This is a favourable property that traditional
digital control systems with periodic transmissions do not have.

Example 1: Let us consider the numerical example taken from [126]. The
plant (4.1) is given by

d
dtxp =

[
0 1
−2 3

]

xp +

[
0
1

]

u, (4.38)

the state-feedback controller is given by (4.17), with K =
[
1 −4

]
, and the

event triggering is centralised, i.e., we have that N = 1 and Γ1 = I. In [126],
global asymptotic stability of the origin is guaranteed for σ̄ 6 0.055 for the
event-triggering condition ‖e‖ = σ̄‖x‖ and was obtained using an alternative
approach. This yields σ1 = 0.0552 = 0.0030 and ε1 = 0 if the event-triggering
mechanism is formulated as in (4.6). For this event-triggering mechanism,
Theorem 4.4.1, or its counterpart Theorem 5.1 in [92], yields a lower bound on
the inter-event times4 of 0.0318. We now compare this result with the event-
triggering mechanism obtained using the results from Section 4.5, i.e., obtained
by maximising σ1 in the conditions of Theorem 4.5.1. Taking this approach
allows us to guarantee stability up to σ1 = 0.0273, resulting, for ε1 = 0, in a
lower bound on the inter-event times of 0.0840. Therefore, we can conclude that
taking the approach as in Section 4.5 already increases the allowable minimum
inter-event time with respect to [126]. However, if we analyse stability using the
result of Theorem 4.3.5, which is based on the impulsive system formulation, we
can guarantee stability of this event-triggered control system up to σ1 = 0.0588,

4Note that for this example, the obtained lower-bound on the minimum inter-event times
is tight, as also was observed in Section 4.4.
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which yields, for ε1 = 0, a lower bound on the inter-event times of 0.1136. The
increase of inter-event times is expected due to the formal result established in
Theorem 4.5.2.

We therefore conclude that by modelling the event-triggered control sys-
tem using an impulsive model, stability can be guaranteed for event-triggering
mechanisms that yield larger minimum inter-event times.

Example 2: Let us now consider the plant (4.1) given by







d
dtxp =

[
0 1
−2 3

]

xp +

[
0
1

]

û

y =
[
−1 4

]
xp,

(4.39)

and the controller (4.2) given by







d
dtxc =

[
0 1
0 −5

]

xc +

[
0
1

]

ŷ

u =
[
1 −4

]
xc.

(4.40)

We assume that no disturbances act on the plant, i.e., Bw = 0, and, therefore,
we simply take C̄ = 0 and D̄ = 0. Furthermore, we assume that the system is
equipped with an event-triggering mechanisms at both the sensor-to-controller
channel and the controller-to-actuator channel, which means that we define
Γ1 = diag(1, 0) and Γ2 = diag(0, 1). Hence, we have two nodes. Practical
stability of the event-triggered control system (4.1), (4.2), with event-triggering
mechanism (4.6), with σ1 = σ2 = 10−3, can be guaranteed using the impulsive
system formulation (4.10) and the results of Corollary 4.3.6.

If we take ε1 = ε2 = 0, the inter-event times will become zero when
‖vJi

(t)‖ = 0, at some time t ∈ R
+ and for some i ∈ {1, 2}, as was dis-

cussed in Section 4.3 and Section 4.4. By simulating the response of the
system to the initial condition x̄(0) = [ 252 ,

−25
2 , −25

2 , 25
2 , 0, 0]⊤, we can ob-

serve that indeed the inter-event times converge to zero, see Figure 4.2b, as
‖vJ2

(t)‖ = ‖u(t)‖ → 0, see Figure 4.2a. Hence, this illustrates that εi > 0 is
needed for all i ∈ {1, . . . , N} to guarantee minimum inter-event times larger
than zero.

If we now take ε1 = ε2 = 10−3, Corollary 4.3.6 yields that the states x(t)
satisfy lim supt→∞ ‖x(t)‖ 6 6.4. Using the result of Theorem 4.4.1, we obtain
that if the initial conditions satisfy, e.g., ‖x̄(0)‖ 6 25, a lower bound on the
inter-event times h1

min = h2
min = 6.5 · 10−9 is guaranteed for both nodes. When

we compare these results with a simulation of the response of the system to the
initial condition x̄(0) = [ 252 ,

−25
2 , −25

2 , 25
2 , 0, 0]⊤, see Figure 4.3, we observe that

the states of the plant and the controller indeed converge asymptotically to a
vicinity of the origin and that the outputs of the plants and controllers have
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Figure 4.2: Example 2 with ε1 = ε2 = 0.
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Figure 4.3: Example 2 with ε1 = ε2 = 10−3. Inserted in (a): A close-up of
the evolution of the states of the plant and the controller at time
t ∈ [17.5, 30].

to be transmitted less often when the state approaches the origin. However,
x(t) even satisfies lim supt→∞ ‖x(t)‖ 6 0.12, which is significantly smaller than
the predicted upper bound of approximately 6.4. In addition, the observed
minimum inter-event time is h1

min ≈ h2
min ≈ 10−4, which is larger than the

predicted value of 6.5 · 10−9. This seems to hold for many initial conditions
satisfying ‖x̄(0)‖ < 25. This shows that, although we can formally prove
the existence of a globally asymptotically stable compact set and a nonzero
lower bound on the minimal inter-event times, the obtained bounds can still
be improved. Improving these bounds is a topic of future research.
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Example 3: Let us now consider the (stable) plant (4.1) given by







d
dtxp =

[
0 1
−2 −3

]

xp +

[
0
1

]

û+

[
0
1

]

w

y =
[
1 0

]
xp,

(4.41)

and the controller (4.2) given by







d
dtxc =

[
−2 1
−13 −3

]

xc +

[
−2
−5

]

ŷ

u =
[
5 2

]
xc.

(4.42)

Furthermore, we take C̄ = [1 0 0 0] and D̄ = 0 for the performance output z
in (4.20), and assume that the system is equipped with event-triggering mech-
anisms at both the sensor-to-controller channel and the controller-to-actuator
channel. This means that we, again, define Γ1 = diag(1, 0) and Γ2 = diag(0, 1).
Asymptotic stability of the compact set A and an upper bound of the L∞-gain
of the event-triggered control system (4.1), (4.2), with event-triggering mecha-
nism (4.6), with σ1 = σ1 = 10−3, can be guaranteed using the impulsive system
formulation (4.10) and the results of Theorem 4.3.5. This leads to the smallest
upper bound on the L∞-gain, given by κ = 0.46.

When we simulate the response of the system to the initial condition x̄(0) =
0 and a disturbance satisfying ‖w(t)‖ 6 1 for time t ∈ [0, 10] and ‖w(t)‖ 6

1
4 for

time t ∈ [20, 30], as shown in Figure 4.4, we obtain the trajectories of z as also
shown in Figure 4.4. In this figure, we can observe that the performance output
z, as in (4.20), satisfies ‖z(t)‖ 6 0.3 for time t ∈ [0, 10] and ‖z(t)‖ 6 0.09 for
time t ∈ [20, 30], which satisfies ‖z‖L∞ 6 κ‖w‖L∞ + δ(0) = 0.46‖w‖L∞ + 0.17,
which is an upper bound of the L∞-gain of Definition 4.3.4. Furthermore,
we can also observe that the inter-event times are larger than 0.022 for t ∈
[0, 10] and larger than 0.044 for t ∈ [20, 30]. This observation concurs with
the result of Section 4.4, which stated that transmissions occur less often if
the magnitude of the disturbance is smaller. Finally, since the system (4.41)
is stable, it seems that the outputs of the plant and controller only have to be
transmitted when disturbances are acting on the system or during transients
(i.e., approximately for t < 10 and t > 20), and no transmissions occur when
no disturbances are acting on the system and the systems is close to its steady
state. One could say that event-triggered control only acts when it is necessary
from a stability or performance point of view, which is a favourable property
that makes event-triggered control of high interest. Traditional digital control
systems with periodic transmissions do not have this appealing property.



88 Output-Based Decentralised Event-Triggered Control

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

disturbance w

output z

d
is

tu
rb

a
n
ce

w
a
n
d

o
u
tp

u
t

z

time t

(a) The evolution of the states of the plant
and controller as a function of time.

0 5 10 15 20 25 30
10
−2

10
−1

10
0

10
1

node i = 2

node i = 1

in
t
e
r
-e

v
e
n
t

t
im

e
t
i k
+

1
−

t
i k

time t

(b) The inter-event times for each node as
a function of time.

Figure 4.4: Example 3.

4.7 Conclusions

In this chapter, we studied stability and L∞-performance of event-triggered
control systems for dynamical output-based controllers having decentralised
event-triggering mechanisms. The proposed event-triggering mechanism unifies
earlier proposals for event-triggering mechanisms, which were mainly applied to
state-feedback controllers. Via an example (Example 2), we showed that direct
extensions of existing event-triggering mechanisms for output-based controllers
and decentralised event triggering are not applicable, as they result in inter-
event times that converge to zero. Such Zeno behaviour is obviously undesirable
in practical implementations and, therefore, extensions as proposed in this
chapter are necessary.

To analyse the resulting event-triggered control system, we modelled the
event-triggered control system as an impulsive system.The stability and L∞-
performance are then analysed using linear matrix inequalities. In addition,
we provided expressions for lower bounds on the minimum inter-event times
and we formally proved that by using an impulsive systems approach, stability
and L∞-performance can be guaranteed for event-triggered controllers with
larger inter-event times than existing results in literature. These larger inter-
event times ensure less usage of the communication resources. Using three
numerical examples, we illustrated the main features of the presented theory.
These examples show that indeed larger inter-event times can be obtained,
that for unstable systems the outputs of the plants and controllers have to be
transmitted less often when the state approaches the origin, and that for stable
systems the outputs of the plant and controller only seem to be transmitted
when disturbances are acting on the system. Especially, the latter example
demonstrates the relevance of event-triggered control: The outputs of the plant
and controller are only transmitted when needed from a performance point of
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view. This provides significant benefits with respect to traditional sampled-
data control systems, in which outputs of the plant and the controller are
transmitted periodically.

Future work will focus on obtaining tighter upper bound on the magni-
tude of the ultimate bound and tighter lower bounds on the inter-event times,
on creating codesign methods for the controller and event-triggering mecha-
nism, on including transmission delays, packet dropouts and communication
constraints, as are typically studied in the area of networked control systems,
as well as making the implementation of the event-triggered control system
self-triggered, as was done for state-feedback controllers and centralised event-
triggering mechanisms in, e.g., [92, 130, 135].
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Periodic Event-Triggered Control1

5.1 Introduction

5.2 Periodic Event-Triggered Control

5.3 Stability and L2-Gain Analysis of the PETC System

5.4 Comparison of the Modelling Approaches

5.5 Minimum Inter-Event Times and Self-Triggered Implemen-

tations

5.6 Output-Based Decentralised PETC

5.7 Illustrative Examples

5.8 Conclusions

Abstract – Event-triggered control (ETC) is a control strategy that is espe-
cially suited for applications where computation and communication resources
are scarce. By updating and communicating sensor and actuator data only
when needed for stability or performance purposes, ETC is capable of reduc-
ing the amount of computations and communications, while still retaining a
satisfactory closed-loop performance. In this chapter, a novel ETC strategy is
proposed by striking a balance between periodic control and ETC. This leads
to so-called periodic event-triggered control (PETC), in which the advantage
of reduced resource utilisation is preserved on the one hand, while, on the other
hand, the conditions that trigger the events still have a periodic character. The
latter aspect has the advantage that the event-triggering condition has to be
verified only at the periodic sampling instants, instead of continuously, as in
conventional ETC. This offers clear implementation benefits for PETC. Fur-
thermore, it also guarantees a minimum inter-event time of (at least) the sam-
pling interval of the event-triggering condition. The PETC strategies developed
in this chapter apply to both static state-feedback and dynamical output-based
controllers, as well as for both centralised and decentralised (periodic) event-
triggering conditions. To analyse the stability and the L2-gain properties of the
resulting PETC systems, three different approaches will be presented based on
(i) piecewise linear systems (ii) discrete-time perturbed linear systems, and (iii)
impulsive systems, respectively. Moreover, the advantages and disadvantages

1This chapter is based on [57].
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of each of the three methods will be highlighted. The developed theory will be
illustrated using two numerical examples.

5.1 Introduction

In many control applications nowadays, the controller is implemented on a
digital platform. In such a digital implementation, the control task consists of
sampling the outputs of the plant and computing and implementing new actua-
tor signals. Typically, the control task is executed periodically, since this allows
the closed-loop system to be analysed and the controller to be designed using
the well-developed theory on sampled-data systems, see, e.g., [8, 27]. Although
periodic sampling is preferred from an analysis and design point of view, it is
sometimes less preferable from a resource utilisation point of view. Namely,
executing the control task at times when no disturbances are acting on the
system and the system is operating desirably is clearly a waste of computation
resources. Moreover, in case the measured outputs and/or the actuator signals
have to be transmitted over a shared (and possibly wireless) network, unnec-
essary utilisation of the network (or power consumption of the wireless radios)
is introduced. To mitigate the unnecessary waste of computation and commu-
nication resources as in periodic sampled-data control, an alternative control
paradigm, namely event-triggered control (ETC), has been proposed at the end
of the nineties [6, 9, 59, 64]. ETC is a control strategy in which the control task
is executed after the occurrence of an event, generated by some well-designed
event-triggering condition, rather than the elapse of a certain fixed period of
time, as in conventional periodic sampled-data control. In this way, ETC is
capable of significantly reducing the number of control task executions, while
retaining stability and a satisfactory closed-loop performance, as simulation
and experimental results show in, e.g., [6, 9, 59, 64, 65, 83, 85, 111, 127].

Although the advantages of ETC are well-motivated and practical appli-
cations show its potential, relatively few theoretical results exist that study
ETC systems, see, e.g., [10, 36, 46, 60, 66, 81, 90, 94, 107, 126, 136], in which
several different ETC strategies are proposed. The main difference between
the aforecited papers and the ETC strategy that will be proposed in this chap-
ter is that in the former the event-triggering condition has to be monitored
continuously, while in the latter the event-triggering condition is verified only
periodically, and every sampling time it is decided whether or not to transmit
new measurements and control signals. Only when necessary from a stability
or performance point of view, the communication or computation resources are
used. As a consequence, this control strategy aims at striking a balance be-
tween periodic sampled-data and event-triggered control and therefore we will
propose to use the term periodic event-triggered control (PETC) for this class
of ETC, while we will use the term continuous event-triggered control (CETC)
to indicate the existing approaches [10, 36, 46, 66, 81, 90, 94, 107, 126, 136].
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By mixing ideas from ETC and periodic sampled-data control, the benefits of
reduced resource utilisation are preserved in PETC as transmissions and con-
troller computations are not performed periodically, while the event-triggering
conditions still have a periodic character. The latter aspect leads to several
benefits, including a guaranteed minimum inter-event time of (at least) the
sampling interval of the event-triggering condition. Furthermore, as already
mentioned, the event-triggering condition has to be verified only at periodic
sampling times, making PETC better suited for practical implementations as
it can be implemented in more standard time-sliced embedded software ar-
chitectures, while CETC requires dedicated analogue hardware to detect the
events. Another advantage of PETC is that it can be transformed more eas-
ily into a self-triggered control variant [92, 130, 135] (at least in the case that
the controller is a state-feedback controller), as we will also show in this chap-
ter. Initial attempts towards what we refer here to as PETC were taken in
[6, 60, 66], however only for restricted classes of systems and/or controllers
(PID, static state feedback, or simple impulse controllers), and for particular
event-triggering conditions without providing a general analysis framework.

We will therefore provide a general framework for the introduced class of
PETC systems that allows to carry out stability and performance analyses. In
fact, we will provide three different analysis approaches, namely: (i) a discrete-
time piecewise linear (PWL) system approach, (ii) a discrete-time perturbed
linear system approach, and (iii) an impulsive system approach. The first
approach adopts PWL models [75, 120] and piecewise quadratic (PWQ) Lya-
punov functions, which lead to LMI-based stability conditions for the PETC
system. The second method, the one based on perturbed linear systems, can be
seen as a discrete-time counterpart of the work in [126], which studied CETC.
The essence of this approach is that the difference between the control signal
obtained by a standard periodic controller and its event-triggered counterpart
can be modelled as a disturbance, resulting in a perturbed linear system. This
insight will be used to derive a sufficient condition for stability of the PETC
system based on the H∞-norm of the perturbed linear system. This leads to
a simple stability test, which is, however, more conservative than the stabil-
ity conditions based on the first approach. The third approach uses impulsive
systems [50, 55], which explicitly include the intersample behaviour. Based on
this modelling paradigm, we are able to provide guarantees on performance in
terms of L2-gains from disturbance inputs to performance outputs. Besides de-
veloping these three analysis methods for PETC, we will also establish formal
connections between the methods and highlight their advantages and disadvan-
tages. Finally, we also present methods to compute guaranteed lower bounds
on the inter-event times for PETC systems and we show how to convert PETC
into self-triggered control [130].

In the first part of the chapter, we will present the three mentioned analysis
approaches for the basic setup of state-feedback control system. However, as in
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many practical situations not all the states can be measured directly, it is of in-
terest to study output-based dynamic controllers as well, which we will do in the
second part of the chapter. Another important issue is related to the question
of handling the fact that sensors, actuators and controllers can be physically
distributed over a wide area. In fact, a centralised event-triggering mechanism
can be prohibitive in this case, as the conditions that generate events would
need access to all the plant and controller outputs at every sampling time, which
can be an unrealistic assumption in large-scale systems. To resolve this issue,
in the second part of the chapter we will also propose decentralised periodic
event-triggered conditions for output-based dynamic controllers. We consider
both the case that multiple sensors and actuator nodes can transmit their data
at the same transmission time, which is possible in case there is no interference
during communication of different nodes, as well as the case where a shared
communication medium is used and communication constraints prohibit that
multiple nodes transmit simultaneously and, hence, the transmissions need to
be scheduled by a scheduling protocol.

The remainder of this chapter is organised as follows. After introducing
the necessary notational conventions at the end of this section, we introduce
PETC and give the problem formulation in Section 5.2. In Section 5.3, the
discrete-time PWL system approach, the discrete-time perturbed linear system
approach and the impulsive system approach are presented. In Section 5.4, we
discuss the advantages and disadvantages of the three different approaches.
In Section 5.5, we discuss the minimum inter-event times and the transfor-
mation of PETC to self-triggered control, and, in Section 5.6, we will extend
the ideas presented in the first part of this chapter towards output-based dy-
namic controllers and decentralised periodic event-triggered conditions with
both unshared and shared communication channels (where in the latter case a
scheduling protocol is needed). Before providing the conclusions in Section 5.8,
we will provide numerical examples in Section 5.7 illustrating the main devel-
opments in this chapter. Appendix A.4 contains the proofs of the lemmas and
theorems.

5.1.1 Nomenclature

For a vector x ∈ R
n, we denote by ‖x‖ :=

√
x⊤x its 2-norm and by xJ the

subvector formed by all components of x in the index set J ⊆ {1, . . . , n}.
For a symmetric matrix A ∈ R

n×n, λmax(A) and λmin(A) denote the maxi-
mum and minimum eigenvalue of A, respectively. For a matrix A ∈ R

n×m, we
denote by A⊤ ∈ R

m×n its transposed and by ‖A‖ :=
√

λmax(A⊤A) its induced
2-norm. Furthermore, by AJ• and A•J , we denote the submatrices formed by
taking all the rows of A in the index set J ⊆ {1, . . . , n}, and by all the columns
of A in the index set J ⊆ {1, . . . ,m}, respectively. By diag(A1, . . . , AN ), we
denote a block-diagonal matrix with the entries A1, . . . , AN on the diagonal,
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and for the sake of brevity we sometimes write symmetric matrices of the form
[

A B

B⊤ C

]

as
[

A B
⋆ C

]

or
[

A ⋆

B⊤ C

]

. We call a matrix P ∈ R
n×n positive definite

and write P ≻ 0, if P is symmetric and x⊤Px > 0 for all x 6= 0. Similarly, we
use P � 0, P ≺ 0 and P � to denote that P is positive semidefinite, negative
definite and negative semidefinite, respectively.

For a locally integrable signal w : R+ → R
n, where R+ denotes the set

of nonnegative real numbers, we denote by ‖x‖L2
= (

∫ ∞
0

‖x(t)‖2dt)1/2 its L2-
norm, provided the integral is finite. Furthermore, we define the set of all locally
integrable signals with a finite L2-norm as L2. For a signal w : R+ → R

n, we
denote the limit from above at time t ∈ R+ by w+(t) = lims↓t w(s), provided
that it exists.

5.2 Periodic Event-Triggered Control

In this section, we introduce periodic event-triggered control (PETC) and give
a precise formulation of the stability and performance analysis problems we
aim to solve in this chapter.

5.2.1 The Periodic Event-Triggered Control System

To introduce PETC, let us consider a linear time-invariant (LTI) plant, given
by

d
dtx = Apx+Bpû+Bww, (5.1)

where x ∈ R
nx denotes the state of the plant, û ∈ R

nu is the input applied
to the plant, and w ∈ R

nw is an unknown disturbance. In a conventional
sampled-data state-feedback setting, the plant is controlled using a controller

û(t) = Kx(tk), for t ∈ (tk, tk+1], (5.2)

where tk, k ∈ N, are the sampling times, which are periodic in the sense that
tk = kh, k ∈ N, for some properly chosen sampling interval h > 0.

Instead of using conventional periodic sampled-data control, we propose
here to use PETC, meaning that at each sampling time tk = kh, k ∈ N, state
measurements are transmitted over a communication network and the control
values are updated only when necessary from a stability or performance point
of view. This modifies the controller from (5.2) to

û(t) = Kx̂(t), for t ∈ R+, (5.3)

where x̂ is a left-continuous signal2, given for t ∈ (tk, tk+1], k ∈ N, by

x̂(t) =

{

x(tk), when C(x(tk), x̂(tk)) > 0

x̂(tk), when C(x(tk), x̂(tk)) 6 0
(5.4)

2A signal x : R+ → R
n is called left-continuous, if for all t > 0, lims↑t x(s) = x(t).
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Figure 5.1: Event-triggered control schematic.

and some initial value for x̂(0). Hence, considering the configuration in Fig-
ure 5.1, the value x̂(t) can be interpreted as the most recently transmitted
measurement of the state x to the controller at time t. Whether or not new
state measurements are transmitted to the controller is determined by the
event-triggering condition C : R

nξ → R with nξ := 2nx. In particular, if at
time tk it holds that C(x(tk), x̂(tk)) > 0, the state x(tk) is transmitted over
the network to the controller and x̂ and the control value û are updated ac-
cordingly at time tk. In case C(x(tk), x̂(tk)) 6 0, no new state information is
sent to the controller, in which case the input û is not updated and kept the
same for (at least) another sampling interval, implying that no control compu-
tations are needed and no new state measurements and control values have to
be transmitted.

5.2.2 Quadratic Event-Triggering Conditions

In this chapter, we focus on quadratic event-triggering conditions, i.e., C, as in
(5.4), is given by

C(ξ(tk)) = ξ⊤(tk)Qξ(tk) > 0, (5.5)

where ξ := [x⊤ x̂⊤]⊤ ∈ R
nξ , for some symmetric matrix Q ∈ R

nξ×nξ . To show
that these event-triggering conditions form a relevant class, we will review some
existing event-triggering conditions that have been applied in the context of
continuous event-triggered control (CETC), and show how they can be written
as quadratic event-triggering conditions for PETC as in (5.5).

A) Event-Triggering Conditions Based on the State Error: An im-
portant class of event-triggering conditions, which has been applied to CETC
in [126, 136], are given by

‖x̂(tk) − x(tk)‖ > σ‖x(tk)‖, (5.6)

for k ∈ N, where σ > 0. Clearly, (5.6) is of the form (5.5) with

Q =

[
(1 − σ2)I −I

−I I

]

. (5.7)
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B) Event-Triggering Conditions Based on the Input Error: In [36],
where the objective was to develop output-based CETC, an event-triggering
condition was proposed that would translate for state-feedback-based PETC
systems to

‖Kx̂(tk) −Kx(tk)‖ > σ‖Kx(tk)‖, (5.8)

where σ > 0. Condition (5.8) is equivalent to ‖û(tk) − u(tk)‖ > σ‖u(tk)‖ in
which u(tk) = Kx(tk) is the control value determined on the basis of x(tk) as
in standard periodic state-feedback (see (5.2)). The event-triggering condition
(5.8) is equivalent to (5.5), in which

Q =

[
(1 − σ2)K⊤K −K⊤K

−K⊤K K⊤K

]

. (5.9)

This scheme could be implemented at the sensor-to-controller channel (us-
ing (5.8)), but it is more natural to implement this particular event-triggering
condition in the controller-to-actuator channel to determine whether, at time
tk, it is necessary to transmit the newly computed control value u(tk) = Kx(tk)
to the actuators, or that the latest sent value û(tk) is still adequate.

C) Event-Triggering Conditions as in [135]: A PETC interpretation of
the condition used in [135] is

‖û(tk) − u(tk)‖2 > (1 − β2)‖x(tk)‖2 + ‖û(tk)‖2, (5.10)

where 0 < β 6 1 and, again, u(tk) = Kx(tk), which results in an event-
triggering condition (5.5) with

Q =

[
(β2 − 1)I +K⊤K −K⊤K

−K⊤K 0

]

, (5.11)

as û(tk) = Kx̂(tk), k ∈ N.

D) Event-Triggering Conditions Based on Lyapunov Functions: In
[131, 137], in the context of CETC, and in [92], in the context of self-triggered
control [130], Lyapunov-based event-triggering conditions have been proposed.
For PETC, a Lyapunov-based event-triggering condition can be derived using
the discretisation of (5.1), with w = 0, given by

x(tk+1) = Ax(tk) +Bûk (5.12)

in which A := eAph, B =
∫ h

0
eApsBpds, and ûk := limt↓tk

û(t) taken as Kx(tk),
k ∈ N, as in (5.2). In case K is designed such that (5.12) in closed loop
with (5.2) is exponentially stable, which is equivalent to requiring that the
matrix A+BK has all its eigenvalues inside the open unit circle, there exists a
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quadratic Lyapunov function of the form V (x) = x⊤Px, x ∈ R
nx , with P ≻ 0

and
(A+BK)⊤P (A+BK) � λP, (5.13)

for some 0 6 λ < 1. This implies the decrease of the Lyapunov function in the
sense that V (x(tk+1)) 6 λV (x(tk)) for all k ∈ N along the solutions of (5.12)
and (5.2). In [92, 131, 137], an event-triggering condition has been proposed
(in the context of CETC) based on the existence of V by selecting λ 6 β < 1
and only updating x̂ at time tk to x(tk) when

(Ax(tk) +BKx̂(tk))⊤P (Ax(tk) +BKx̂(tk)) > β x⊤(tk)Px(tk). (5.14)

Hence, only when the current input û(tk) = Kx̂(tk) no longer guarantees a
decrease of the Lyapunov function V with a factor β, the signals x̂ and û are
updated. Obviously, (5.14) can be written as in (5.5) by taking

Q =

[
A⊤PA− βP A⊤PBK
(BK)⊤PA (BK)⊤PBK

]

. (5.15)

The interest in [92, 131, 137] for this event-triggering condition is motivated
by the fact that for any choice of β, satisfying λ 6 β < 1, V is a Lyapunov
function for the PETC system (5.1), with w = 0, (5.3) and (5.4) with event-
triggering condition (5.14), and thus stability of the resulting PETC system is
inherently guaranteed. Note that even though this event-triggering condition
was originally proposed for the case where w = 0, it is certainly of interest to
analyse this event-triggering condition in the new setting of PETC and in the
presence of disturbances (w 6= 0). Namely, using the techniques developed in
this chapter, closed-loop performance guarantees in terms of disturbance sup-
pression can be made for this event-triggering condition.

The four mentioned examples show the relevance of the class of quadratic event-
triggering conditions (5.5), as their CETC counterparts have been considered
in the literature extensively.

Remark 5.2.1. Besides on the parameter σ in (5.6) or (5.8), or on the param-
eter β in (5.10) or (5.14), the occurrence of events in PETC and the overall
closed-loop behaviour also depends on the choice of the sampling interval h, as
events can only occur at instants tk = kh, k ∈ N, see (5.4). Hence, given the
plant (5.1) and the controller (5.3) with a given matrix K, also the sampling
interval h should be chosen such that the PETC system is stable and has a cer-
tain closed-loop performance. As these properties can be guaranteed by using
the techniques developed in this chapter, a framework will be offered to properly
select h (and σ and β). Obviously, the sampling interval h determines directly
a lower bound on the minimum inter-event time, as events can only occur at the
sampling instants of the event-triggering condition, which is directly determined



5.2. Periodic Event-Triggered Control 99

by the choice of h. However, even though h directly provides a guarantee on the
minimum inter-event time, by changing the sampling interval h of the event-
triggering condition, the behaviour (in terms of solutions) of the PETC system,
given by (5.1), (5.3), (5.4) and (5.5), is changed and, thereby, also the sampling
times tk, k ∈ N, at which the event-triggering condition holds true, generally
change. How the sampling interval h influences the (average) number of events
within a certain time interval is currently an unsolved problem that requires
future attention. Still, a significant benefit of PETC, compared to CETC, is
that the guaranteed minimum inter-event time can be directly tuned by choosing
a certain h, while choosing the event-triggering condition for CETC, such that
a certain minimum inter-event time is guaranteed, is much more difficult.

5.2.3 Problem Formulation

To obtain a complete model of the PETC system, we combine (5.1), (5.3), (5.4)
and (5.5), and define ξ := [x⊤ x̂⊤]⊤ and

Ā :=

[
Ap BpK
0 0

]

, B̄ :=

[
Bw

0

]

, J1 :=

[
I 0
I 0

]

, J2 :=

[
I 0
0 I

]

, (5.16)

to arrive at an impulsive system [50, 55] given by

d

dt

[
ξ
τ

]

=

[
Āξ + B̄w

1

]

, when τ ∈ [0, h], (5.17a)

[
ξ+

τ+

]

=







[

J1ξ

0

]

, when ξ⊤Qξ > 0, τ = h

[

J2ξ

0

]

, when ξ⊤Qξ 6 0, τ = h

(5.17b)

z = C̄ξ + D̄w, (5.17c)

where z ∈ R
nz is a performance output with C̄ and D̄ appropriately chosen

matrices, and the state τ keeps track of the time elapsed since the last sampling
time.

Besides the introduction of PETC, the main objective of this chapter is to
analyse and design event-triggering conditions of the form (5.5) such that the
corresponding closed-loop system (5.1), (5.3), (5.4) and (5.5) is stable and has
a certain closed-loop performance, both defined in an appropriate sense, while
the number of transmissions between the plant and the controller is minimised.
To make precise what we mean by stability and performance, let us define
the notion of global exponential stability and L2-performance, where the latter
definition is adopted from [129].

Definition 5.2.2. The PETC system (5.1), (5.3) (5.4) and (5.5) is said to be
globally exponentially stable (GES), if there exist c > 0 and ρ > 0 such that
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for all solutions to the impulsive system (5.17) with τ(0) ∈ [0, h] and w = 0,
it holds that ‖ξ(t)‖ 6 ce−ρt‖ξ(0)‖ for all t ∈ R+. In this case, we call ρ an
(upper bound on the) decay rate.

Definition 5.2.3. The PETC system (5.1), (5.3) (5.4) and (5.5), with (5.17c),
is said to have an L2-gain from w to z smaller than or equal to γ, if there
is a function β : R

nξ → R+ such that for any w ∈ L2, any initial state
ξ(0) = ξ0 ∈ R

nξ and τ(0) ∈ [0, h], the corresponding solution satisfies

‖z‖L2 6 β(ξ0) + γ‖w‖L2 . (5.18)

In fact, as will be demonstrated below, we can take β(s) = c‖s‖, s ∈ R
nξ ,

for some c > 0.

5.3 Stability and L2-Gain Analysis of the

PETC System

In this section, we analyse stability and performance of the PETC system given
by (5.1), (5.3), (5.4), (5.5) and (5.17c) using three different approaches, namely:
(i) a discrete-time piecewise linear (PWL) system approach, (ii) a discrete-time
perturbed linear system approach, and (iii) an impulsive system approach. In
particular, in the first two approaches we will focus on GES only and, thus,
take w = 0, while in the third approach we also analyse the L2-gain of the
PETC system.

5.3.1 A Piecewise Linear System Approach

To obtain a discrete-time PWL model, see, e.g., [75, 120], we discretise the
impulsive system (5.17), with τ(0) = h and w = 0, at the sampling times
tk = kh, k ∈ N. By defining the state variable ξk := ξ(tk) (and assuming ξ to
be left-continuous), we obtain the bimodal PWL model

ξk+1 =

{

A1ξk, when ξ⊤k Qξk > 0,

A2ξk, when ξ⊤k Qξk 6 0,
(5.19)

where

A1 = eĀhJ1 =

[
A+BK 0

I 0

]

, A2 = eĀhJ2 =

[
A BK
0 I

]

, (5.20)

in which A := eAph and B :=
∫ h

0
eApsBpds.

Using the PWL model (5.19) and a piecewise quadratic (PWQ) Lyapunov
function of the form

V (ξ) =

{

ξ⊤P1ξ, when ξ⊤Qξ > 0,

ξ⊤P2ξ, when ξ⊤Qξ 6 0,
(5.21)
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we can guarantee GES of the PETC system given by (5.1), (5.3) (5.4) and (5.5).

Theorem 5.3.1. The PETC system given by (5.1), (5.3) (5.4) and (5.5)
is GES with convergence rate ρ, if there exist matrices P1, P2 and scalars
αij , βij , κi > 0, i, j ∈ {1, 2}, satisfying

e−2ρhPi −A⊤
i PjAi + (−1)iαijQ+ (−1)jβijA

⊤
i QAi � 0, (5.22)

for all i, j ∈ {1, 2}, and

Pi + (−1)iκiQ ≻ 0, (5.23)

for all i ∈ {1, 2}.

Proof. The proof is given in Appendix A.4.

Remark 5.3.2. The conditions in Theorem 5.3.1 guarantee not only GES
for the discrete-time PWL model (5.19) and the impulsive system (5.17) with
w = 0, but also for the regularisation of (5.19) as in [78], which has ξk+1 ∈
{A1ξk, A2ξk} when ξ⊤k Qξk = 0, and the Krasovskii regularisation [112] of
(5.17) with w = 0, which uses ξ+ ∈ {J1ξ, J2ξ} when ξ⊤Qξ = 0 (and τ = h).
Due to GES of these regularisation, we have robust stability properties for (5.17)
and (5.19), see [23, 78].

Remark 5.3.3. Instead of the Lyapunov function (5.21), which is based on
two regions defined by the sign of ξ⊤Qξ, a more versatile piecewise quadratic
Lyapunov function

V (ξ) = ξ⊤Piξ when ξ ∈ Ωi, (5.24)

where Ωi ⊂ R
nξ , can be used. For instance,

Ωi :=
{

ξ∈ R
nξ

∣
∣ ρi−1‖ξ‖2

6 ξ⊤Qξ < ρi‖ξ‖2
}

, (5.25)

for i ∈ {1, 2, . . . , L}, can be used, where −∞ =: ρ0 < ρ1 < ρ2 < . . . < ρr :=
0 < ρr+1 < . . . < ρL−1 < ρL := ∞ are fixed for the analysis. This can lead
to less conservative LMI-based stability conditions that can be obtained in the
similar fashion as the LMIs in Theorem 5.3.1.

5.3.2 A Perturbed Linear System Approach

An alternative approach to analyse GES of the PETC system or to design an
event-triggering condition that guarantees GES is based on ℓ2-gain techniques.
This approach can be seen as the PETC counterpart of the CETC approach
taken in [126] using input-to-state stability (ISS) for nonlinear plants and state-
feedback controllers, which was specialized in [36] using L2-gain analysis in the
context of linear plants and output-based controllers. Transforming the ideas
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presented in [36, 126] to PETC with event-triggering condition (5.6) results in
studying the ℓ2-gain of the perturbed discrete-time linear system

xk+1 = (A+BK)xk +BKek, (5.26)

where xk = x(tk), x̂k = limt↓tk
x̂(t) (recall that the signal x̂ is piecewise con-

stant and left-continuous, cf. (5.4)), ek := x̂k − xk, k ∈ N, A = eAph and

B =
∫ h

0
eApsBpds. The system (5.26) is obtained by discretising (5.1), with

w = 0, and combining it with (5.3). The system expresses how the plant (5.1)
with the event-triggered controller (5.3) is perturbed when compared to the
original periodic sampled-data control system given by (5.1) and (5.2).

The following stability result, which could be seen as the PETC variant of
the result in [126], relies on the concepts of dissipativity, storage functions and
supply rates, see, e.g., [19, 139]. Note that the result we present below uses
the event-triggering condition that has been used in [126], i.e., it uses (5.6). A
similar result can be obtained for event-triggering condition (5.8) by modifying
(5.26) into xk+1 = (A+BK)xk +Bek and then ek := ûk−uk, k ∈ N. Although
we will not formally establish a stability result for the event-triggering condition
(5.8), we will reflect on it in Remark 5.3.5.

Theorem 5.3.4. Suppose that the perturbed linear system (5.26) admits a
storage function V̄ (x) = x⊤P̄ x with P̄ a symmetric positive definite matrix for
supply rate3 −θ2‖x‖2 + ‖e‖2, i.e., the dissipation inequality

V̄ (xk+1) − V̄ (xk) 6 −θ2‖xk‖2 + ‖ek‖2, k ∈ N (5.27)

is satisfied for any disturbance sequence {ek}k∈N and all corresponding solutions
{xk}k∈N. Then the PETC system given by (5.1), (5.3) (5.4), with (5.6) is GES
for any 0 < σ < θ.

Proof. It is possible to give a direct proof on the basis of (5.27) along the lines
of [126]. For reasons of brevity, we will not give a direct proof, but point out
that the proof follows from Theorem 5.4.1 below together with Theorem 5.3.1
above.

Observe that the existence of a storage function V̄ satisfying the dissipation
inequality (5.27) proves that (5.26) has an ℓ2-gain smaller than or equal to 1/θ
from e to x. To obtain the largest (minimum) inter-event times, it follows from
(5.6) that σ should be as large as possible and thus that θ should be maximised,
while satisfying (5.27). This corresponds to determining the true ℓ2-gain 1/θ∗

of (5.26) from e to x, which is equal to the H∞-norm of the system (5.26), with

3We scaled the constant in front of ‖e‖2 to 1. Note that this is without loss of generality
as P and θ can be scaled as well.
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output xk, given by supω∈[0,π] ‖(ejωI − A − BK)−1BK)‖. Alternatively, the

H∞-norm can be computed by maximising θ2 subject to P̄ ≻ 0 and
[
P̄ − (A+BK)⊤P̄ (A+BK) − θ2I ⋆

−(BK)⊤P̄ (A+BK) I−(BK)⊤P̄BK

]

≻ 0, (5.28)

see, e.g., [19]. The supremal θ∗ satisfying (5.28) gives rise to the ℓ2-gain of 1/θ∗

and guarantees stability of the PETC system (5.1), (5.3), (5.4), with (5.6) for
any 0 < σ < θ∗ = 1/(supω∈[0,π] ‖(ejωI −A−BK)−1BK‖). Hence, a standard
H∞-norm calculation for a linear system provides stability bounds in terms of
σ for the event-triggering condition (5.6) (or (5.8)). It is beneficial that the
stability bounds can be obtained with simple H∞-norm calculations. However,
in Section 5.4, we will formally show that the PWL system approach, although
computationally somewhat more complex, yields larger bounds on σ for which
GES can be guaranteed.

Remark 5.3.5. If A+BK has all its eigenvalues inside the unit circle, then
the PETC system (5.1), (5.3), (5.4), with event-triggering condition (5.6) or
(5.8) is GES for sufficiently small values of σ (and thus a high number of
transmissions and control updates). Indeed, if A + BK has all its eigen-
values inside the unit circle, it is well known that the H∞-norms given by
1/θ∗ = supω∈[0,π] ‖(ejωI − A − BK)−1BK‖ in case of (5.6), and 1/θ∗ =

supω∈[0,π] ‖K(ejωI − A − BK)−1B‖ in case of (5.8) are finite and hence, for
any 0 < σ < θ∗ GES of the corresponding PETC systems is guaranteed.

5.3.3 An Impulsive System Approach

In this section, we will apply stability and performance analysis techniques
to the impulsive system (5.17) directly. Since the impulsive model explicitly
includes the behaviour of the system in between the sampling times, it allows
us to analyse the performance in terms of the L2-gain from a disturbance w to
a performance output z.

The analysis is based on a Lyapunov/storage function of the form

V (ξ, τ) = ξ⊤P (τ)ξ, (5.29)

for ξ ∈ R
nξ and τ ∈ [0, h], where P : [0, h] → R

nξ×nξ with P (τ) ≻ 0, for
τ ∈ [0, h]. The choice of Lyapunov function is inspired by the developments
in [33, 50]. The function P : [0, h] → R

nξ×nξ will be chosen such that it
becomes a candidate storage function for the system (5.17) with the supply
rate γ−2z⊤z − w⊤w. In particular, we will select the matrix function P to
satisfy the Riccati differential equation (where we omitted τ for compactness
of notation)

d
dτ P = −Ā⊤P − PĀ− 2ρP − γ−2C̄⊤C̄

−(PB̄ + γ−2C̄⊤D̄)M(B̄⊤P + γ−2D̄⊤C̄), (5.30)
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provided the solution exists on [0, h] for a desired convergence rate ρ > 0, in
which M := (I − γ−2D̄⊤D̄)−1 is assumed to exist and to be positive defi-
nite, which means that γ2 > λmax(D̄

⊤D̄). As we will show in the proof of
Theorem 5.3.7, this choice for the matrix function P yields the inequality

d
dtV 6 −2ρV − γ−2z⊤z + w⊤w, (5.31)

during the flow (5.17a) along the solutions of the impulsive system (5.17).
Combining inequality (5.31) with the conditions

V (J1ξ, 0) 6 V (ξ, h), for all ξ with ξ⊤Qξ > 0, (5.32a)

V (J2ξ, 0) 6 V (ξ, h), for all ξ with ξ⊤Qξ 6 0, (5.32b)

which imply that the storage function does not increase during the jumps
(5.17b) of the impulsive system (5.17), we can guarantee that the L2-gain from
w to z is smaller than or equal to γ, see, e.g., [62]. The result that we present
below, is based on verifying the satisfaction of (5.32) by relating P0 := P (0) to
Ph := P (h). To do so, we introduce the Hamiltonian matrix

H :=

[
Ā+ ρI + γ−2B̄MD̄⊤C̄ B̄MB̄⊤

−C̄⊤LC̄ −(Ā+ ρI + γ−2B̄MD̄⊤C̄)⊤

]

, (5.33)

with L := (γ2I − D̄D̄⊤)−1, which is positive definite again if γ2 >
λmax(D̄

⊤D̄) = λmax(D̄D̄
⊤), and the matrix exponential

F (τ) := e−Hτ =

[
F11(τ) F12(τ)
F21(τ) F22(τ)

]

, (5.34)

allowing us to provide the explicit solution to the Riccati differential equation
(5.30), yielding

P0 = (F21(h) + F22(h)Ph)
(
P11(h) + F12(h)Ph

)−1
, (5.35)

provided that the solution (5.35) is well defined on [0, h]. To guarantee this,
we will use the following assumption.

Assumption 5.3.6. F11(τ) is invertible for all τ ∈ [0, h].

Before presenting the main result, observe that Assumption 5.3.6 is always
satisfied for sufficiently small h. Namely, F (τ) = e−Hτ is a continuous function
and we have that F11(0) = I. Let us also introduce the notation F̄11 := F11(h),
F̄12 := F12(h), F̄21 := F21(h) and F̄22 := F22(h), and a matrix S̄ that satisfies
S̄S̄⊤ := −F̄−1

11 F̄12. A matrix S̄ exists under Assumption 5.3.6, because this
assumption will guarantee that the matrix −F̄−1

11 F̄12 is positive semidefinite,
as we will show in the proof of the theorem presented below.
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Theorem 5.3.7. Consider the impulsive system (5.17) and let ρ > 0, γ >
√

λmax(D̄⊤D̄), and Assumption 5.3.6 hold. Suppose that there exist a matrix
Ph ≻ 0, and scalars µi > 0, i ∈ {1, 2}, such that





Ph + (−1)iµiQ J⊤
i F̄

−⊤
11 PhS̄ J⊤

i (F̄−⊤
11 PhF̄

−1
11 + F̄21F̄

−1
11 )

⋆ I − S̄⊤PhS̄ 0

⋆ ⋆ F̄−⊤
11 PhF̄

−1
11 + F̄21F̄

−1
11



 ≻ 0, (5.36)

for i ∈ {1, 2}. Then, the PETC system given by (5.1), (5.3) (5.4), (5.5) and
(5.17c) is GES with convergence rate ρ (when w = 0) and has an L2-gain from
w to z smaller than or equal to γ.

Proof. The proof is given in Appendix A.4.

The results of Theorem 5.3.7 guarantee both GES (for w = 0) and an
upper bound on the L2-gain. In case disturbances are absent (i.e., w = 0),
the conditions of Theorem 5.3.7 simplify and GES can be guaranteed using the
following corollary.

Corollary 5.3.8. Consider the impulsive system (5.17) and let ρ > 0 be given.
Assume there exist a matrix Ph ≻ 0 and scalars µi > 0, i ∈ {1, 2}, such that

[

e−2ρhPh + (−1)iµiQ J⊤
i e

Ā⊤hPh

⋆ Ph

]

≻ 0, (5.37)

for all i ∈ {1, 2}. Then, the PETC system given by (5.1), (5.3) (5.4) and (5.5)
is GES (for w = 0) with convergence rate ρ.

Proof. The proof is given in Appendix A.4.

5.4 Comparison of the Modelling Approaches

So far, we have developed three approaches for the analysis of the PETC sys-
tem, namely (i) a discrete-time PWL system approach, (ii) a discrete-time per-
turbed linear system approach and (iii) an impulsive system approach. When
comparing the different analysis approaches, several observations can be made.

The first observation to be made is that the perturbed linear system ap-
proach allows the PETC system to be analysed using a simple H∞-norm com-
putation (in case of event-triggering conditions (5.6) and (5.8)), which is of
lower computational complexity than the other two approaches. The second
observation is that the impulsive system approach is the only approach of the
three that allows the L2-gain from w to z to be studied at this point, which
makes this approach important for PETC. Note that the L2-gain from w to
z could also be studied using a PWL approach by analysing the intersample
behaviour in a way that has been done for networked control systems in [142].
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However, this indirect analysis typically leads to conservative upper bounds
on the L2-gain, as evidenced in [142]. Finally, the PWL system approach is
relevant since, when comparing it to the perturbed linear system and the im-
pulsive system approach, we can show that for stability analysis (when w = 0),
and using Corollary 5.3.8 for the impulsive system approach, the latter two
approaches can never prove GES, if the PWL system approach does not result
in a GES guarantee. Hence, the PWL system approach never yields more con-
servative results than the other two approaches when stability is analysed. We
will make this result precise in the two theorems we present below.

Based on the discussion above and the two technical results we present be-
low, we can conclude that each of the three presented modelling approaches are
of independent interest. Namely, the PWL system approach provides the least
conservative LMI-based results to perform the stability analysis, the perturbed
linear system approach has the lowest computational complexity (however its
usage is restricted to two types of quadratic event-triggering conditions), while
the impulsive system approach is the only method able to perform a direct
L2-gain analysis.

5.4.1 Comparison between the PWL System Approach
and the Perturbed Linear System Approaches

We will now formally show that for the particular event-triggering condition
(5.6) (or (5.8)), the perturbed linear system approach of Section 5.3.2 can never
do better, in terms of the range of σ for which GES of the PETC system can
be proven, than the PWL system approach presented in Section 5.3.1.

Theorem 5.4.1. In case the perturbed linear system approach in Section 5.3.2
guarantees GES of the PETC system, given by (5.1), (5.3), (5.4), and (5.6) (or
(5.8)) for some σ > 0, using Theorem 5.3.4, then the PWL system approach
of Section 5.3.1, using Theorem 5.3.1, proves GES of the PETC system for
the same σ > 0. In other words, satisfaction of (5.28) for some P̄ ≻ 0 and
θ > σ, implies satisfaction of (5.22) and (5.23), for some P1, P2 and scalars
αij , βij , κi > 0, i, j ∈ {1, 2} and with Q as in (5.7) with the same σ.

Proof. The proof is given in Appendix A.4.

In fact, the proof of this theorem establishes that the perturbed linear sys-
tem approach results in a quadratic Lyapunov function (cf. (A.124)) for the
PWL model and therefore does not exploit the flexibility of PWQ Lyapunov
functions (5.21), as offered by the PWL system approach. Besides this, an-
other source of conservatism in the perturbed linear system approach is that it
does not truly model the PETC system as the solutions of x̂ are not modelled
explicitly (but only account for the difference between x and x̂ through the
perturbation e in (5.26)), while the PWL model does.
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5.4.2 Comparison between the PWL System Approach
and the Impulsive System Approach

We will now show that the impulsive system approach of Section 5.3.3 can never
outperform the PWL system approach in stability analysis of Section 5.3.1 in
terms of stability guarantees. In other words, if GES of the PETC system
cannot be proven using the PWL system approach, it cannot be proven using
the impulsive system approach. To formally prove this statement, we substitute
(5.20) into (5.37), and apply a Schur complement to (5.37), yielding that

e−2ρhPh + (−1)iµiQ−A⊤
i PhAi ≻ 0, (5.38)

for all i ∈ {1, 2}, Ph ≻ 0 and µi > 0, i ∈ {1, 2}. As these conditions are
equivalent to the LMIs (5.22), with P1 = P2 = Ph, αij = µi and βij = 0,
i, j ∈ {1, 2}, this shows that if the LMIs (5.37) are feasible, then the LMIs (5.22)
are feasible. In addition, since Ph ≻ 0 the LMIs (5.23) hold with κ1 = κ2 = 0.
Hence, we have proven the following result.

Theorem 5.4.2. In case the impulsive system approach in Section 5.3.3 guar-
antees GES with convergence rate ρ of the PETC system, given by (5.1), (5.3),
(5.4) and (5.5), using Corollary 5.3.8, then the PWL system approach of Sec-
tion 5.3.1, using Theorem 5.3.1, proves GES with convergence rate ρ of the
PETC system as well. In other words, for given ρ > 0 satisfaction of (5.37)
for some Ph ≻ 0, µi > 0, i ∈ {1, 2}, implies satisfaction of (5.22) and (5.23),
for some P1, P2 and scalars αij , βij , κi > 0, i, j ∈ {1, 2}.

5.5 Minimum Inter-Event Times and Self-

Triggered Implementations

Besides the fact that PETC is easier to implement in practice than CETC,
PETC has two major additional advantages over CETC at a more technical
level. The first advantage is the existence of a strictly positive minimum inter-
event time, i.e., the time between two successive updates of the control signal
is strictly positive, and the second is the fact that PETC can be transformed
directly into self-triggered control, (at least, for the state-feedback controller
(5.3)). We will elaborate on the former result in Section 5.5.1, and on the latter
in Section 5.5.2.

5.5.1 Minimum Inter-Event Times

Due to the periodic sampled-data nature of PETC, the sampling interval h is
always a lower bound on the time difference between two consecutive updates
of the control signal in the PETC system (5.1), (5.3), (5.4) and (5.5). This
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is one of the main advantages of PETC over CETC, for which such a lower
bound is not always guaranteed (cf. Chapter 4). The largest lower bound
on the time differences between two consecutive control updates is called the
minimum inter-event time, which might actually be larger than h. Below we
will outline how the exact minimum inter-event time can be computed, where,
for ease of exposition, we restrict ourselves to the case w = 0. Using bounds on
the disturbances, one can also obtain lower bounds on the minimum inter-event
time for the case with disturbances, i.e., w 6= 0, by applying similar reasoning
as in [36], although the bounds will not be tight, unlike in the disturbance-free
case.

An expression for the minimum inter-event time can be obtained as follows.
First, let us consider the PWL model (5.19). Now given that the current state
ξk̃ = ξ and the assumption that, at time tk̃, k̃ ∈ N, an update of the control
signal has occurred, the next control update time is given by tk̃ + ht(ξ), where

t(ξ) := inf
{
l ∈ N\{0}

∣
∣ ξ⊤(Al−1

2 A1)
⊤QAl−1

2 A1ξ > 0
}
. (5.39)

The expression in (5.39) follows from the facts that the control signal is updated
when ξ⊤

k̃+l
Qξk̃+l > 0, and as long as there is no update of the control signal

ξk̃+l = Al−1
2 A1ξk̃. Based on (5.39), it is now immediate that the minimum inter-

event time for the PETC system (5.1), (5.3) and (5.4) with event-triggering
condition (5.5) is given by trmin,h = ht∗min,h > h, with

t∗min,h := inf{t(ξ) | ξ ∈ R
nξ} (5.40)

and h is the sampling interval of the event-triggering condition. Interestingly,
t∗min,h can equivalently be characterised by the computationally friendly expres-
sion

t∗min,h = inf{l ∈ N\{0} |λmax((A
l−1
2 A1)

⊤QAl−1
2 A1) > 0}. (5.41)

5.5.2 Self-Triggered Implementations

The idea of self-triggered control was put forward in [130]. Like in event-
triggered control, a self-triggered control algorithm for plant (5.1) essentially
consist of two parts, namely: the mechanism that determines the next update
times t̃l of the control signals given for l ∈ N by

t̃l+1 = t̃l + T (x(t̃l)), (5.42)

and the feedback controller

û(t) = G(x(t̃l)), for t ∈ (t̃l, t̃l+1], (5.43)

specifying the control signal in the next time interval (t̃l, t̃l+1], where T : R
nx →

R+ and G : R
nx → R

nu are appropriately selected mappings. Hence, based
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on the results on the existence of a minimum inter-event time above, which
focussed on the case that w = 0, we readily obtain that

G(x) = Kx and T (x) = ht(x) (5.44)

for all x ∈ R
nx with t : R

nx → N as in (5.39), leads to a self-triggered im-
plementation as in (5.42) and (5.43) of the PETC algorithm, given by (5.3),
(5.4) and (5.5). Note that the PETC system behaves exactly the same as its
self-triggered counterpart. The advantage of the self-triggered control is, how-
ever, that the event-triggering condition (5.5) does not have to be monitored at
every sampling time tk, k ∈ N, but that the next update time t̃l+1 is computed
a priori at each update time t̃l. As a consequence, in between two update
times the self-triggered controller does not need to monitor, communicate or
compute anything, and the control algorithm can idle.

Conclusively, the transition from PETC to self-triggered control is rather
straightforward in the case of state-feedback, as was just shown, while for
CETC, this transition is more complicated [92, 135].

5.6 Output-Based Decentralised PETC

In this section, we will extend the previous results in two directions, namely
towards dynamical output-based controllers and towards decentralised event-
triggering conditions. To do so, let us consider the linear time-invariant (LTI)
plant given by

{
d
dtx

p = Apxp +Bpû+Bww,

y = Cpxp,
(5.45)

where xp ∈ R
np denotes the state4 of the plant, û ∈ R

nu the input applied to
the plant, w ∈ R

nw an unknown disturbance, and y ∈ R
ny the output of the

plant. The plant is controlled using a discrete-time LTI controller

{

xc
k+1 = Acxc

k +Bcŷk,

u(tk) = uk = Ccxc
k +Dcŷ(tk),

(5.46)

where xc ∈ R
nc denotes the state of the controller, ŷ ∈ R

ny the input of
the controller, and u ∈ R

nu the output of the controller. As before, at the
sampling times tk, k ∈ N, the outputs of the plant y(tk) and controller u(tk)
are sampled, but which values in y and u are transmitted, thereby updating the
corresponding values in ŷ and û, will be determined based on a decentralised
event-triggering condition. Note that the states of the controller xc

k+1 are
updated based on ŷk := limt↓tk

ŷ(t), i.e., directly after ŷ is updated as was also

4We added superscript p here to denote the state of the plant (cf. (5.1)), as now we have
to distinguish between the plant state xp and the controller state xc.
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done in the context of networked control systems in [34] and in Chapters 2 and
3 of this thesis. To implement the discrete-time controller (5.46) in practice,
the update of the state xc

k to xc
k+1 should occur somewhere in the time interval

(tk, tk+1], k ∈ N. Note that u(tk) at time tk is computed on the basis of ŷ(tk),
i.e., the most recently received output of the plant at time tk, which will be
ŷk−1 as we define for t ∈ (tk, tk+1]

ŷ(t) = ŷk and û(t) = ûk. (5.47)

Hence, û and ŷ as continuous-time signals are left-continuous. To convert the
controller states xk

c , k ∈ N, into a (left-continuous) continuous-time signal, we
will adopt the convention that for t ∈ (tk, tk+1], k ∈ N, it holds that

xc(t) = xc
k+1 = Acxc

k +Bcŷk (5.48)

indicating that the updates of xc take place just after tk, k ∈ N. In this way,
u(tk) = Ccxc(tk) +Dcŷ(tk), k ∈ N.

Just as x̂ was the most recently received version of x in the state-feedback
case in Section 5.2, û and ŷ are now the most recently received versions of u and
y, respectively, see Figure 5.2. We choose again a sampled-data implementation
corresponding to the sampling times tk = kh, k ∈ N, for the sampling interval
h > 0. However, we will now use decentralised event-triggering conditions to
determine which signals will be transmitted at tk, see also Figure 5.2. To
formalise this, we define v = [y⊤ u⊤]⊤ ∈ R

nv and v̂ = [ŷ⊤ û⊤]⊤ ∈ R
nv with

nv := ny + nu, and assume that the outputs of the plant and controller, i.e.,
the entries in v and v̂, are grouped into N nodes. The entries in v and v̂
corresponding to node j ∈ {1, . . . , N} are denoted by vj and v̂j , respectively.
To introduce the adopted decentralised PET conditions, we focus on (5.6),
although alternative PET conditions as given in Section 5.2.2 can be used as
well, see also Remark 5.6.1 below. By focussing on (5.6), the decentralised
version of the event-triggering condition and the decentralised update of the
signals v̂ can be described as

v̂j(t) =

{

vj(tk), if ‖vj(tk) − v̂j(tk)‖ > σj‖vj(tk)‖
v̂j(tk), if ‖vj(tk) − v̂j(tk)‖ 6 σj‖vj(tk)‖, (5.49)

for t ∈ (tk, tk+1], k ∈ N, in which σj > 0, j ∈ {1, . . . , N}, are given con-
stants. Hence, (5.49) expresses that at a sampling time tk, k ∈ N, each node j
samples the respective outputs of plant and controller and verifies if the differ-
ence vj(tk) − v̂j(tk) is too large with respect to vj(tk) (determined by σj). In
case the difference is too large, node j will transmit its corresponding signals
vj(tk), and v̂j is updated just after tk. Note that each node has its own local
event-triggering condition, which invokes transmission of vj if

‖vj(tk) − v̂j(tk)‖ > σj‖vj(tk)‖. (5.50)
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Figure 5.2: Decentralised event-triggered control schematic.

Interestingly, each of the local event-triggering conditions in (5.50) can be
reformulated as the quadratic event-triggering condition

ξ⊤(tk)Qjξ(tk) > 0 (5.51)

in terms of ξ = [xp⊤ xc⊤ v̂⊤]⊤ = [xp⊤ xc⊤ ŷ⊤ û⊤]⊤ by proper choice of
Qj , j ∈ {1, . . . , N}. To show how this can be accomplished, we introduce
some notational conventions. For an index set J ⊆ {1, . . . , N}, we define the
diagonal matrices ΓJ ∈ R

nv×nv

ΓJ = diag(γ1
J , . . . , γ

ny+nu

J ), (5.52)

where the elements γl
J , with l ∈ {1, . . . , ny}, are equal to 1 if plant output

yl belongs to a node l ∈ J , elements γ
l+ny

J , with l ∈ {1, . . . , nu}, are equal

to 1 if controller output ul belongs to a node j ∈ J . The element γl
J is 0

otherwise. We will also sometimes use the diagonal submatrices Γy
J ∈ R

ny×ny

and Γu
J ∈ R

nu×nu of ΓJ that satisfy ΓJ = diag(Γy
J ,Γ

u
J ). Furthermore, we use

the notation Γj = Γ{j}, Γy
j = Γy

{j} and Γu
j = Γu

{j} for j ∈ {1, . . . , N},

C :=

[
Cp 0
0 Cc

]

, D :=

[
0 0
Dc 0

]

, (5.53)

to obtain for k ∈ N that

‖vj(tk)‖ = ‖Γj [C D]ξ(tk)‖ , (5.54a)

‖vj(tk) − v̂j(tk)‖ = ‖Γj [C D − I]ξ(tk)‖ , (5.54b)

which allow us to rewrite (5.50) as (5.51) with

Qj :=

[
(1 − σj)C

⊤ΓjC (1 − σj)C
⊤ΓjD − C⊤Γj

(1 − σj)D
⊤ΓjC − ΓjC (D − I)⊤Γj(D − I) − σjD

⊤ΓjD

]

. (5.55)
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Moreover, using the introduced notational conventions, we can now compactly
write the updates of v̂ just after time tk as

v̂+(tk) = ΓJk
v(tk) + (I − ΓJk

)v̂(tk)

=
[
ΓJk

C ΓJk
D + I − ΓJk

]
ξ(tk). (5.56)

where for ξ ∈ R
nξ

J (ξ) := {j ∈ {1, . . . , N} | ξ⊤Qjξ > 0}. (5.57)

Remark 5.6.1. Although we focus on event-triggering conditions as in (5.50)
and show how they can be converted into event-triggering conditions as in
(5.51), any decentralised event-triggering conditions that can be written in the
form (5.51), e.g., the decentralised equivalents of (5.10) or (5.14), can be anal-
ysed with the tools presented below as well.

To obtain an impulsive system model of the decentralised PETC system,
given by (5.45) (5.46), (5.47), (5.48), and (5.50), we observe that due to the
definition of J (ξ) in (5.57) we have for k ∈ N that J (ξ(tk)) = J if and only if

ξ(tk)⊤Qjξ(tk) > 0, j ∈ J and ξ(tk)⊤Qjξ(tk) 6 0, j ∈ J c, (5.58)

where we denote for any arbitrary set J ⊆ {1, . . . , N} its complement by J c :=
{1, . . . , N}\J . Based on the above, we can obtain the impulsive model

d

dt

[
ξ
τ

]

=

[
Āξ + B̄w

1

]

,when τ ∈ [0, h] (5.59a)

[
ξ+

τ+

]

=

[
JJ ξ
0

]

, when τ = h, ξ⊤Qjξ > 0, j ∈ J , (5.59b)

and ξ⊤Qjξ 6 0, j ∈ J c, (5.59c)

z = C̄ξ + D̄w. (5.59d)

where z ∈ R
nz is a performance output, similar to (5.17c). The matrices Qj ,

j ∈ {1, . . . , N}, are given as in (5.55), and

Ā =







Ap 0 0 Bp

0 0 0 0
0 0 0 0
0 0 0 0






, B̄ =







Bw

0
0
0






, (5.60a)

JJ =







I 0 0 0
BcΓy

JC
p Ac Bc(I − Γy

J ) 0
Γy
JC

p 0 (I − Γy
J ) 0

0 Γu
JC

c Γu
JD

c I − Γu
J






. (5.60b)
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In the above output-based decentralised PETC system, we allow multiple
nodes to transmit simultaneously at tk, (i.e, Jk may consist of more than one
element). In some cases, e.g., in case the nodes transmit their data over a
shared communication medium, it might not always be realistic to assume that
multiple nodes can transmit simultaneously. Therefore, we will indicate how the
setup presented above can be extended in Section 5.6.3 in case communication
constraints are present, i.e., in case only one node is allowed to transmit its
data at a each sampling time tk and a protocol is needed to schedule the
transmissions.

5.6.1 A Piecewise Linear Systems Approach

To arrive at a discrete-time PWL model (for the case w = 0), we discretise
the impulsive system (5.59), with τ(0) = h and w = 0, at the sampling times
tk = kh, k ∈ N, as before. Following now the same rationale used to derive
the PWL system (5.19), we again define the state ξk := ξ(tk), and obtain the
model

ξk+1 = AJ ξk, when ξ⊤k Qjξk > 0, l ∈ J and ξ⊤k Qjξk 6 0, l ∈ J c, (5.61)

where

AJ = eĀhJJ =







A BΓu
JC

c BΓu
JD

c B(I − Γu
J )

BcΓy
JC

p Ac B(I − Γy
J ) 0

Γy
JC

p 0 I − Γy
J 0

0 Γu
JC

c Γu
JD

c I − Γu
J






, (5.62)

in which A = eAph and B =
∫ h

0
eApsBpds.

In a similar fashion as we derived Theorem 5.3.1 for the state-feedback
case, we can obtain the following result using the piecewise quadratic Lyapunov
function

V (ξ) = ξ⊤PJ ξ, when ξ⊤Qjξ > 0, j ∈ J and ξ⊤Qjξ 6 0, j ∈ J c. (5.63)

Theorem 5.6.2. The PETC system given by (5.45), (5.46) and (5.49) is
GES with convergence rate ρ > 0, if there exist symmetric matrices PJ , J ⊆
{1, . . . , N}, and scalars αJJ̃ j > 0, βJJ̃ j > 0 and κJ j > 0, J , J̃ ⊆ {1, . . . , N},
j ∈ {1, . . . , N}, such that

A⊤
JPJ̃AJ − e−2ρhPJ +

∑

j∈J
αJJ̃ jQj −

∑

j∈J c

αJJ̃ jQj

+A⊤
J

( ∑

j∈J̃
βJJ̃ jQj −

∑

j∈J̃ c

βJJ̃ jQj

)

AJ � 0, (5.64)
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for all J , J̃ ⊆ {1, . . . , N}, and

PJ −
∑

j∈J
κJ jQj +

∑

j∈J c

κJ jQj ≻ 0. (5.65)

for all J ⊆ {1, . . . , N}

5.6.2 An Impulsive System Approach

In a similar fashion as the developments in Section 5.3.3, we can obtain the
following result.

Theorem 5.6.3. Let ρ > 0, γ >
√

λmax(D⊤D) and Assumption 5.3.6 hold,
and suppose that there is a matrix Ph ≻ 0 and scalars µJ j > 0, J ⊆ {1, . . . , N},
j ∈ {1, . . . , N}, such that






Ph −
∑

j∈J
µJ jQj +

∑

j∈J c

µJ jQj J⊤
J F̄

−⊤
11 PhS̄ J⊤

J (F̄−⊤
11 PhF̄

−1
11 + F̄21F̄

−1
11 )

⋆ I − S̄⊤PhS̄ 0

⋆ ⋆ F̄−⊤
11 PhF̄

−1
11 + F̄21F̄

−1
11






≻ 0,

(5.66)
for all J ⊆ {1, . . . , N}, where F̄ij = Fij(h), i, j ∈ {1, 2} as in (5.34) with H
in (5.33) for Ā, B̄ as in (5.60a), and a matrix S̄ satisfying S̄S̄⊤ = −F̄−1

11 F̄12.
Then, the PETC system given by (5.45), (5.46), (5.49) and (5.59d) is GES
with convergence rate ρ (when w = 0) and has an L2-gain from w to z smaller
than or equal to γ,

5.6.3 Extensions for Communication Constraints

We will now briefly indicate how the output-based decentralised PETC system
presented above can be extended in case it is not possible that more than one
node transmits its data at a sampling time tk. In principle, this communication
constraint requires one element j∗ ∈ Jk to be selected at time tk from the index
set Jk in (5.57) whenever Jk contains more than one element. Selecting one
element from the set Jk requires a scheduling protocol, on top of the local
event-triggering conditions, to determine which of the nodes j∗ ∈ Jk is allowed
to transmit. The problem of scheduling transmissions has been studied for
networked control systems in, e.g., [40, 62, 103, 133].

To show how scheduling protocols can be included in the framework of
output-based decentralised PETC, let us consider the class of quadratic proto-
cols, which have been introduced in the context of networked control systems
in [40]. We can show that for quadratic protocols, the framework presented
above applies directly. Namely, a quadratic protocol invokes transmission of
the data in node j⋆ at sample time tk, if

j⋆ = arg max
j∈Jk

ξ⊤(tk)Rjξ(tk) (5.67)
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where Rj , j ∈ {1, . . . , N} are given symmetric matrices. In fact, the Try-
Once-Discard (TOD) protocol, sometimes also called the Maximum-Error-First
(MEF) protocol, that has been studied in, e.g., [40, 62, 103, 133], is a quadratic
protocol. In the TOD protocol, the node with the largest difference between
vj(tk) and v̂j(tk) is allowed to transmit its data. To be more precise, at time
tk, node j⋆ ∈ Jk is allowed to transmit if

j⋆ = arg max
j∈Jk

‖vj(tk) − v̂j(tk)‖. (5.68)

This expression can be written in the form (5.67), by taking

Rj =

[
C⊤ΓjC C⊤Γj(D − I)

(D − I)⊤ΓjC (D − I)⊤Γj(D − I)

]

, (5.69)

for all j ∈ {1, . . . , N}. Since (5.67) involves quadratic conditions in selecting
the node that is allowed to transmit, it can be modelled and analysed in the
framework presented in this chapter.

In particular, to obtain an impulsive model of the output-based decen-
tralised PETC system including the quadratic protocols (5.67), we have to
observe that (5.59c) has to be modified to indicate which node j⋆ ∈ Jk is se-
lected to transmit its data, resulting in an impulsive system of the form (5.59),
where (5.59c) is replaced by

[
ξ+

τ+

]

=







[

J∅ξ

0

]

, when τ = h, ξ⊤Qjξ 6 0, for all j ∈ {1, . . . , N},
[

J{j⋆}ξ

0

]

, when τ = h, and there exists a set J with j⋆ ∈ J

such that ξ⊤Qjξ > 0, j ∈ J , ξ⊤Qjξ 6 0, j ∈ J c

and ξ⊤(Rj⋆ −Rj)ξ > 0, j ∈ J .
(5.70)

The PWL model (5.61) will be modified in a similar fashion with AJ becoming
A{j⋆} and the regional conditions in (5.61) becoming the ones in the right-hand
side of (5.70). Since the basic structure of both the impulsive model and the
PWL model is not changed, i.e., it still has linear dynamics and quadratic re-
gional conditions, the analysis in Section 5.6.1 and Section 5.6.2 can be applied
mutatis mutandis.

Other protocols could also be included in the presented PETC system
framework, such as the Round-Robin protocol [40, 62, 103, 133]. In this case,
time-dependent priorities can be assigned to each node, which are updated at
each sampling interval tk based on which node j⋆ transmits its data. In par-
ticular, the node j⋆ that transmits at time tk might be assigned the lowest
priority for the next transmission. To model this situation, the PETC system



116 Periodic Event-Triggered Control

model (5.59) has to be extended by including a list of time-dependent priori-
ties. Although this and the inclusion of other protocols require future research,
the above considerations already show the versatility and relevance of the pre-
sented framework, also in case the PETC system is subject to communication
constraints.

5.7 Illustrative Examples

In this section, we illustrate the presented theory using two numerical examples.
The first example is taken from [126] and uses state-feedback control. For this
example, we will apply all the three developed approaches for stability analysis
for both the event-triggering condition (5.6), as well as for (5.8). Furthermore,
we will analyse the L2-gain for the case (5.8). In the second example, we
consider a well-known benchmark example in the networked control system
literature [133], consisting of a model of a batch reactor, see, e.g., [40, 62, 103,
133], to illustrate output-based decentralised PETC.

Example 1 Let us consider the example taken from [126] with plant (5.1)
given by

d
dtx =

[
0 1
−2 3

]

x+

[
0
1

]

u+

[
1
0

]

w, (5.71)

and state-feedback controller (5.3), where we take K = [1 − 4] and tk = kh,
k ∈ N, with sampling interval h = 0.05. In this example, we first consider the
situation where the event-triggering condition is given by (5.6) and, later, by
(5.8). For this PETC system, we will apply all the three developed approaches
for stability analysis (for w = 0), and the impulsive system approach for per-
formance analysis. For all methods, we aim at constructing the largest value of
σ in (5.6) and (5.8) such that GES or a certain L2-gain can be guaranteed. The
reason for striving for large values of σ is that then large (minimum) inter-event
times are obtained, due to the forms of (5.6) and (5.8).

For the case that the event-triggering condition is given by (5.6), the per-
turbed linear systems approach of Section 5.3.2 yields the maximum value of σ,
while still guaranteeing GES, equal to σlin := 0.1728, as the H∞-norm of (5.26)
from e to x is equal to 1/0.1728. The discrete-time PWL system approach us-
ing Theorem 5.3.1 yields a maximum value of σ = σPWL := 0.2425. Finally,
using the impulsive system approach (Corollary 5.3.8) we obtain σIS = 0.2425.
Note that the facts σlin 6 σPWL and σIS 6 σPWL (note that the latter in-
equality holds with equality in this case) are in accordance with Theorem 5.4.1
and Theorem 5.4.2, respectively. Obviously, for all these values of σ a lower
bound on the minimum inter-event time of h = 0.05 is guaranteed. However,
in absence of disturbances we can use the expression in (5.41) to obtain the
exact minimum inter-event times for all these three cases, which result for
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σ = σPWL = σIS = 0.2425 in a minimum inter-event time of 3h = 0.15 and for
σ = σlin in a minimum inter-event time of 2h = 0.10.

Let us now consider the event-triggering condition given by (5.8). In this
case, the PWL system approach (using Theorem 5.3.1) yields a maximum value
for σ of σPWL = 0.2550, while still guaranteeing stability of the PETC system.
The perturbed linear system approach gives a maximum value of σlin = 0.2506,
while the impulsive system approach results in the maximum σIS = 0.2532 in
this case. Hence, as expected, we again see that σlin 6 σPWL and σIS 6 σPWL,
although the values are rather close. In fact, the minimum inter-event time
according to (5.41) is equal to h = 0.05 for all values σPWL, σIS and σlin in
the event-triggering condition (5.8). When analysing the L2-gain from the
disturbance w to the output variable z as in (5.17c) where z = [0 1 0 0]ξ, we
obtain Figure 5.3a, in which the smallest upper bound on the L2-gain that
can be guaranteed on the basis of Theorem 5.3.7 is given as function of σ.
This figure clearly demonstrates that better control performance (i.e., smaller
γ), necessitates more updates (i.e., smaller σ), allowing us to make tradeoffs
between these two competing objectives. Note that for γ → ∞ (meaning no
performance requirements), the value of σ approaches the value obtained using
Corollary 5.3.8 equal to σIS = 0.2532. On the other hand, for σ → 0, we recover
an upper bound on the L2-gain for the periodic sampled-data system, given
by (5.1) of the controller (5.2) with sampling interval h = 0.05 and tk = kh,
k ∈ N.

Figure 5.3b shows the response of the performance output z of the PETC
system with σ = 0.2 subject to a disturbance w, which is also depicted in
Figure 5.3b. For the same situation, Figure 5.3c shows the evolution of the
inter-event times. We see inter-event times ranging from h = 0.05, up to 0.85
(17 times the sampling interval h). Hence, this figure illustrates that using
PETC instead of periodic sampled-data control, a significant reduction in the
number of transmissions/controller computations can be achieved.

Example 2 Let us now consider the model of a linearised batch reactor. The
details of the linearised model of the batch reactor model and a continuous-time
controller can be found in [40, 62, 103, 133]. The controller considered in this
example will be obtained from this continuous-time controller by discretising
it using a zero-order-hold for the sampling interval h = 0.05, resulting in a
controller of the form (5.46) with

Ac =

[
1 0
0 1

]

, Bc =

[
0 0.05

0.05 0

]

, Cc =

[
−2 0
0 8

]

, Dc =

[
0 −2
5 0

]

. (5.72)

For this plant and controller, we will illustrate the decentralised event-
triggering condition (5.49), in which we assume that each individual plant input
and output is in a different node. Hence, this decentralised PETC system has 4
nodes. Using the result of Theorem 5.3.1, in which we take σ1 = σ2 = σ3 = σ4
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Figure 5.3: Example 1, with σ = 0.2.

for simplicity, we obtain that the PETC system (5.59) is GES for σ1 = σ2 =
σ3 = σ4 6 0.5. This is illustrated also in Figure 5.4a, in which the simulated
response of the PETC system (5.59) is given for the initial condition ξ(0) =
[1 − 1 − 1 1 0 0 0 0 0 0]⊤, for σ1 = σ2 = σ3 = σ4 = 0.5. The corresponding
event times at which the individual nodes transmit their data are provided in
Figure 5.4b. In fact, the outputs y1, y2, u1 and u2 are transmitted 45, 27,
22 and 44 times, respectively, during the first 5 units of time. This makes the
total number of transmissions equal to 138. If a standard periodic sampled-data
implementation would have been used, 400 transmissions would have occurred
during the first 5 units of time (h = 0.05 results in 100 transmissions for
each of the 4 channels in a time span of 5 units of time). Hence, the PETC
implementation leads to a reduction in the number of transmissions of more
than 65%, while still resulting in a closed-loop system that is GES. This clearly
shows the relevance of the PETC algorithms proposed in this chapter.
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Figure 5.4: Example 2, with σ1 = σ2 = σ3 = σ4 = 0.5.

5.8 Conclusions

In this chapter, we proposed a novel event-triggered control (ETC) strategy,
which aims at combining the benefits that periodic sampled-data control and
ETC offer. In particular, the ETC strategy is based on the idea of having an
event-triggering condition that is verified only periodically, and at every time
it is decided whether or not to transmit new measurements and control signals.
Only when necessary from a stability or performance point of view, the com-
munication or computation resources are used. This control strategy, for which
we propose to use the term periodic event-triggered control (PETC), preserves
the benefits of reduced resource utilisation as transmissions and controller com-
putations are not performed periodically, while the event-triggering conditions
still have a periodic character. The latter aspect leads to several benefits as
the event-triggering condition has to be verified only at the periodic sampling
times, instead of continuously, which makes it suitable for implementation in
standard time-sliced embedded system architectures. Moreover, the strategy
has an inherently guaranteed minimum inter-event time of (at least) one sam-
pling interval of the event-triggering condition, and can easily be converted into
self-triggered implementations [130], at least in the case of state feedback.

In this chapter, PETC was developed for both static state-feedback con-
trollers, and dynamical output-based controllers considering also decentralised
event-triggering conditions. To analyse the stability and L2-gain properties of
the PETC systems, we used three approaches: (i) a discrete-time piecewise
linear (PWL) system approach, (ii) a discrete-time perturbed linear system
approach, and (iii) an impulsive system approach. We discussed the advan-
tages and disadvantages of all the three approaches, showing that each of the
three presented modelling approaches is of independent interest. Namely, the
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PWL system approach provides the least conservative LMI-based results in
case of stability analysis only, the perturbed linear system approach has the
lowest computational complexity, while the impulsive system approach pro-
vides L2-gain analyses. Besides presenting the three analysis methodologies,
we also provided techniques to compute (tight) lower bounds on the minimum
inter-event times. We illustrated the theory using two numerical examples
and showed that PETC is able to reduce the utilisation of communication and
computation resources significantly.
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Abstract – In this chapter, we present two control laws that are tailored for
control applications in which computational and/or communication resources
are scarce. Namely, we consider minimum attention control, where the ‘at-
tention’ that a control task requires is minimised given certain performance
requirements, and anytime attention control, where the performance under the
‘attention’ given by a scheduler is maximised. Here, we interpret ‘attention’ as
the inverse of the time elapsed between two consecutive executions of a control
task. Instrumental for the solution will be a novel extension of the notion of
a control Lyapunov function. By focussing on linear plants, by allowing for
only a finite number of possible intervals between two subsequent executions of
the control task and by taking the extended control Lyapunov function to be
∞-norm based, we can formulate the aforementioned control problems as lin-
ear programs, which can be solved efficiently online. Furthermore, we provide
techniques to construct suitable ∞-norm-based (extended) control Lyapunov
functions for our purposes. Finally, we illustrate the theory using two numerical
examples. In particular, we show that minimum attention control outperforms
an alternative implementation-aware control law available in the literature.

1This chapter is based on [42].
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6.1 Introduction

A current trend in control engineering is to no longer implement controllers
on dedicated platforms having dedicated communication channels, but in em-
bedded microprocessors and using (shared) communication networks. Since in
such an environment the control task has to share computational and commu-
nication resources with other tasks, the availability of these resources is limited
and might even be time-varying. Despite the fact that resources are scarce,
controllers are typically still implemented in a time-triggered fashion, in which
the control task is executed periodically. This design choice is motivated by
the fact that it enables the use of the well-developed theory on sampled-data
systems, e.g., [8, 27], to design controllers and analyse the resulting closed-loop
systems. This design choice, however, leads to over-utilisation of the available
resources and requires over-provisioned hardware, as it might not be necessary
to execute the control task every period. For this reason, several alternative
control strategies have been developed to reduce the required computation and
communication resources needed to execute the control task.

Two of such approaches are event-triggered control, see, e.g., [60, 66, 90,
126], and self-triggered control, see, e.g., [92, 130, 135]. In event-triggered con-
trol and self-triggered control, the control law consists of two elements: namely,
a feedback controller that computes the control input, and a triggering mecha-
nism that determines when the control task should be executed. The difference
between event-triggered control and self-triggered control is that in the former
the triggering mechanism uses current measurements, while in the latter it uses
predictions using previously sampled and transmitted data and knowledge on
the plant dynamics, meaning that it is the controller itself that triggers the ex-
ecution of the control task. Current design methods for event-triggered control
and self-triggered control are emulation-based approaches, by which we mean
that the feedback controller is designed for an ideal implementation, while sub-
sequently the triggering mechanism is designed (based on the given controller).
Since the feedback controller is designed before the triggering mechanism, it
is difficult, if not impossible, to obtain an optimal design of the combined
feedback controller and triggering mechanism in the sense that the minimum
number of controller executions is achieved while guaranteeing stability and a
certain level of closed-loop performance. Hence, no solution to the codesign
problem currently exists.

An alternative way to handle limited computation and communication re-
sources is by using so-called anytime control methods, see, e.g., [52, 53, 54].
These are control laws that are able to compute a control input, given a cer-
tain minimum amount of computation resources allotted by a scheduler, while
providing a ‘better’ control input whenever more computation resources are
available. What is meant by ‘better’, varies from computing more control in-
puts [53], computing more future control inputs [54], or computing the control
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input using a higher-order dynamical controller [52].

In this chapter, we consider two methodologies that are able to handle
scarcity in computation and communication resources. The first methodology
adopts minimum attention control (MAC), see [21], in which the objective is
to minimise the attention the control loop requires, i.e., MAC maximises the
next execution instant, while guaranteeing a certain level of closed-loop per-
formance. Note that this control strategy is similar to self-triggered control,
where also the objective is to have as few control task executions as possi-
ble, given a certain closed-loop performance requirement. However, contrary
to self-triggered control, MAC is typically not designed using emulation-based
approaches in the sense that it does not require a separate feedback controller
to be available before the triggering mechanism can be designed. Clearly, this
joint design procedure is more likely to yield a (close to) optimal design than a
sequential design procedure would. The second methodology proposed in this
chapter is more in line with anytime control, as discussed above. Namely, by
assuming that after each execution of the control task, the control input can-
not be recomputed for a certain amount of time that is specified by a sched-
uler, anytime attention control (AAC) finds a control input that maximises the
performance of the closed-loop system, given this time-varying computation
constraint. This setting is realistic in many embedded and networked systems,
where a real-time scheduler distributes the available resources among all tasks,
and hence, determines online, the execution instants of the control task.

The control problems studied in this chapter are similar to the ones studied
in [3]. However, by focussing on linear systems, we will propose an alternative
approach to solve the control problems at hand. As was already observed in
[3], the MAC and the AAC problem are related and the same solution strat-
egy can be used to solve both problems. We will also use the same solution
strategy, yet a different one than used in [3], to solve the both problems in
this chapter. In the solution strategy we propose, we focus on linear plants, as
already mentioned, and consider only a finite number of possible interexecu-
tion times. Furthermore, we will employ control Lyapunov functions (CLFs)
that can be seen as an extension of the CLFs for sampled-data systems, which
will enable us to guarantee a certain level of performance. These extended
CLFs will first be formulated for general sampled-data systems and will later
be particularised to ∞-norm-based functions, see, e.g., [80, 108]. Namely, by
using ∞-norm-based extended CLFs, we can formulate both the MAC and the
AAC problem as linear programs (LPs), which can be efficiently solved online,
thereby alleviating the computational burden as experienced in [3]. Further-
more, we provide techniques to construct suitable ∞-norm-based (extended)
control Lyapunov functions for the control objectives under consideration. We
will illustrate the theory using two numerical examples. In particular, we will
show that MAC outperforms the self-triggered control strategy of [92].

The remainder of this chapter is organised as follows. After introducing the
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necessary notational conventions used in this chapter, we formulate the MAC
and the AAC problem in Section 6.2. In Section 6.3, we show how the control
problems can be solved using extended CLFs, in Section 6.4, we show how
to guarantee well-defined solutions, and, in Section 6.5, we present computa-
tionally tractable algorithms to solve the control problems efficiently. Finally,
the presented theory is illustrated using numerical examples in Section 6.6 and
we draw conclusions in Section 6.7. Appendix A.5 contains the proofs of the
lemmas and theorems.

6.1.1 Nomenclature

The following notational conventions will be used. For a vector x ∈ R
n, we

denote by [x]i its i-th element and by ‖x‖p := p
√∑n

i=1 |xi|p its p-norm, p ∈ N,
and by ‖x‖∞ = maxi={1,...,N} |xi|, its ∞-norm. For a matrix A ∈ R

n×m,

we denote by [A]ij its i, j-th element, by A⊤ ∈ R
m×n its transposed and by

‖A‖p := maxx6=0
‖Ax‖p

‖x‖p
, its induced p-norm, p ∈ N ∪ {∞}. In particular,

‖A‖∞ := maxi∈{1,...,n}
∑m

j=1 |[A]ij |. We denote the set of nonnegative real
numbers by R+ := [0,∞), and for a function f : R+ → R

n, we denote the limit
from above for time t ∈ R+ by lims↓t f(s), provided that it exists. Finally,
to denote a set-valued function F from R

n to R
m, we write F : R

n →֒ R
m,

meaning that F (x) ⊆ R
m for each x ∈ R

n.

6.2 Problem Formulation

In this section, we formulate the minimum attention and the anytime attention
control problem. To do so, let us consider a linear time-invariant (LTI) plant
given by

d
dtx = Ax+Bu, (6.1)

where x ∈ R
nx denotes the state of the plant and u ∈ R

nu the input applied to
the plant. The plant is controlled in a sampled-data fashion, using a zero-order
hold (ZOH), which leads to

u(t) = ûk, for all t ∈ [tk, tk+1), (6.2)

where the discrete-time control inputs ûk, k ∈ N, and the strictly increasing
sequence of execution instants {tk}k∈N are given by either one of the solutions
to the following two control problems:

• The minimum attention control (MAC) Problem: Find a set-valued func-
tion FMAC : R

nx →֒ R
nu and a function h : R

nx → R+, such that
{

ûk ∈ FMAC(x(tk))

tk+1 = tk + h(x(tk)),
(6.3)
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for all k ∈ N, renders the plant (6.1) with ZOH (6.2) stable and guaran-
tees a certain level of performance, both defined in an appropriate sense,
while, for each x ∈ R

nx , h(x) is as large as possible.

• The anytime attention control (AAC) Problem: Find a set-valued func-
tion FAAC : R

nx × R+ →֒ R
nu , such that

{

ûk ∈ FAAC(x(tk), hk)

tk+1 = tk + hk,
(6.4)

for all k ∈ N, renders the plant (6.1) with ZOH (6.2) stable and max-
imises performance in an appropriate sense, assuming that hk, k ∈ N, is
given at time tk by the real-time scheduler.

Note that the mappings FMAC and FAAC in the problems above are set-
valued functions, i.e., FMAC(x) ⊆ R

nu , for all x ∈ R
nx , and FAAC(x, h) ⊆ R

nu ,
for all x ∈ R

nx and h ∈ R+. This means that ûk, k ∈ N, can be chosen from
a subset FMAC(x(tk)) or FAAC(x(tk), hk) of R

nu , while still guaranteeing the
required properties of the MAC and the AAC problem.

To make the preceding problems well defined we need to give a precise
meaning to the terms stability and performance qualifying the solutions of the
closed-loop system given by (6.1), (6.2), with (6.3) or (6.4).

Definition 6.2.1. The system (6.1), (6.2), with (6.3) or (6.4), is said to be
globally exponentially stable (GES) with a convergence rate α > 0 and a gain
c > 0, if for any initial condition x(0), the corresponding solutions satisfy

‖x(t)‖ 6 ce−αt‖x(0)‖, (6.5)

for all t ∈ R+.

The notion of performance used in this chapter is explicitly expressed in
terms of the convergence rate α as well as the gain c. Only requiring a de-
sired convergence rate α (in the MAC problem), or maximising it (in the AAC
problem), could yield a very large gain c and, thus, could yield unacceptable
closed-loop behaviour. As we will show below (see Lemma 6.3.2), the guar-
anteed gain c typically becomes large when the time between two controller
executions, i.e., tk+1 − tk, is large. Therefore, special measures have to be
taken to prevent the gain c from becoming unacceptably large.

6.3 Formulating the Control Problems using

Control Lyapunov Functions

In this section, we will propose a solution to the two considered control problems
by formulating them as optimisation problems. In these optimisation problems,
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we will use an extension to the notion of a control Lyapunov function (CLF).
Before doing so, we will briefly revisit some existing results on CLFs, see,
e.g., [77, 121], and show how they can be used to design control laws that
render the plant (6.1) with ZOH (6.2) GES with a certain convergence rate
α > 0 and a certain gain c > 0.

6.3.1 Preliminary Results on CLFs

Let us now introduce the notion of a CLF, which has been applied to discrete-
time systems in [77] and will now be applied to periodic sampled-data systems,
given by the plant (6.1) with ZOH (6.2), in which tk+1 = tk + h, k ∈ N, for
some fixed h > 0.

Definition 6.3.1. Consider the plant (6.1) with ZOH (6.2). The function
V : R

nx → R is said to be a control Lyapunov function (CLF) for (6.1)
and (6.2), a convergence rate α > 0, a control gain bound β > 0 and an
interexecution time h > 0, if there exist constants a, a ∈ R+ and q ∈ N, such
that for all x ∈ R

nx

a‖x‖q
6 V (x) 6 a‖x‖q, (6.6)

and, for all x ∈ R
nx , there exists a control input û ∈ R

nu , satisfying ‖û‖ 6 β‖x‖
and

V (eAhx+
∫ h

0
eAsdsBû) 6 e−αqhV (x). (6.7)

Based on a CLF for a convergence rate α > 0, a control gain bound β > 0
and an interexecution time h > 0, as in Definition 6.3.1, the control law

{

ûk ∈ F (x) := {u∈ R
nu | f(x, u, h, α) 6 0 and ‖u‖ 6 β‖x‖},

tk+1 = tk + h,
(6.8)

in which
f(x, u, h, α) := V (eAhx+

∫ h

0
eAsBds u) − e−αqhV (x), (6.9)

renders the plant (6.1) with ZOH (6.2) GES with a convergence rate α > 0 and
a certain gain c > 0, as we will show in the following lemma.

Lemma 6.3.2. Assume there exists a CLF for (6.1) with (6.2), a convergence
rate α > 0, a control gain bound β > 0 and an interexecution time h > 0, in the
sense of Definition 6.3.1. Then, the control law (6.8) renders the plant (6.1)
with ZOH (6.2) GES with the convergence rate α and the gain c = c̄(α, β, h),
where

c̄(α, β, h) := q

√
a
a

(

e‖A‖h + β

∫ h

0

e‖A‖sds‖B‖
)

eαh. (6.10)

Proof. This lemma is a special case of Lemma 6.3.4 that we will present and
prove below.
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Lemma 6.3.2 illustrates why it is important to express the notion of per-
formance both in terms of the convergence rate α as well as the gain c, as was
mentioned at the end of Section 6.2. Namely, even though a CLF could guar-
antee GES with a certain convergence rate α, for some control gain bound β
and for any arbitrarily large h, by using a corresponding CLF in the control law
(6.8), the consequence is that the guaranteed gain c becomes extremely large,
see Lemma 6.3.2. In particular, c grows exponentially as h becomes larger,
which (potentially) yields undesirably large responses for large interexecution
times h = tk+1 − tk, k ∈ N. To avoid having such unacceptable behaviour,
we propose a control design methodology that is able to guarantee a desired
convergence rate α, as well as a desired gain c, even for large interexecution
times h. This requires an extension of the CLF defined above.

6.3.2 Extended Control Lyapunov Functions

The observation that the interexecution time h influences the gain c is impor-
tant to allow the MAC and the AAC problem to be formalised using CLFs.
Namely, in order to achieve sufficiently high performance (meaning a sufficiently
large α and a sufficiently small c), Lemma 6.3.2 indicates that the interexecu-
tion time h has to be selected sufficiently small. This, however, contradicts the
MAC and the AAC problem, where in the former the interexecution time is to
be maximised and in the latter it is time varying and specified by a scheduler.
We therefore propose an extended control Lyapunov function (eCLF), which
we will subsequently use to solve the MAC and the AAC problem. Roughly
speaking, the eCLF is such that it does not only decrease from tk to tk+1, but
also from tk to intermediate time instants tk +~l, for some (well-chosen) ~l > 0
satisfying tk+1 − tk > ~l, k ∈ N, l ∈ {1, . . . , L − 1}. The existence of such
an eCLF guarantees high performance, even though the interexecution time
~L := tk+1 − tk, k ∈ N, can be large, as we will show after giving the formal
definition of the eCLF.

Definition 6.3.3. Consider the plant (6.1) with ZOH (6.2). The function
V : R

nx → R is said to be an extended control Lyapunov function (eCLF) for
(6.1) and (6.2), a convergence rate α > 0, a control gain bound β > 0, and a set
H := {~1, . . . , ~L}, L ∈ N, satisfying ~l+1 > ~l > 0 for all l ∈ {1, . . . , L − 1},
if there exist constants a, a ∈ R+ and q ∈ N, such that for all x ∈ R

nx

a‖x‖q
6 V (x) 6 a‖x‖q (6.11)

and, for all x ∈ R
nx , there exists a control input û ∈ R

nu , satisfying ‖û‖ 6 β‖x‖
and

V
(
eA~lx+

∫ ~l

0
eAsdsBû

)
6 e−αq~lV (x) (6.12)

for all l ∈ {1, . . . , L}.



128 On Minimum Attention and Anytime Attention Control

As before, based on an eCLF for a convergence rate α > 0, a control gain
bound β > 0 and a set H as in Definition 6.3.3, the control law
{

ûk ∈ F (x) :=
{
u∈ R

nu | f(x, u, ~l, α) 6 0∀ l ∈ {1, . . . , L} and ‖u‖ < β‖x‖
}
,

tk+1 = tk + ~L,

(6.13)
with f(x, u, ~l, α) as defined in (6.9), renders the plant (6.1) with ZOH (6.2)
GES with a convergence rate α > 0 and a certain gain c > 0 that is typically
smaller than the gain obtained using an ordinary CLF, as we will show in the
following lemma.

Lemma 6.3.4. Assume there exists an eCLF for (6.1) with (6.2), a conver-
gence rate α > 0, a control gain bound β > 0 and a set H := {~1, . . . , ~L},
L ∈ N, satisfying ~l+1 > ~l > 0 for all l ∈ {1, . . . , L− 1}, in the sense of Def-
inition 6.3.3. Then, the control law (6.13) renders the plant (6.1) with ZOH
(6.2) GES with the convergence rate α and the gain c = c̄(α, β,∆~, ~L), where

c̄(α, β,∆~, ~L) := q

√
a
a

(

e‖A‖∆~ + βeα(~L−∆~)

∫ ∆~

0

e‖A‖sds‖B‖
)

eα∆~ , (6.14)

with ∆~ := maxl∈{1,...,L}(~l − ~l−1), in which ~0 := 0.

Proof. The proof can be found in Appendix A.5.

The existence of an eCLF for a well-chosen set H (i.e., realising a sufficiently
small ∆~) guarantees high performance in terms of the convergence rate α and
the gain c, while still allowing for large interexecution times ~L = tk+1 − tk,
k ∈ N. Indeed, by using the intermediate time instants tk + ~l, the gain c
in Lemma 6.3.4 is generally much smaller than the gain c in Lemma 6.3.2.
However, making ∆~ too small might lead to infeasibility of the control law,
as decreasing ∆~ for a fixed interexecution time tk+1 − tk means taking more
intermediate times ~l and, thus, that more inequality constraints are added to
the set-valued function F in (6.13), which, besides resulting in a much more
complicated control law, might cause F (x) = ∅ for some x ∈ R

nx . Hence, a
tradeoff can be made between the magnitude of the gain c and the number of
constraints in F (x) and we will exactly exploit this fact in the solution to the
MAC and the AAC problem, as we will show below.

6.3.3 Solving the MAC Problem using eCLFs

We will now propose a solution to the MAC problem. As a starting point,
we consider the control law (6.13), which is based on an eCLF. Indeed, the
existence of an eCLF for a convergence rate α > 0, a control gain bound β > 0
and a set H implies GES with convergence rate α and gain c of the plant (6.1)
with ZOH (6.2) and the control law (6.13), according to Lemma 6.3.4. However,
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given the function V , a convergence rate α, a control gain bound β and a set
H, it might not always be possible to ensure that F (x) 6= ∅ for all x ∈ R

nx .
To resolve this issue, we take subsets of H of the form HL̄ := {~1, . . . , ~L̄}, for
L̄ ∈ {1, . . . , L}, such that H1 ⊆ H2 ⊆ . . . ⊆ HL = H, and propose MAC, in
which the objective is to maximise L̄ ∈ {1, . . . , L} for each given x ∈ R

nx . In
other words, for each given x ∈ R

nx , L̄ is maximised such that FL̄(x) 6= ∅, in
which

FL̄(x) :=
{
u∈ R

nu | f(x, u, ~l, α) 6 0 ∀ l ∈ {1, . . . , L̄} and ‖u‖ 6 β‖x‖
}
, (6.15)

with f(x, u, ~l, α) as defined in (6.9). We maximise L̄ to make the interexe-
cution times ~L̄ = tk+1 − tk maximal, yielding that the control law requires
minimum attention. Hence, this MAC law is given by (6.3), in which we take

{

FMAC(x) := FL̄⋆(x)(x)

h(x) := ~L̄⋆(x)

(6.16)

and

L̄⋆(x) := max{l ∈ {1, . . . , L} |Fl(x) 6= ∅}. (6.17)

Indeed, the control law (6.3) with (6.16) and (6.17) is a solution to the MAC
problem, as every control input ûk is chosen such that the interexecution time
tk+1−tk = ~L̄⋆(x(tk)) is the largest one in the set H for which FL̄⋆(x(tk))(x(tk)) 6=
∅. Note that this control law is well defined if FMAC(x) 6= ∅, for all x ∈ R

nx .
This condition is equivalent to requiring that F1(x) 6= ∅ for all x ∈ R

nx .
Namely, for each x ∈ R

nx , it holds that F1(x) ⊇ F2(x) ⊇ . . . ⊇ FL(x), which
gives that, for each x ∈ R

nx , FMAC(x) 6= ∅ implies that F1(x) 6= ∅, while the
fact that F1(x) 6= ∅ implies that FMAC(x) 6= ∅ follows directly from (6.16)
and (6.17). Hence, (6.16) is well defined if F1(x) 6= ∅ for all x ∈ R

nx , which
is guaranteed if the function V is an ordinary CLF for (6.1) with (6.2), a
convergence rate α > 0, a control gain bound β > 0 and an interexecution time
~1, in the sense of Definition 6.3.2.

We will now formally show that the proposed MAC law renders the plant
(6.1) with ZOH (6.2) GES with convergence rate α and a certain gain c.

Theorem 6.3.5. Assume there exist a set H := {~1, . . . , ~L}, L ∈ N, satisfying
~l+1 > ~l > 0 for all l ∈ {1, . . . , L − 1}, and an ordinary CLF for (6.1)
with (6.2), a convergence rate α > 0, a control gain bound β > 0 and the
interexecution time ~1, in the sense of Definition 6.3.1. Then, the MAC law
(6.3), with (6.9), (6.15), (6.16) and (6.17), renders the plant (6.1) with ZOH
(6.2) GES with the convergence rate α and the gain c = c̄(α, β,∆~, ~L) as
in (6.14).

Proof. The proof can be found in Appendix A.5.
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6.3.4 Solving the AAC Problem using eCLFs

We will now propose a solution to the AAC problem, in which the objective is
to ‘maximise performance’ for an interexecution time hk given by the real-time
scheduler at time tk, k ∈ N. The solution is again based on allowing only a
finite number of possible interexecution times, i.e., hk ∈ H := {~1, . . . , ~L},
L ∈ N. Moreover, we consider only a finite number of possible convergence
rates, i.e., αk ∈ A := {ᾱ1, . . . , ᾱJ}, k ∈ N, where each ᾱj+1 > ᾱj > 0,
j ∈ {1, . . . , J − 1}, J ∈ N. A consequence of these choices is that the notion
of ‘maximising performance’ is actually relaxed to (approximately) maximising
the local convergence rate αk ∈ A of the solutions of the closed-loop system
(6.1), (6.2) with (6.4), in the sense that V (x(tk+1)) 6 e−αkqhkV (x(tk)), for all
k ∈ N. In the proposed solution to the AAC problem, the local convergence
rate αk, k ∈ N is maximised, by maximising J̄ ∈ {1, . . . , J}, (so that ᾱJ̄ ∈ A is
maximised), while guaranteeing a certain gain c (cf. Theorem 6.3.6), for each
given x ∈ R

nx and for each given h ∈ H. In other words, for each given x ∈ R
nx

and each given h ∈ H, J̄ is maximised such that FL̄(h),J̄(x) 6= ∅, in which

FL̄,J̄(x) := {u ∈ R
nu | f(x, u, ~l, ᾱJ̄) 6 0 ∀ l ∈ {1, . . . , L̄} and ‖u‖ 6 β‖x‖},

(6.18)

with f(x, u, ~l, α) as defined in (6.9) and where L̄(h) is a function that, for all
h ∈ H, satisfies L̄(h) = L̄ if h = ~L̄. Hence, this AAC law is given by (6.4), for
a given value of h ∈ H by the scheduler, where we take

FAAC(x, h) := FL̄(h),J̄⋆(x,h)(x), (6.19)

with

J̄⋆(x, h) = max{j ∈ {1, . . . , J} |FL̄(h),j(x) 6= ∅}. (6.20)

The control law (6.4), with (6.19) and (6.20) is an AAC law, as for a given
interexecution time, tk+1 − tk = hk ∈ H, a control control input ûk is chosen
such that the local convergence rate αk is maximal and a bound on the gain
c is guaranteed. Note that, similar to the solution to the MAC problem, this
control law is well defined if FAAC(x, h) 6= ∅ for all x ∈ R

nx and all h ∈ H,
which is equivalent to requiring that FL,1(x) 6= ∅ for all x ∈ R

nx . This is
due to the fact that for each x ∈ R

nx , for all l1, l2 ∈ {1, . . . , L} and for all
j1, j2 ∈ {1, . . . , J}, it holds that Fl1,j1(x) ⊇ Fl2,j2(x), if l1 > l2 and j1 6 j2,
which means that, for each x ∈ R

nx , FAAC(x) 6= ∅ implies that FL,1(x) 6= ∅,
while the fact that FL,1(x) 6= ∅ implies that FMAC(x) 6= ∅ follows from that
the fact that FL,1(x) 6= ∅ implies that Fl,1(x) 6= ∅ for all l ∈ {1, . . . , L} and
from (6.19) and (6.20). Hence, (6.19) is well defined if FL,1(x) 6= ∅ for all
x ∈ R

nx , which is guaranteed if the function V is an eCLF for (6.1) with (6.2),
a convergence rate α = ᾱ1, a control gain bound β and the set H.
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We will now formally show that the proposed AAC law renders the plant
(6.1) with ZOH (6.2) GES with at least convergence rate α = ᾱ1, and possibly
a better convergence rate, and a certain gain c.

Theorem 6.3.6. Assume there exist a set A := {ᾱ1, . . . , ᾱJ}, J ∈ N, satisfying
ᾱj+1 > ᾱj > 0 for all j ∈ {1, . . . , J −1}, and an eCLF for (6.1) with (6.2), the
convergence rate α = ᾱ1, a control gain bound β and a set H := {~1, . . . , ~L},
L ∈ N, satisfying ~l+1 > ~l > 0 for all l ∈ {1, . . . , L − 1}. Then, the AAC
law (6.4), with (6.9), (6.18), (6.19) and (6.20), renders the plant (6.1) with
ZOH (6.2) GES with (at least) the convergence rate α = ᾱ1 and the gain
c = c̄(ᾱ1, β,∆~, ~L), as in (6.14).

Proof. The proof can be found in Appendix A.5.

6.4 Obtaining Well-Defined Solutions

In this section, we will address the issue of how to guarantee that the solutions
to the MAC and the AAC problem are well defined, i.e., that FMAC(x) 6= ∅ for
all x ∈ R

nx and that FAAC(x, h) 6= ∅ for all x ∈ R
nx and all h ∈ H. As was

observed in the previous section, the existence of a CLF or an eCLF for (6.1)
with (6.2), a convergence rate α, a control gain bound β and, for the CLF, an
interexecution time h, and, for the eCLF, a set H, ensures that the MAC law
and the AAC law, respectively, are well defined. To obtain such a CLF or an
eCLF, and to guarantee that the two control problems can be solved efficiently
(as we will show in the next section), we focus in this section on ∞-norm-based
(e)CLFs of the form

V (x) = ‖Px‖∞, (6.21)

with P ∈ R
m×nx satisfying rank(P ) = nx. Note that (6.21) is a suitable

candidate (e)CLF, in the sense of Definition 6.3.3, with q = 1, since (6.6) and
(6.11) are satisfied with

a = ‖P‖∞, and a = max{a > 0 | a‖x‖ 6 ‖Px‖ for all x ∈ R
nx}. (6.22)

In fact, rank(P ) = nx ensures that a > 0.
We will now provide a two-step procedure to obtain a suitable (e)CLF. The

first step is to consider an auxiliary control law of the form

u(t) = Kx(t) (6.23)

that renders the plant (6.1) GES. To avoid any misunderstanding, (6.23) is not
the control law being used; it is just an auxiliary control law that is useful to
construct a candidate (e)CLF. The actual MAC law will be given by (6.3), with
(6.16) and (6.17), and the AAC law will be given by (6.4), (6.19) and (6.20)
based on (6.21), and neither one of these uses a matrix K.
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Using the auxiliary control law, we can find a Lyapunov function for the
plant (6.1) with control law (6.23) (without ZOH (6.2)) by employing the fol-
lowing intermediate result. This intermediate result can be seen as a slight
extension of the results presented in [80, 108] to allow GES to be guaranteed,
instead of only global asymptotic stability.

Lemma 6.4.1. Assume that there exist a matrix P ∈ R
m×nx , with rank(P ) =

nx, a matrix Q ∈ R
m×m and a scalar α̂ > 0 satisfying

P (A+BK) −QP = 0 (6.24a)

[Q]ii +
∑

j∈{1,...,m}\{i}

∣
∣[Q]ij

∣
∣ 6 −α̂, (6.24b)

for all i ∈ {1, . . . ,m}. Then, control law (6.23) renders the plant (6.1) GES
with convergence rate α̂ and gain ĉ = a/a, with a and a as in (6.22).

Proof. The proof can be found in Appendix A.5.

Note that it is always possible, given stabilisability of the pair (A,B), to
find a matrix P satisfying the hypotheses of Lemma 6.4.1, and constructive
methods to obtain a matrix P are given in [80, 108]. The second step in the
procedure is to show that a matrix P satisfying the conditions of Lemma 6.4.1,
renders the plant (6.1) with ZOH (6.2) GES in case the auxiliary control law
is given, for all k ∈ N, by

{

ûk = Kx(tk)

tk+1 = tk + h
(6.25)

provided that h > 0 is well chosen.

Lemma 6.4.2. Suppose the conditions of Lemma 6.4.1 are satisfied. Then,
for each α > 0 satisfying α < α̂, the system given by (6.1), (6.2) and (6.25)
is GES with convergence rate α and gain c = c̄(α, ‖K‖, h) as in (6.10), for all
h < hmax(α) with

hmax(α) = min
{
ĥ > 0

∣
∣‖P (eAĥ +

∫ ĥ

0
eAsdsBK)(P⊤P )−1P⊤‖∞> e−αĥ

}
. (6.26)

Proof. The proof can be found in Appendix A.5.

Using the matrix P and the function hmax(α) obtained from Lemmas 6.4.1
and 6.4.2, we can now formally state the conditions under which the proposed
solutions to the MAC and the AAC problem are well defined and how to achieve
a desired convergence rate α and a desired gain c.

Theorem 6.4.3. Assume there exist matrices P ∈ R
m×nx , K ∈ R

nu×nx ,
and a scalar α̂ > 0 satisfying the conditions of Lemma 6.4.1, and let 0 <
α < α̂ and c > ĉ. If the control gain bound β satisfies β > ‖K‖∞ and the
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set H := {~1, . . . , ~L}, L ∈ N, is such that ~1 < hmax(α) as in (6.26), and
c > c̄(α, β,∆~, ~L) as in (6.14), then the MAC law (6.3), with (6.9), (6.15),
(6.16), (6.17) and (6.21), is well defined and renders the plant (6.1) with ZOH
(6.2) GES with the convergence rate α and the gain c.

Proof. The proof can be found in Appendix A.5.

Theorem 6.4.4. Assume there exist matrices P ∈ R
m×nx , K ∈ R

nu×nx , and
a scalar α̂ > 0 satisfying the conditions of Lemma 6.4.1, and let 0 < α < α̂
and c > ĉ be given. If the control gain bound β, satisfies β > ‖K‖∞, the set
A := {ᾱ1, . . . , ᾱJ}, J ∈ N, is such that α 6 ᾱ1 < α̂, the set H := {~1, . . . , ~L},
L ∈ N, is such that ~L < hmax(ᾱ1) as in (6.26), and c > c̄(ᾱ1, β,∆~, ~L) as in
(6.14), then the AAC law (6.4), with (6.9), (6.18), (6.19), (6.20) and (6.21),
is well defined and renders the plant (6.1) with ZOH (6.2) GES with at least
convergence rate α = ᾱ1, and possibly a better convergence rate, and a certain
gain c.

Proof. The proof can be found in Appendix A.5.

These theorems formally show how to choose the scalar β, and the sets A
and H to make each of the proposed solutions to the two control problems well
defined and to achieve a desired convergence rate α and a desired gain c.

6.5 Making the Solutions to the MAC and the

AAC Problem Computationally Tractable

As a final step in providing a complete solution to the MAC and the AAC
problem, we will now propose computationally efficient algorithms to compute
the control inputs generated by the MAC and AAC laws using online optimi-
sation. To do so, note that the ∞-norm-based (e)CLFs as in (6.21) allow us to
rewrite (6.9) as

f(x, u, h, α) =
∥
∥PeAhx+

∫ h

0
PeAsBds u

∥
∥
∞ − e−αh‖Px‖∞. (6.27)

We can now observe that the constraint f(x, u, h, α) 6 0, which appears in
(6.16) and (6.19), is equivalent to

∣
∣[PeA~lx+

∫ h

0
PeAsBds u]i

∣
∣ − e−αh‖Px‖∞6 0, (6.28)

for all i ∈ {1, . . . ,m}, which is equivalent to f̄(x, u, h, α) 6 0, where

f̄(x, u, h, α) :=

[

PeAhx+ P
∫ h

0
eAsdsBu

−PeAhx− P
∫ h

0
eAsdsBu

]

− e−αh‖Px‖∞





1

.

.

.

1



 (6.29)
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and the inequality is assumed to be taken elementwise, which results in 2m
linear scalar constraints for u.

Equation (6.29) reveals that ∞-norm-based (e)CLFs convert the two con-
sidered problems into feasibility problems with linear constraints, allowing us
to propose an algorithmic solution to the MAC and the AAC problem. The
algorithms are based on solving the maximisation that appears in (6.17) and
(6.20) by incrementally increasing L̄ and J̄ , respectively.

Algorithm 6.5.1 (Minimum Attention Control). Let the matrix P ∈ R
m×nx ,

the scalars α, β > 0 and the set H, satisfying the conditions of Theorem 6.4.3,
be given. At each tk, k ∈ N, given state x(tk):

1. Set l := 0 and define UMAC
0 :=

{

u ∈ R
nu |

[
u
−u

]

− β‖x(tk)‖∞
[

1

.

.

.

1

]

6 0

}

2. While UMAC

l 6= ∅, and l < L

• UMAC

l+1 := UMAC

l ∩ {u ∈ R
nu |f̄(x(tk), u, ~l+1, α) 6 0}

• l := l + 1

3. If l = L and UMAC
L 6= ∅, take ûk ∈ UMAC

L , and tk+1 = tk + ~L

4. Or else, if UMAC

l = ∅, take ûk ∈ UMAC

l−1 , and tk+1 = tk + ~l−1.

Algorithm 6.5.2 (Anytime Attention Control). Let the matrix P ∈ R
m×nx ,

the scalar β > 0, and the sets A and H, satisfying the conditions of Theorem
6.4.4, be given. At each tk, k ∈ N, given state x(tk) and given hk ∈ H, let
L̄ ∈ {1, . . . , L} be such that hk = ~L̄, and:

1. Set j := 0 and define UAAC
0 :=

{

u ∈ R
nu

∣
∣
∣
∣

[
u
−u

]

− β‖x(tk)‖∞
[

1

.

.

.

1

]

6 0

}

2. While UAAC
j 6= ∅, and j < J ,

• UAAC
j+1 := UAAC

0 ∩{u ∈ R
nu | f̄(x(tk), u, ~l, αj+1) 6 0 ∀ l ∈ {1, . . . , L̄}}

• j := j + 1

3. If j = J and UAAC
J 6= ∅, take ûk ∈ UAAC

J

4. Or else, if UAAC
j = ∅, take ûk ∈ UAAC

j−1 .

Remark 6.5.3. Since verifying that UMAC

l 6= ∅, for some l ∈ {1, . . . , L}, is
a feasibility test for linear constraints, the algorithm can be efficiently imple-
mented online using existing solvers for linear programs.
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6.6 Illustrative Examples

In this section, we illustrate the presented theory using a well-known example
in the NCS literature, see, e.g., [40, 62, 103, 133], consisting of a linearised
model of a batch reactor. For this example, we solve both the MAC and the
AAC problem. The linearised batch reactor is given by (6.1) with

[
A B

]
=







1.380 −0.208 6.715 −5.676 0 0
−0.581 −4.290 0 0.675 5.679 0

1.067 4.273 −6.654 5.893 1.136 −3.146
0.048 4.273 1.343 −2.104 1.136 0






. (6.30)

In order to solve the two control problems discussed in this chapter, we need
a suitable (e)CLF. To obtain such a (e)CLF, we use the results from Section
6.4, and use an auxiliary control law (6.23), with

K =

[
0.0360 −0.5373 −0.3344 −0.0147
1.6301 0.5716 0.8285 −0.2821

]

(6.31)

yielding that the eigenvalues A+BK are all real valued, distinct, and smaller
than or equal to −2. This allows us to find a Lyapunov function of the form
(6.21) using Lemma 6.4.1, with P being the inverse of the matrix consisting
of the eigenvectors of A + BK, Q being a diagonal matrix consisting of the
eigenvalues of A+BK, α̂ = 2 and ĉ ≈ 23.9. This Lyapunov function will serve
as an eCLF in the two control problems.

6.6.1 The Minimum Attention Control Problem

Given this eCLF, we can solve the MAC problem using Algorithm 6.5.1. Before
doing so, we use the result of Theorem 6.4.3 to guarantee that the MAC law is
well defined and renders the closed-loop system GES with desired convergence
rate α = 0.98α̂ = 1.96 and desired gain c = 4ĉ ≈ 95.7. According to Theorem
6.4.3, this convergence rate α and this gain c can be achieved by taking β =
‖K‖∞ ≈ 3.1 and

H = {~1, . . . , ~10} = { 1.5
1000 ,

7.5
100 ,

15
100 ,

22.5
100 ,

30
100 ,

37.5
100 ,

45
100 ,

52.5
100 ,

60
100 ,

67.5
100 }, (6.32)

because it holds that ~1 < hmax(α) and that c̄(α, β,∆~, ~L) 6 c. To implement
Algorithm 6.5.1 in Matlab, we use the routine polytope of the MPT-toolbox
[82], to create the sets UMAC

l , to remove redundant constraints and to check if
the set UMAC

l , l ∈ {1, . . . , 10}, is nonempty.
When we simulate the response of the plant with the resulting MAC law

for the initial condition x(0) = [1 0 1 0]⊤, we can observe that the closed-loop
system is indeed GES, see Figure 6.1a, and satisfies the required convergence
rate α, see Figure 6.1c. To show the effectiveness of the theory, we compare
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(a) Evolution of the states of the plant us-
ing MAC.
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(b) Evolution of the states of the plant us-
ing self-triggered control.
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(c) The decay of the Lyapunov function
using MAC and self-triggered control.
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(d) The interexecution times using MAC
and self-triggered control.

Figure 6.1: Minimum Attention Control.

our results with the self-triggered control strategy in the spirit of [92], however
tailored to work with ∞-norm-based Lyapunov functions, resulting (by using
the notation used in this chapter) in a control law (6.2) with ûk = Kx(tk), and
tk+1 = tk + ~L̄(x(tk)), where

L̄(x(tk)) = max{L̂ ∈ {1, . . . , L} | f(x(tk),Kx(tk), ~l, α) 6 0 ∀ l ∈ {1, . . . , L̂}}.
(6.33)

To illustrate that also this control strategy renders the plant (6.1) GES, we
show the response of the plant to the initial condition x(0) = [1 0 1 0]⊤ in
Figure 6.1b, and the decay of the Lyapunov function in Figure 6.1c. Note that
the decay of the Lyapunov function for MAC is comparable to the decay of
the Lyapunov function for self-triggered control. However, when we compare
the resulting interexecution times as depicted in Figure 6.1d, we can observe
that the MAC yields much larger interexecution times. Hence, from a resource
utilisation point of view, the proposed MAC outperforms the self-triggered
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(a) Evolution of the states of the plant us-
ing AAC.
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(b) A realisation of the interexecution
times for AAC.

Figure 6.2: Anytime Attention Control.

control law.

6.6.2 The Anytime Attention Control Problem

Let us now illustrate the AAC problem, which can be solved using Algo-
rithm 6.5.2. In this case, Theorem 6.4.4 provides conditions under which the
AAC law is well defined and renders the closed-loop system GES with guaran-
teed convergence rate α = 0.5 and gain c = 1.05ĉ ≈ 25. According to Theorem
6.4.4, this desired convergence rate α and this desired gain c can be achieved by
taking β = 1.4‖K‖∞ ≈ 4.6, A = {ᾱ1, . . . , ᾱ12}, with ᾱj = j

2 for j ∈ {1, . . . , 12},
and H = {~1, . . . , ~6} = {0.011, 0.021, 0.031, 0.041, 0.051, 0.061}, because it
holds that ~6 < hmax(ᾱ1) and that c̄(ᾱ1, β,∆~, ~L) 6 c.

When we simulate the response of the plant with the AAC law to the
initial condition x(0) = [1 0 1 0]⊤, and we take hk ∈ H, where hk, k ∈ N,
is given by an independent and identically distributed sequence of discrete
random variables having a uniform probability distribution, we can observe
that the closed-loop system is indeed GES, see Figure 6.2a. We also depict
the corresponding realisation of hk for the interval t ∈ [0, 4] in Figure 6.2b.
We conclude that AAC is able to yield high performance, even though the
execution times are time-varying and given by a scheduler.

6.7 Conclusion

In this chapter, we proposed a novel way to solve the minimum attention and
the anytime attention control problem. Instrumental for the solutions is a
novel extension to the notion of a control Lyapunov function. We solved the
two control problems by focussing on linear plants, by considering only a finite
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number of possible intervals between two subsequent executions of the control
task and by choosing the extended control Lyapunov function (eCLF) to be ∞-
norm-based, which allowed the two control problems to be formulated as linear
programs. We provided a technique to obtain suitable eCLFs that render the
solution to the minimum attention control problem feasible with a guaranteed
upper bound on the attention (i.e., an lower bound on the inter-execution
times), while guaranteeing an a priori selected performance level, and that
renders solution to the anytime attention control problem feasible with a lower
bound on the performance (in terms of a lower bound on the convergence rates),
while guaranteeing a minimum level of performance. We illustrated the theory
using two numerical examples. In particular, the first example showed that
the proposed methodology outperforms a self-triggered control strategy that is
available in the literature.
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7.1 Concluding Remarks

7.2 Recommendations for Future Research

7.3 Final Thoughts

7.1 Concluding Remarks

In this thesis, control strategies have been studied that are tailored for platforms
where only limited computation and/or communication resources are available
for control. These considered control strategies contribute to the fields of net-
worked control systems (NCSs) and event-triggered control systems (ETCSs).
The main contributions of this thesis are summarised below.

• A modelling and analysis framework has been developed that allows the
study of stability of NCSs that simultaneously subject to time-varying
transmission intervals, time-varying delays, and communication
constraints. Packet dropouts can be accommodated for, as well, by mod-
elling them as a prolongations of the transmission intervals. The frame-
work focusses on linear plants and controllers and is based on discrete-
time switched linear parameter-varying models for NCSs. Two cases have
been considered for the modelling of time-varying transmission intervals
and delays; namely, the case where the transmission intervals and delays
are simply assumed to be upper and lower bounded (Chapter 2), and the
case where they are described by a sequence of continuous random vari-
ables (Chapter 3). The former case requires a less detailed description of
the network behaviour than the latter case, while the latter case results in
a less conservative stability analysis than the former, as has been shown
in Chapter 3. For both cases, techniques have been provided for assessing
the stability of the NCS using polytopic overapproximations and using
linear matrix inequalities (LMIs). The presented framework reduces con-
servatism significantly with respect to existing results in the literature, as
has been shown on the benchmark example of a chemical batch reactor in
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Chapter 2, in the sense that stability can now be guaranteed for consid-
erably larger ranges of transmission intervals and delays. Furthermore,
the presented framework allows to study discrete-time dynamical output-
based controllers, which could not be done before. Hence, the presented
framework is an important and practically relevant contribution to the
field of NCSs.

• Several contributions to the theory on event-triggered control (ETC) have
been made. The first contribution (Chapter 4) has been the proposal of
an ETC strategy that uses dynamical output-based controllers, instead
of static state-feedback controllers, as is commonly done in the literature
on ETC. Furthermore, decentralised event triggering has been considered
to be able to handle large-scale systems, in which sensors, actuators and
controllers can be physically distributed. A modelling framework has
been provided based on impulsive systems to study the closed-loop sta-
bility and the L∞-gain from disturbance inputs to performance outputs.
Furthermore, guarantees on the minimum time between two subsequent
events in each node, the so-called minimum inter-event time of a node,
have been provided. The second contribution (Chapter 5) has been the
proposition of the new class of periodic event-triggered control (PETC)
algorithms, which aims at combining the benefits that, on the one hand,
periodic control and, on the other hand, ETC offer. In PETC, the event-
triggering condition is monitored periodically and at each sampling in-
stant it is decided whether or not to transmit the sensor and/or actuator
data and to use computation resources for the control task. Methodolo-
gies have been provided to analyse the stability and the L2-gain from
disturbance inputs to performance outputs of this class of PETC algo-
rithms. Finally, a preliminary contribution has been made in solving the
codesign problem for ETC (Chapter 6). In particular, a novel way to
solve the minimum attention and anytime attention control problem in
one unifying framework has been proposed. The two control problems
have been solved by formulating them as linear programs, which can be
solved efficiently in an online fashion. With these three contributions, a
significant step towards a comprehensive theory on ETC has been made.

These contributions are discussed in more detail below.

7.1.1 (Robust) Stability Analysis of NCSs

Chapter 2 discussed the stability analysis of NCSs that are subject to communi-
cation constraints, time-varying transmission intervals and time-varying delays,
and (although more implicitly) packet dropouts. The stability of the NCS has
been analysed for communication sequences that are determined by protocols
in the newly introduced classes of quadratic protocols or periodic protocols,
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having the well-known try-once-discard (TOD) and the round-robin (RR) as
special cases. The analysis has been based on a discrete-time switched linear
uncertain model of the NCS. A new and efficient convex overapproximation has
been proposed that allows to analyse stability using a finite number of linear
matrix inequalities (LMIs). On a benchmark example, the advantages and the
effectiveness of the developed theory have been illustrated. In particular, it has
been shown that stability can be guaranteed for a much larger maximum al-
lowable transmission interval and maximum allowable transmission delay, when
compared to the existing results in the literature. In addition, the results of
Chapter 2 can be applied for stability analysis of NCSs with discrete-time dy-
namic output-based controllers and nonzero lower bounds on the transmission
intervals and delays, which could not be analysed before even though they are
highly relevant for practical implementations of networked controllers.

7.1.2 Stability Analysis of Stochastic NCSs

Chapter 3 also discussed stability analysis of NCSs that are subject to com-
munication constraints, time-varying transmission intervals and time-varying
delays, and packet dropouts. Contrary to Chapter 2, the stability of the NCS
is analysed for the case where the transmission intervals and the transmission
delays are described by a sequence of continuous random variables and the oc-
currence of packet dropouts is described by a Markov chain. Besides quadratic
and periodic protocols, as studied in Chapter 2, also stochastic protocols are
considered. The analysis has been based on a discrete-time switched linear
stochastically parameter-varying model of the NCS. Conditions for stability
(in the mean-square sense) have been derived by extending the convex overap-
proximation techniques of Chapter 2, such that the probabilistic information
as present in the continuous probability distribution is preserved. This has
also led to LMI-based conditions for stability. On a benchmark example, it has
been shown that by incorporating probabilistic information on the transmis-
sion intervals and delays, stability can now be guaranteed for situations neither
covered by existing results in the literature, nor by the results in Chapter 2.

7.1.3 Output-Based Decentralised ETC

Chapter 4 studied the stability and the L∞-performance of ETC for dynamical
output-based controllers having decentralised event triggering. The proposed
event-triggering mechanism (ETM) unifies earlier proposals for ETMs, which
have been mainly applied to state-feedback controllers. To analyse the resulting
closed-loop system, it has been modelled as an impulsive system. This allows
the stability and the L∞-gains to be analysed using LMIs. Explicit expres-
sions for lower bounds on the inter-event times have been provided and it has
been formally proved that by using an impulsive systems approach, stability
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and performance can be guaranteed for ETC algorithms with larger inter-event
times than for existing results in literature, and, thus, using fewer communica-
tion resources. Using three numerical examples, the presented theory has been
illustrated. These examples have shown that larger inter-event times can be
obtained compared to existing results in the literature, that for unstable sys-
tems the outputs of the plants and controllers have to be transmitted less often
when the state approaches the origin, and that for stable systems the outputs
of the plant and controller only seem to be transmitted when disturbances are
acting on the system and during transients.

7.1.4 Periodic Event-Triggered Control

In Chapter 5, a novel ETC strategy has been proposed, which aims at combin-
ing the benefits that periodic sampled-data control and ETC offer. In particu-
lar, the ETC strategy is based on the idea of having an event-triggering condi-
tion that is verified only periodically, and at each time it is decided whether or
not to transmit new measurements and control signals. This control strategy,
for which the term periodic event-triggered control (PETC) has been proposed,
preserves the benefits of reduced resource utilisation as transmissions and con-
troller computations are not performed periodically, while the event-triggering
conditions still have a periodic character. The fact that the event-triggering
condition only has to be verified at the periodic sampling times, instead of con-
tinuously, has the favourable property that this strategy can be implemented
using standard time-sliced embedded software architectures. In addition, this
strategy has the appealing feature of an inherent guaranteed minimum inter-
event time of (at least) one sampling interval of the event-triggering condi-
tion, which can be tuned as desired during the design process. To analyse the
stability and L2-gain properties of the PETC system, three approaches have
been used: (i) a discrete-time piecewise linear (PWL) system approach, (ii) a
discrete-time perturbed linear system approach, and (iii) an impulsive system
approach. A comparison between all the three approaches has been provided,
showing that each of the three presented modelling approaches have their own
benefits and are therefore of independent interest. The theory has been illus-
trated using two numerical examples, showing that PETC is able to reduce the
utilisation of communication and computation resources significantly.

7.1.5 Minimum Attention & Anytime Attention Control

Chapter 6 discussed a novel way to solve the minimum attention and anytime
attention control problems. Instrumental for the solutions is a novel extension
to the notion of a control Lyapunov function. The two control problems have
been solved by focussing on linear plants, by considering only a finite number
of possible inter-event times (and in the case of anytime attention control also
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a finite number of performance levels), and by choosing the extended control
Lyapunov function (eCLF) to be ∞-norm-based, which allowed the two control
problems to be reformulated as linear programs. A technique has been provided
to obtain suitable eCLFs that renders the solution to the minimum attention
control problem feasible with a guaranteed upper bound on the attention (i.e.,
an lower bound on the inter-execution times), while guaranteeing an a priori
selected performance level, and renders solution to the anytime attention con-
trol problem feasible with a lower bound on the performance (in terms of a
lower bound on the convergence rates), while guaranteeing a minimum level of
performance. In the case of anytime attention control algorithm receives more
attention, higher levels of performance are automatically selected by the control
algorithm. The theory has been illustrated using numerical examples. In par-
ticular, the first example showed that the proposed methodology outperforms
an existing self-triggered control strategy.

7.2 Recommendations for Future Research

In the introduction, it has been acknowledged that both fields of NCSs and
ETCSs have major open problems and that the system theory on NCSs and
ETCSs is far from being comprehensive. Although several contributions to
the system theory on NCSs and ETCS have been made in this thesis, several
important questions remain that need to be addressed in future research. This
section comments on some of these open problems for NCSs and ETCSs.

7.2.1 Networked Control Systems

Even though the NCS model presented in Chapter 2 and Chapter 3 is already
general in the sense that it is one of the first that allows stability of NCSs to
be studied in the joint presence of time-varying transmission intervals, time-
varying transmission delays and communication constraints, while the occur-
rence of packet-dropouts can be including by modelling them (implicitly) as
prolongations of the transmission intervals, the modelling framework is still
not complete. In fact, it would be of interest to extend the framework in the
following directions.

Including the effects of quantisation: Since the presented framework
considers the four network-induced phenomena, the first natural extension of
the framework could be the inclusion of the remaining network-induced phe-
nomenon, namely, quantisation. Since quantisation effectively results in a dis-
crepancy between the actual output of the plant or controller and the trans-
mitted output, it can be modelled as a disturbance. Hence, the modelling
framework presented in this thesis can be extended by modelling quantisation
as a disturbance having certain properties and by exploiting ideas from, e.g.,
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input-to-state stability analysis or Lp-gain analysis, p ∈ N, [79] to the analyse
of the resulting model. Initial ideas in this direction are reported in [89].

Allowing the delays to be larger than the transmission interval: The
framework presented in this thesis assumes that the delays are smaller than the
transmission intervals, implying that the previous packet arrived before the
new one is transmitted. In this way, packets do not arrive out of order. Since
this cannot always be guaranteed in practice, it is of interest to extend the
modelling framework to accommodate for the case that delays are larger than
the transmission interval. This situation is sometimes referred to as the ‘large
delay’-case. Even though some results on large delays exist, e.g., see [29, 31],
they have never been studied in combination with communication constraints
and network protocols. Furthermore, the existing results on large delays use
state-feedback controllers, whereas the framework presented in this thesis uses
general dynamical output-based controllers. The fact that dynamical output-
based controllers are used and communication constraints are present compli-
cates the analysis significantly. For instance, it is not straightforward how the
states of the controller should be updated in case a packet arrives before an
earlier transmitted packet, i.e., when one packet ‘overtakes’ the other. Never-
theless, since in practical NCSs large delays might occur, the extension of the
current framework to include large delays constitutes an interesting topic for
future research.

Analysing closed-loop performance: The framework presented in the
first part of the thesis focusses on stability analysis of NCSs. Even though
stability is one of the most important and basic properties a control system
should have, a control system also has to satisfy certain closed-loop perfor-
mance requirements. Since it is well known that the insertion of a communi-
cation network deteriorates the closed-loop performance of the control system,
it would be beneficial to have performance analysis tools for NCSs as well.
Hence, it is of interest to generalise the analysis framework presented in the
first part of this thesis towards the analysis of the Lp-gain, for some p ∈ N,
from disturbance inputs to performance outputs of the NCS. To achieve this,
efficient methods to include intersample behaviour in the discrete-time frame-
work presented in this thesis are needed in order to arrive at nonconservative
tools for closed-loop performance analysis.

Allowing for more detailed network models: In this thesis, the delays
and transmission intervals are either assumed to be upper and lower bounded,
or assumed to be given by an independent and identically distributed (iid) se-
quence of random variables. Even though the latter is already a more detailed
description of the network behaviour than the former, it is still a simplified
description of reality. For instance, the communication channels can exhibit a
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time-varying reliability, which means that the sequence of random variables de-
scribing the transmission intervals and the transmission delays can no longer be
assumed to be iid. In particular, there might exist a correlation between trans-
mission delays at two successive transmission intervals. Hence, it is of interest
to extend the modelling and analysis framework to include the consequences
of this time-varying reliability.

Furthermore, it has been assumed in this thesis that the bounds on, or the
probability distribution of, the transmission intervals, the transmission inter-
vals delays and packet dropouts are given, while in fact they are a consequence
of, e.g., the underlying communication technology, the network topology, and
the fact that other (i.e., not control-related) tasks make use of the network.
Even though these bounds, or this joint probability distribution, only pro-
vide an abstract description of the network, it has been shown that they are
extremely valuable for the analysis of the closed-loop system for different net-
work protocols. However, in some occasions, these network models might be
too abstract and more detailed models of the underlying network are needed.
This is an other important topic of research as it might allow the consequences
of choosing a certain network topology and communication technology to be
analysed more directly.

Controller and protocol codesign: The work presented in this thesis al-
lows stability to be studied given a controller and a scheduling protocol, while
the controller/protocol codesign problem is not studied. The controller synthe-
sis problem for NCSs without communication constraints and for state-feedback
control laws is solved in [29], and the (decentralised) controller synthesis prob-
lem for NCSs with a given periodic protocol for dynamical output-based con-
trollers is studied in [13, 14]. The cited papers assume that the transmission
interval and delays can be upper and lower bounded and either do not consider
communication constraints at all or assume a particular, and given, scheduling
protocol. Furthermore, the controller and (quadratic) protocol synthesis prob-
lem for NCSs without time-varying transmission intervals and delays is studied
in [34]. Hence, the important problem of controller/protocol codesign for gen-
eral classes of protocols is not solved yet and, therefore, forms an important
topic for future research.

7.2.2 Event-Triggered Control Systems

Although various relevant contributions to the field of ETCSs are made in this
thesis, a comprehensive system theory for ETC is currently not yet available.
Therefore, several recommendations for future research are given below that
will contribute to a comprehensive system theory for ETC that will support
the deployment of ETC in a large variety of control applications.
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Reducing conservatism in the analysis: The illustrative examples in
Chapter 4 have shown that the upper bound on the magnitude of the ulti-
mate bounds and the L∞-gain, based on the theory, were larger than what was
expected from the simulations, and the lower bounds on the inter-event times,
again based on the theory, were smaller than the inter-event times observed
in the simulations. Furthermore, the theoretical upper bounds on the L2-gain
in the illustrative examples in Chapter 6 were larger than what could be con-
cluded from the simulations. Therefore, future work on (P)ETC should focus
on improving the upper bound on the magnitude of the ultimate bound, the up-
per bound on the L∞-gain or L2-gain, and the lower bound on the inter-event
times to become closer to the true value of the ultimate bound, the L∞-gain,
the L2-gain and the minimum inter-event times, respectively.

Including network-induced artifacts: The fact that ETC aims at saving
communication resources, makes it a very useful control strategy to be imple-
mented over a multipurpose communication network. Hence, ETC provides
an alternative to the conventional sampled-data controller used in the NCS
literature. However, in the case that ETC is used in the context of NCSs,
the control system again becomes subject to time-varying transmission delays,
packet dropouts and perhaps even communication constraints, and the robust-
ness of the ETC algorithm against these phenomena has to be quantified. In the
case of PETC, the control system might also become subject to time-varying
transmission intervals, as the local clocks might not be synchronised exactly,
and the the robustness of the PETC algorithm against time-varying transmis-
sion intervals has to be quantified as well. Therefore, future work could focus
on extending the framework presented in Chapter 4 and Chapter 5 to include
the case where the ETC system is subject to the network-induced phenomena
studied in the first part of this thesis. In fact, the theory developed in the first
part of the thesis can provide a good starting point to achieve this. Once this
task is accomplished successfully, ETC might be the natural control strategy
for many NCS applications.

Solving the controller and ETM codesign problem: Even though Chap-
ter 6 presented an approach to solve the minimum attention and the anytime
attention control problems, and the former can be seen as a solution to the
controller and ETM codesign problem, the general codesign problem is largely
unexplored. Namely, the minimum attention control problem solved in Chap-
ter 6 focusses on state-feedback controllers and yields a self-triggered control
algorithm, thereby providing only a solution to very particular codesign prob-
lem in ETC. Furthermore, the solution of the control problem has the form
of an online optimisation problem. Even though these linear programs can be
solved efficiently using existing solvers, the computations are numerically more
demanding than, for instance, a conventional state-feedback control algorithm,
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which might not be desirable from an implementation point of view. If instead
the optimisation problem can be solved explicitly, e.g., using multiparamet-
ric linear programming as has been done in explicit model predictive control
(MPC) in [15], this computational burden might be alleviated. Therefore,
future research on minimum attention control and anytime attention control
could focus on obtaining explicit solutions to the optimisation problem and
on formulating the problem for the case in which not all the states can be
measured directly.

7.3 Final Thoughts

The contributions of this thesis can form a basis for future research explo-
rations, possibly along the lines of the recommendations given above. These
contributions and future explorations can lead to a mature system theory for
both NCSs and ETCSs, thereby supporting their deployment in a large variety
of practical control applications, such as chemical plants, water distribution
networks, distributed power generation systems, unmanned aerial vehicles, ve-
hicle platoons on motorways, tele-operated haptic systems, and so on. In par-
ticular, ETC can have an enormous potential to revolutionise the control field
as it advocates the abandonment of the conventional periodic time-triggered
feedback control paradigm. The benefits of ETC being that it naturally results
in less communication and, thereby, in less delay and fewer packet dropouts
makes this control strategy very well suited for NCSs. If the ideas put forward
in Part II of this thesis are combined with the results on NCSs in Part I of
this thesis leading to ETCSs that are able to deal with the network-induced
imperfections, ETC can become an important component in the design of the
NCSs of the future.
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A.1 Chapter 2

A.2 Chapter 3

A.3 Chapter 4

A.4 Chapter 5

A.5 Chapter 6

A.1 Chapter 2

Proof of Lemma 2.2.4. In Theorem 4 of [104], it was shown that a sampled-
data system is UGES if and only if its corresponding discretised model is UGES
and the intersample behaviour is so-called linearly uniformly globally bounded
over T (LUGBT), where T is the sampling interval. This means, roughly
speaking, that the intersample behaviour can be bounded by a linear function
of the state of the system at the transmission instants. To show that the
sampled-data model is indeed LUGBT, let us introduce an additional variable
t̃ := t − tk, for all t ∈ (tk, tk+1]. Solving the differential equation (2.1) on the
interval t̃ ∈ (0, τk] yields

xp(tk + t̃) = eAp t̃xp(tk) +

∫ t̃

0

eAp(t̃−s)dsBpû(tk) (A.1)

and on the interval t̃ ∈ (τk, hk]

xp(tk + t̃) = eAp t̃xp(tk) +

∫ τk

0

eAp(t̃−s)dsBpû(tk) +

∫ t̃

τk

eAp(t̃−s)dsBp lim
t↓rk

û(t).

(A.2)

Or equivalently, when expressed in states at the sample instants, for t̃ ∈ (0, τk],

xp(tk + t̃) = eAp t̃xp
k +

∫ t̃

0

eApsdsBp(DcCpxp
k + Ccxc

k +Dcey
k + eu

k) (A.3)
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and for t̃ ∈ (τk, hk],

xp(tk + t̃) = eAp t̃xp
k +

∫ t̃

0

eApsdsBp(DcCpxp
k + Ccxc

k + eu
k +Dcey

k)

−
∫ t̃−τk

0

eApsdsBpΓu
σk
eu
k . (A.4)

Using (A.3) and (A.4), we can bound the intersample behaviour on the interval
t̃ ∈ (0, hk] by

‖xp(tk + t̃)‖ 6 ‖eAp t̃‖‖xp
k‖ +

∥
∥
∥

∫ t̃−τk

0

eApsdsBpΓu
σk

∥
∥
∥‖eu

k‖

+
∥
∥
∥

∫ t̃

0

eApsdsBp
∥
∥
∥

(
‖Cc‖‖xc

k‖ + ‖DcCp‖‖xp
k‖ + ‖Dc‖‖ey

k‖ + ‖eu
k‖

)
. (A.5)

Similar inequalities can be derived that bound the intersample behaviour for
the state evolution xc(t) of (2.2a) and for the network-induced error given by
(2.7). Therefore, by using the bounds on hk and τk, the continuous-time NCS
(2.1), (2.2a) or (2.2b), (2.3), and (2.7) is LUGBT. Consequently, Theorem 4
of [104] guarantees that the continuous-time NCS is UGES if and only if the
discrete-time model (2.12).

Proof of Theorem 2.3.2. The proof is based on showing that Procedure 2.3.1
yields that system (2.25) is an overapproximation of (2.12) in the sense that
(2.27) holds, and that this overapproximation is tight in the sense that (2.30)
holds for a ε > 0, satisfying ε 6 εu for some εu.

In order for (2.27) to hold, considering a fixed σ ∈ {1, . . . , N}, we should
have that for all (h, τ) ∈ Θ, there exist an α ∈ A and a ∆ ∈ ∆, such that
(2.29) holds, i.e.,

Ãσ,h,τ =

L∑

l=1

αlĀσ,l + B̄∆C̄σ. (A.6)

Therefore, given L distinct pairs (h̃l, τ̃l) ∈ Θ, l ∈ {1, . . . , L}, and Āσ,l as in

(2.32), we can write the approximation error between Ãσ,h,τ of (2.12) and
∑L

l=1 α
lĀσ,l of (2.28) as

Ãσ,h,τ −
L∑

l=1

αlĀσ,l =





T⊤ −(CT )⊤

T⊤ −(CT )⊤

T⊤ −(CT )⊤





⊤

︸ ︷︷ ︸

=:B̃

∆̃α,h,τ





T−1 0
T−1BDC T−1BD

0 −T−1BΓσ





︸ ︷︷ ︸

=:C̄σ

,

(A.7)
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where

∆̃α,h,τ = diag

(

T−1
(

Ah −
L∑

l=1

αlAh̃l

)

T, T−1
(

Eh −
L∑

l=1

αlEh̃l

)

T,

T−1
(

Eh−τ −
L∑

l=1

αlEh̃l−τ̃l

)

T

)

, (A.8)

in which Ah, Eh, Eh−τ are defined as in Section 2.2.1.A, 2.2.1.B or 2.2.1.C.
Using the real Jordan form of (2.33), we can observe that

T−1
(

Ah −
L∑

l=1

αlAh̃l

)

T = eΛh −
L∑

l=1

αleΛh̃l , (A.9a)

T−1
(

Eh −
L∑

l=1

αlEh̃l

)

T =

L∑

l=1

αl

∫ h

h̃l

eΛsds, (A.9b)

T−1
(

Eh−τ −
L∑

l=1

αlEh̃l−τ̃l

)

T =

L∑

l=1

αl

∫ h−τ

h̃l−τ̃l

eΛsds (A.9c)

hold for all α ∈ A if Ah, Eh, and Eh−τ are defined as in Section 2.2.1.A and
2.2.1.C. Since Eh and Eh−τ , when defined as in Section 2.2.1.B, contain identity
matrices in the lower-right part, the left-hand side of (A.9b) and (A.9c) contain
zero blocks. Therefore, in case of Eh and Eh−τ being defined as in Section 2.2.1,
equality in (A.9b) and (A.9c) do not automatically hold and we have to impose
additional requirements on α ∈ A to ensure that the appropriate Jordan blocks
of the right-hand side of (A.9b) and (A.9c) also equal zero. These additional
requirements are that

L∑

l=1

αlh̃l = h, and

L∑

l=1

αl(h̃l − τ̃l) = h− τ, (A.10)

since substituting (A.10) into (A.9) indeed results in zero-blocks at the appro-
priate places in the left-hand side of (A.9). Now, combining (A.8) and (A.9)
yields

∆̃α,h,τ =

L∑

l=1

αl diag(eΛh − eΛh̃l ,

∫ h

h̃l

eΛsds,

∫ h−τ

h̃l−τ̃l

eΛsds), (A.11)

provided that (A.10) holds.
As an intermediate step in the proof, we aim at finding a set ∆̃ of matrices,

such that for all (h, τ) ∈ Θ there is an α ∈ A such that ∆̃α,h,τ ∈ ∆̃. Since

Θ = ∪M
m=1Sm, we wil perform the construction of ∆̃ per triangle Sm, m ∈
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{1 . . . ,M}, and combine them later. Hence, for each m ∈ {1, . . . ,M}, we
now aim at constructing ∆̃m such that for all (h, τ) ∈ Sm, m ∈ {1, . . . ,M},
there is an α ∈ A such that ∆̃α,h,τ ∈ ∆̃m. In particular, for (h, τ) ∈ Sm,

m ∈ {1, . . . ,M}, with Sm as in (2.31), take ᾱlmj = α̃j , j = {1, 2, 3}, and

ᾱi = 0, i /∈ {lm1 , lm2 , lm3 }, where
∑3

j=1 α̃
j(h̃m

j , τ̃
m
j ) = (h, τ),

∑3
j=1 α̃

j = 1, and

α̃j > 0, j ∈ {1, 2, 3}. Let us now bound the norm of (A.11) for triangle Sm,
m ∈ {1, . . . ,M}, and per Jordan block Λi, i ∈ {1, . . . ,K} using this particular
choice ᾱ for α. Hence, for all (h, τ) ∈ Sm, ∆̃ᾱ,h,τ ∈ ∆̃m with

∆̃m :=
{

diag(∆̃A
1 , . . . , ∆̃

A
K , ∆̃

Eh

1 , . . . , ∆̃Eh

K , ∆̃
Eh−τ

1 , . . . , ∆̃
Eh−τ

K )
∣
∣
∣

‖∆̃A
i ‖ 6 max

∑3
j=1

α̃j=1,

α̃j>0

δ̃A
i,m,α̃, ‖∆̃Eh

i ‖ 6 max
∑3

j=1
α̃j=1,

α̃j>0

δ̃Eh

i,m,α̃,

‖∆̃Eh−τ

i ‖ 6 max
∑3

j=1
α̃j=1,

α̃j>0

δ̃
Eh−τ

i,m,α̃ , i ∈ {1, . . . ,K}
}

, (A.12)

for m ∈ {1, . . . ,M} in which δ̃A
i,m,α̃, δ̃Eh

i,m,α̃, and δ̃
Eh−τ

i,m,α̃ are given by (2.36). This
upper bound on the approximation errors allows us to write

{
Ãσ,h,τ | (h, τ) ∈ Sm

}
⊆

{ 3∑

j=1

α̃jĀσ,lmj
+ B̃∆̃mC̄σ

∣
∣
∣

3∑

j=1

α̃j = 1, α̃j
> 0, j ∈ {1, 2, 3}, ∆̃m∈ ∆̃m

}

. (A.13)

To obtain ∆ independent of m, as in (2.44), let us now introduce the scaling
matrix

U := diag(δA
1 I1, . . . , δ

A
KIK , δ

Eh

1 I1, . . . , δ
Eh

K IK , δ
Eh−τ

1 I1, . . . , δ
Eh−τ

K IK) (A.14)

in which Ii is an identity matrix of size ni, complying with the size of the ∆̃i

and observe that ∆̃m ⊆ U∆, with ∆ as in (2.44). Now due to (2.35) and
(2.38), B̄ = B̃ · U , and this allows us to rewrite (A.13) as

{
Ãσ,h,τ | (h, τ) ∈ Sm

}

⊆
{ 3∑

j=1

α̃jĀσ,lmj
+ B̄∆C̄σ

∣
∣
∣

3∑

j=1

α̃j = 1, α̃j
> 0, j ∈ {1, 2, 3},∆ ∈ ∆

}

⊆
{

L∑

l=1

αlĀσ,l + B̄∆C̄σ

∣
∣
∣ α ∈ A,∆ ∈ ∆

}

, (A.15)

with A as in (2.26) and ∆ as in (2.44), which is . By taking the convex hull over
all m ∈ {1, . . . ,M} in the left-hand-side and observing that the right-hand-side
is independent of m, we obtain (2.27).
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To show that (2.30) holds for ε as in (2.39), we consider a fixed σ ∈
{1, . . . , N} and show that for all α ∈ A and ∆ ∈ ∆, there exist a pair (h, τ) ∈ Θ
and a ∆̄, satisfying ‖∆̄‖ 6 ε, such that

L∑

l=1

αlĀσ,l + B̄∆C̄σ ∈ co
{
Ãσ,h,τ | (h, τ) ∈ Θ} + {∆̄ | ‖∆̄‖ 6 ε

}
. (A.16)

Since by definition it holds that

L∑

l=1

αlĀσ,l =

L∑

l=1

αlĀσ,h̃l,τ̃l
∈ co{Āσ,h,τ |(h, τ) ∈ Θ}, (A.17)

this inclusion is satisfied if
∥
∥B̄∆C̄σ

∥
∥ 6 ε, which holds for ε 6 εu as in (2.39),

due to the fact that Procedure 2.3.1 terminates not until ε 6 εu.

Proof of Theorem 2.4.1. The proof is based on showing that V as in (2.46) is
a Lyapunov function for the switched uncertain system (2.25) with switching
law (2.18). Note that V (x̄k) = x̄⊤k Pix̄k, with i = σk, due to (2.18). Now, we
obtain using (2.46) and (2.25) that

V (x̄k+1) = min
ν∈N

x̄⊤k+1

N∑

j=1

νjPj x̄k+1

= min
ν∈N

x̄⊤k
( L∑

l1=1

αl1
k Āσk,l1 + B̄∆kC̄σk

)⊤

N∑

j=1

νjPj

( L∑

l2=1

αl2
k Āσk,l2 + B̄∆kC̄σk

)

x̄k

6 x̄⊤k
( L∑

l1=1

αl1
k Āi,l1 + B̄∆kC̄i

)⊤ N∑

j=1

πjiPj

( L∑

l2=1

αl2
k Āi,l2 + B̄∆kC̄i

)

x̄k,

(A.18)

where {πji} ∈ M, with M as in (2.48). To obtain UGES, it is sufficient to
require that the Lyapunov function is strictly decreasing in the sense that (due
to (A.18))

( L∑

l1=1

αl1
k Āi,l1 + B̄∆C̄i

)⊤ N∑

j=1

πjiPj

( L∑

l2=1

αl2
k Āi,l2 + B̄∆C̄i

)

− Pi ≺ 0. (A.19)

for all α ∈ A, ∆ ∈ ∆, and i ∈ {1, . . . , N}. By taking a Schur complement,

realising that
∑N

j=1 πjiPj ≻ 0, and using that αk ∈ A, we obtain that (A.19)
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is equivalent to

L∑

l=1

αl
k

[

Pi (Āi,l + B̄∆C̄i)
⊤ ∑N

j=1 πjiPj
∑N

j=1 πjiPj(Āi,l + B̄∆C̄i)
∑N

j=1 πjiPj

]

︸ ︷︷ ︸

Gi,l

≻ 0, (A.20)

for all α ∈ A, ∆ ∈ ∆, and i ∈ {1, . . . , N}. A necessary and sufficient condition
for positive definiteness of (A.20), for all αk ∈ A, is that Gi,l ≻ 0 for all
i ∈ {1, . . . , N} and l ∈ {1, . . . , L}. Now observe that for all ∆ ∈ ∆, it holds that
C̄⊤

i (Ri,l −∆⊤Ri,l∆)C̄i � 0, for all Ri,l ∈ R, i ∈ {1, . . . , N} and l ∈ {1, . . . , L}.
Hence, Gi,l ≻ 0 if

[

Pi (Āi,l + B̄∆C̄i)
⊤ ∑N

j=1 πjiPj
∑N

j=1 πjiPj(Āi,l + B̄∆C̄i)
∑N

j=1 πjiPj

]

≻
[
C̄⊤

i (Ri,l − ∆⊤Ri,l∆)C̄i 0
0 0

]

, (A.21)

or equivalently if







I 0
∆C̄i 0

0 I
−C̄i 0







⊤ 






Pi 0 Ā⊤
i,l

∑N
j=1 πjiPj C̄⊤

i Ri,l

⋆ Ri,l B̄⊤ ∑N
j=1 πjiPj 0

⋆ ⋆
∑N

j=1 πjiPj 0

⋆ ⋆ ⋆ Ri,l














I 0
∆C̄i 0

0 I
−C̄i 0






≻ 0, (A.22)

which is implied by the satisfaction of (2.50) for all i ∈ {1, . . . , N} and l ∈
{1, . . . , L}, because the matrix

[
I (∆C̄i)

⊤ 0 −C̄⊤
i

0 0 I 0

]⊤
has full column rank.

Since (2.50) holds by the hypothesis of the theorem, we can conclude that
V is strictly decreasing in spite of the presence of the uncertainty. Standard
Lyapunov-based stability arguments now prove that (2.25) with (2.18) is UGES.
Using that (2.25) is an overapproximation of (2.12) as proven in Theorem 2.3.2
and subsequently, using the result of Lemma 2.2.4, it follows that the NCS
system given by (2.1), (2.2a) or (2.2b), (2.3), and (2.7) is UGES.

Proof of Theorem 2.5.1: Since (2.55) holds for all pairs (h, τ) ∈ Θ and, there-
fore, for all (h̃l, τ̃l) ∈ Θ, l ∈ {1, . . . , L}, we have that

[
Ā⊤

i,l

∑N
j=1 πjiPjĀi,l − Pi + γI 0

0 0

]

� 0, (A.23)

for all i ∈ {1, . . . , N} and l ∈ {1, . . . , L}. Note that (A.23) holds irrespective of
the choice of (h̃l, τ̃l) ∈ Θ, l ∈ {1, . . . , L}. Now suppose that we would establish
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that there exist matrices Ri,l ∈ R, i ∈ {1, . . . , N} and l ∈ {1, . . . , L}, such that

N∑

j=1

πji

[
C̄⊤

i Ri,lC̄i − γI Ā⊤
i,lPjB̄

B̄⊤PjĀi,l B̄⊤PjB̄ −Ri,l

]

≺ 0, (A.24)

for all i ∈ {1, . . . , N} and l ∈ {1, . . . , L}. Then, combining this expression
with (A.23) yields, after taking a Schur complement, the conditions of Theo-
rem 2.4.1. Hence, if the fact that (2.30) holds for a sufficiently small ε, implies
that (A.24) holds for some Ri,l ∈ R, we completed the proof.

Therefore, it remains to show that there exists an ε0, such that for any
0 < ε 6 ε0, (A.24) is satisfied for some Ri,l ∈ R. Note that (A.24) holds if

C̄⊤
i Ri,lC̄i + Ā⊤

i,lPjB̄
(
Ri,l − B̄⊤PjB̄

)−1
B̄⊤PjĀi,l ≺ γI, (A.25)

and B̄⊤PjB̄ ≺ Ri,l, for some Ri,l ∈ R, and for all i, j ∈ {1, . . . , N} and
l ∈ {1, . . . , L}. By choosing Ri,l = rI, for all i ∈ {1, . . . , N} and l ∈ {1, . . . , L}
with r > 0, we can observe that (A.25) is implied by

‖PjĀi,l‖2‖B̄‖2

r−λmin(B̄⊤PjB̄)
< γ − r‖C̄i‖2, (A.26)

where λmin(B̄⊤PjB̄) denotes the minimum eigenvalue of B̄⊤PjB̄. Since it holds
that λmin(B̄⊤PjB̄) 6 ‖B̄‖2‖Pj‖, (A.26) is implied by

‖PjĀi,l‖2‖B̄‖2 < (γ − r‖C̄i‖2)(r − ‖B̄‖2‖Pj‖), (A.27)

Furthermore, B̄⊤PjB̄ ≺ Ri,l is implied by ‖B̄‖2‖Pj‖ < r, for some r > 0 and
all i, j ∈ {1, . . . , N} and l ∈ {1, . . . , L}. Now choosing r = γ

2‖C̄i‖2 , multiplying

the left-hand and the right-hand side of (A.27) by ‖C̄i‖2, and realising that
‖B̄‖‖C̄i‖ 6 ε yields that (A.27), and thereby (A.25), is satisfied if

ε2‖PjĀi,l‖2 < 1
4γ

2 − 1
2γε

2‖Pj‖, (A.28)

and that B̄⊤PjB̄ ≺ Ri,l is satisfied if ε2‖Pj‖ < 1
2γ, which can be satisfied by

choosing ε sufficiently small.
Therefore, if (2.46) is a Lyapunov function for system (2.12), with proto-

col (2.20), then there exists an ε0 > 0, such that for any overapproximation
satisfying (2.30) with 0 < ε 6 ε0, the conditions of Theorem 2.4.1 hold, which
completes the proof.

A.2 Chapter 3

Proof of Lemma 3.2.4. As a first step in the proof, let us define the renewal
process

s(t) = sup{k ∈ N | ∑k−1
l=0 hl 6 t}, (A.29)



156 Proofs of Theorems and Lemmas

which allows us to write

E(‖x̄(t)‖2) =
∑

k∈N
E

(
‖x̄(t)‖2 |s(t) = k

)
Pr(s(t) = k), (A.30)

where E
(
‖x̄(t)‖2 |s(t) = k

)
denotes the conditional expectation of ‖x̄(t)‖2 given

that s(t) = k. Furthermore, we have that

E
(
‖x̄(t)‖2 |s(t) = k

)
6 E

(
γ(hk)‖x̄(tk)‖2 |s(t) = k

)

= E
(
γ(hk)‖x̄(tk)‖2

)
6 cγE

(
‖x̄(tk)‖2

)
(A.31)

due to the fact that (3.26) holds, the fact that hk and tk are independent of s(t),
the fact that γ(hk) and ‖x̄(tk)‖2 are mutually independent, and E

(
γ(hk)

)
< cγ ,

for some cγ > 0. Now using (A.31), (A.30) becomes

E(‖x̄(t)‖2) 6
∑

k∈N
cγE

(
‖x̄(tk)‖2

)
Pr(s(t) = k)

=
∑

k∈N\K cγE
(
‖x̄(tk)‖2

)
Pr(s(t) = k)

+
∑

k∈K cγE
(
‖x̄(tk)‖2

)
Pr(s(t) = k), (A.32)

in which K = {k ∈ N | k > t
(

1
E(h) − ǫ

)
}, for some ǫ, satisfying 1

E(h) > ǫ > 0.

The first term of the right-hand side of the last line of (A.32) can be bounded
as follows:

∑

k∈N\K cγE
(
‖x̄(tk)‖2

)
Pr(s(t) = k) 6

∑

k∈N\K cγcd‖x̄(0)‖2Pr(s(t) = k)

6 cγcd‖x̄(0)‖2Pr
(
s(t) < t( 1

E(h) − ǫ)
)

6 cγcd‖x̄(0)‖2cλ̄e
−λ̄t, (A.33)

for some cλ̄ > 0, because of (3.25) and the exponential rate of convergence in
the law of large numbers under the existence of exponential moments, see [28]
or [116, §4.5]. Furthermore, the second term in the right-hand side of (A.32)
can be bounded as follows:

∑

k∈K cγE
(
‖x̄(tk)‖2

)
Pr(s(t) = k) 6

∑

k∈K cγcd‖x̄(0)‖2e−βdkPr(s(t) = k)

6
∑

k∈K cγcd‖x̄(0)‖2e−βdk

6 cγcd‖x̄(0)‖2 1
1−e−βd

e−βdt( 1
E(h)

−ǫ), (A.34)

since (3.25) holds, Pr(s(t) = k) 6 1 for all t ∈ R+ and k ∈ N, and the fact
that the summation of the exponential function forms a geometric series. Now
substituting (A.33) and (A.34) into (A.32) yields

E(‖x̄(t)‖2) 6 cγcd‖x̄(0)‖2
(

cλ̄e
−λ̄t + 1

1−e−βd
e−βdt( 1

E(h)
−ǫ)

)

6 2cγcd‖x̄(0)‖2 max{cλ̄, 1
1−e−βd

}max{e−λ̄t, e−βdt( 1
E(h)

−ǫ)}

6 2cγcd‖x̄(0)‖2 max{cλ̄, 1
1−e−βd

}e−min{λ̄,βd( 1
E(h)

−ǫ)}t, (A.35)
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since 1
1−e−βd

> 1, for all βd > 0. Now observe that (A.35) has the form of

(3.24), with cc = 2cγcd‖x̄(0)‖2 max{cλ̄, 1
1−e−βd

} and βc = min{λ̄, βd(
1

E(h)− ǫ)},
for some ǫ > 0 and cλ̄ > 0. This completes the proof.

Proof of Theorem 3.2.6. The proof is based on showing that the conditions of
Lemma 3.2.4 are satisfied. Because of Assumption 3.2.5, it holds that E(eλ̄h) <
ch, for some ch > 0. Therefore, it remains to show that there exists a function
γ : R+ → R+ satisfying (3.26) and E(γ(h)) < cγ , for some cγ > 0. To do so, let
us introduce an auxiliary variable t̃ := t− tk, for all t ∈ (tk, tk+1]. Now solving
the differential equation resulting from combining (3.1), (3.2a) or (3.2b), (3.3),
and (3.8), on the interval t̃ ∈ (0, τk] yields

x̄(tk + t̃) =

[
At̃ + Et̃BDC Et̃BD

C(I −At̃ − Et̃BDC) I − CEt̃BD

]

x̄(tk) (A.36)

where At̃, B, C, D, and Et̃, t̃ ∈ R+, are defined according to (3.13), (3.14) or
(3.17), depending on the chosen setup for the NCS. Equation (A.36) can be
rewritten as

x̄(tk + t̃) =
(

Ãσk,0,0 + B̃diag(At̃ −A0, Et̃ − E0, 0)C̃σk

)

x̄(tk), (A.37)

in which Ãσ,h,τ is defined in (3.12) and B̃ and C̃σ as in (3.45). Similarly, solving
(3.1), (3.2a) or (3.2b), (3.3), and (3.8) on the interval t̃ ∈ (τk, hk] yields

x̄(tk + t̃) =
(

Ãσk,0,0 + B̃∆̃t̃,τk
C̃σk

)

x̄(tk), (A.38)

in which

∆̃t̃,τk
:= diag(At̃ −A0, Et̃ − E0, Et̃−τk

− E0). (A.39)

Using (A.37) and (A.38), we can bound the intersample behaviour on the in-
terval t̃ ∈ (0, hk] by

‖x̄(tk + t̃)‖2
6 max

t̃∈(0,hk],τk∈(0,hk],

σ∈{1,...,N}

(
‖Ãσ,0,0‖ + ‖B̃‖‖∆̃t̃,τ‖‖C̃σ‖

)2‖x̄(tk)‖2

6 γ(hk)‖x̄(tk)‖2 (A.40)

in which

γ(hk) = max
σ∈{1,...,N}

(
‖Ãσ,0,0‖ + ‖B̃‖‖C̃σ‖

)2

max
t̃∈(0,hk],τk∈(0,hk]

max
{
1, ‖At̃ −A0‖2, ‖Et̃ − E0‖2, ‖Et̃−τk

− E0‖2
}
.

(A.41)
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To prove that E(γ(h)) < cγ , for some cγ > 0, we use that

‖At̃ −A0‖2
6 (e

1
2λmax(Λ̄⊤+Λ̄)t̃ + 1)2 6 (e

1
2λmax(Λ̄⊤+Λ̄)h + 1)2 (A.42a)

‖Et̃ − E0‖2
6

∫ t̃

0
eλmax(Λ̄⊤+Λ̄)sds 6

∫ h

0
eλmax(Λ̄⊤+Λ̄)sds (A.42b)

‖Et̃−τ − E0‖2
6

∫ t̃−τ

0
eλmax(Λ̄⊤+Λ̄)sds 6

∫ h

0
eλmax(Λ̄⊤+Λ̄)sds, (A.42c)

due to Wazewski’s inequality, i.e., ‖eΛs‖ 6 e
1
2λmax(Λ̄⊤+Λ̄)s. Therefore, due to

Assumption 3.2.5, it holds that E(γ(h)) < cγ for some cγ > 0, and consequently
the conditions of Lemma 3.2.4 hold. This completes the proof.

Proof of Lemma 3.4.1. The proof is based on showing that for system (3.12),
the inequalities (3.42a) and (3.42b) imply (3.25). First observe that because of
(3.42a) and (3.42b), it holds that

b1E(‖Ãσk,h,τ x̄‖2)6E[V (Ãσk,h,τ x̄, k + 1)]6(b2 − b3)‖x̄‖2, (A.43)

and because the left-hand side of the expression is nonnegative, we have that
b2 > b3. Now using that b2 > b3 and (3.42a), we can rewrite (3.42b) as

E[V (Ãσ,h,τ x̄, k + 1)] 6 (1 − b3
b2

)V (x̄, k), (A.44)

which implies that

E[V (x̄k, k)] 6 (1 − b3
b2

)kV (x̄0, 0), (A.45)

for all k ∈ N. Finally, using the bounds (3.42a), we obtain (3.25) with cd =
b2
b1
> 0 and βd > ln( b2

b2−b3
) > 0.

Proof of Lemma 3.4.2. First, observe that for each i ∈ {1, . . . , N}, the left-
hand side of (3.43) satisfies

E
(
Ã⊤

i,h,τ P̃ Ãi,h,τ1Q(h, τ)
)
� λmax(P̃ )E

(
‖Ãi,h,τ‖21Q(h, τ)

)
. (A.46)

We can now upper bound the right-hand side of (A.46) using

‖Ãi,h,τ‖2
6

(
‖Ãi,0,0‖ + ‖B̃‖‖∆̃h,τ‖‖C̃i‖

)2
6 υi

(
max{‖∆̃h,τ‖, 1

)2
, (A.47)

where Ãi,h,τ is given in (3.12), B̃ and C̃ in (3.45) and ∆̃h,τ in (A.39). Using
the bounds derived in (A.42), we have that

max{‖∆̃h,τ‖2, 1} = max{‖Ah −A0‖2, ‖Eh − E0‖2, ‖Eh−τ − E0‖2, 1} 6 ρ(h).
(A.48)

Now substituting (A.47), with (A.48) into (A.46), we obtain (3.43), which
completes the proof.
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Proof of Theorem 3.4.3. The proof is based on showing that (3.47) is a Lya-
punov function for system (3.12) with switching law (3.18), see Lemma 3.4.1.
Note that V (x̄k) = x̄⊤k Pix̄k, with i = σk, due to (3.18). Now using (3.47) and
(3.12), we have that

E[V (Ãi,hk,τk
x̄)] = E[min

ν∈N

N∑

j=1

x̄⊤Ã⊤
i,hk,τk

νjPjÃi,hk,τk
x̄]

6 E[x̄⊤Ã⊤
i,hk,τk

N∑

j=1

πjiPjÃi,hk,τk
x̄],

6

M∑

m=1

E[x̄⊤Ã⊤
i,hk,τk

N∑

j=1

πjiPjÃi,hk,τk
x̄1Sm

(hk, τk)]

+ E[x̄⊤Ã⊤
i,hk,τk

N∑

j=1

πjiPjÃi,hk,τk
x̄1Q(hk, τk)], (A.49)

for all i ∈ {1, . . . , N} and x̄ ∈ R
n. Since we have the following inequality

E[x̄⊤Ã⊤
i,hk,τk

N∑

j=1

πjiPjÃi,hk,τk
x̄ 1Sm

(hk, τk)]

6

M∑

m=1

p̄m max
(hk,τk)∈Sm

x̄⊤Ã⊤
i,hk,τk

N∑

j=1

πjiPjÃi,hk,τk
x̄ (A.50)

for all i ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, and x̄ ∈ R
n, UGMSES can now be

shown using Lemma 3.4.1. Because of (3.47), condition (3.42a) is satisfied
and, using (A.49), condition (3.42b) is implied by

M∑

m=1

p̄mÃ
⊤
i,h̄m,τ̄m

N∑

j=1

πjiPjÃi,h̄m,τ̄m
+ E

(
Ã⊤

i,h,τ

N∑

j=1

πjiPjÃi,h,τ1Q(h, τ)
)
− Pi ≺ 0,

(A.51)

for all (h̄m, τ̄m) ∈ Sm, m ∈ {1, . . . ,M}, and all i ∈ {1, . . . , N}. This condition
is satisfied if there exist matrices Ui,m, i ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, such
that

p̄mÃ
⊤
i,h̄m,τ̄m

N∑

j=1

πjiPjÃi,h̄m,τ̄m
− Ui,m ≺ 0 (A.52)

for all i ∈ {1, . . . , N} and all (h̄m, τ̄m) ∈ Sm, m ∈ {1, . . . ,M}, and

E
(
Ã⊤

i,h,τ

N∑

j=1

πjiPjÃi,h,τ1Q(h, τ)
)
− Pi +

M∑

m=1

Ui,m� 0, (A.53)
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for all i ∈ {1, . . . , N}. Hence, if we can now show that (3.51) and (3.52) imply
(A.52) and (A.53), the proof is complete.

Equation (A.52) still yields an infinite number of LMIs (due to the fact that
(h̄m, τ̄m) can take an infinite number of values in Sm). This can be resolved by
employing the hypothesis of the theorem, implying that (3.32) holds. Indeed,
(A.52) is satisfied, if

p̄m(

L∑

l1=1

αl1Āi,m,l1 + B̄m∆C̄i)
⊤

N∑

j=1

πjiPj(

L∑

l2=1

αl2Āi,m,l2 + B̄m∆C̄i) − Ui,m ≺ 0,

(A.54)

for all α ∈ A, ∆ ∈ ∆, i ∈ {1, . . . , N}, and m ∈ {1, . . . ,M}. By taking a

Schur complement, realising that
∑N

j=1 πjiPj ≻ 0, and using that αk ∈ A,

we obtain that (A.54) is equivalent to stating that
∑L

l=1 α
lGi,m,l ≻ 0, where

Gi,m,l =

[

Ui,m
√
p̄m

(
Āi,m,l + B̄l∆C̄i

)⊤∑N
j=1 πjiPj

⋆
∑N

j=1 πjiPj

]

, (A.55)

for all α ∈ A, ∆ ∈ ∆, i ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, and l ∈ {1, . . . , L}.
A necessary and sufficient condition for positive definiteness of

∑L
l=1 α

lGi,m,l,
for all α ∈ A, is that Gi,m,l ≻ 0 for all i ∈ {1, . . . , N}, m ∈ {1, . . . ,M} and
l ∈ {1, . . . , L}. Using again a Schur complement, we can rewrite the condition
Gi,m,l ≻ 0 as follows:

Ui,m − p̄m

(
Āi,m,l + B̄m∆C̄i

)⊤
N∑

j=1

πjiPj

(
Āi,m,l + B̄m∆C̄i

)
≻ 0. (A.56)

Now observe that for all ∆ ∈ ∆, it holds that C̄⊤
i (Ri,m,l − ∆⊤Ri,m,l∆)Ci � 0,

for all Ri,m,l ∈ R, i ∈ {1, . . . , N}, m ∈ {1, . . . ,M} and l ∈ {1, . . . , L}. Hence,
(A.56) is satisfied if

Ui,m − p̄m

(
Āi,m,l + B̄m∆C̄i

)⊤
N∑

j=1

πjiPj

(
Āi,m,l + B̄m∆C̄i

)
≻

C̄⊤
i (Ri,m,l − ∆⊤Ri,m,l∆)Ci, (A.57)

or equivalently that [I (∆C̄i)
⊤]Ḡi,m,l[I (∆C̄i)

⊤]⊤ ≻ 0, for all ∆ ∈ ∆, i ∈
{1, . . . , N}, m ∈ {1, . . . ,M} and l ∈ {1, . . . , L}, in which

Ḡi,m,l :=
[

Ui,m − p̄mĀ
⊤
i,m,l

∑N
j=1 πjiPjĀi,m,l − C̄⊤

i Ri,m,lC̄i p̄mĀ
⊤
i,m,l

∑N
j=1 πjiPjB̄m

⋆ Ri,m,l − B̄⊤
m

∑N
j=1 πjiPjB̄m

]

(A.58)
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which is implied by the requirement that Ḡi,m,l ≻ 0, for all i ∈ {1, . . . , N},
m ∈ {1, . . . ,M} and all l ∈ {1, . . . , L}, which is equivalent to (3.51) after a
Schur complement.

It remains to show that (3.52) implies (A.53). To do so, we use the re-

sult of Lemma 3.4.2 with P̄ =
∑N

j=1 πjiPj , thus λmax(P̄ ) 6 µi, and Q :=

Θ\(∪M
m=1Sm). Therefore, using inequality (3.43), we have that (A.53) is satis-

fied if (3.52) satisfied.

Proof of Theorem 3.5.1. The fact that (3.57) holds implies that there exist
matrices Ui,m, i ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, such that

Ui,m − γ̄mI − E
(
Ã⊤

i,h,τ

N∑

j=1

πjiPjÃi,h,τ1Sm
(h, τ)

)
� 0, (A.59)

for all i ∈ {1, . . . , N} and m ∈ {1, . . . ,M}, and

Pi −
M∑

m=1

Ui,m − γ̄QI − E
(
Ã⊤

i,h,τ

N∑

j=1

πjiPjÃi,h,τ1Q(h, τ)
)
� 0, (A.60)

for all i ∈ {1, . . . , N}, with γ̄m := p̄mγ
3 for all m ∈ {1, . . . ,M} satisfying

p̄m 6= 0 and γ̄m := γ
3M for all m ∈ {1, . . . ,M} satisfying p̄m = 0, and γ̄Q = γ

3 ,

since
( ⋃M

m=1 Sm

)
∪ Q = Θ by definition of Q. Note that (A.59) and (A.60)

hold independent of the particular choice of the partitioning {S1, . . . ,SM ,Q}.
Now suppose that we would establish the existence of matrices Ri,m,l ∈ R,
i ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, and l ∈ {1, 2, 3}, such that

N∑

j=1

πji





γ̄mI + E
(

Ã⊤
i,h,τ PjÃi,h,τ1Sm (h, τ)

)

0
√

p̄mĀ⊤
i,m,lPj C̄⊤

i Ri,m,l

⋆ Ri,m,l

√
p̄mB̄⊤

mPj 0
⋆ ⋆ Pj 0
⋆ ⋆ ⋆ Ri,m,l



≻0, (A.61)

for all i ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, l ∈ {1, 2, 3}, and

E
(
Ã⊤

i,h,τ

N∑

j=1

πjiPjÃi,h,τ1Q(h, τ)
)

+ γ̄QI − µiυiE
(
ρ(h)1Q(h, τ)

)
I � 0, (A.62)

for all i ∈ {1, . . . , N}. Then, combining these expressions with (A.59) and
(A.60), respectively, yields the conditions of Theorem 3.4.3.

Therefore, if we can show that there exists an h⋆
0 > 0, such that for any

h⋆ > h⋆
0 there is an ε0 such that for any 0 < ε < ε0, it holds that (A.61) and

(A.62) are satisfied for some Ri,l ∈ R, the proof is complete. Before doing
so, we present two intermediate steps. The first step is to show that for all
i, j ∈ {1, . . . , N}, l ∈ {1, 2, 3}, for all (h, τ) ∈ Sm, m ∈ {1, . . . ,M} and for any
h⋆ > 0, there exists a continuous function χh⋆ : R+ → R+ with χh⋆(0) = 0,
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satisfying for all i ∈ {1, . . . , N}, l ∈ {1, 2, 3}, (h, τ) ∈ Sm and m ∈ {1, . . . ,M},
that

‖Ā⊤
i,m,lPjĀi,m,l − Ã⊤

i,h,τPjÃi,h,τ‖ 6 χh⋆(ε). (A.63)

Observe that we can write Ãi,h,τ as

Ãi,h,τ = Āi,m,l + B̃∆̄h,τ,h̃m,l,τ̃m,l
C̃i (A.64)

with B̃ and C̃i as in (3.45), and

∆̄h,τ,h̃m,l,τ̃m,l
:= diag(Ah −Ah̃m,l

, Eh − Eh̃m,l
, Eh−τ − Eh̃m,l−τ̃m,l

). (A.65)

We can bound ∆̄h,τ,h̃m,l,τ̃m,l
, for all (h, τ) ∈ Sm, using

‖Ah −Ah̃m,l
‖ 6 e‖Λ̄‖(h̃m,l+ε)‖Λ̄‖ε, (A.66a)

‖Eh − Eh̃m,l
‖ 6

∣
∣
∫ h

h̃m,l
e‖Λ̄‖sds

∣
∣ 6 e‖Λ̄‖(h̃m,l+ε)ε, (A.66b)

‖Eh−τ − Eh̃m,l−τ̃m,l
‖ 6 e‖Λ̄‖(h̃m,l+ε)ε, (A.66c)

with Λ̄ as in (3.27). Equation (A.66) are all continuous and equal to zero
at ε = 0. Furthermore, as ∪M

m=1Sm := {(h, τ) ∈ Θ |h 6 h⋆}, it holds that

e‖Λ̄‖(h̃m,l+ε)‖Λ̄‖ε 6 e‖Λ̄‖(h⋆+ε)‖Λ̄‖ε, for all (h, τ) ∈ Sm, m ∈ {1, . . . ,M}. This
inequality allows us to bound the left-hand side of (A.66) by a continuous
function that is zero at ε = 0 for any h⋆ > 0, which allows us to bound
∆̄h,τ,h̃m,l,τ̃m,l

by a continuous function that is zero at ε = 0 for any h⋆ >

0, and therefore, there exists a continuous function χh⋆ : R+ → R+ with
χh⋆(0) = 0 satisfying (A.63). The second intermediate step is to show that
there exists a continuous function ϕh⋆ : R+ → R+ with ϕh⋆(0) = 0, satisfying
maxm∈{1,...,M} ‖B̄m‖2 6 ϕh⋆(ε), with B̄m as in (3.39), and ϕh⋆(0) = 0 for any
h⋆ > 0, since we have that, similarly to (A.66), that the terms in (3.37) can be
bounded for all i ∈ {1, . . . , N} and all m ∈ {1, . . . ,M} as

δA
i,m 6 max

l∈{1,2,3}
e‖Λi‖(h̃m,l+ε)‖Λ̄i‖ε 6 e‖Λi‖(h⋆+ε)‖Λ̄i‖ε, (A.67a)

δEh

i,m 6 max
l∈{1,2,3}

e‖Λi‖(h̃m,l+ε)ε 6 e‖Λi‖(h⋆+ε)‖Λ̄i‖ε, (A.67b)

δEh−τ
i,m 6 max

l∈{1,2,3}
e‖Λi‖(h̃m,l+ε)ε 6 e‖Λi‖(h⋆+ε)‖Λ̄i‖ε, (A.67c)

which are all continuous functions and equal to zero at ε = 0 for any h⋆ > 0,
and thereby ‖B̄m‖2, with B̄m as in (3.39), is bounded by a continuous function
ϕh⋆ satisfying ϕh⋆(0) = 0.
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We can now show that for any h⋆ > 0, there exists an ε0 > 0, such that for
any 0 < ε < ε0, (A.61) is satisfied. First observe that (A.61) is implied by







γ̄mI + E
(
Ã⊤

i,h,τPjÃi,h,τ1Sm
(h, τ)

)
0

√
p̄mĀ

⊤
i,m,lPj C̄⊤

i Ri,m,l

⋆ Ri,m,l
√
p̄mB̄

⊤
mPj 0

⋆ ⋆ Pj 0
⋆ ⋆ ⋆ Ri,m,l






≻0, (A.68)

for all i, j ∈ {1, . . . , N}, l ∈ {1, 2, 3}, and m ∈ {1, . . . ,M}. After taking a
Schur complement, we can observe that (A.68) is equivalent to requiring that

[
γ̄mI + E

(

Ã⊤
i,h,τ PjÃi,h,τ1Sm (h, τ)

)

− p̄mĀ⊤
i,m,lPjĀi,m,l − C̄⊤

i Ri,m,lC̄i −p̄mĀ⊤
i,m,lPjB̄m

⋆ Ri,m,l − p̄mB̄⊤
mPjB̄m

]

(A.69)

is positive semidefinite. Now taking another Schur complement yields that
(A.68) is implied by

γ̄mI + E
(
Ã⊤

i,h,τPjÃi,h,τ1Sm
(h, τ)

)
− p̄mĀ

⊤
i,m,lPjĀi,m,l − C̄⊤

i Ri,m,lC̄i

−p̄2
mĀ

⊤
i,m,lPjB̄m(Ri,m,l − p̄mB̄

⊤
mPjB̄m)−1B̄⊤

mPjĀi,m,l ≻0, (A.70)

and Ri,l,m − p̄mB̄
⊤
mPjB̄m ≻ 0, for all i, j ∈ {1, . . . , N}, l ∈ {1, 2, 3}, and

m ∈ {1, . . . ,M}. Now for all m ∈ {1, . . . ,M} for which p̄m = 0, the in-
equality (A.70) can be satisfied by choosing Ri,m,l sufficiently small. For all
m ∈ {1, . . . ,M} for which p̄m 6= 0, we have that (A.70) is implied by

E
(
( γ̄m

p̄m
I + Ã⊤

i,h,τPjÃi,h,τ − Ā⊤
i,m,lPjĀi,m,l − 1

p̄m
C̄⊤

i Ri,m,lC̄i

−Ā⊤
i,m,lPjB̄m( 1

p̄m
Ri,m,l − B̄⊤

mPjB̄m)−1B̄⊤
mPjĀi,m,l)1Sm

(h, τ)
)
≻0, (A.71)

which is, due to continuity of the argument of the expected value and compact-
ness of Sm, implied by

γ̄m

p̄m
I + Ã⊤

i,h,τPjÃi,h,τ − Ā⊤
i,m,lPjĀi,m,l − 1

p̄m
C̄⊤

i Ri,m,lC̄i

−Ā⊤
i,m,lPjB̄m( 1

p̄m
Ri,m,l − B̄⊤

mPjB̄m)−1B̄⊤
mPjĀi,m,l ≻0, (A.72)

for all (h, τ) ∈ Sm. By choosing Ri,m,l = rI for all i ∈ {1, . . . , N}, l ∈ {1, 2, 3},
and m ∈ {1, . . . ,M}, with r > 0, we can observe that (A.72) is implied by

‖Ā⊤
i,m,lPjĀi,m,l − Ã⊤

i,h,τPjÃi,h,τ‖ + r
p̄m

‖C̄i‖2 +
‖Ā⊤

i,m,lPj‖2‖B̄m‖2

r
p̄m

−λmax(B̄⊤
mPjB̄m)

< γ̄m

p̄m
,

(A.73)

which is, using and the intermediate steps given above and the fact that
λmax(B̄

⊤
mPjB̄m) 6 ‖B̄m‖2‖Pj‖ 6 ϕh⋆(ε)‖Pj‖, implied by

‖Ā⊤
i,m,lPj‖2ϕh⋆(ε) <

(
γ̄m

p̄m
− r

p̄m
‖C̄i‖2 − χh⋆(ε)

)(
r

p̄m
− ‖Pj‖ϕh⋆(ε)

)
. (A.74)
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By choosing r = γ̄m

2‖C̄i‖2 , multiplying the left-hand and the right-hand sides by

‖C̄i‖2, and substituting γ̄m := p̄mγ
3 , (A.74) can be rewritten as

‖C̄i‖2
∥
∥Ā⊤

i,m,lPj‖2ϕh⋆(ε) <
(

γ
6 − χh⋆(ε)

)(
γ
6 − ‖C̄i‖2‖Pj‖ϕh⋆(ε)

)
, (A.75)

which can be satisfied for any γ > 0 by making χh⋆(ε) and ϕh⋆(ε) sufficiently
small, which can be achieved by making the triangles Sm sufficiently small,
i.e., diamSm 6 ε, m ∈ {1, . . . ,M}, for a sufficiently small ε. Furthermore, by
the same choice of Ri,l,m, the condition Ri,l,m − p̄mB̄

⊤
mPjB̄m ≻ 0 is implied by

ϕh⋆(ε)‖C̄i‖2‖Pj‖ < 1
6γ, which can be satisfied by making ϕh⋆(ε) sufficiently

small by making ε sufficiently small. Therefore, these expressions imply satis-
faction of (A.61), ε is chosen sufficiently small.

It now only remains to show that there exists an h⋆
0 > 0 such that for any

h⋆ > h⋆
0, (A.62) is satisfied. First, note that (A.62) is satisfied if

γ̄Q − µiυiE(ρ(h)1Q(h, τ)) > 0. (A.76)

Now since ρ(h) > 0, for all h > 0, and because E(ρ(h)) is finite, we can make
E(ρ(h)1Q(h, τ)) arbitrary small by choosing h⋆ sufficiently large. Hence, (A.76),
and thereby (A.62), can be satisfied if h⋆ is chosen sufficiently large.

Therefore, if (3.47) is a Lyapunov function for system (3.12), with protocol
(3.20), then there exists an h⋆

0, such that for all h⋆ > h⋆
0 there is an ε0 > 0, such

that for an overapproximation according to Procedure 3.3.1, with 0 < ε < ε0,
the conditions of Theorem 3.4.3 hold. This completes the proof.

A.3 Chapter 4

Proof of Lemma 4.3.3. The proof follows directly from Theorem 20 of [50],
adopted for linear flow and jump dynamics as in (4.10). Since we have that
x̄+ = Gix̄ for all x̄ ∈ Di, i ∈ {1, . . . , N}, the condition W (g) −W (x̄) < 0 for
all x̄ ∈ D\A and all g ∈ {Ḡix̄ | x̄ ∈ Di} in Theorem 20 of [50] is implied by
requiring that

W (Ḡix̄) −W (x̄) < 0, for all x̄ ∈ Di\A, i ∈ {1, . . . , N}. (A.77)

Furthermore, since tiki+1 − tiki
> hi

min > 0 for all ki ∈ N, it holds that the set

of event times {tk | k ∈ N} = ∪N
i=1{tiki

| ki ∈ N}, chosen such that tk+1 > tk,
k ∈ N, does not contain accumulation points, i.e., there is an τ > 0 such that
(tk − τ, tk + τ) ∩ {tk | k ∈ N} = {tk} for all k ∈ N, (therefore Zeno behaviour
is excluded). In fact we have that

⋃

k∈N
(tk, tk+1] = R+. The observation that

{tk | k ∈ N} does not have accumulation points and the fact that at each event
time tk, k ∈ N, at most N jumps take place yields that we can relax (A.77)
to (4.19b) as the Lyapunov function candidate W is strictly decreasing along
solutions as long as the set A has not been reached.
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Proof of Theorem 4.3.5. The proof is based on showing that the hypotheses
of Theorem 4.3.5 lead to a particular Lyapunov function candidate satisfying
the conditions of Lemma 4.3.3 thereby establishing global asymptotic stability.
Subsequently, we will show that the hypotheses of Theorem 4.3.5 also lead to
an upper bound on the L∞-gain as defined in Definition 4.3.4. To do so, let us
define V (x̄) = x̄⊤P̄ x̄, for x̄ ∈ R

nx , and observe that (4.22a) is equivalent to

dV (x̄)
dx̄ (Āx̄+ B̄w) 6 −αV (x̄) + β‖w‖2 +

N∑

i=1

µix̄
⊤Qix̄, (A.78)

for all x̄ ∈ R
nx and w ∈ R

nw , which can be rewritten as

dV (x̄)
dx̄ (Āx̄+ B̄w) 6 −αV (x̄) + β‖w‖2 +

N∑

i=1

µi(x̄
⊤Qix̄− εi) +

N∑

i=1

µiεi,

(A.79)

for all x̄ ∈ R
nx and w ∈ R

nw . Furthermore, since (x̄⊤Qix̄ − εi) 6 0, for all
x̄ ∈ C and µi > 0, i ∈ {1, . . . , N}, we have that

dV (x̄)
dx̄ (Āx̄+ B̄w) 6 −αV (x̄) + β‖w‖2 +

N∑

i=1

µiεi, (A.80)

for all x̄ ∈ C. Similarly, using the definition of V (x̄), we have that (4.22c)
implies that

V (Ḡix̄) − V (x̄) 6 −νi(x̄
⊤Qix̄− εi) − νiεi, (A.81)

for all i ∈ {1, . . . , N}. Since for all x̄ ∈ Di, it holds that x̄⊤Qix̄ − εi = 0 and
νi > 0, i ∈ {1, . . . , N}, (A.81) implies that

V (Ḡix̄) − V (x̄) 6 0, (A.82)

for all x̄ ∈ Di, i ∈ {1, . . . , N}.
We will now show global asymptotic stability of the set A, as in (4.23), for

(4.10) with w = 0, using

W (x̄) = max{V (x̄) −
N∑

i=1

µiεi

α , 0} (A.83)

as the Lyapunov function candidate. It can be verified that (A.83) defines a
proper Lyapunov function candidate. Indeed, the function W satisfies (i) of

Definition 4.3.2, since for all x̄ ∈ (C∪⋃N
i=1 Di)\A, it holds thatW (x̄) = x̄⊤P̄ x̄−

∑N
i=1

µiεi

α > 0, due to (4.23). In addition, W is continuous and nonnegative

on (C ∪⋃N
i=1 Di)\A. Furthermore, (ii) of Definition 4.3.2 is satisfied since W is
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locally Lipschitz and (iii) is satisfied as W is continuous and W (x̄) = 0 for all
x̄ ∈ A. To show that (iv) of Definition 4.3.2 is satisfied, i.e., to show that all
the sublevel sets of W are compact, let us suppose that W (x̄) 6 cW , for some

cW > 0, which implies that V (x̄) = x⊤Px+ x̄⊤Ux̄ 6 cW +
∑N

i=1
µiεi

α and thus

that ‖x‖2 6 cx, with cx := 1
λmin(P ) (cW +

∑N
i=1

µiεi

α ), (due to P ≻ 0 and U � 0).

Now since (4.8) holds for all t ∈ R+, we have that ‖eJi
‖2 6 σi‖vJi

‖2 + εi 6

σi‖C‖2cx + εi, and thus that ‖x̄‖2 = ‖x‖2 + ‖e‖2 6 ‖x‖2 +
∑N

i=1 ‖eJi
‖2 6 cx̄,

(since ‖e‖2 6
∑N

i=1 ‖eJi
‖2, due to the assumption that

∑N
i=1 γ

j
i > 0 for all j ∈

{1, . . . , ny +nu}), with cx̄ := cx +
∑N

i=1(σi‖C‖2cx + εi). Hence, as W (x̄) 6 cW
implies that ‖x̄‖ 6

√
cx̄, we have that all the sublevel sets of W are compact on

X . Now that we concluded that (A.83) is a proper Lyapunov function candidate
for the event-triggered control system, global asymptotic stability of the set A,
as in (4.23), can be proven by observing that for all x̄ ∈ (C ∪ ⋃N

i=1 Di)\A, it

holds that x̄⊤P̄ x̄ >
∑N

i=1
µiεi

α and, thus, W (x̄) = V (x̄)−∑N
i=1

µiεi

α . Therefore,
(4.19a) is implied by (A.80) with w = 0, while (4.19b) is implied by (A.82).
Furthermore, the fact that Ḡix̄ ∈ A holds for all x̄ ∈ Di ∩ A, i ∈ {1, . . . , N},
is implied by (4.19b), (which followed from (A.82).) Hence, all conditions of
Lemma 4.3.3 are satisfied and the set A is a globally asymptotically stable set
for the system (4.10) with w = 0.

To show that the L∞-gain of the system is equal to or smaller than κ, we
use the hypothesis that, for all x̄(0) ∈ X and all w ∈ L∞, a minimum inter-
event time hi

min > 0 exists for each i ∈ {1, . . . , N}. Namely, as in the proof of
Lemma 4.3.3, due to the fact that hi

min > 0, the set of event times {tk | k ∈
N} = ∪N

i=1{tiki
| ki ∈ N}, chosen such that tk+1 > tk, k ∈ N, does not contain

accumulation points and it holds that
⋃

k∈N
(tk, tk+1] = R+. Furthermore, at

each event time tk, k ∈ N, at most N jumps take place according to (4.10b)
take place, which are all known to satisfy (4.19b). Now by observing that
(A.80) is equivalent to

d
dtV (x̄(t)) 6 −αV (x̄(t)) + β‖w(t)‖2 +

N∑

i=1

µiεi, (A.84)

for all t ∈ (tk, tk+1], k ∈ N. Using the Comparison Lemma, see, e.g., Lemma
3.4 in [79], we can observe that (A.84) implies that

V (x̄(t)) 6 e−α(t−tk)V (x̄+(tk)) +

∫ t

tk

e−α(t−s)(β‖w(s)‖2 +
N∑

i=1

µiεi)ds, (A.85)

for all t ∈ (tk, tk+1], k ∈ N. Using (A.82) and (A.85) repeatedly, and the fact
that {tk | k ∈ N} does not have accumulation points, we obtain that

V (x̄(t)) 6 e−αtV (x̄(0)) +

∫ t

0

e−α(t−s)(β‖w(s)‖2 +

N∑

i=1

µiεi)ds, (A.86)



A.3. Chapter 4 167

for all t ∈ R+, and thus

V (x̄(t)) 6 e−αtV (x̄(0)) +

N∑

i=1

µiεi

α + β
α‖w‖2

L∞
, (A.87)

for all t ∈ R+. Now observe that (4.22b) implies that

‖z(t)‖2
6 αV (x̄(t)) + (κ2 − β)‖w(t)‖2, (A.88)

for all t ∈ R+ and that κ2 > β. Based on ideas presented in [1], we substitute
(A.87) into (A.88) and observe that ‖w(t)‖ 6 ‖w‖L∞ , for all t ∈ R+, yielding

‖z(t)‖2
6 αe−αtV (x̄(0)) +

N∑

i=1

µiεi + κ2‖w‖2
L∞

, (A.89)

for all t ∈ R+. Taking now the supremum of the left-hand and the right-hand
side of (A.89) over all time t ∈ R+, we have that

‖z‖2
L∞

6 (δ(x̄(0))2 + κ2‖w‖2
L∞

6 (δ(x̄(0)) + κ‖w‖L∞
)2, (A.90)

with δ(x̄(0)) as defined in the hypothesis of the theorem. Taking the square-
root of the left-hand and right-hand side shows that the L∞-gain as defined in
(4.21) is smaller than κ. This completes the proof.

Proof of Theorem 4.4.1. Let δx > 0 and δw > 0 be given and take x̄(0) ∈ X
such that ‖x̄(0)‖ 6 δx and take w ∈ L∞, such that ‖w‖L∞ 6 δw. Since the
existence of solutions for each x̄(0) ∈ X and each w ∈ L∞ for all t ∈ R+ is
not proven yet, suppose that [0, T ) is the supremal interval on which solutions
to (4.10) are defined. Note that, for linear flow and jump dynamics, global
existence problems (i.e., T <∞) can only be caused by an accumulation point

in the set of the event times {tk | k ∈ N} =
⋃N

i=1{tiki
| ki ∈ N}, with tk+1 > tk,

k ∈ N. Since ‖w‖L∞
is bounded, εi > 0 for all i ∈ {1, . . . , N}, and e(0) = 0,

it is clear on the basis of (4.8) that the first transmission occurs at a (strictly)
positive time and, thus, that T > 0. Following the reasoning in the proof of
Theorem 4.3.5, the bound (A.87) holds for all t ∈ [0, T ), which implies that

V (x̄(t)) 6 λmax(P̄ )‖x̄(0)‖2 +
N∑

i=1

µiεi

α + β
α‖w‖2

L∞
, (A.91)

for all x̄(t) ∈ X , t ∈ [0, T ). Therefore, it holds that

‖x(t)‖2
6

1
λmin(P ) (x

⊤(t)Px(t) + x̄⊤(t)Ux̄(t)) = 1
λmin(P )V (x̄(t)) 6 η, (A.92)

for all t ∈ [0, T ), with η as defined in the hypothesis of the theorem. We now
consider two event-times tiki+1, t

i
ki

∈ [0, T ) and show that we can guarantee
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that tiki+1 > tiki
+hi

min, for all ki ∈ N and some hi
min > 0, i ∈ {1, . . . , N}. After

establishing this result, we will prove that T = ∞, meaning that all solutions
are defined for all t ∈ R+.

To compute a guaranteed hi
min > 0, we compute the event time tiki+1, of

node i given by (4.6), or equivalently,

tiki+1 = inf
{

t > tiki

∣
∣
∣

[
x(t)

eJi
(t)

]⊤[
I 0

0 Γ̄⊤
i

]

Qi

[
I 0
0 Γ̄i

][
x(t)

eJi
(t)

]

= εi

}

. (A.93)

We will use the fact that the solution of the event-triggered control system
satisfies (4.27). Since Γ̄iΓ̄

⊤
i = Γi, and therefore

([
I 0

0 Γ̄⊤
i

]

Ā
[

I 0
0 Γ̄i

])k[
I 0

0 Γ̄⊤
i

]

=
[

I 0

0 Γ̄⊤
i

](

Ā
[

I 0
0 Γi

])k

, (A.94)

for all k ∈ N, it holds for any s ∈ R+ that

e

(
[

I 0

0 Γ̄⊤
i

]

Ā
[

I 0
0 Γ̄i

]

s
)[

I 0

0 Γ̄⊤
i

]

=
[

I 0

0 Γ̄⊤
i

]

e

(
Ā

[

I 0
0 Γi

]

s
)

. (A.95)

Solving the differential equation (4.27) from tiki
to t > tiki

and using (A.95),

the fact that Γ̄⊤
i Γ̄i = I and e+Ji

(tiki
) = 0, yield

[
x(t)

eJi
(t)

]

=
[

I 0

0 Γ̄⊤
i

](

e
Ā

[

I 0
0 Γi

]

(t−ti
ki

)
[

I 0
0 Γ̄i

][
I
0

]

x(tiki
)

+

∫ t

ti
ki

e
Ā

[

I 0
0 Γi

]

(t−s)(
Ā

[
0
Γ̄c

i

]

eJ c
i
(s) + B̄w(s)

)
ds

)

, (A.96)

with ‖w‖L∞
6 δw and eJ c

i
(t) satisfying (4.8) for all t ∈ [0, T ). Given (A.93), we

can conclude that, given x(tiki
), no events are triggered by node i ∈ {1, . . . , N}

as long as t > tiki
satisfies

x⊤(tiki
)
[

I
0

]⊤
e

[

I 0
0 Γi

]

Ā⊤(t−ti
ki

)
Qie

Ā
[

I 0
0 Γi

]

(t−ti
ki

)
[

I
0

]

x(tiki
)

+

∫ t

ti
ki

(
Ā

[
0
Γ̄c

i

]

eJ c
i
(s) + B̄w(s)

)⊤
e

[

I 0
0 Γi

]

Ā⊤(t−s)
dsQi

(∫ t

ti
ki

e
Ā

[

I 0
0 Γi

]

(t−s)(
Ā

[
0
Γ̄c

i

]

eJ c
i
(s) + B̄w(s)

)
ds+ 2e

Ā
[

I 0
0 Γi

]

(t−ti
ki

)
[

I
0

]

x(tiki
)
)

< εi.

(A.97)
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Now observe that

∥
∥

∫ t

ti
ki

e
Ā

[

I 0
0 Γi

]

(t−s)(
Ā

[
0
Γ̄c

i

]

eJ c
i
(s) + B̄w(s)

)
ds

∥
∥

2

6

∫ t

ti
ki

eϑ(t−s)ds

∫ t

ti
ki

‖
(
Ā

[
0
Γ̄c

i

]

eJ c
i
(s) + B̄w(s)

)
‖2ds

6

∫ t−ti
ki

0

eϑsds

∫ t

ti
ki

1ds sup
s∈(ti

ki
,t]

‖Ā
[

0
Γ̄c

i

]

eJ c
i
(s) + B̄w(s)‖2, (A.98)

due to Hölder’s inequality (applied twice) and Wazewski’s inequality. It also
holds that

sup
s∈(ti

ki
,t]

‖Ā
[

0
Γc

i

]

eJ c
i
(s) + B̄w(s)‖2

6 (‖Ā
[

0
Γc

i

]

‖ sup
s∈(ti

ki
,t]

‖eJ c
i
(s)‖ + ‖B̄‖δw)2

6

(

‖Ā
[

0
Γc

i

]

‖
√

sup
s∈(ti

ki
,t]

∑

j∈Ii

‖Γje(s)‖2 + ‖B̄‖δw
)2

6

(

‖Ā
[

0
Γc

i

]

‖
√

∑

j∈Ii

σj‖ΓjC‖2η + εj + ‖B̄‖δw
)2

, (A.99)

with Ii as in the hypothesis of the theorem, due to the fact that the network
induced error satisfies (4.8) and we have the bound (A.92). Therefore, the
left-hand side of (A.98) can be upper bounded by ρi(t − tiki

), as in (4.30).
Hence,

x⊤(tiki
)
[

I
0

]⊤
e

[

I 0
0 Γi

]

Ā⊤(t−ti
ki

)
Qie

Ā
[

I 0
0 Γi

]

(t−ti
ki

)
[

I
0

]

x(tiki
) < ζi(t− tiki

) (A.100)

for some x(tiki
) ∈ R

np+nc and t > tiki
, implies satisfaction of (A.97). Hence,

given x̄(tiki
) ∈ X , no events are triggered in node i ∈ {1, . . . , N} as long as

t > tiki
satisfies (A.100). Now the solution to (4.28) is the smallest value

hi
min := t− tiki

, such that

x⊤
[

I
0

]⊤
e

[

I 0
0 Γi

]

Ā⊤hi
minQie

Ā
[

I 0
0 Γi

]

hi
min

[
I
0

]

x =
ζi(h

i
min)‖x̄‖2

η (A.101)

for some x ∈ R
np+nc satisfying (A.92), in which we have used that ‖x‖2 6 ‖x̄‖2.

Hence, we have that (A.100) is guaranteed to be satisfied for all x ∈ R
np+nc

as long as t < tiki
+ hi

min and thus no events are triggered by node i under
these conditions. This provides a lower bound on the inter-event time. Now
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observe that for h = 0, the left-hand side of the condition in (4.28) reduces to
λmax(−σiC

⊤ΓiC) (which is smaller than or equal to zero) and the right-hand
side to εi (which is strictly greater than zero) and, hence, the inequality in
the condition in (4.28) is not (yet) satisfied for h = 0. Besides the fact that
this shows that (A.100) can always be satisfied for some x(tiki

) ∈ R
np+nc and

t > tiki
, it also allows us to prove that the minimum in (4.28) always exists.

Indeed, due to continuity of the matrix exponential, and the fact that for h = 0
the inequality in (4.28) is not (yet) satisfied, the minimum in (4.28) exists and
is strictly positive.

It now only remains to show that T = ∞ and, thus, that the computed
minimal inter-event times hold on the time interval [0,∞), thereby completing
the proof. We proceed by contradiction and, therefore, suppose that T < ∞.
If T < ∞, we have that the sequence {tk}k∈N has an accumulation point at
T , implying that there must be a node i ∈ {1, . . . , N}, for which the sequence
{tki

}ki∈N has an accumulation point at time T , as well. Hence, node i transmits
infinitely often in the time interval [T − τ, T ) for any τ ∈ (0, T ]. Hence, there
exist a τ and a τ̄ , satisfying 0 < τ 6 τ̄ < T and τ̄ − τ < hi

min, such that on the
interval (τ, τ̄) at least two transmissions of node i take place, i.e., tiki

, tiki+1 ∈
(τ, τ̄) for some ki ∈ N. However, tiki+1 − tiki

6 τ̄ − τ < hi
min, which would

contradict the minimal inter-event time of hi
min on [0, T ) that we computed

above. Hence, T = ∞ and x̄(t) is defined for all t ∈ R+, which completes the
proof.

Proof of Theorem 4.5.2. The proof is based on showing that the positive defi-
nite matrix P , the scalars α, β, κ > 0, and the scalars σi > 0, i ∈ {1, . . . , N},
satisfying (4.36), also leads to a solution of the LMIs in Theorem 4.3.5, as
formulated in Theorem 4.5.2. To do so, we take P̄ in Theorem 4.3.5 as
P̄ := diag(P, 0), (i.e., take U = 0). Now, because of the particular structure of
P̄ , the left-hand side of (4.22a) becomes





−Z − αP − C⊤ ∑N
i=1 µiσiΓiC ⋆ ⋆

B⊤P
∑N

i=1 µiΓi ⋆
E⊤P 0 βI



, (A.102)

where Z := (A+BC)⊤P + P (A+BC). Note that (A.102) should be positive
semidefinite. Now by selecting µi = 1

σi
, for all i ∈ {1, . . . , N}, (A.102) is equal

to (4.36a), which is positive semidefinite by assumption. Therefore, (A.102)
is also positive semidefinite and (4.22a) is satisfied. Then, by choosing νi =
0, for all i ∈ {1, . . . , N}, and using the particular structure in P̄ and Ḡi,
results in zero-matrices on the left-hand side of (4.22c) for all i ∈ {1, . . . , N},
which satisfies the inequality. Finally, using the particular structure of P̄ and
C̄ = [Cx 0], we can conclude that (4.36b) is equal to (4.22b), and that the
obtained set A of (4.37) is equal to (4.23), since we have taken µi = 1

σi
for all

i ∈ {1, . . . , N}.
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A.4 Chapter 5

Proof of Theorem 5.3.1. From (5.23), it follows that Pi ≻ −(−1)iκiQ for i ∈
{1, 2}. Since this implies that ξ⊤(P1 − κ1Q)ξ > λmin(P1 − κ1Q)‖ξ‖2 and that
ξ⊤(P2+κ2Q)ξ > λmin(P2+κ2Q)‖ξ‖2, with λmin(P1−κ1Q), λmin(P2−κ2Q) > 0,
we have that V (ξ) = ξ⊤P1ξ > λmin(P1 − κ1Q)‖ξ‖2 + κ1ξ

⊤Qξ > λmin(P1 −
κ1Q)‖ξ‖2 for all ξ satisfying ξ⊤Qξ > 0 and that V (ξ) = ξ⊤P2ξ > λmin(P2 +
κ2Q)‖ξ‖2 − κ2ξ

⊤Qξ > λmin(P2 + κ2Q)‖ξ‖2 for all ξ satisfying ξ⊤Qξ 6 0.
This proves that for the candidate Lyapunov function (5.21), there exists a
c1 = min{λmin(P1 − κ1Q), λmin(P2 + κ2Q)} > 0 and some c2 > c1 such that
c1‖ξ‖2 6 V (ξ) 6 c2‖ξ‖2 for all ξ ∈ R

nξ .
Furthermore, note that if V (ξ) = ξ⊤Piξ, it holds that

(−1)iξ⊤Qξ 6 0, (A.103)

and if V (Aiξ) = (Aiξ)
⊤Pj(Aiξ), then

(−1)jξ⊤A⊤
i QAiξ 6 0, (A.104)

for i, j ∈ {1, 2}. Hence, using this and (5.22)

V (Aiξ) = ξ⊤A⊤
i PjAiξ

6 e−2ρhξ⊤Piξ + (−1)iαijξ
⊤Qξ + (−1)jβijξ

⊤A⊤
i QAiξ

6 e−2ρhξ⊤Piξ = e−2ρhV (ξ), (A.105)

where in the latter inequality we used that (A.103) and (A.104) hold and that
αij , βij > 0. By standard Lyapunov arguments this proves GES of the discrete-
time PWL system (5.19) with decay factor e−ρh. Now, by including the inter-
sample behaviour in a straightforward fashion, as was done in, e.g., [40], this
also implies GES with decay rate ρ of the (continuous-time) PETC system,
given by (5.1), (5.3), (5.4), and (5.5).

Proof of Theorem 5.3.7. The proof is based on showing that (5.30) guarantees
that (5.31) holds, and that the hypotheses of the theorem guarantee that the
conditions in (5.32) hold and that (5.29) is a well-defined storage function
candidate. This would complete the proof as, provided that (5.29) is a well-
defined storage function candidate, (5.31) and (5.32) prove GES and an upper
bound on the L2-gain of γ, see, e.g., [62]. Proving that (5.30) guarantees that
(5.31) holds for the function (5.29) will be the first step in the proof. To prove
that the hypotheses of the theorem guarantee that the conditions in (5.32) hold,
we need to relate P0 := P (0) to Ph := P (h) and doing so will be the second
step of the proof. The final step in the proof is to show how this relation can
be used to show that the conditions in the theorem guarantee that (5.32) hold
and that (5.29) is indeed a well-defined storage function candidate.
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To show that (5.30) yields that the derivative of (5.29) along the flow part
(5.17a) of the impulsive system (5.17) satisfies (5.31), we observe that

d
dtV = w⊤B̄⊤Pξ + ξ⊤PB̄w − ξ⊤(2ρP + γ−2C̄⊤C̄)ξ

−ξ⊤(PB̄ + γ−2C̄⊤D̄)M(B̄⊤P + γ−2D̄⊤C̄)ξ. (A.106)

Now using the fact that (Gξ − M−1w)⊤M(Gξ − M−1w) > 0, with G :=
B̄⊤P + γ−2D̄⊤C̄, we have that −ξ⊤G⊤MGξ 6 −ξG⊤w − w⊤Gξ + w⊤M−1w,
and, therefore, it holds that

d
dtV 6 −ξ⊤(2ρP + γ−2C̄⊤C̄)ξ − γ−2ξ⊤C̄⊤D̄w − γ−2w⊤D̄⊤C̄ξ + w⊤M−1w,

(A.107)
or, equivalently,

d
dtV 6 −ξ⊤2ρPξ +

[
ξ
w

]⊤ [
C̄ D̄
0 I

]⊤ [
−γ−2I 0

0 I

] [
C̄ D̄
0 I

] [
ξ
w

]

. (A.108)

By using (5.17c), we have that (A.108) shows that (5.31) is satisfied. This
completes the first step in the proof.

We will now relate P0 := P (0) to Ph := P (h). To do so, we first reverse the
time in the Riccati differential equation (5.30) by introducing P̃ (τ) := P (h−τ),
τ ∈ [0, h]. This results in

d
dτ P̃ = (Ā+ ρI)⊤P̃ + P̃ (Ā+ ρI) + γ−2C̄⊤C̄

+(P̃ B̄ + γ−2C̄⊤D̄)M(B̄⊤P̃ + γ−2D̄⊤C̄), (A.109)

or equivalently,

d
dτ P̃ = (Ā+ ρI + γ−2B̄MD̄⊤C̄)⊤P̃ + P̃ (Ā+ ρI + γ−2B̄MD̄⊤C̄)

+γ−2C̄⊤(I + γ−2D̄MD̄⊤)C̄ + P̃ B̄MB̄⊤P̃ , (A.110)

in which we have exploited the fact that M is symmetric. Note that I +
γ−2D̄MD̄⊤ = I+γ−2D̄(I−γ−2D̄⊤D̄)−1D̄⊤ = I+γ−2D̄D̄⊤(I−γ−2D̄D̄⊤)−1,
because for any matrix Z it holds that (I + Z⊤Z)−1Z⊤ = Z⊤(I + ZZ⊤)−1.
Furthermore, because for any matrix Z for which I−Z is invertible, it holds that
I + Z(I − Z)−1 = (I − Z)−1, we have that I + γ−2D̄D̄⊤(I − γ−2D̄D̄⊤)−1 =
L, where L := (I − γ−2D̄D̄⊤)−1 as was also used in the definition of the
Hamiltonian matrix (5.33). Furthermore, observe that P̃ (0) := P̃0 = Ph and
P̃ (h) := P̃h = P0. To link P̃0 to P̃h, and thereby Ph to P0, we use the
Hamiltonian matrix (5.33), which allows us to find explicitly the solution to
the Riccati differential equation (A.110). Indeed by using (5.34), we can express
the solution to (A.110) as

P̃ (τ) = (F21(τ) + F22(τ)P̃0)(F11(τ) + F12(τ)P̃0)
−1, (A.111)
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which requires that F11(τ) + F12(τ)P̃0 is invertible. This fact can be easily
verified, see, e.g., [11, Lemma 8.2]. Since (A.111) relates P̃0 to P̃h (by taking
τ = h), provided that (A.111) is well defined for all τ ∈ [0, h], and thereby
relates Ph to P0, this completes the second step of the proof.

It now only remains to show how the expression (A.111) and the hypotheses
can be used to show that the candidate storage function is well defined on [0, h]
and satisfies (5.32). To do so, we will use the fact that F (τ) is simplectic, i.e.,
F⊤(τ)ΩF (τ) = Ω for all τ ∈ [0, h], where

Ω =

[
0 I
−I 0

]

, (A.112)

and thus Ω−1 = −Ω. This fact follows from observing that F⊤(0)ΩF (0) = Ω
holds and d

dτ F
⊤(τ)ΩF (τ) = 0 for all τ ∈ R, by exploiting the structure in the

Hamiltonian (5.33) giving H⊤Ω+ΩH = 0. From F⊤(τ)ΩF (τ) = Ω, we obtain
that

0 = F⊤
11F21 − F⊤

21F11 (A.113a)

0 = F⊤
22F12 − F⊤

12F22 (A.113b)

I = F⊤
11F22 − F⊤

21F12, (A.113c)

where we have again omitted the argument τ for compactness of notation.
We will use these relations to rewrite (A.111). In particular, under Assump-
tion 5.3.6, we have for all τ for which F11(τ) + F12(τ)P̃0 = F11(τ) + F12(τ)Ph

is invertible,

P (h− τ) = P̃ (τ)
(A.111)

= (F21 + F22Ph)(F11 + F12Ph)−1

= (F21 + F22Ph)(I + F−1
11 F12Ph)−1F−1

11

(A.113c)
= (F21 + F−⊤

11 (I + F⊤
21F12)Ph)(I + F−1

11 F12Ph)−1F−1
11

(A.113a)
= (F21 + F−⊤

11 Ph + F21F
−1
11 F12Ph)(I + F−1

11 F12Ph)−1F−1
11

=
(
F21(I + F−1

11 F12Ph) + F−⊤
11 Ph

)
(I + F−1

11 F12Ph)−1F−1
11

= F21F
−1
11 + F−⊤

11 Ph(I + F−1
11 F12Ph)−1F−1

11

= F21F
−1
11 + F−⊤

11

(
Ph − Ph(I + F−1

11 F12Ph)−1F−1
11 F12Ph

)
F−1

11 , (A.114)

where the fact that X−1 = X−1Y −1Y = (XY )−1X for X = F11 and Y =
F11 + F12Ph was used in the third equality and the fact that (I − Z)−1 =
I + (I − Z)−1Z for Z = −F−1

11 F12Ph was used in the last equality. Now since
Lemma A.4.1 below states that −F−1

11 F12 is positive semidefinite, there exists
a (τ -dependent) matrix S that satisfies −F−1

11 F12 = SS⊤. This leads to

P (h− τ) = F21F
−1
11 + F−⊤

11

(
Ph + PhS(I − S⊤PhS)−1S⊤Ph

)
F−1

11 , (A.115)
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for all τ for which P (h − τ) is defined, as (I + SS⊤Ph)−1SS⊤ = S(I +
S⊤PhS)−1S⊤.

Now (A.115) will be used to show that the candidate Lyapunov/storage
function is well defined for all τ ∈ [0, h] and that the conditions in (5.32)
hold, if the hypotheses in the theorem are satisfied. Namely, (A.115) shows
that having P (h− τ) defined for all τ ∈ [0, h] is equivalent to the existence of
(I − S⊤(τ)PhS(τ))−1 for all τ ∈ [0, h]. Now observe that the existence of the
inverse of I−S⊤(τ)PhS(τ) for all τ ∈ [0, h] is guaranteed if I−S⊤(τ)PhS(τ) ≻ 0
for all τ ∈ [0, h], or, equivalently (by applying a Schur complement twice and
using that Ph ≻ 0), if P−1

h − S(τ)S⊤(τ) ≻ 0 for all τ ∈ [0, h]. The fact
that Lemma A.4.1 guarantees that U(τ) = −F−1

11 (τ)F12(τ) is nondecreasing,
i.e., S(τ)S⊤(τ) � S(h)S⊤(h) for all τ 6 h, gives that P−1

h − S(h)S⊤(h) ≻ 0
implies that P−1

h − S(τ)S⊤(τ) ≻ 0, for all τ ∈ [0, h]. Furthermore, using the
reasoning in the proof of Proposition 8.1 of [11], we can show that P (τ) ≻ 0 for
τ ∈ [0, h] under Assumption 5.3.6. Now since by the hypotheses of the theorem
(in particular, (5.36)), Ph ≻ 0 and I − S⊤(h)PhS(h) ≻ 0, the function (5.29)
satisfies ToS

c1‖ξ‖2
6 V (τ, ξ) 6 c2‖ξ‖2, (A.116)

for some 0 < c1 6 c2, for all ξ ∈ R
nξ and for all τ ∈ [0, h], and is therefore a

well-defined storage function candidate.
It now only remains to show that the conditions in the theorem guarantee

that the conditions (5.32) hold. To do so, we choose τ = h in (A.115) to obtain

P0 = F̄21F̄
−1
11 + F̄−⊤

11

(
Ph + PhS̄(I − S̄⊤PhS̄)−1S̄⊤Ph

)
F̄−1

11 , (A.117)

where F̄ij := Fij(h) for i, j ∈ {1, 2}, and S̄ := S(h). Substituting (A.117) into
(5.32a), and using an S-procedure to encode that ξ⊤Qξ > 0, yield that (5.32a)
with i = 1 holds if

Ph − µ1Q− J⊤
1 (F̄21F̄

−1
11 + F̄−⊤

11

(
Ph + PhS̄(I − S̄⊤PhS̄)−1S̄⊤Ph

)
F̄−1

11 )J1

(A.118)

is positive semidefinite for some µ1 > 0, which is implied by (5.36) for i = 1.
Using a similar reasoning, satisfaction of (5.32b) is implied by (5.36) with i = 2
as µ2 > 0. This completes the proof.

Lemma A.4.1. Consider F (τ) as in (5.34). Under Assumption 5.3.6, it holds
that U(τ) := −F−1

11 (τ)F12(τ) and R(τ) := F21(τ)F
−1
11 (τ) are positive semidefi-

nite and nondecreasing for all τ ∈ [0, h], i.e., U(τ1) � U(τ2) and R(τ1) � R(τ2),
when 0 6 τ1 6 τ2 6 h.

Proof of Lemma A.4.1. Note that R(τ) is the solution to (A.110) for P̃ (0) =
R(0) = 0 according to (A.111). In particular,

d
dτR = Ã⊤R+RÃ+ C̄⊤LC̄ (A.119)
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where Ã = Ā+ρI+γ−2B̄MD̄⊤C+ 1
2 B̄MB̄⊤R, which depends on τ . Applying

now Proposition 8.1 of [11] yields that R(τ) � 0, τ ∈ [0, h]. Since R(τ) satisfies
(A.119), d

dτR(τ) satisfies

d2

dτ2R = Ã⊤ dR
dτ + dÃ⊤

dτ R+ dR
dτ Ã+RdÃ

dτ

= (Ā+ ρI + γ−2B̄MD̄⊤C + 1
2 B̄MB̄⊤R)⊤ dR

dτ + ( 1
2 B̄MB̄⊤ dR

dτ )⊤R

+ dR
dτ (Ā+ ρI + γ−2B̄MD̄⊤C + 1

2 B̄MB̄⊤R) +R( 1
2 B̄MB̄⊤ dR

dτ )

= (Ā+ ρI + B̄MD̄⊤C̄ + B̄MB̄⊤R)⊤ dR
dτ

+ dR
dτ (Ā+ ρI + B̄MD̄⊤C̄ + B̄MB̄⊤R). (A.120)

Since d
dτR(0)

(A.119)
= C⊤LC � 0, applying Proposition 8.1 of [11] once more

shows that d
dτR(τ) � 0 for τ ∈ [0, h]. This shows that R is nondecreasing.

A similar reasoning applies to U(τ) for a somewhat modified Riccati dif-
ferential equation corresponding to the Hamiltonian H̃ = V −1H⊤V with V =
diag(I,−I). Defining

F̃ (τ) := e−H̃τ =

[
F̃11(τ) F̃12(τ)

F̃21(τ) F̃22(τ)

]

(A.121)

and using that F̃ (τ) = V −1F (τ)⊤V , we can show that R̃(τ) := F̃21(τ)F̃
−1
11 (τ) =

−F−1
11 (τ)F12(τ) = U(τ) (exploiting symmetry of solutions to Riccati differen-

tial equations of the type (A.110) for symmetric initial conditions). Applying
the same reasoning to R̃(τ) as for R(τ) using the Riccati differential equation
corresponding to the Hamiltonian H̃, the facts that U(τ) � 0 and U(τ) is
nondecreasing follow.

Proof of Corollary 5.3.8. The proof follows from a slight modification of the
reasoning in Section 5.3.3 and the proof of Theorem 5.3.7. Namely, instead of
the dissipation inequality (5.31), we require d

dtV = −2ρV along the solutions of
(5.17a) with w = 0. Using the same Lyapunov function candidate as in (5.29),
this is satisfied if the matrix differential equation d

dtP = −(Ā⊤ +ρI)P −P (Ā+

ρI) holds, which has the solution P (τ) = e2ρ(h−τ)eĀ⊤(h−τ)Phe
Ā(h−τ) and thus

P (0) = e2ρheĀ⊤hPhe
Āh. Substituting this in the jump conditions (5.32) yields

e2ρhξ⊤J⊤
1 e

Ā⊤hPhe
ĀhJ1ξ 6 ξ⊤Phξ, (A.122)

when ξ⊤Qξ > 0, and

e2ρhξ⊤J⊤
2 e

Ā⊤hPhe
ĀhJ2ξ 6 ξ⊤Phξ, (A.123)

when ξ⊤Qξ 6 0. These conditions are guaranteed by the hypotheses of the
theorem.
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Proof of Theorem 5.4.1. We will only give the proof for the triggering condition
(5.6), as the proof is similar for (5.8). The proof will be based on showing that
if the LMIs (5.28) are feasible for P̄ ≻ 0 for some σ < θ, then

P1 = P2 = P :=

[
P̄ 0
0 δI

]

(A.124)

is a solution to the LMIs (5.22) and (5.23), with the matrix Q as in (5.7), for
some scalars αij , βij , κi > 0, i, j ∈ {1, 2}, for some (sufficiently small) δ > 0.
To do so, we first observe that (5.23) is satisfied for all δ > 0 with κ1 = κ2 = 0.
Focussing on (5.22) with i = 1, we observe that for α11 = α12 = β11 = β12 = 0,
(5.22) with i = 1 and P1 as in (A.124) is equivalent to

e−2ρhP −A⊤
1 PA1 =

[
e−2ρhP̄ − (A+BK)⊤P̄ (A+BK) − δI 0

0 e−2ρhδI

]

� 0,

(A.125)

where A1 is given as in (5.20). Clearly, due to (5.28), for sufficiently small
δ > 0 and ρ > 0, we have that e−2ρhP̄ − (A + BK)⊤P̄ (A + BK) − δI and
e−2ρhδI are positive semidefinite matrices. Hence, the matrix inequality in
(A.125) is satisfied and thus (5.22) with i = 1 is satisfied for P as in (A.124)
for α11 = α12 = β11 = β12 = 0 and a sufficiently small value of δ > 0.
Focussing now on (5.22) with i = 2, we observe that by taking α21 = α22 = 1
and β21 = β22 = 0, we obtain

e−2ρhP +Q−A⊤
2 PA2

=

[
e−2ρhP̄ + (1 − σ2)I −A⊤P̄A −I −A⊤P̄BK

−I − (BK)⊤P̄A I + (e−2ρh − 1)δI − (BK)⊤P̄BK

]

� 0,

(A.126)

where A1 is given as in (5.20) and Q is given as in (5.6). This expression is
equivalent to

[
I −I
0 I

]

R(σ)

[
I 0
−I I

]

�
[
(1 − e−2ρh)P̄ 0

0 (1 − e−2ρh)δI

]

≻ 0, (A.127)

with

R(σ) :=

[
P̄ − σ2I − (A+BK)⊤P̄ (A+BK) ⋆

−(BK)⊤P̄ (A+BK) I − (BK)⊤P̄BK

]

. (A.128)

To guarantee now that (A.127) is satisfied for some (arbitrary small) ρ > 0,
we have to show that R(σ) ≻ 0 for the given σ. Since σ < θ, (5.28) implies
that R(σ) ≻ 0 and, hence, that the matrix inequality in (A.127) is satisfied and
thus (5.22) with i = 2 is satisfied for P as in (A.124) for α21 = α22 = 1 and
β21 = β22 = 0. This completes the proof.
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A.5 Chapter 6

Proof of Lemma 6.3.4. Since (6.12) holds, and since the solutions to (6.1) with
(6.2) satisfy

x(tk + ~l) = eA~lx(tk)+
∫ ~l

0
eAsBds ûk, (A.129)

we have that

V (x(tk + ~l)) 6 e−αq(tk+~l)V (x(0)). (A.130)

for all l ∈ {0, . . . , L− 1} and for all tk, k ∈ N, with ~0 = 0. Now using (6.11),
we have that (A.130) implies

‖x(tk + ~l)‖ 6 q

√
a
ae

−α(tk+~l)‖x(0)‖, (A.131)

for all l ∈ {0, . . . , L− 1} and for all tk, k ∈ N, with ~0 = 0. Moreover, because
it holds that ‖ûk‖ 6 β‖x(tk)‖, the solutions to (6.1) with (6.2) also satisfy

‖x(t)‖ 6 ‖eA(t−tk−~l)‖ ‖x(tk + ~l)‖ +
∫ t

tk+~l
‖eA(t−s)‖ds ‖B‖‖ûk‖

6 e‖A‖∆~ ‖x(tk+~l)‖ + β
∫ ∆~

0
e‖A‖sds ‖B‖ ‖x(tk)‖, (A.132)

for all t ∈ [tk + ~l, tk + ~l+1), k ∈ N, l ∈ {0, . . . , L− 1}, with ∆~ as defined in
the hypothesis of the lemma. Substituting (A.131) into this expression (twice)
yields

‖x(t)‖ 6 q

√
a
a

(

e‖A‖∆~ e−α(tk+~l) + β
∫ ∆~

0
e‖A‖sds ‖B‖ e−αtk

)
‖x(0)‖, (A.133)

for all t ∈ [tk + ~l, tk + ~l+1), k ∈ N, l ∈ {0, . . . , L − 1}. Now realising
that for all t ∈ [tk + ~l, tk + ~l+1), k ∈ N, l ∈ {0, . . . , L − 1}, it holds that
e−α(tk+~l) < e−αt+α∆~ and that e−αtk < e−αt+α~L we have (6.5) with c as
given in the hypothesis of the Lemma 6.3.4.

Proof of Theorem 6.3.5. Using the arguments given in Section 6.3.3, we have
that the hypotheses of the theorem guarantee that FMAC(x) 6= ∅ for all x ∈ R

nx .
By following a similar reasoning as done in the proof of Lemma 6.3.4, we can
show that the MAC law guarantees that (A.133) holds for all t ∈ [tk + ~l, tk +
~l+1), k ∈ N, l ∈ {0, . . . , L̄⋆(x(tk)) − 1}, with ~0 = 0, and all x ∈ R

nx . Again
realising that for all t ∈ [tk + ~l, tk + ~l+1), k ∈ N, l ∈ {0, . . . , L̄⋆(x(tk)) −
1}, it holds that e−α(tk+~l) < e−αt+α∆~ and that e−αtk < e−αt+α~L̄⋆(x(tk)) 6

e−αt+α~L yields (6.5) with gain c = c̄(α, β,∆~, ~L) as in (6.14).

Proof of Theorem 6.3.6. Using the arguments given in Section 6.3.4, we have
that the hypotheses of the theorem guarantee that FAAC(x, h) 6= ∅ for all
x ∈ R

nx and all h ∈ H. Moreover, as also argued in Section 6.3.4, the proposed
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AAC law guarantees that the solutions of the system (6.1), (6.2) with (6.4)
satisfy

V (x(tk + ~l)) 6 e−ᾱJ̄⋆(x(tk),hk)q~lV (x(tk)) 6 e−ᾱ1q~lV (x(tk)) (A.134)

for all l ∈ {0, . . . , L̄(hk) − 1}, k ∈ N. Now using the reasoning of the proof of
Lemma 6.3.4, we can show that this implies that (A.133) holds for all t ∈ [tk +
~l, tk + ~l+1), l ∈ {0, . . . , L̄(hk)) − 1}, with ~0 = 0, k ∈ N, and for all x ∈ R

nx .
Again realising that for all t ∈ [tk +~l, tk +~l+1), l ∈ {0, . . . , L̄(hk)−1}, k ∈ N,
it holds that e−ᾱ1(tk+~l) < e−ᾱ1t+ᾱ1∆~ and that e−ᾱ1tk < e−ᾱ1t+ᾱ1~L̄(h) 6

e−ᾱ1t+ᾱ1~L yields (6.5) with gain c = c̄(ᾱ1, β,∆~, ~L) as in (6.14).

Proof of Lemma 6.4.1. The proof follows the same line of reasoning as in [80,
108]. GES of (6.1) with (6.23) with convergence rate α̂ and gain ĉ = a/a is
implied by the existence of a positive definite function, satisfying (6.11) and

lim
s↓0

1
s

(
V (x(t+ s)) − V (x(t))

)
6 −α̂V (x(t)), (A.135)

for all t ∈ R+, which follows from the Comparison Lemma, see, e.g., [79]. Now
using the fact that the solutions to (6.1) with (6.23) satisfy d

dtx = (A+BK)x,
and using (6.21), we obtain that (A.135) is implied by

lim
s↓0

1
s (‖P (I + s(A+BK))x(t)‖∞ − ‖Px(t)‖∞) 6 −α̂‖Px(t)‖∞, (A.136)

for all t ∈ R+. Using (6.24a), we have that, for all t ∈ R+, (A.136) implied by

lim
s↓0

1
s (‖(I + sQ)‖∞ − 1)‖Px(t)‖∞ 6 −α̂‖Px(t)‖∞, (A.137)

which is, due to positivity of ‖Px‖∞ for all x 6= 0, equivalent to lims↓0 1
s (‖(I +

sQ)‖∞ − 1) 6 −α̂, which is implied by (6.24b). This completes the proof.

Proof of Lemma 6.4.2. The proof is based on showing that the Lyapunov func-
tion obtained using Lemma 6.4.1 also guarantees (6.1) and (6.2), with (6.25)
and tk+1 = tk + h, k ∈ N, to be GES with convergence rate α and gain
c := c̄(α, β, h), where c̄(α, β, h) as in (6.10), for all h < hmax(α) as in (6.26). To
do so, observe that the solutions of (6.1) and (6.2), with (6.25) and tk+1 = tk+h,
k ∈ N, satisfy

x(t) = (eA(t−tk) +
∫ t−tk

0
eAsBKds)x(tk), (A.138)

for all t ∈ [tk, tk + h), k ∈ N, which can be bounded as

‖x(t)‖ 6
(
e‖A‖h +

∫ h

0
e‖A‖sds ‖B‖ ‖K‖

)
‖x(tk)‖, (A.139)

for all t ∈ [tk, tk + h), k ∈ N. Now by following the ideas used in the proof of
Lemma 6.3.4, and the candidate Lyapunov function of the form (6.21), we have
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that GES with convergence rate α and gain c of (6.1) and (6.2), with (6.25)
and tk+1 = tk + h, k ∈ N, is implied by requiring that

‖Px(tk + h)‖∞ − e−αh‖Px(tk)‖∞ 6 0, (A.140)

for all tk, k ∈ N, and some well-chosen h > 0. Substituting (A.138) and defining
x̂ := Px, yielding x = (P⊤P )−1P⊤x̂, yields that that (A.140) is implied by

(‖P (eAh+
∫ h

0
eAsBKds)(P⊤P )−1P⊤‖∞ − e−αh)‖x̂(tk)‖∞ 6 0, (A.141)

for all x̂(tk) ∈ R
m, which holds for all h > 0, satisfying h < hmax(α), as given

in the hypothesis of the lemma, meaning that (A.140) holds for all x̂(tk) ∈ R
m

and for all h > 0, satisfying h < hmax(α). This completes the proof.

Proof of Theorem 6.4.3. As a result of Lemma 6.4.2, we have that the control
input given by (6.25) renders the plant (6.1) with ZOH (6.2) GES with conver-
gence rate α and gain c := c̄(α, ‖K‖∞, h) as in (6.10), for any interexecution
time h < hmax(α) as in (6.26). To obtain a well-defined control law, we need
that FMAC(x) 6= ∅, for all x ∈ R

nx , which is guaranteed if and only if (6.15) sat-
isfies F1(x) 6= ∅ for all x ∈ R

nx , as argued in Section 6.3.3. This can be achieved
by choosing β > ‖K‖∞ and choosing the set H := {~1, . . . , ~L}, L ∈ N, such
that ~1 < hmax(α), as this yields that F1(x) ⊇ {Kx} 6= ∅, if V is chosen as
in (6.21). GES with the convergence rate α and the gain c > c̄(α, β,∆~, ~L)
of (6.1) with ZOH (6.2) and (6.3), with (6.9), (6.15), (6.16), (6.17) and (6.21),
follows directly from Theorem 6.3.5. This completes the proof.

Proof of Theorem 6.4.4. As a result of Lemma 6.4.2, we have that the control
input given by (6.25), renders the plant (6.1) with ZOH (6.2) GES with a
convergence rate α, a gain c := c̄(α, ‖K‖∞, h) as in (6.10), for any execution
interval smaller than hmax(α), as in (6.26). To obtain a well-defined control
law, we need that FAAC(x) 6= ∅, for all x ∈ R

nx , which is guaranteed if and only
if (6.18) satisfies FL,1(x) 6= ∅ for all x ∈ R

nx , as argued in Section 6.3.4. This
can be achieved by choosing α 6 ᾱ1 < α̂, the control gain bound β > ‖K‖∞
and choosing the set H := {~1, . . . , ~L}, L ∈ N, such that ~L < hmax(α), as
this yields that FL,1(x) ⊇ {Kx} 6= ∅, if V is chosen as in (6.21). GES with the
convergence rate α and the gain c > c̄(ᾱ1, β,∆~, ~L) of (6.1) with ZOH (6.2)
and (6.4), with (6.9), (6.18), (6.19), (6.20) and (6.21), follows directly from
Theorem 6.3.6. This completes the proof.
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[34] D.B. Dačić and D. Nešić. Quadratic stabilization of linear networked con-
trol systems via simultaneous protocol and controller design. Automatica,
43:1145–1155, 2007.

[35] D.F. Delchamps. Stabilizing a linear system with quantized state feed-
back. IEEE Trans. Autom. Control, 35:916–924, 1990.

[36] M.C.F. Donkers and W.P.M.H. Heemels. Output-based event-triggered
control with guaranteed L∞-gain and improved event-triggering. In Proc.
IEEE Conf. Decision & Control, pages 3246–3251, 2010.

[37] M.C.F. Donkers and W.P.M.H. Heemels. Output-based event-triggered
control with guaranteed L∞-gain and improved and decentralised event-
triggering. Conditionally accepted for IEEE Trans. Autom. Control, 2011.

[38] M.C.F. Donkers, W.P.M.H. Heemels, D. Bernadini, A. Bemporad, and
V. Shneer. Stability analysis of stochastic networked control systems. In
Proc. American Control Conf., pages 3684–3689, 2010.



184 BIBLIOGRAPHY

[39] M.C.F. Donkers, W.P.M.H. Heemels, D. Bernadini, A. Bemporad, and
V. Shneer. Stability analysis of stochastic networked control systems.
Accepted for Automatica, 2011.

[40] M.C.F. Donkers, W.P.M.H. Heemels, N. van de Wouw, and L. Hetel.
Stability analysis of networked control systems using a switched linear
systems approach. IEEE Trans. Autom. Control, 56:2101 – 2115, 2011.

[41] M.C.F. Donkers, L. Hetel, W.P.M.H. Heemels, N. van de Wouw, and
M. Steinbuch. Stability analysis of networked control systems using a
switched linear systems approach. In Proc. Conf. Hybrid Systems: Com-
putation and Control, pages 150–164, 2009.

[42] M.C.F. Donkers, P. Tabuada, and W.P.M.H. Heemels. On the minimum
attention control problem for linear systems: A linear programming ap-
proach. In Proc. IEEE Conf. Decision & Control, 2011.

[43] L. Dritsas and A. Tzes. Robust stability analysis of networked systems
with varying delays. Int. J. Control, 82:2347–2355, 2009.

[44] T. Estrada and P.J. Antsaklis. Stability of discrete-time plants using
model-based control with intermittent feedback. In Proc. Mediterranean
Conf. Control & Autom., pages 1130–1136, 2008.

[45] H. Fujioka. A discrete-time approach to stability analysis of systems
with aperiodic sample-and-hold devices. IEEE Trans. Autom. Control,
54:2440–2445, 2009.

[46] P.J. Gawthrop and L.B. Wang. Event-driven intermittent control. Int.
J. Control, 82:2235–2248, 2009.

[47] J.C. Geromel and P. Colaneri. Stability and stabilization of discrete time
switched systems. Int. J. Control, 79:719–728, 2006.

[48] R. Ghabcheloo, A.P. Aguiar, A. Pascoal, C. Silvestre, I. Kaminer, and
J.P. Hespanha. Coordinated path-following in the presence of commu-
nication losses and time delays. SIAM J. Contr. Optimization, Special
Issue: Control and Optimization on Cooperative Networks, 48:234–265,
2009.

[49] R. Gielen, S. Olaru, M. Lazar, W.P.M.H. Heemels, N. van de Wouw,
and S. Niculescu. On polytopic inclusions as a modeling framework for
systems with time-varying delays. Automatica, 46:615–619, 2010.

[50] R. Goebel, R. Sanfelice, and A.R. Teel. Hybrid dynamical systems. IEEE
Control Syst. Mag., 29:28–93, 2009.



BIBLIOGRAPHY 185

[51] K.-C. Goh, M.G. Safonov, and G.P. Papavassilopoulos. A global opti-
mization approach for the BMI problem. In Proc. IEEE Conf. Decision
& Control, volume 3, pages 2009–2014, 1994.

[52] L. Greco, D. Fontanelli, and A. Bicchi. Design and stability analysis for
anytime control via stochastic scheduling. IEEE Trans. Autom. Control,
2011.

[53] V. Gupta. On an anytime algorithm for control. In Proc. Conf. Decision
& Control, pages 6218–6223, 2009.

[54] V. Gupta and D.E. Quevedo. On anytime control of nonlinear processes
though calculation of control sequences. In Proc. Conf. Decision & Con-
trol, pages 7564–7569, 2010.

[55] W.M. Haddad, V. Chellaboina, and S.G. Nersesov. Impulsive and Hy-
brid Dynamical Systems: Stability, Dissipativity, and Control. Princeton
University Press, 2006.

[56] A. Hassibi, J. How, and S. Boyd. A path-following method for solving
BMI problems in control. In Proc. American Control Conf., volume 2,
pages 1385–1389, 1999.

[57] W.P.M.H. Heemels, M.C.F. Donkers, and A.R. Teel. Periodic event-
triggered control. Submitted for journal publication, 2011.

[58] W.P.M.H. Heemels, M.C.F. Donkers, and A.R. Teel. Periodic event-
triggered control based on state feedback. In Proc. IEEE Conf. Decision
& Control, 2011.

[59] W.P.M.H. Heemels, R.J.A. Gorter, A. van Zijl, P.P.J. v.d. Bosch, S. Wei-
land, W.H.A. Hendrix, and M.R. Vonder. Asynchronous measurement
and control: a case study on motor synchronisation. Control Eng. Prac.,
7:1467–1482, 1999.

[60] W.P.M.H. Heemels, J.H. Sandee, and P.P.J. van den Bosch. Analysis of
event-driven controllers for linear systems. Int. J. Control, 81:571–590,
2008.

[61] W.P.M.H. Heemels, H. Siahaan, A. Juloski, and S. Weiland. Control of
quantized linear systems: an l1-optimal control approach. In Proc. Amer-
ican Control Conference, pages 3502–3507, 2003.

[62] W.P.M.H. Heemels, A.R. Teel, N. van de Wouw, and D. Nešić. Net-
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