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Networked Control Under DoS Attacks:
Tradeoffs Between Resilience and Data Rate

Shuai Feng“, Ahmet Cetinkaya

Abstract—In this article, we study communication-constrained
networked control problems for linear time-invariant systems in
the presence of Denial-of-Service (DoS) attacks, namely attacks
that prevent transmissions over the communication network. Our
article aims at exploring the tradeoffs between system resilience
and network bandwidth capacity. Given a class of DoS attacks,
we characterize the bit-rate conditions that are dependent on the
unstable eigenvalues of the dynamic matrix of the plant and the
parameters of DoS attacks, under which exponential stability of
the closed-loop system can be guaranteed. Our characterization
clearly shows the tradeoffs between the communication bandwidth
and resilience against DoS. An example is given to illustrate the
proposed approach.

Index Terms—Cyber-physical systems, Denial-of-Service (DoS)
attacks, networked control systems, quantized control.

|. INTRODUCTION

Cyber-physical systems (CPSs) have attracted much attention due
to the advances in automation. Integrating communication and com-
putation technologies, CPSs have a broad spectrum of applications
ranging from small local control systems to large-scale systems, some
of which are safety-critical. Thus, the malfunction of the safety-critical
CPSs would induce destructive consequences to the physical world.
Among the variety of aspects in reliability problems, the security of
CPSs becomes a challenge from both practical and theoretical points
of view. The security of CPSs mostly concerns the resilience against or
protection from malicious attacks, e.g., deceptive attacks and Denial-
of-Service (DoS) [2], [3].

This article deals with DoS attacks. The intention of DoS attackers
is to induce instability by maliciously jamming the bandwidth-limited
channel. It is well known that an insufficient bit rate in the com-
munication channel influences the stability of a networked control
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system [4], not to mention networked control with packet drops [5].
Hence, the topic of networked control under data rate constraints and
random packet dropouts has been investigated by many researchers.
However, those results may not be applicable in the context of DoS
since the communication failures induced by DoS can exhibit a temporal
profile quite different from the one induced by genuine packet losses;
particularly packet dropouts induced by DoS need not follow a given
class of probability distributions [6]. This poses new challenges in
theoretical analysis and controller design.

The literature on networked control with bit-rate limitation is large
and diverse [7]-[11] and the problem when quantization and genuine
packet losses coexist has been well studied (see e.g. [12]-[16]). In [8],
the authors obtain necessary and sufficient conditions concerning the
observability and stabilization for the networked control of a linear
time-invariant system under communication constraints. These condi-
tions are independent of information patterns and only reliant on the
inherent property of the considered plant, i.e., the unstable eigenvalues
of the dynamic matrix of the plant. The articles [12] and [16] investigate
data rate problems for mean square stability under Markovian packet
losses. Necessary and sufficient conditions for stabilization are obtained
for both scalar and vector systems. Some research approach the control
problem with data rate constraints more from information theoretic
viewpoints [17].

Recently, systems under DoS attacks have been studied from the
control-theoretic viewpoint [18]-[30]. In [18], a framework is intro-
duced where DoS attacks are characterized by frequency and duration.
The contribution is an explicit characterization of DoS frequency and
duration under which stability can be preserved through state-feedback
control. Extensions have been considered dealing with self-triggered
networks [19] and nonlinear systems [20]. In [21], the authors general-
ize this model and consider a scenario where malicious jamming attacks
and genuine packet losses coexist, in which the effects of malicious
attacks and random packet losses are merged and characterized by an
overall packet drop ratio. In [22], the authors investigate launching DoS
attacks optimally to a network with genuine packet losses. Specifically,
the attacker aims at maximizing the estimation error with constrained
energy. In [23], the authors formulate a two-player zero-sum stochastic
game framework to consider a remote secure estimation problem, where
the signals are transmitted over a multi-channel network under DoS
attacks. A game-theory-based model where transmitters and jammers
have multiple choices of sending and interfering power is considered
in [24]. The recent article [25] investigates the stabilization problem
of a discrete-time output feedback system under quantization and DoS
attacks. With the satisfaction of a certain norm condition, a lower bound
of quantization level and an upper bound of DoS duration are obtained
together guaranteeing stability.

In this article, we consider the tradeoffs between system resilience
and data rate and explore how they interactively affect the stability
of a linear time-invariant continuous-time process, possibly open-loop
unstable and with complex eigenvalues. Specifically, the communica-
tion between sensor and controller takes place over a bit-rate limited
channel subject to DoS attacks. Here, we assume that the channel is
free of random dropouts and errors, e.g., single bit errors and burst
errors. Previously, we have shown that a controller with prediction
capability significantly promotes the resilience of a networked control
system against DoS in the sense that the missing signals induced by
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Fig. 1. Controller and actuator co-location architecture.

DoS attacks can be reconstructed and then applied for computing the
control input [26], [27], [30]. Under proper design, the system can
achieve ISS-like robust stability or asymptotic stability in the presence
or absence of disturbance and noise, respectively. However, when the
network has limited bandwidth, the existing results obtained are not
applicable any longer because signal deviation induced by quanti-
zation cannot be simply treated as bounded noise under the control
architecture in [27], and such signal deviation influences the accuracy
of estimation/prediction and hence the resilience of the closed-loop
control system.

Therefore, there are tradeoffs between communication bandwidth
and system resilience. An interesting question is to find how large the
data rate should be in order to guarantee the stability of a system under
DoS attacks and also to ensure that the data rate is minimum if one
does not consider DoS. We may state this question in another way as
how much the limited bit rate degrades the robustness of a networked
control system in terms of stabilization. We follow the approach aligned
with that for the minimum data rate control problems discussed above.
In particular, we recover those results in the case without any DoS. By
applying the system transformation, we associate the bit rates with the
eigenvalues of the dynamic matrix of the process and DoS parameters,
and explicitly characterize the relationship between system resilience
and bit rates. Specifically, we compute a bit-rate bound element-wise,
larger than which the closed-loop system is exponentially stable. This
on the other hand reveals the “robustness degradation” induced by
quantization. Moreover, we also present a stability condition over the
average data rate.

This article is organized as follows. In Section II, we introduce the
framework that includes system description and transformation, a class
of DoS attacks and the main contribution of this article. Section III
presents a uniform quantizer and controller design. In Section IV, we
present the main result, which includes the analysis of quantization
range, prediction error, and stabilization. A numerical example is
presented in Section V, and finally, Section VI concludes this article
and introduces possible future research directions.

Notation: Let R denote the set of reals. Given b € R, R>;, and R+,
denote the sets of reals no smaller than b and reals greater than b,
respectively; R-;, and R, represent the sets of reals no larger than
b and reals smaller than b, respectively; Z denotes the set of integers.
For any ¢ € Z, we denote Z. := {c,c+ 1,--- }. Let [v] be the floor
function such that |v] = max{w € Z|w < v}.Givenavectory, ||y is
its Euclidean norm. Given a matrix I, || I'|| represents its spectral norm
and I'T is its transpose. Given an interval Z, |Z| denotes its length. The
Kronecker product is denoted by ®. Finally, given a signal F, F (")
denotes the limit from below at ¢.

Il. FRAMEWORK

A. System Description

Consider the networked control system in Fig. 1, which has been
widely studied in the previous works such as [7], [9], [10], and [16].
The process is a linear time-invariant continuous-time system given by

z(t) = Az(t) + Bu(t), t € Rsg (1)

where z(t) € R"* is the state with z(0) arbitrary, A € R"=*"= B €
R™e*mu_q(t) € R™ is the control input and (A, B) is stabilizable.
Let K € R™»*"= be a matrix such that the real part of each eigenvalue
of A+ BK is strictly negative. Let A,. = ¢, & d,.i be the eigenvalues
of A with ¢,,d, € R, where i represents the imaginary number. We
assume that the state is measurable by sensors.

The measurement channel has limited bandwidth and is moreover
subject to DoS (see Fig. 1). The transmission attempts between the
encoder and decoder are carried out periodically, i.e.,

o1 —te = A, ke 2)

where {tx} = {to,t1,...} denotes the sequence of the instants of
transmission attempts and A denotes the sampling interval. By con-
vention, we let t, = 0. Moreover, we assume that the network com-
munication protocol is acknowledgment-based (like the TCP protocol)
without any delay in terms of both encoded signal and acknowledgment
transmissions.'

Since we consider a controller-actuator co-location architecture
as in Fig. 1, only the measurement channel is subject to DoS, and
the control channel is free from DoS disruptions and always available.
Due to DoS attacks, not all the transmission attempts succeed. Hence,
we denote by {2, }mez, = {20, 21, ...} C {tk}rez, the sequence of
the time instants at which successful transmissions occur.

B. System Transformation

In order to facilitate the analysis in Sections III and IV, we carry out
the transformation as follows.

Lemma 1: There exists a transformation Z(t) = E(t)Sxz(t), possi-
bly time-varying, which transforms (1) into

z(t) = AZ(t) + B(t)u(t) 3)
where A € R"™#*"= is a block diagonal matrix such that
A=E@t)SAST'E®M) ™ + E(t)E(t)!
= diag (Al, Ay, ... ,flp) 4)

where S and E(t) are given in the Appendix. Let r =1,2,...,p,
where p € 7Z; denotes the number of submatrices on the diagonal of A.
Therefore, one has

e R ®)
1

Cr

corresponding to the real eigenvalue A, = c,., and

10

2N X2N .
®IelR , I = {0 1

} (6)
1

Cr

corresponding to the complex eigenvalues A, = ¢, & d,i with d,. # 0.
Besides, B(t) = E(t)SB. [ ]

This lemma is essential for achieving a tight result and the minimum
data rate in the absence of DoS attacks. Notice that in the context
of discrete-time systems with random packet dropouts, time-varying
transformation may not be a necessary step [12]. If A has no complex

!"The decoder sends an acknowledgment to the encoder immediately when it
successfully receives an encoded signal. If the acknowledgment is not received
by the encoder at a sampling instant, it implies that due to the presence of DoS
the decoder did not receive the transmission at all, and hence the decoder did
not send the acknowledgment.
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eigenvalues, then the transformation reduces to a time-invariant one,
under which A becomes the Jordan form of A, and B(¢) reduces to a
time-invariant matrix.

C. Time-Constrained DoS

We refer to DoS as the phenomenon for which some transmission
attempts may fail. We consider a general DoS model that constrains the
attacker action in time by only posing limitations on the frequency of
DoS attacks and their duration. Let {hy, }»ez, with hg > 0 denote the
sequence of DoS off/on transitions, that is, the time instants at which
DoS exhibits a transition from zero (transmissions are possible) to one
(transmissions are not possible). Hence, H,, := {h,,} U [hy, by, + 70 [
represents the nth DoS time-interval, of a length 7,, € R, over which
the network is in DoS status. If 7,, = 0, then H,, takes the form of a
single pulse at h,,. Given 7,¢t € Ry with ¢t > 7, let n(7,t) denote
the number of DoS off/on transitions over [r,t], and let Z(7,t) :=
Upez, Hn M [7,t] be the subset of [7, t] where the network is in DoS
status.

Assumption 1: (DoS frequency). There exist constants ) € R and
7p € R such that

t—T1

n(r,t) < n+ @)

TD
forall 7,t € Ry with ¢ > 7. [ |
Assumption 2: (DoS duration). There exist constants x € R-( and
T € R~ such that

Bl < 5+ ®)
forall 7,t € R>o with ¢ > 7. ]

Remark 1: Assumptions 1 and 2 do only constrain a given DoS
signal in terms of its average frequency and duration. Following [31],
Tp can be considered as the average dwell-time between consecutive
DoS off/on transitions, while 7 is the chattering bound. Assumption 2
expresses a similar requirement with respect to the duration of DoS. It
expresses the property that, on average, the total duration over which
communication is interrupted does not exceed a certain fraction of
time, as specified by 1/7'. Like 7, the constant ~ plays the role of a
regularization term. It is needed because during a DoS interval, one has
|Z(An, hn + Tn)| = T > T /T Thus,  serves to make (8) consistent.
Conditions 7p > 0 and 7" > 1 imply that DoS cannot occur at an
infinitely fast rate and be always active. |

The next lemma from [30] relates DoS parameters and the time
elapsing between successful transmissions.

Lemma 2: (see [30, Lemma 1]) Consider the periodic transmis-
sion as in (2) along with DoS attacks in Assumptions 1 and 2.
If 1/T + A/7mp < 1, then the sequence of successful transmissions
satisfies zop < @ and 2,41 — z2m < Q + A for all m € Zg, where
Q:=(k+nA)1-1/T - A/p)~L. |

We let Ts(zo,t) denote the number of successful transmissions
within the interval [zq,¢[ (¢ > zp). The following lemma presents
the relationship between DoS attacks, the time interval [zo,¢[ and
TS (Zo, t) .

Lemma 3: Consider the DoS attacks characterized by Assump-
tions 1 and 2 and the periodic transmission in (2). If 1/7 + A/7p < 1,
then T's (2o, t) satisfies
1_%_%(]&72 )7m+nA

A ¢ A

Proof: Notice that Assumptions 1 and 2 specify the DoS frequency
and duration for the interval [r,¢]. Recall that n(7,t¢) denotes the
number of DoS off/on transitions over [, ¢] and satisfies Assumption 1.
Let n(, t) be the number of DoS off/on transitions over [7, ¢[. One can
verify that n(7,t) < n(r,t) <n+ (t —7)/7p for t > 7. Likewise,

Ts(z0,t) > 9)

we obtain that the duration of DoS attacks |Z(7, t)| for [r, ¢[ satisfies
B, D] < E(r,6)] < 5+ (¢ — 7)/T.

Consider an interval [zo,¢[. Let H,, represent the nth DoS time-
interval with h,, € [z, t[. One can verify that the number of unsuc-
cessful transmissions during H,, is no larger than 7,,/A + 1. Hence,
the number of unsuccessful transmissions in [z, ¢[ satisfies Ty (zq, t) <

20D (1 JA +1) < [E(20,)|/A + 020, 1). Let Ta (20, t) de-
note the number of total transmission attempts in [zo,¢[ and one
has that T4 (z0,t) > (t — 29)/A. On the other hand, one also has
Ts(zo,t) = Ta(20,t) — T (20,t), with which the inequality (9) can
be obtained. |

Remark 2: In the scenario of a reliable network (1" = 7p = oo and
k =mn=0), Q in Lemma 2 becomes zero, and Ty, (z0,t) = 0 implies
Ts(z0,t) = T'a(z0,t). This means that every transmission attempt
ends up with a successful transmission. Thus, Lemmas 2 and 3 describe
a standard periodic transmission policy. |

D. Literature Review and Paper Contribution

We first introduce one of our previous results for the ease of compar-
ison and then present the contribution of this article. The robustness
problem of the structure as in Fig. 1 has been investigated in [26]
and [27], where it is assumed that the network has infinite bandwidth.
We briefly recall the controller and the resultin [27]. Let £(¢) denote the
estimation of x(¢) and n(t) represents bounded noise, then the control
system in [27] is

u(t) = KE(t)
{ (1) = AE(t) + Bu(t),
£(t) = x(t) + n(d),

Theorem 1: (see [27]) Consider the dynamical system as in (1)
under a co-located control system as in (10). The closed-loop system
is stable for any DoS sequence satisfying Assumptions 1 and 2 with
arbitrary n and x, and with 7 and 7" such that

ift # 2z (10)

ift = z,,.

L2 g (1)
T ™D '
In case ||n(t)|| = 0, the result above still holds. |

Article Main Contribution: Exploiting the controller in (10) and the
architecture in Fig. 1, we first design the encoder and decoder such that
they are free of overflow of quantization range even in the presence
of DoS attacks. Afterwards, we obtain that the closed-loop system is
exponentially stable if the bit rate R, satisfies

-1
Rr{>cTAlong(1—7{—%) Cife >0 gy

>0, ifc, <0

where R, represents the number of bits applied to the signals corre-
sponding to the blocks in A. The condition (12) is general enough in the
sense that in the absence of DoS attacks, the result of minimum data rate
control is recovered (see Remark 4). On the other hand, we characterize
the resilience of the system, namely the DoS attack boundary shaped
by data rate. One can preserve closed-loop stability if the frequency
and duration of DoS attacks satisfy

%—i—ﬁ <1— c.Alog, e

Ve, >0
™ R, y VCpr Z

13)
where R, > 0. Clearly, the signal inaccuracy due to quantization
cannot be simply treated as the one caused by measurement noise
in the sense that the noise does not enter the right-hand side of (11),
whereas the quantization degrades system robustness by introducing
—c,Alog, e/ R, to the right-hand side of (13). One can get close to
the result in (11) by increasing the data rate R,..
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Fig. 2. Control architecture with encoding and decoding systems. The
black solid lines and dashed lines represent paths of signals computed
by embedded blocks and triggering signals generated by communication
protocol, respectively. The green-dashed line represents the process
that converts signals into code and the blue one represents the reversed
process.

I1l. CONTROL ARCHITECTURE

A. Uniform Quantizer

The limitation of bandwidth implies that transmitted signals are
subject to quantization. Let

X1 = e/ (14)

be the original /th signal before quantization and g, () represents the
quantized signal of x; encoded by R; bits, where [ = 1,2,3,...,n,.
The choices of R, e; € R and j; € R-( will be specified later. We
implement a uniform quantizer such that

Ryl .
ar, (x1) == { Wv E); 1:§1 xi <1 (15)
if R; € Zy and
qr,(x1) =0 (16)
if R; = 0. Note that for any j; € R+ the following holds:
|€z — Jiqr, (€z/jz)| <gq/2%, iflel/i <1 (17)

for both cases, namely R; € Zq [12], [14].

B. Controller Design

The basic idea of the control system design is that we equip the
encoding and decoding systems with prediction capability to properly
quantize data and more importantly predict the missing signals that are
interrupted by DoS. The encoding system outputs quantized signals
and transmits them to the decoding system through a DoS-corrupted
network. The decoding system attempts to predict future signals based
on the received quantized signals.

As shown in Fig. 2, on the sensor side the encoding
system is embedded with a predictor for predicting Z(¢).

Let  &(t) = [21(t) 22(t) -+ &,,(t)]T denote the predic-
tion of Z(t) = [z1(t) Zo(t) --+ ZTn, (t)]'. The error e(t) =
[er(t) ea(t) -+ en, (t)]T describes the discrepancy between Z(t) and
Z(t), where

el(t) = i’l(t) — J_Zl(t), = 1,2,. ..

Furthermore, we will design a dynamic system in (20), in which the
state J(t) = [j1(t) Ja(t) Jn, (1)]T is positive for ¢ € R~g, where
71(t) represents the quantization range that bounds the error, i.e., j; (¢t) >
le)(t)| for t € R+ as it will be shown later.

On the actuator side, the decoding system is a copy of the encoding
system. Once there is a successful transmission containing the encoded

(18)

y N -

state at z,,, it recovers ¢g, (x1(2m)) based on the received code and
updates the predictor, and sends an acknowledgment back to the encod-
ing system. We assume that the encoding and decoding systems have
the same initial conditions. Therefore, identical structures and initial
conditions, and acknowledgments guarantee synchronization of all the
signals in the encoding and decoding systems.

The predictor in both the encoding and decoding systems predicting
Z(t) is given by

i(t) = Az(t) + B(t)u(t), t+# zm
) =@t ) —D(t),  t=zn (19)
u(t) = K(t)2(t)

where K(t) = KST1E(t)™* € R™*"=. The vector ®(¢) in (19)
is given by ®(t) = [p1(t) ¢a(t) -+ bn, (1)]T, where ¢ (t) =
Ji(t)gr, (xi(t)). Recall that x;(t) = e;(t)/i(t), in which 5;(¢) is the

Ith entry in the vector J(t) = [j1(t) j2(t) -+ jn, (£)]T. The impul-
sive system computing J(¢) is given as follows:
Jt) =AJ{t), t+#zn,
J{t)=HI({t), t=z, (20)
H = diag(2~R1 1,27 Re T, ... 27 Re )

where H € R™=*"= and I, € R™"*" or I, € R?""*"r represents
the identity matrix with dimension matching that of A,. in (5) or (6),
respectively. At the moment of a successful transmission, J(¢) in both
the encoding and decoding systems is updated according to the second
equation in (20). At last, the initial conditions of £ and J in the encoding
and decoding systems are identical and satisfy

Z(07) =0, 5(0 0)], I=1,2,...,n,.

Itis worth mentioning that R; represents the number of bits applied to
the /th quantized signal, which is element-wise. Since the /th quantized
signal must be associated with one block A, (r =1,2,...,p), hence
in this article the data rate analysis is based on the index of A,., and all
the elements corresponding to A, apply R, bits. For example, if the Ith
signal is associated with A,., then R; = R,.. In the results of this article,
we will obtain the bounds of {R,.},—1,2,... p, so that {R;}i=12 . n,
can be determined.

) >z 2n

IV. MAIN RESULT

We will first show that the uniform quantizer (15) is free of overflow
and then conduct the analysis concerning stability.

A. Overflow-Free Quantization Under DoS

In this subsection, our intention is to show that j;(t) > |e;(t)| for

teRso with [ =1,2,...,n,, which implies the uniform quantizer

(15) does not saturate. Exploiting (18) and the continuity of Z(¢) such
that Z(t) = Z(¢~), we have
el(t) = &u(t) — Zu(t)

() = 2u(t) = 5t )ar, (eu(t™)/51(t7))

() =t )ar, (ea(t) /(7)) t=2m

where l = 1,2,...,n,. Hence, the dynamics of e(t) obeys

{é(t) = Ae(t), t# 2z,
e(t)y=e(t™)—P(t7), t=zn.

Moreover, observing (23) and (20), one has é(t) = Ae(t) and
J(t) = AJ(t), respectively, for ¢ # z,,. Their solutions are e(t) =
eAte(0) and J(t) = eAJ(0), respectively, for 0 < ¢ < zg (if zg # 0)
or 0 <t<z (f zg= 0) Here, by (4)—(6), we can obtain eAt =
diag(Uy (t), Us(t), ..., Up(t)) with

U-(t) = e V.(t) @W, r=1,2,...,p

Il
2>

(22)

Il
)

(23)

(24)
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where
1 ¢ (;“7:11,
V)= w={licz0 @
t
1

in which I € R?*? is the identity matrix.

By e(t) =eA*e(0), one can obtain that |e(t)] < e?t|e(0)]
holds element-wise, where |-| denotes a function that com-
putes the absolute value of each element in a vector, i.e.,
le(t)] = [lex(t)] |lea(t)] -+ |en, (t)|]T. Define the vector e(t):=
J(t) = le(t)| = [e1(t) ea(t) -+ en, (1)]T. If zo # 0, one has £(t) =
J(t) — le(t)| > eAtJ(0) — et|e(0)| = eAte(0) for 0 <t < 2. By
(21), one knows that£(0) = J(0) — |e(0)| = J(0) — |2(0) — z(0)| =
J(O7)—12(07) =z(07)| = J(07) — |Z(07)| > 0 and thus every el-
ement in the vector £(0) is positive, which implies that every element
in the vector £(t) is positive for 0 < ¢ < zo. Thus, one can infer that
Ji(zg) — lei(25)| > 0, and hence j;(z5) — |ei(z5 )| > 0. In view of
(22), one has

— Gilzg)ar, (er(z0)/31(2))]
< Jilz) /2% = ji(20)

where the inequality is implied by (17) and the second equality is
implied by (20), from which one obtains that |e;(z0)| < ji(z0) and
furthermore €(z¢) > 0. Following the analysis of e(¢) for 0 < ¢ < z,
one could obtain that e(t) > e(t=20)g(z) with 2o <t < z;. This
implies that every element in £(¢) is nonnegative and |e; (¢)| < j,(¢) for
zo <t < z;.By simple induction, we can verify that [e; (¢)| < j;(¢) for
t € Rao if 20 # 0.

If zp=0, we know that |e;(z5) = e, (07)]=|z(07)| <
J1(07) = Ji(2 ), and hence 7;(zy) — |ei(zy )| > 0. Following (26),
one gets |e;(20)| < j1(z0). The remaining part follows the same anal-
ysis in the last scenario to obtain |e;(¢)| < j;(t) fort € R if zp = 0.
Therefore, we conclude that

lex(20)| = |ex(20)

(26)

|€l(t)‘§jl(t), l=1,2,...,nz, tERZO (27)

and thus the quantizer (15) is not overflowed, and (17) always holds.
Notice that (27) holds for ¢t € Rx(, which implies |e;(t)] is always
bounded by j;(¢) in the absence and presence of DoS attacks. Without
losing generality, we focus the attention from z, onwards.

B. Dynamics of the Encoding and Decoding Systems

Since the evolutions of the signals in the encoding and decoding
systems are identical, we avoid their distinction in this part.

Considering (20) and simple iteration, we obtain that J(z,,) =
P(szls Zm) (zm 1) Hk 1 (Zkfl, B Zk)J(Zo) = P(ZO’
Zm)J(20), in  which  P(zp_1,2,) = HeAGm—*m-1) is a
block diagonal matrix in view of H in (20) and e? =
diag(Uy (t), Ua(t), - ,Uy(t)) before (24). Let Pr(zm-1,2m)
denote the matrices on the diagonal of P(z,, 1, z,) and it is easy to

verify that Py (2, 1, 2m) = 27 Br U, (A,,) with A, := 2, — 2 1.
By iteration, one has
(20, 2m) H (2k1, 28) H 2 U (AR). (28)

Recall that {z,, }.mez, denotes the sequence of time instants of the
successful transmissions. Now we introduce a lemma concerning the
convergence of J (2, ).

Lemma 4: Consider the dynamics of J(t) in (20) and the DoS
attacks in Assumptions 1 and 2 satisfying 1/7 + A/7p < 1 with

network sampling interval A as in (2). All the elements in the vector
J(zm) converge to zero as z,, — oo if R, satisfies

~1
R.1> (1—%—%) c.Alogye, ifc. >0
>0, if ¢, <0

(29)

where ¢, is the real partof A, andr =1,2,... p.

Proof: In this proof, we mainly show that || P(zo, z,,)|| converges
to zero as z,, — oo when 1/7 + A/7p < 1 and (29) holds, which
implies the convergence of J(z,,).

According to (24), (28) and exploiting that m = Ts(zo, zm) in
Lemma 3, we have

Po(20,2m) = (27 Br)m (Z Ak)
= (eCT(Z’”'7Z°>/(2RT)m) Vi(zm — 20) @ W
S gr(ar)ZWL720 VT(Z’m - ZO) QW (30)
Rv(n+nA)
where 0, := 2 .When 1/T + A/7p < 1 and (29) holds, the

Q. in (30) satisfies

Ll A
T ™D

a, 1= e /20 < 1. 31

In view of (a,.)tV,.(t) with o, < 1 in (30), it is implied that there
exist finite numbers Cfj, C7, and p, < 0 such that P,.(zg,2,,) <
Cyerr(=m=20)V, (C7) @ W, and hence, we obtain that there exists
finite C'5 and p < O such that

17z )II < CoeEm =200 || T (o). (32)

Finally, we obtain the convergence of J(z,,) when z,, — cc. |

After proving the convergence of J(z,, ), now we introduce another
lemma concerning the convergence of J(t) and e(t).

Lemma 5: Consider J(t) and e(t) whose dynamics are given by
(20) and (23), respectively. Suppose that the DoS attacks in Assump-
tions 1 and 2 satisfy 1/7°+ A/7p < 1.If the bit rate R, satisfies (29),
then J(¢) and e(¢) converge exponentially to the origin.

Proof: According to (20), (32) and Lemma 2, for z,,, <t < 241,
we have

[T < e =m|J (z)]| < e"Emtr=2m) ] (2,) |
_ Czev(zmﬂfzm)efu(zm“fzm)eu(zmﬂfZO) HJ(ZO)”

< CoeV(@FA) o= 1(QFA) orlzmi1=20)|| T ()|

< 0e | (z0) | (33)

where v = max{0, 7} with 7 = Ayax( A+AT) denoting the logarith-
mic norm of A and g := Cpe?(@T2) e~ #(Q+2) Since ~, is finite and
< 0, we conclude that J(t) exponentially converges to the origin
when ¢t — oo. In light of (27), one could also obtain

le@)II < 17 < o2 |1J (0| 34)

which implies the convergence of e(t). |

C. Main Result

Now we are ready to present the main result of this article.

Theorem 2: Consider the linear time-invariant process (1) and its
transformed system (3) with control action (19)—(21) under the trans-
mission policy in (2). The transmitted signals are quantized by the
uniform quantizer (15) and (16). Suppose that the DoS attacks charac-
terized in Assumptions 1 and 2 satisfy 1/7" + A/7p < 1.If the bit rate
R, withr = 1,2,...,p satisfies (29) then the state of the closed-loop
system exponentially converges to the origin.
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Proof: Recall ~ the control  input  wu(t) = K(t)2(t) =
KS'E(t)'#(t) = Kz(t), where Z(t)=S'E(t)'Z(t) can
be interpreted as the estimation of the original process state
z(t) in (1). Then, one has the discrepancy between Z(t) and
x(t) such that é(t) := z(t) — (t). Thus, (1) can be rewritten as
z(t) = (A+ BK)x(t) + BKeé(t), whose solution is

¢
a(t) = e(A+BK)(t’ZO)x(zo)+/ eAFBEET) BKE(r)dr (35)

Z0

where ¢t € R>.,. From the equation above, one can see that the
stability of z(t) depends on ¢é(t). Thus, we analyze ¢(t) such
that e(t) = z2(t) —z(t)= ST'E(@)'2(t) — STTE(t) 'z(t)= S~!
E@) (&) —x(t)) = S E(t) te(t).Since 1/T + A/Tp < 1and
R, satisfies (29), then the inequalities in (34) hold. Therefore,
one has [le(t)[| < ST E@) M lle(®)] < ST E(®#) || yoer =)
|7 (20)|] < y1e#t20)|J(2)|, where ~; > 0. Note that such =,
exists and is finite since |[S~1FE(¢)"!| is bounded. Since A + BK
is Hurwitz, there exist finite reals 8> 1 and o < 0 such that
le(A+BEI|| < Beot for t > 0. Using this inequality together with
(35) and ||€(t)]| < ~1e*(t20)||.J(z0)]|, we obtain

lz@)] < Be” |z (=)

t
+ / Be” | BK |11 |1 (z0) | dr
20

IN

Bet 20 a(zo)|

t _ _
+ / BT | BE 70| (z0) | dr
20

IA

Bes 720 |z ()|

+ Bt = 20)e* )y | BK[[|] (20)| (36)

where € := max{u,0} € R.o. Since £ < 0, there exist two finite
reals § satisfying £ < § < 0 and Cs such that (& — zg)ef(t%0) <
C3e%(t=20) Then, we have

lz (@)l < 20 (Blla(z0)[| + Cspm | BE | (z0)])-

It is immediate to see that x(¢) exponentially converges to the origin as
t — o0.

Moreover, in view of (33) and (34), and the fact that Z(t) =
E(t)Sx(t) and ||Z(¢)|| < |le(®)|| + |Z(¢)||, we conclude that J(t),
e(t), z(t), Z(t), and =(t) exponentially converge to the origin as
t — o00. |

Remark 3: We emphasize that this theorem characterizes how the
bit rate influences the system’s resilience. Condition (29) can be rewrit-
ten as

(37)

l+é <1- c.Alog, e
T ™D Rr
where R,. > 0. The inequality above explicitly quantifies how the data
rate affects the robustness, e.g., the larger R, the smaller 7", and 7
can be, which implies that the system can tolerate more DoS attacks
in terms of duration and frequency, and still preserve stability. Fig. 3
exemplifies this characterization. |
Remark 4: In view of Theorem 2, if the network is reliable (1" =
7p = o0 and kK = 1 = 0), one obtains that the closed-loop system is
exponentially stable if R, satisfies

> c.Alog, e,
fe { >0,

, Ve, >0 (38)

ife, >0

ifcr<OT:1’2""’p'

(39)
To this end, we almost recover the results of minimum data rate obtained
in [7], [8], and [10]. By “almost”, we mean that if one omits disturbance
and noise in [7], or convert our results into discrete-time form as in [8]
and [10], then the data rates obtained in this article in the absence of DoS

\
+
!
»

/ Stable region

/
1
0 cAlog,e

=S 4

Fig. 3. Characterization of system resilience and data rate. The green-
dashed curve is the function 1/T + A/7p =1 — ¢, Alogy e/ R, with
cr > 0. If the pair (R,,1/T 4+ A/7p) is in the stable region (strictly
under the green-dashed curve), then the system is stable. If ¢, = 0, the
stable region is in rectangular shape.

and the ones in the articles above are equivalent. This is the advantage
of the result obtained in this article as we can recover the minimum
data rate. By contrast, the article [25] considering data rates for the
output-feedback scenario under DoS attacks cannot achieve this. H

The parameters in Assumptions 1 and 2 can also be regarded as
design parameters before the design of the encoding and decoding
systems, and those parameters only specify the boundary within which
an attacker behaves. Thus, if the attacks comply with the predefined
boundary, the system with the data rate in (29) can achieve stability,
even without the knowledge of the parameters of the attacks in real
time.

Under Theorem 2, the average data rate associated with the success-
fully received packets is

Dd :— lim (Zm — 20)71 ZRlTS(Z()yZm)

Zm—0
=1

> Z cr logy e

ke{l|e; >0}

(40)

which essentially depends on the real parts of the unstable eigenvalues
of the dynamic matrix of the process. The average data rate associated
with the transmission attempts is

N -1
po=Srya> (17 7)

T
=1 D

> crlogoe (41

ke{l|c;>0}

which is the corresponding result under DoS attacks comparing with
the achieved result in [32] where genuine packet dropout is considered.
Moreover, under a 100% reliable network, one should have D, = D,.
Due to DoS attacks, one may have D, > D, and the lower bound of
D.isscaledby (1 — 1/T — A/7p)~! € Ry Thisreflects the need of
redundant communication resources to compensate for the side effect
of DoS attacks.

D. Stability Condition Over the Average Data Rate

In Theorem 2, we have shown the data rate conditions, under which
the closed-loop system is stable. The setting there is that the number of
bits transmitted at z,, (m = 0,1, ---) are identical and equivalent to
R,.. In this section, we loose the sufficient condition above in the sense
that the number of bits at each z,, does not have to be identical. In
particular, we show that if the average value of them is greater than (1 —
1/T — A/7mp) te,.Alog, e with ¢, > 0, then the closed-loop system
is still stable.

Assume that the number of bits assigned to each transmission
attempt can change over time, and let R, (t;) denote the number
of bits applied to each element corresponding to A, at .. Here,
we introduce two notions of average data rates. One is the av-

erage over all transmission attempts ]?i,«,k = (R, (to) + R, (t1) +
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-+ R, (ty-1))/k with k =1,2,---. The other is over all success-
ful transmissions R, ,,, := (R,(20) + Rr-(z1) + -+ - 4+ Rr(2m-1))/m
withm = 1,2, - . Clearly, both averages will be finite if the maximum
number of bits that the network can transmit in one transmission is
finite, namely R,.(tx) < oo for k € Zg. In the current case, we use
time-varying R; in (15) for quantization.

Recall the definitions of {ty }rcz, and {2y, }mez,. The proposition
below presents a sufficient condition for stability concerning the aver-
age data rate.

Proposition 1: Under the transmission policy in (2), consider the
process (1) and its transformed system (3) with control action (19)—(21)
and the uniform quantizer (15) and (16), where R,. becomes R,. (1) that
are finite and possibly time-varying. The DoS attacks are characterized
as in Assumptions 1 and 2 and satisfy 1/7" + A/7p < 1.If the average
value of bits along {z,,_1}m=1,2,... satisfies

= > (1-1/T —A/mp) te,Alogye, ifc, >0
Brm { >0, ifc, <0 “42)

forr =1,2,..., p, then the closed-loop system is stable.

Proof. By observing (30) and exploiting that m = Ts(zo, 2, ) in
Lemma 3, we could obtain that P, (2o, 2., ) under the average data rate
scenario is given by

m

Ur(iAk) H 9= Rr(2k-1)
k=1 k=1

ecr(zm—20)

B H;nzl QR (2k-1) Vi(zm =

PT(ZO7Zm) -

20) @ W
ecr(szzo)
(2R'r,m, )m
gr,m(dr,m)zmizo ‘/;'(Zm -

Ry m (k+nA
A

)
is finite. When (42) holds, one has

‘/T(Zm — Z()) @ W

< Z2) @W  (43)

where 0, ,, := 2

LA
_ R T 7D
Ay = ecr j2ftrm—=x < 1.

(44)
The rest of the proof can follow the analysis after (31), and we obtain
the stability of the closed-loop system. |

It is worth mentioning that Proposition 1 concerns the sequence
of {R,(z)} instead of {R, (¢x)}. This expresses that the average
value of bits of all the successful transmissions, namely R,.,, for
m =1,2,..., should satisfy (42), instead of the average value of
bits of all the transmissions attempts R, . In fact, even if R, ; >
(1-1/T — AJtp) tc.Alog, e, it s still possible that R, ,, < (1 —
1/T — A/7p)'e,Alog, e and instability may occur.

In practice, one can use (42) to compute the number of bits online, so
that stability can be guaranteed. For example, the coding systems can
precompute the number of bits right before each transmission attempt
such that if the transmission attempt succeeds then (42) holds. In this
case, the number of bits at the decoding side needs to be adjusted
according to the received data size.

V. NUMERICAL EXAMPLE

For simplicity, we consider a process that is in Jordan form and taken
from [33] and show the simulation results. The system to be controlled
is open-loop unstable and is characterized by the matrices

= 1 1 = 1 0
amas[ 1] meso=[l ). @
The state-feedback matrix is given by
- —2.1961 —0.7545
K=K = {70.7545 72.7146] (46)

JE—

o
Dos | |

Time(s)
3
—_—
J2 g
25 DoS
2k
1.5
1
0.5F
0
0 1 2 3 4 5
Time(s)

Fig. 4. Simulation plots of z(t) (top) and J(t) (bottom).

The network transmission interval is given by A = 0.1s. We con-
sider a sustained DoS attack with variable period and duty cycle, gener-
ated randomly. Over a simulation horizon of 20 s, the DoS signal yields
|Z(0,20)| = 15.52 s and n(0,20) = 20. This corresponds to values
(averaged over 20 s) of 7p & 0.96 and T = 1.29, and ~ 80% of trans-
mission failures. It is simple to verify that A /7p + 1/T ~ 0.8793.

According to Theorem 2, we obtain that

Ry >(1—1/T—A/mp) 'c,Alogye =1.1953.  (47)
Then, we select Ry = 2. The simulation results of z:(¢) and J(t) (0-5's)
are shown in Fig. 4. Itis clear that the closed-loop system is stable. From
another viewpoint, if the data rate of the channel is preselected as R =
2, the closed-loop system should be stable under the attacks in this
example since the DoS parameters satisfy 1/7 + A/7p =~ 0.8793 <
1—c1Alog, e/Ry = 0.9279.

In fact, the obtained value of bit rate is conservative. The stability can
be still preserved at the lower rate with R; = 1 under the same pattern
of DoS attacks. One factor contributing to the conservativeness is that
the actual number of successful transmissions is much larger than the
theoretical value computed in Lemma 3.

VI. CONCLUSION

We investigated the tradeoff problem for stabilizing control of a
networked control system under limited bandwidth and DoS attacks.
It was shown that the sufficient condition of bit rate for stabilization
depends on the unstable eigenvalues of the dynamic matrix of the
process as well as DoS attacks. It is emphasized that the results of this
article clearly indicate the tradeoffs between the amount of transmitted
data and the robustness against DoS attacks. In particular, the approach
isin accordance with the recent studies on the minimum datarate control
problems.

In the future, disturbance, noise, transmission error, random
dropouts, and output feedback might be taken into consideration. One
could also consider the scenario of unreliable acknowledgment as
in [34], under which signal desynchronization between encoder and
decoder might happen. Moreover, transmission delays and system
dynamics with uncertainties could be investigated by following the
analysis in [13] and [35].
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APPENDIX

The Appendix is for presenting the matrices S and F(t) in (4). For
the calculation of (4) to (6), we refer the readers to [8], [36] and [37],
where time-varying transformations are applied.

The matrix S € R™*"= is a transformation matrix such that A =
SAS™! =diag(A;, Aa, ..., A,) € R"=*"= s the Jordan form of A
[38]. If A, in A is associated with the real eigenvalue 1, = c,, then
A, equals to the right-hand side of (5). If A,. in A is associated with
the complex eigenvalues A,. = ¢, + d,.i (d,- # 0), then one has

D, I
A = DT 4 c R2n¢><2n,,~ D. = Cr _dr
T I ) a dr C,'. M
D,
(48)
The matrix E(t) is given by
E(t) = diag(E1(t), Ex(t),..., Ey(t)) € Rrex"e (49)

where E,.(t) = diag(1,1,...,1) € R™*™ corresponds to the real
eigenvalue A, =c,., or E.(t) = diag(w,(t),w,(t),...,@.(t)) €
R2nrx2nr corresponds to the complex eigenvalues A, = ¢, & d,.i
(d, # 0) with

cos(d,t) sin(d,t)

—sin(d,t) cos(d,t) 0

w, () =
|
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