
Networked clock synchronization based on second order linear
consensus algorithms

Ruggero Carli Sandro Zampieri

Abstract— In this paper a distributed algorithm for clock
synchronization is proposed. This algorithm is based on an
extension of the consensus algorithm able to synchronize a
family of double integrators. Since the various clocks may
have different drifts, the algorithm needs to be designed
so that it can work also in case of heterogeneous double
integrators. Through a robust control analysis it is possible
to determine the maximum admissible level of heterogeneity
yielding synchronization. The first part of the paper is devoted
to the analysis of an unrealistic synchronous implementation
of the algorithm. However, in the last part of the paper we
propose a realistic pseudo-synchronous implementation which
is proved to be a perturbation of the synchronous one. From
arguments related the center manifold theorem, the stability of
the pseudo-synchronous is finally proved.

I. I NTRODUCTION

One of the key problems in sensor networks is time-
synchronization. Sensor networks are used in a large number
of applications which cover a wide range of fields, such as,
surveillance, targeting systems, controls, communications,
monitoring areas, intrusion detection, vehicle tracking and
mapping. In many of these applications it is essential that
the nodes act in a coordinated and synchronized fashion
requiring global clock synchronization, that is, all the nodes
of the network need to refer to a common notion of time.

A common approach to solve the synchronization problem
is to create a hierarchical structure within the network. The
strategy proposed in [1], [2] consists in electing a reference
node and creating a spanning tree rooted at this reference
node, where each children synchronizes itself with respectto
its parent. In [3], the network is divided into distinct clusters,
each with an elected cluster-head. All nodes within the
same cluster synchronize themselves with the corresponding
cluster-head, and each cluster-head synchronizes itself with a
another cluster-head. Although these two strategies have been
experimentally tested showing remarkable performance, they
suffer from robustness and scalability issues. For instance, if
a node dies or a new node is added, then it is necessary
to rebuild the tree or the clusters, at the price of additional
implementation overhead and possibly long periods in which
the network or part of it is poorly synchronized.

Recently fully distributed algorithms for clocks synchro-
nization have appeared. The authors in [4] introduced a
protocol able to compensate for different clock offsets but
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not for different clock skews. On the opposite, the algorithm
proposed in [5] compensates for the clock skews but not for
the offsets. Distributed protocols that can compensate for
both clock skews and offsets have been proposed in [6], [7].
Of note is the fact that both these strategies are highly non-
linear and do not lead to a simple characterization of the
effects of noise on the steady-state performance.

In this work we present a novel distributed synchronization
protocol which is based on a second order linear consensus
algorithm. The term consensus refers to a general class of
distributed algorithms that allow multiple agents to converge
to the same quantity of interest using only local communi-
cation, see e.g. [8]. The advantage of using a simple linear
feedback strategy allows for the analysis of the performance
also in the presence of measurement and process noise.

Time synchronization of clocks with different speeds
provides an interesting class of systems. In fact each local
clock can be modeled as the output of a double integrator
whose rate is not perfectly known. Moreover this rate is
slightly different from one clock to another, therefore even
if all clocks are perfectly synchronized at one time, they
will slowly diverge from each other if no compensation or
resynchronization is applied. During the last years, synchro-
nization of networked higher order systems has received a
large interest. Most of the available results are for synchro-
nization of either non-identical systems which are strictly
stable [9], or identical linear systems [10], [11]. Specific
attention has been given to the synchronization of double
integrators, which are unstable systems with a ramp mode
[12]. However the strategy in [12], as the strategies in [10],
[11], strongly relies on the assumption that all systems are
identical.

In this paper we propose a novel distributed clock syn-
chronization protocol based on a consensus algorithm for
non identical double integrators whose rates of growth are
not known nor measurable. In the first part of the paper we
formally analyze our technique in a unrealistic synchronous
implementation, i.e., all the nodes are supposed to commu-
nicate at the same time instant. We provide convergence
guarantees on the protocol parameters and we perform a
robustness analysis to evaluate the admissible uncertainties
of the clocks speeds with the respect to a pre-assigned
nominal value, while maintaining the convergence properties.
In the second part of the paper we present a more realistic
pseudo-synchronous implementation which can be formally
modeled as a perturbation of the synchronous version. This
pseudo-synchronous implementation is provably convergent
and, through simulations, we evaluate its performance alsoin
the case where the communication delays are not negligible.



II. PROBLEM FORMULATION AND PROPOSED SOLUTION

Assume we haveN units and that each uniti has a
clock which is an oscillator able to periodically increment
a register by one unit, commonly known as tick. We assume
that the periods∆i of these oscillators are unknown, but
are “perturbed” values of a “nominal” and known period∆.
Therefore, the value of thei-th register isτi(t) = ⌊ t−t0i

∆i
⌋,

where the “floor” ⌊a⌋ indicates the largest integer smaller
than or equal toa, andt0i denotes the time when the clock
has been started. The unit has to use these ticks in order
to estimate time. Since only the nominal clock period∆ is
known, the natural time estimate is

yi(t) = ∆τi(t) + yi(t0i) (II.1)

where yi(t0i) is the initial offset which is an estimate of
t0i. Since the∆i’s are all different, then each clock will
drift away from the others even under the ideal situation in
which they are all initially synchronized, i.e.,yi(0) = yj(0)
for all i, j. Therefore some sort of information exchange
and clock control must be enforced to obtain and maintain
synchronization among all nodes. If we assume that the
nodes exchange their clock readingsyi(t) at timest = th,
whereh = 0, 1, . . . and th < th+1, then they can use them
to adjust their clock estimateyi(t) so that eventually all
nodes will be synchronized, i.e.,yi(t) ≃ yj(t) for all i, j. A
natural approach to achieve synchronization is to control the
nominal clock period∆ and the clock offsetyi(0) based on
the information received from the neighboring nodes. As a
preliminary step, let us observe that the evolution ofyi(th)
in (II.1) can be described through the following iterative
algorithm

xi(th+1) =

[

1 ∆δi(th)
0 1

]

xi(th), xi(0) =

[

yi(0)
1

]

yi(th) =
[

1 0
]

xi(th)

wherexi(th) ∈ R
2 and whereδi(th) := τi(th+1)−τi(th). If

x′
i andx′′

i denote the two components ofxi, thenx′
i gives the

time estimate, while∆x′′
i gives the oscillator period estimate.

Each node can use any information it receives from the
neighboring nodes at timeth to insert a control in the
previous iterative algorithm

xi(th+1) =

[

1 ∆δi(th)
0 1

]

xi(th)+ui(th) (II.2)

yi(th) =
[

1 0
]

xi(th). (II.3)

Notice that the previous system corresponds to the output
of a second order integrator with unknown parameter, since
∆i is not known. Moreover, the dynamics of each clock is
different since in general∆i 6= ∆j .

We propose here a linear control law of the following
structure

ui(th) = −F

N
∑

j=1

kij(th)xj(th) (II.4)

wherekij(th) is thei−j entry of the matrixK(th) ∈ R
N×N

andF is a 2 × 2 matrix. Notice that at timeth the protocol
requires the transmission of the statexj(th) from the node
j to the nodei if and only if kij(th) 6= 0. The problem is to

determine the matrixF and the matricesK(th), h = 0, 1, . . .,
such that all theyi(th)’s converge to the same ramp shaped
function.

We introduce now two simplifications which seem rather
unrealistic at the moment, but which yield the starting point
for a more realistic case. First assume thatth = hT where
T ∈ R>0 is the sample period. Second assume thatK(th) =
K for all h = 0, 1, . . ., whereK is such thatK1 = 0, being
1 is N -dimensional column vector with all entries equal to
1. The conditionK1 = 0 encodes the fact that, if all clocks
are synchronized, then no correction is needed. Finally we
will assume for simplicity thatK is symmetric.

Then we obtain

xi((h + 1)T ) =

=

[

1 ∆δi(hT )
0 1

]



xi(hT ) −
N

∑

j=1

KijFxj(hT )



 .

Notice thatδi(hT ) = T/∆i + ǫ(h) where−1 < ǫ(h) < 1
and soǫ(h) can be neglected ifT/∆i >> 1 which will
be assumed in the sequel. Moreover, in the following we
denote∆/∆i by di and we refer todi as the speed of the
i-th clock. Introduce now the2N dimensional vectorx(th)
havingx′(th) := [x′

1(th), . . . , x′
N (th)]⊤ as the firstN entries

and havingx′′(th) := [x′′
1 (th), . . . , x′′

N (th)]⊤ as the second
N entries. Then the previous equations can be collected in
the following

x((h + 1)T ) =

=

[

I TD
0 I

] ([

I 0
0 I

]

−

[

f11K f12K
f21K f22K

])

x(hT )

(II.5)

whereI is theN×N identity matrix,fij are the entries ofF
andD = diag{∆/∆1, . . . , ∆/∆N} = {d1, . . . , dN}, where
the symboldiag {A1, A2, . . . , AN} denotes the square block
matrix having the square matricesAi on the diagonal.

Our objective is to findK and F such that the synchro-
nization error defined as

e(h) = [Ω 0]x(th) (II.6)

with Ω = I − 1

N 11
∗, converges to zero while the compo-

nents ofx′(h) follow asymptotically a ramp function, i.e.,
limh→∞[x′(h) − (ah + b)1] = 0 for somea ∈ R>0, b ∈ R.

Therefore the problem we tackle in this paper can be
formulated as follows. DetermineK andF such that:

a) system (II.5) has one eigenvalue in1 with algebraic
multiplicity 2 and geometric multiplicity1. This en-
sures that the state trajectories contains the modes of
the formah + b;

b) the two modes associated with the eigenvalue1 are
unobservable with respect to outpute defined in (II.6);

c) all the other eigenvalues are inside the open unit disk.

Since K is assumed to be symmetric, then it can be
diagonalized by an orthonormal matrixU , i.e.,U∗KU = Λ,
where

Λ = diag {λ1, λ2, . . . , λN}, λi ∈ R, i = 1, . . . , N,



and whereλ1, . . . , λN denote the eigenvalues ofK. Observe
that, from the assumption thatK1 = 0, zero is an eigenvalue
associated to the normalized eigenvectorN−1/2

1. Without
loss of generality it is assumed thatλ1 = 0 and hence the
first column ofU is N−1/2

1. From this it follows also that

U∗

(

I −
1

N
11

∗

)

U = diag {0, IN−1}

whereIN−1 denotes theN − 1 dimensional identity matrix.
Now it is convenient to perform a change of variable so

that the new state is̄x(t) := diag {U∗, U∗}x(t) and the new
output is ē(t) = U∗e(t). The new system becomes

x̄((h + 1)T ) =

=

[

I TW
0 I

]([

I 0
0 I

]

−

[

f11Λ f12Λ
f21Λ f22Λ

])

x̄(hT )

ē(t) = diag {0, IN−1} [I 0] x̄(t) (II.7)

whereW := U∗DU .
Proposition 2.1:Consider the linear system (II.5) and

(II.6). Then, for all matricesK, F and D, one is an
eigenvalue of the matrix

[

I TD
0 I

] ([

I 0
0 I

]

−

[

f11K f12K
f21K f22K

])

(II.8)

with algebraic multiplicity at least two.
Proof: The matrix in (II.8) has the same characteristic

polynomial as the matrix
[

I TW
0 I

] ([

I 0
0 I

]

−

[

f11Λ f12Λ
f21Λ f22Λ

])

. (II.9)

Sinceλ1 = 0, it is possible to see that the matrix
[

I TW
0 I

] ([

I 0
0 I

]

−

[

f11Λ f12Λ
f21Λ f22Λ

])

−

[

I 0
0 I

]

has the first column and theN + 1-th row that are equal to
zero and so its characteristic polynomial has a double roots
in zero. From this the thesis follows.

We have seen in the previous proposition that the system
(II.5) and (II.6) has one eigenvalue in1 with algebraic mul-
tiplicity 2. In the next two subsections we provide conditions
on K andF ensuring that the geometric multiplicity of the
eigenvalue1 is one and that conditions (b) and (c), stated
above and related to the unobservability of the eigenvalue1
and to the stability of system (II.5), are satisfied.

A. Geometric multiplicity of the eigenvalue1 and its unob-
servability

Let us assume thatK, F have been chosen so that the
system (II.5) and (II.6) have one eigenvalue equal to1 of
algebraic multiplicity2 and that all the others eigenvalues are
inside the open unit circle. We will see in the next subsection
how to make the latter condition satisfied. It is easy to see
that the vectorv = [ 10 ] is an eigenvector associated with the
eigenvalue1. Moreover this is not observable since[Ω 0]v =
0. If there exists an generalized eigenvectorw such that

([

I TD
0 I

]

−

[

I TD
0 I

] [

f11K f12K
f21K f22K

]

−

−

[

I 0
0 I

])

w = v

and such that[Ω 0]w = 0, then we have proved both that
the geometric multiplicity of the eigenvalue1 is one and
thatw is not observable. Partitionw =

[

w′

w′′

]

and notice that
[Ω 0]w = 0 implies thatw′ = α1 for someα ∈ R. From
the previous equation we have that

TDw′′ + (f11I + f21TD)Kw′ + (f12I + f22TD)Kw′′ = 1

f21Kw′ + f22Kw′′ = 0

Using the fact thatw′ = α1 we obtain that

TDw′′ + (f12I + f22TD)Kw′′ = 1

f22Kw′′ = 0 (II.10)

Observe now that, iff22 6= 0 andK has rankN−1 (which is
necessary for stability as we will see in the next subsection),
then w′′ = β1 for someβ ∈ R; in this case we have that
βTD1 = 1 which is possible only ifD = (βT )−1I. This
implies that, in caseD is not of the formD = dI for some
d ∈ R, then we have to impose thatf22 = 0.

Finally in order to obtainw′′ we need that the linear
equation(TD + (f12 + f22TD)K)w′′ = 1 is solvable. This
happens ifdet(TD+(f12 + f22TD)K) 6= 0. Assuming that
D is a small enough perturbation of a matrixdI, we have
that the last condition is equivalent todet(TdI + (f12 +
f22Td)K) 6= 0 and, in turn, to− Td

f12+f22Td 6∈ σ(K).

In the rest of the paper, we assume that

f12 = 0 and f22 = 0. (II.11)

Indeed, based on the above discussion, conditions in (II.11)
guarantee that, ifdi 6= 0 for all i ∈ {1, . . . , N}, then both
equations in (II.10) are satisfied.

Remark 2.2:Conditions in (II.11), imply that, when nodes
communicate with each other, they have to transmit only the
information related to the statex′. In other words the matrix
F can be regarded as a2 × 1 dimensional matrix and the
input ui(hT ), for all i ∈ {1, . . . , N}, can be rewritten as

ui(hT ) =

[

f11

f21

]

∑

kijx
′
j(hT )

=

[

f11

f21

]

∑

kij

(

x′
j(hT ) − x′

i(hT )
)

(II.12)

where the last equality follows from the fact thatK1 = 0.
Remark 2.3:The fact that we need to imposef22 = 0

in order to ensure the unobvervability of the eigenvalue
one, makes the strategy proposed by Scardovi and Sepulchre
[10] for obtaining consensus for higher order systems not
applicable for time synchronization. Indeed their method is
strongly based on the assumption thatf21 = 0 and that
f22 6= 0 which implies that, in the non ideal case where
D 6= d1, the eigenvalue1 becomes observable and hence
that consensus is not achievable.

B. Stability

In this subsection we consider the stability of system (II.5).
We perform our analysis by assuming thatD is an small
perturbation of the matrixdI, for somed ∈ R. Accordingly,
we will designK and F only for D = dI. From the fact
that the eigenvalues of system (II.5) depend continuously on
the matrixD, it will follow that this choice ofK andF will
yield the stability also for a small enough perturbation ofD.



Proposition 2.4:Let D = dI and f12 = f22 = 0. Then
the system linear system (II.5), besides the eigenvalue1 with
algebraic multiplicity2, has all the remaining eigenvalues
inside the open unit circle if and only if

f11 > 0, f21 > 0, (II.13)

0 < λi <
4

2f11 + Tdf21

, 2 ≤ i ≤ N.

Proof: If D = dI, then W = dI and hence all the
blocks of the matrices in (II.9) are diagonal. Therefore the
system represented by (II.9) can be decoupled intoN two-
dimensional subsystems. It follows that the characteristic
polynomial of (II.9) is given by

N
∏

i=1

[(z − 1)2 + λi(β(z − 1) + α)]

whereβ := f11 + Tdf21 and α := Tdf21. Observe that for
i = 1 we haveλi = 0 and we get the two eigenvalues equal
to 1. For the remaining eigenvalues ofK we need to impose
that both the roots of the polynomial(z−1)2+λi(β(z−1)+
α) has to be inside the open unit circle. Using the bilinear
transformation this is equivalent to have that

(λ(α − 2β) + 4)s2 + 2λ(β − α)s + αλ

is Hurwitz-stable (i.e., it has both roots with negative real
part). This happens if and only if the coefficients have the
same sign. It can be seen that the coefficients can not be all
negative and that they are all positive if and only if0 < α <
β and 0 < λi < 4

2β−α , i = 2, .., N . These inequalities are
equivalent to (II.13).

Remark 2.5:Assume that we are given a graphG =
(V, E) where V = {1, . . . , N} and whereE ⊆ V × V .
Assume thatG is undirected, namely that(i, j) ∈ E if
and only if (j, i) ∈ E. This graph describes the feasible
communications, i.e., the nodej can transmit information to
the nodei if and only if (j, i) ∈ E. For this reason we say
that a matrixK is compatible withG if kij 6= 0 implies
(j, i) ∈ E. Assume now thatG is connected. Then values of
f11, f21 and a matrixK compatible withG yielding clock
synchronization can be selected in a completely distributed
way. To see this let us consider the symmetric stochastic
matrixP built according to the Metropolis weights technique
[13] as follows

Pij =







1

max{di,dj}
if (i, j) ∈ E and i 6= j

1 −
∑

j 6=i Pij if i = j
0 otherwise

(II.14)

wheredi denotes the number of neighbors of the nodei, i.e.,
di = |Ni| andNi = {j ∈ V |(j, i) ∈ E , i 6= j}. Note thatP
is a stochastic symmetric matrix. Moreover it is also easy to
see thatP is primitive and hence, by the Perron-Frobenius
theorem, one eigenvalue ofP is 1 and all the others are inside
the open interval]− 1, 1[. Then the matrixK := I −P , and
the parametersf11 := 1/2 and f21 := 1/(2Td) satisfy the
conditions of Proposition 2.4. Other distributed strategies are
possible for designing the matrixK such as the Laplacian
matrix [8].

III. ROBUSTNESS ANALYSIS

In the previous section we have proposed a method for
determiningK andF based on the continuity of the eigenval-
ues as functions of the parameters. In this section we perform
a more refined analysis based onH∞ control techniques.
Again we consider the case wheref12 = f22 = 0.

We start our analysis by assuming thatD = dI+η∆̄ where
∆̄ is a diagonal matrix with entries belonging to[−1, 1].
Then,η describes the amplitude of the allowed perturbation
of dI. Moreover we assume that also the knowledge of
K is uncertain, namely thatK is any symmetric matrix
of rank N − 1 such that K1 = 0 and such that all
the nonzero eigenvalues belong to the interval[λm, λM ],
where 0 < λm ≤ λM . The objective is to use the small
gain theorem in order to understand the stability of the
previous system. Observe that we are not interested into
the asymptotic stability of system (II.5) and (II.6), but into
something weaker. However, in order to apply the standard
small gain theorem, we need to transform our problem into
a standard stability problem, and, to this aim, we need to
make a suitable change of variable.

Consider any unitary matrixU having N−1/2
1 as first

column. Then

K̄ := U∗KU =

[

0 0

0 K̃

]

where all the eigenvalues of̄K belong to the interval
[λm, λM ]. Let us introduce now the variablēx(t) :=
diag {U∗, U∗}x(t) obtaining the following system

x̄(h + 1) =

=

[

I TW
0 I

]([

I 0
0 I

]

−

[

f11K̄ 0
f21K̄ 0

])

x̄(h)

(III.1)

whereW := U∗DU . Observe that here, with a slight abuse,
we use the same notation used in (II.7), even though (II.7)
could be, in general, different from (III.1), since, in this
section, the diagonalization ofK is not needed.

As noticed in Proposition 2.1 the matrix
[

I TW
0 I

] ([

I 0
0 I

]

−

[

f11K̄ 0
f21K̄ 0

])

−

[

I 0
0 I

]

has the first column and theN + 1-th row that are equal to
zero and so its characteristic polynomial has a double roots
in zero. From this it follows that two eigenvalues of system
(III.1) are equal to1 and the remaining2N − 2 eigenvalues
coincide with the eigenvalues of the submatrix obtained by
deleting the1st and the(N + 1)th rows and columns of the
matrix appearing in (III.1). It can be seen that this submatrix
is given by

[

I T̃W
0 I

] ([

I 0
0 I

]

−

[

f11K̃ 0

f21K̃ 0

])

where hereI means the(N − 1)× (N − 1) identity matrix.
Now we want to study the stability of the stability of the
following system

x̃(h + 1) = (III.2)

=

[

I T̃W
0 I

] ([

I 0
0 I

]

−

[

f11K̃ 0

f21K̃ 0

])

x̃(h)
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Fig. 1. In the Figure it is represented the set of pairs(η̄, ǭ) ensuring that
system (III.3) and (III.4) is asymptotically stable.

where x̃(h) is a N − 2 dimensional state. To this aim we
will use the small gain theorem.

Let λ̄ := λm+λM

2
and ǭ := λM−λm

λM +λm
and H̃ :=

1

ǭ

(

1

λ̄
K̃ − I

)

. Let moreover̃V := 1

η̄ (W̃−dI). Notice thatH̃

is a symmetric matrix with eigenvalues belonging to[−1, 1]
and so||H̃ ||2 ≤ 1. Notice moreover that̃V is a submatrix
of U∗∆U and so||Ṽ ||2 ≤ 1. We want to quantify how big
ǭ andη̄ are, while maintaining the system stability. It can be
shown that the system

x̃(h + 1) =

[

I TdI
0 I

]

x̃(h) +

[

I TdI
0 I

]

ũ(h)+

+

[

0 I
0 0

]

ṽ(h)

ỹ(h) =
[

I 0
]

x̃(h) +
[

I 0
]

ṽ(h)

z̃(h) =

[

I 0
0 I

]

x̃(h) +

[

0 0
0 I

]

ũ(h) (III.3)

with the feedback laws

ṽ(h) =

[

ǭI 0
0 η̄I

] [

H̃ 0

0 Ṽ

]

z̃(h)

ũ(h) =

[

−f11λ̄I
−f21λ̄I

]

ỹ(h) (III.4)

is equivalent to (III.2). Notice that the first feedback models
the system uncertainty, while the second feedback contains
the design parameters. From the small gain Theorem, we
have that, if the product between theL2 gain of the linear
system (III.3) (i.e., the system having̃x as state,

[

ỹ
z̃

]

as
output,[ ũ

ṽ ] as input) and theL2 gain of the map (III.4) (i.e.,
the map that gives[ ũ

ṽ ] as function of
[

ỹ
z̃

]

) is strictly smaller
than one, then system (III.2) is asymptotically stable. We
can use this fact to provide numerically a set of pairs(η̄, ǭ)
yielding the stability of (III.2).

Example 3.1:In this example we assume thatλ̄ = 1,
d = 1, T = 100, f11 = 1/2, f21 = 1/(2dT ) = 1/200.
In Figure 1 we plot in black the region of pairs(η̄, ǭ) for
which the product of the two aforementionedL2 gains is
strictly smaller than1.

IV. PSEUDO-SYNCHRONOUS IMPLEMENTATION

In the previous section we have seen that the control
law described in (II.12) asymptotically synchronizes sys-
tem (II.5), provided that the matrixD is a small perturbation

of a matrix dI, d ∈ R>0, and that conditions (II.13) are
satisfied. The goal of this section is to analyze a more
realistic implementation of the proposed synchronization
method.

We start by observing that, in any possible implementation
of a synchronization algorithm, there are two important
limitations that have to be taken into account. The first
limitation is related to the existence of delays between the
time a message is prepared by the transmitting node in
order to be sent, and the time in which this message is
used by the receiving node in its synchronization updating
step. The second limitation concerns the fact that the nodes
data transmissions and algorithm updating steps cannot occur
exactly at the same time, i.e., synchronously, as described
in (II.12). Indeed, in a fully distributed synchronization
algorithm, these operations can be performed by the nodes
relying only on their local time estimates and, in absence of
synchronization, these estimates differ from each other.

In this Section we assume that the delays are negligible
and we concentrate only on the second limitation we dis-
cussed above. We will turn our attention to communication
delays in Subsection IV-A and in Section V.

Next, we propose a version of the synchronization algo-
rithm which allows the nodes to overcome the fact that, in a
realistic setup, they are unable to carry out their transmission
and updating actions synchronously. This algorithm is a suit-
able modification of (II.5) and (II.12) and, in what follows,
we refers to it as thepseudo-synchronousimplementation
of (II.5) and (II.12). First we specify how the nodes select
the transmission and the updating time instants. To do so,
we need the following notations.

• By Ni, we denote the set of neighbors of the nodei,
i.e., Ni = {j | kij 6= 0, j 6= i} , or, equivalently, since
K is symmetric,Ni = {j | kji 6= 0, j 6= i} .

• By ttx,k,i we denote the time instant in which thei-
th node performs itsk-th transmission of information;
here we assume a broadcast model, i.e., each node
transmits, at the same time, the same information to
all its neighbors;

• By tup,k,i we denote the time instant in which thei-th
node performs itsk-th updating step.

Moreover, given the timet, with the symbolt+ we will
mean the time just aftert. Clearly, ttx,k,i ad tup,k,i can
be determined by the nodei relying only on its local
information. Based on this observation we define:

• ttx,k,i as the first time such thatx′
i(ttx,k,i) = kT ,

namely the nodei transmits when its time estimate is
equal tokT for the first time;

• tup,k,i to be equal to

max {ttx,k,h|h ∈ Ni ∪ {i}} ,

namely the nodei updates its state only after the com-
pletion of all the communication actions it is involved,
included the transmission.

The pseudo-synchronousalgorithm can be formally de-
scribed as follows.
Processor states:For each i ∈ {1, . . . , N}, the nodei

stores in its memory the state variablesx′
i, x′′

i , the
parametersf11, f12 and the weightskij , j ∈ Ni.



tup,k,ittx,k,i

xi(t)
,

Fig. 2. In this Figure we show how the time instantsttx,k,i and tup,k,i

are related to the state evolutionx′

i(t).

Initialization: For i ∈ {1, . . . , N}, the variablesx′
i(0)

are initialized toyi(0), while the variablesx′′
i (0) are

initialized to 1.
Transmitting and updating steps: During the k-th itera-

tion of the algorithm each nodei, i ∈ {1, . . . , N}
performs the following actions:
1. for t ∈]tup,k−1,i, tup,k,i[, the nodei computes its state
according to

xi(t) =

[

1 ∆ (τi(t) − τi(tup,k−1,i))
0 1

]

xi(t
+

up,k−1,i).

Similarly to Section II, we approximate
∆(τi(t) − τi(tup,k−1,i)) by di(t − tup,k−1,i).

2. At instant timettx,k,i the nodei broadcasts to its
neighbors the statex′

i(ttx,k,i) which concides withkT .

3. For allj ∈ Ni, at timettx,k,j the nodei receives from
the nodej the valuex′

j(ttx,k,j) = kT ; it computes the
differencex′

j(ttx,k,j) − x′
i(ttx,k,j) = kT − x′

i(ttx,k,j)
and, it stores it in memory.

4. At time tup,k,i the node i computes the input
ui(tup,k,i) using all the stored differencesx′

j(ttx,k,j)−
x′

i(ttx,k,j), j ∈ Ni, namely

ui(tup,k,i) =
[

f11

f12

]

∑

j∈Ni

kij

(

x′
j(ttx,k,j) − x′

i(ttx,k,j)
)

.

(IV.1)

Accordingly it updates its statexi as

xi(t
+
up,k,i) = xi(tup,k,i) + ui(tup,k,i)

It must be noticed thatui(tup,k,i) could be such that
xi(t

+

up,k,i) > (k + 1)T . In this case there would not be
a time ttx,k+1,i such thatxi(ttx,k+1,i) = (k + 1)T . If
xi(t

+

up,k,i) > (k + 1)T occurs we assume that thei-th node
performs itsk+1-th transmission just after itsk-th updating
step, sending to all its neighbors the estimatexi(t

+

up,k,i).
Figure 2 illustrate the relation between the graph of the

time estimationx′
i(t) and the time instantsttx,k,i andtup,k,i.

We show now that thepseudo-synchronus algorithmcan
be written as a perturbation of the synchronous algo-
rithm (II.5). To do so, we first need to define the sampling
instants since the pseudo-synchronous algorithm is continu-
ous time while the synchronous algorithm is discrete time.
A suitable definition is given by

tk = min
i

{ttx,k,i} .

Moreover let

δTk = tk+1 − tk − T

δtup,k = [tup,k,1 − tk, . . . , tup,k,N − tk]
T

δttx,k = [ttx,k,1 − tk, . . . , ttx,k,N − tk]T

Loosely speakingtk represents the first time instant in which
the estimate of a node reaches the valuekT , δtup,k and
δttx,k accounts for the lack of synchronicity in performing
the updating and transmitting actions,tk+1−tk−T measures
the length of thek-th sample period with the respect to the
nominal lengthT . The following proposition shows how the
pseudo-synchronus algorithm can be written as a discrete
time nonlinear system that is a perturbation of linear system
representing the synchronous algorithm. In the statement of
the theorem we use the notationdiag {v}, where v is a
vector, to mean the diagonal matrix having the components
of v on the diagonal.

Proposition 4.1:Consider thepseudo-synchronousalgo-
rithm illustrated above. Then

x(tk+1) = Ax(tk) + Φ(x(tk)) (IV.2)

where the matrixA describes the linear iteration relative to
the synchronous implementation and where

Φ(x(tk)) =

[

Φ′(x′(tk), x′′(tk))
Φ′′(x′(tk), x′′(tk))

]

(IV.3)

is defined as

Φ′(x′(tk), x′′(tk)) := diag {δtup,k}D (x′′(tk) − x′′(tk+1))

+ f11 (diag {K δttx,k} − Kdiag {δttx,k})Dx′′(tk)

+ δTkDx′′(tk+1)

and

Φ′(x′(tk), x′′(tk)) :=

f21 (diag {K δttx,k} − Kdiag {δttx,k})Dx′′(tk).

Observe that the above system can be written as the
sum of the synchronous system (II.5) and some perturba-
tive terms which arise since the clocks do not carry out
synchronously their transmitting and updating actions. The
following result characterizes the asymptotic synchronization
of the system (IV.2).

Theorem 4.2:Let 1 and0 be theN -dimensional vectors
with all the components equal to1 and 0, respectively.
Consider the system (IV.2) and lete(tk) be the synchroniza-
tion error. Then for anyǫ > 0, there exist a neighborhood
U ∈ R

N of 1 and a neighborhoodW ⊆ R
N of 0 such that,

if x′(0) ∈ W and [d1, . . . , dN ]
T ∈ U , then the following

three properties hold true



a) x′(t+up,k,i) < (k + 1)T for all k ≥ 1 and for all i ∈
{1, . . . , N};

b) limk→∞(tk+1 − tk) = T̄ where|T̄ − T | ≤ ǫ;
c) the synchronization error converges exponentially fast

to 0, i.e., there existsC > 0 and0 ≤ ρ < 1 such that

||e(tk)|| ≤ Cρk||e(0)||.
The proofs of the results present in this Section are omitted
for reasons of space. We only remark that the proof of
Theorem 4.2 is quite involved and is obtained thanks to
arguments related to the center manifold theorem. However
we refer the interested reader to the document in [14].

A. Communication delays

In this subsection we model the sources of disturbances
for the pseudo-synchronousalgorithm above described. In
particular we focus on the transmission delays. Letttx,k,j

be defined as above,i.e., the time instant in which thej-
th node carries out itsk-th transmission. Leti ∈ Nj and
let trx,k,i,j be time instant in which thei-th clock receives
the information sent by thej-th clock. A suitable model to
describetrx,k,i,j is given by

trx,k,i,j = ttx,k,j + γk,i,j

where γk,i,j is a nonnegative random variable denoting
the deliver delay betweenj and i, of mean γ̄, variance
σγ and bounded in size byγM . Since thei-th node re-
ceives the information sent by thej-th node at timettx,k,j

at the delayed timetrx,k,i,j we have that the difference
x′

j(ttx,k,j) − x′
i(ttx,k,j) used in (IV.1) must be replaced by

x′
j(ttx,k,j) − x′

i(trx,k,i,j). Accordingly, in this new model,
Equation (IV.1) becomes

ui(tup,k,i) =
[

f11

f12

]

∑

j∈Ni

kij

(

x′
j(ttx,k,j) − x′

i(trx,k,i,j)
)

.

(IV.4)

If we assume that each clock knows the mean of the delays,
namely the value of̄γ, we could modify the above equation
adding to the termx′

j(ttx,k,j)−x′
i(trx,k,i,j) a correcting term

trying to compensate the effects due to the delivery delay.
More precisely, observe that

x′
i(ttx,k,j) = x′

i(trx,k,i,j − γk,i,j)

= x′
i(trx,k,i,j) − γk,i,jdix

′′
i (trx,k,i,j),

where the unknown quantitiesγk,i,j anddi can be suitably
approximated byγk,i,j ≈ γ̄ and di ≈ 11. In this way we
obtain

x′
i(ttx,k,j) ≈ x′

i(trx,k,i,j) − γ̄x′′
i (trx,k,i,j)

and, thereby,

ui(tup,k,i) =
[

f11

f12

]

∑

j∈Ni

kij

(

x′
j(ttx,k,j) − x′

i(trx,k,i,j)+

+γ̄dix
′′
i (trx,k,i,j)) . (IV.5)

It is worth remarking that, besides the transmission delays,
there are two additional sources of disturbance. The first

1We recall that thei-th clock knows the nominal value∆ but not the
value of ∆i and hence also ofdi. The approximationdi ≈ 1 is obtained
by assuming that∆i ≈ ∆.

is due to the fact the local clock has a limited resolution.
Indeed, in the analysis we previously performed, given two
time instantst1 and t2, t1 < t2, and the clocki, we
approximated the quantity∆(τi(t2)− τi(t1)) by di(t2 − t1).
Observe thatdi(t2 − t1) is a continuous quantity of the time
differencet2 − t1, while ∆(τi(t2) − τi(t1)) is a quantized
quantity belonging to the alphabet{0, ∆, 2∆, . . .}. As a
consequence, the quantization can be approximated as a
fictitious measurement noisevi that enters the estimation
dynamics as∆(τi(t2) − τi(t1)) = di(t2 − t1) + vi(t2). It is
common practice to approximate quantization error as white
noise of zero mean and variancer = ∆2/12. The second
source of disturbance is that the local clock speeddi is
not constant but can change over time due to temperature
changes or other effects. A better model for the clock speed
is given bydi(tk+1) = di(tk) + ni(tk) whereni(tk) is a
zero mean white noise with a certain varianceq.

In this paper we do not provide a theoretically analysis
of the effects of the aforementioned disturbances on the
performance of ourpseudo-synchronousalgorithm. We limit
ourselves to provide a numerical example related to the
transmission delays in the next Section. However, we remark
that, thanks to the linearity of our synchronization strategy,
transmission delays, quantization, and time-varying clock
speeds, can be incorporated into the model of ourpseudo-
synchronousalgorithm as additive noises. This fact should
make their analysis tractable. By contrast the protocol in
[6], which is based on the cascade of two distributed least-
squares algorithms, and the protocol in [7], which is based
on the cascade of two first order consensus algorithms, are
both nonlinear and do not lead to simple characterization of
performance in presence of noise.

V. NUMERICAL EXAMPLES

In this section we provide two examples illustrating the
approach proposed in this paper. Specifically, in Example
5.1 we simulate thepseudo-synchronousalgorithm starting
from initial condition of different size, in Example 5.2 we
simulate the effects of the communication delays.

Example 5.1:In this simulation we consider a connected
random geometric graph generated by choosingN = 50
points uniformly distributed in the unit square, and then plac-
ing an edge between each pair of points at distance less than
0.4. We simulate the behavior of thepseudo-synchronization
algorithm illustrated in Section IV. We assume thatT = 100,
f11 = 1/2, f21 = 1/(2T ) and that the matrixK is built
according to the Metropolis method illustrated in Remark
2.5. The results obtained are reported in Figure 3 where
we plot the trajectories of the quantityN−1/2 log ‖e(tk)‖,
generated starting from initial conditions of different size.
Precisely,

• the blue line refers to initial conditionsx′
i(0), di ran-

domly chosen inside[0, 10] and [1 − 10−1, 1 + 10−1],
respectively;

• the black line refers to initial conditionsx′
i(0), di

randomly chosen inside[0, 1] and[1− 10−2, 1+10−2],
respectively;

• the red line refers to initial conditionsx′
i(0), di ran-

domly chosen inside[0, 10−1] and[1−10−3, 1+10−3],
respectively.
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Fig. 3. Trajectories of the synchronization error generated by thepseudo-
synchronousalgorithm starting from initial conditions of different size.

The plots reported are the result of the average over 1000
Monte Carlo runs, randomized with respect to both the graph
and the initial conditions. Observe that all the trajectories
converge to zero with the same rate of convergence and that,
as expected, the greater the initial condition is, the greater
the value of‖e(tk)‖ is. Moreover, we evaluated also the
value of the sample period at the steady-state, i.e, the value
of T̄ = limk→∞(tk+1 − tk). We obtainT̄ = 100.153 for the
trajectory depicted in blue,̄T = 100.042 for the trajectory
depicted in black and̄T = 100.001 for the trajectory depicted
in red. Observe that the value of̄T increases with the
uncertainty on the initial condition.

Example 5.2:In this example we simulate the effects of
the communication delays. We assume that the graphG and
the matrix K are generated as in the previous Example.
Moreover, againT = 100, f11 = 1/2, f21 = 1/(2T ). We
implement both (IV.4) (blue line) and (IV.5) (red line) and the
results obtained are reported in Figure 4 where we depicted
the behavior of the quantityN−1/2 log ‖e(tk)‖. The initial
conditions x′

i(0), di of the trajectories plotted have been
randomly chosen inside[0, 10] and [1 − 10−1, 1 + 10−1],
respectively. Moreover the plot reported is the result of
the average over 1000 Monte Carlo runs, randomized with
respect to both the graph and the initial conditions.

We assume thatγi,j,k, for all (i, j) ∈ G and for allk > 0,
is uniformly chosen within the interval[0, 1]. Clearly the
presence of the delays prevents our algorithm to reach the
asymptotic synchronization. However observe that, at the
steady-state the variableN−1/2 log ‖e(tk)‖ oscillates within
an interval whose amplitude is smaller that10−1, i.e., one
order of magnitude less than the maximum valueγM that
the delays can assume. Finally we can see that the correcting
term introduced in (IV.5) provided a significant improvement
of the attainable performance.

VI. CONCLUSIONS

In this paper we have proposed a distributed clock syn-
chronization algorithm based on the consensus of higher
order linear systems. We have proved the stability of this al-
gorithm in the unrealistic synchronous implementation andin
a realistic pseudo-synchronous implementation. Simulations
supports our belief that also the completely asynchronous
implementations converges. The formal proof of this fact
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Fig. 4. Effects of the communication delays on the performance of the
pseudo-synchronousalgorithm.

seems to be a quite challenging and difficult question that
we hope to answer in the future.
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