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Kun Liu 1, Emilia Fridman 2 and Karl Henrik Johansson 1

Abstract—This paper develops the time-delay approach to networked
control systems with scheduling protocols, variable delays and variable
sampling intervals. The scheduling of sensor communication is defined
by a stochastic protocol. Two classes of protocols are considered. The first
one is defined by an independent and identically-distributed stochastic
process. The activation probability of each sensor node for this protocol
is a given constant, whereas it is assumed that collisions occur with
a certain probability. The resulting closed-loop system is a stochastic
impulsive system with delays both in the continuous dynamics and in the
reset equations, where the system matrices have stochastic parameters
with Bernoulli distributions. The second scheduling protocol is defined
by a discrete-time Markov chain with a known transition probability
matrix taking into account collisions. The resulting closed-loop system is
a Markovian jump impulsive system with delays both in the continuous
dynamics and in the reset equations. Sufficient conditions for exponential
mean-square stability of the resulting closed-loop system are derived via
a Lyapunov-Krasovskii-based method. The efficiency of the method is
illustrated on an example of a batch reactor. It is demonstrated how the
time-delay approach allows treating network-induced delays larger than
the sampling intervals in the presence of collisions.

Keywords: networked control systems, Lyapunov functional,
stochastic protocols, stochastic impulsive system.

I. INTRODUCTION

Networked control systems (NCSs) have received considerable
attention in recent years (see e.g., [1], [2]). In many such systems,
only one node is allowed to use the communication channel at a
time. The communication is orchestrated by a scheduling rule called
a protocol. The time-delay approach was recently developed for
the stabilization of NCSs under the round-robin (RR) protocol [3]
and under the try-once-discard (TOD) protocol [4]. The closed-loop
system was modeled as a switched system with multiple and ordered
time-varying delays under RR scheduling or as a hybrid system with
time-varying delays in the dynamics and in the reset equations under
the TOD scheduling. Differently from the existing results on NCSs
in the presence of scheduling protocols (in the frameworks of hybrid
and discrete-time systems), the transmission delay is allowed to be
large (larger than the sampling interval), but a crucial point is that
data packet dropout is not allowed for large delays in either [3] or
[4].

In the framework of hybrid systems, a stochastic protocol was
introduced in [5] and analyzed for the input-output stability of
NCSs in the presence of data packet dropouts or collisions. An
i.i.d (independent and identically-distributed) sequence of Bernoulli
random variables is applied to describe the stochastic protocol.
Communication delays, however, are not included in the analysis.
The stability of NCSs under a stochastic protocol, where the activated
node is modeled by a Markov chain, was studied in [6] by applying
the discrete-time modeling framework. In [6], data packet dropouts
can be regarded as prolongations of the sampling interval for small
delays.

In the present note, to overcome the lack of stability analysis of
NCS under scheduling protocols with large communication delays
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and data packet dropouts, we develop a time-delay approach consid-
ering multiple sensors under a stochastic scheduling protocol. The
resulting closed-loop system is a stochastic impulsive system with
delays both in the continuous dynamics and in the reset equations.
We treat two classes of stochastic protocols. The first one is defined
by an i.i.d. stochastic process. The activation probability of each node
for this protocol is a given constant, whereas it is assumed that the
collisions occur with a certain probability. The second protocol is
defined by a discrete-time Markov chain with a known transition
probability matrix taking into account collisions.

By developing appropriate Lyapunov-Krasovskii techniques, we
derive linear matrix inequalities (LMIs) conditions for the exponential
mean-square stability of the closed-loop system. As in [3] and [4],
differently from the hybrid and discrete-time approaches, we allow
the transmission delays to be larger than the sampling intervals in
the presence of scheduling protocols. The efficiency of the presented
approach is illustrated by a batch reactor example.

The rest of this note is organized as follows. Section II presents
the model of NCS and the hybrid delayed system model for the
closed-loop system. In Section III below, the exponential mean-
square stability of the closed-loop system under i.i.d stochastic
protocol will be studied. The exponential mean-square stability of
the closed-loop system under Markovian stochastic protocol will be
presented in Section IV. In Section V, the efficiency and advantages
of the presented approach are illustrated by a batch reactor example.
Finally, the conclusions and the future work are stated in Section
VI. Preliminary results on the stabilization of NCSs with two sensor
nodes under i.i.d stochastic protocol have been presented in [7].

Notations: Throughout this note, the superscript ‘T ’ stands for
matrix transposition, Rn denotes the n dimensional Euclidean space
with vector norm | · |, Rn×m is the set of all n×m real matrices, and
the notation P > 0, for P ∈ R

n×n means that P is symmetric and
positive definite. The symmetric elements of the symmetric matrix
will be denoted by ∗. the space of functions φ : [−τM , 0] → R

n,
which are absolutely continuous on [−τM , 0], and have square
integrable first-order derivatives is denoted by W [−τM , 0] with the

norm ‖φ‖W = maxθ∈[−τM ,0] |φ(θ)| +
[

∫ 0

−τM
|φ̇(s)|2ds

] 1
2

. Z≥0

denotes the set of non-negative integers.

II. SYSTEM MODEL

A. NCS model

Consider the system architecture in Figure 1 with plant

ẋ(t) = Ax(t) +Bu(t), (1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control input
and A, B are system matrices of appropriate dimensions. The initial
condition is given by x(0) = x0.

The NCS has N distributed sensors, a controller and an actuator
connected via two wireless networks. Their measurements are given
by yi(t) = Cix(t), i = 1, . . . , N . Let C = [CT

1 · · · CT
N ]T , y(t) =

[yT1 (t) · · · yTN (t)]T ∈ R
ny . We denote by sk the unbounded and

monotonously increasing sequence of sampling instants 0 = s0 <
s1 < · · · < sk < · · · , k ∈ Z≥0, limk→∞ sk = ∞, sk+1 − sk ≤
MATI, where MATI denotes the maximum allowable transmission
interval. At each sampling instant sk, at most one of the outputs
yi(sk) ∈ R

ni ,
∑N

i=1 ni = ny , is transmitted over the network.
We suppose that the transmission of the information (between

the sensor and the actuator) is subject to a variable delay ηk =
ηsck + ηcak + ηck, where ηsck and ηcak are the network-induced delays
(from the sensor to the controller and from the controller to the
actuator, respectively), and where ηck is the computational delay in the
controller node. Denote sk + ηk by tk. Differently from [8], [9], we
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Fig. 1. NCS architecture

do not restrict the network delays to be small with ηk < sk+1 − sk.
Following [3], [4], [10], we allow the delay to be large provided
that packet ordering is maintained. Assume that the network-induced
delay ηk and the time span between the instant tk+1 and the current
sampling instant sk are bounded:

tk+1 − tk + ηk ≤ τM , 0 ≤ ηm ≤ ηk ≤ MAD, k ∈ Z≥0, (2)

where MAD denotes the maximum allowable delay. Here ηm and
MAD are known bounds and τM = MATI+MAD. The inequality
ηm > τM/2 implies the case of large delay. For the given example
in Section V, we show that our method is applicable also for ηm >
τM/2.

Remark 1 Differently from [10], where subscript k in tk corre-
sponds to the measurements that are not lost, in our paper k
corresponds to the sampling time. This is because we consider the
probability of collisions or data packet dropouts (see further details
below). Therefore, tk is the actual or the fictitious (when collisions
occur or the data packet is lost) updating time instant of the zero-
order hold (ZOH) device.

Remark 2 We follow a commonly used assumption on the bounded-
ness of the network-induced delays, e.g., [8], [11]. Another possibility
is the Markov chain model of the network-induced delays, e.g., [12].

B. The impulsive model

At each sampling instant sk, at most one of the system nodes i ∈
{1, . . . , N} is active. In some cases, collisions may occur when nodes
access the network [5]. If this happens, then packet with sensor data
is dropped. At the sampling instant sk, let σk ∈ I = {0, 1, . . . , N}
denote the active output node, which will be chosen according to the
stochastic protocol. Here σk = 0 means that either collisions occur
when nodes access the network or the data packet is lost during the
transmission over the network from the sensor to the controller. We
suppose data loss is not possible during the transmission from the
controller to the actuator.

Denote by ŷ(sk) = [ŷT1 (sk) · · · ŷTN (sk)]
T ∈ R

ny the most
recently received output information on the controller side. We
consider the error between the system output y(sk) and the last
available information ŷ(sk−1):

e(t) = col{e1(t), · · · , eN(t)} ≡ ŷ(sk−1)− y(sk),

t ∈ [tk, tk+1), k ∈ Z≥0, ŷ(s−1)
∆
= 0, e(t) ∈ R

ny .
(3)

We suppose that the controller and the actuator are event-driven (in
the sense that the controller and the ZOH device update their outputs
as soon as they receive a new sample).

Static output feedback control: Assume that there exists a matrix
K = [K1 · · · KN ], Ki ∈ R

m×ni such that A+BKC is Hurwitz.
Then the static output feedback controller has the form

u(t) = Kσk
yσk

(sk) +
∑N

i=1,i6=σk
Kiŷi(sk−1),

t ∈ [tk, tk+1), k ∈ Z≥0,
(4)

where Kσk
yσk

(sk) = 0 when σk = 0. Therefore, we obtain the
following continuous dynamics:

{

ẋ(t) = Ax(t) + A1x(tk − ηk) +
∑N

i=1,i6=σk
Biei(t),

ė(t) = 0, t ∈ [tk, tk+1),
(5)

where A1 = BKC, Bi = BKi, i = 1, . . . , N.

From (3), it follows that

ei(tk+1) = ŷi(sk)− yi(sk+1)
= yi(sk)− yi(sk+1), i = σk ∈ I\{0},

ei(tk+1) = ŷi(sk)− yi(sk+1)
= ŷi(sk−1)− yi(sk+1), i 6= σk, i ∈ I\{0}.

Thus, the delayed reset system is given by














x(tk+1) = x(t−k+1),
ei(tk+1) = Ci[x(sk)− x(sk+1)], i = σk ∈ I\{0},
ei(tk+1) = ei(t

−
k+1) + Ci[x(sk)− x(sk+1)],

i 6= σk, i ∈ I\{0}.
(6)

Applying the time-delay approach to sampled-data control [13],
denote τ (t) = t − tk + ηk, then τ (t) ∈ [ηm, τM ] (cf., (2)) and
x(tk−ηk) = x(t−τ (t)) for t ∈ [tk, tk+1). Therefore, the impulsive
system model (5)–(6) contains the piecewise-continuous delay τ (t)
in the continuous-time dynamics (5). Even for ηk = 0, we have
the delayed state x(tk) = x(t − τ (t)) with τ (t) = t − tk. The
initial condition for (5)–(6) has the form of x(t) = φ(t), t ∈ [t0 −
τM , t0], φ(0) = x0 and e(t0) = −Cx(t0 − η0) = −Cx0, where
φ(t) is a continuous function on [t0 − τM , t0].

Dynamic output feedback: Assume that the controller is directly
connected to the actuator. Consider a dynamic output feedback
controller of the form

ẋc(t) = Acxc(t) +Bcŷ(sk),
u(t) = Ccxc(t) +Dcŷ(sk), t ∈ [tk, tk+1), k ∈ Z≥0,

where xc(t) ∈ R
nc is the state of the controller, Ac, Bc, Cc and Dc

are matrices of appropriate dimensions. Let ei(t), i = 1, . . . , N, be
defined by (3). The closed-loop system can be presented in the form
of (5)–(6), where x, e and matrices are replaced by the ones with
bars as follows:

x̄ = [xT xT
c ]

T , Ā =

[

A BCc

0nc×n Ac

]

, B̄i =

[

BDc

Bc

]

,

Ā1 =

[

BDcC 0n×nc

BcC 0nc×nc

]

, C̄ =
[

C̄T
1 · · · C̄T

N

]T
,

C̄1 =

[

CT
1 0
0 0

]T

, C̄2 =

[

0n×n1
CT

2 0
0nc×n1

0 0

]T

, · · · ,

C̄N =

[

0 CT
N

0 0

]T

, ē(t) = [ēT1 (t) · · · ēTN (t)]T ,

ē1(t) = [eT1 (t) 0]
T , ē2(t) = [01×n1

eT2 (t) 0]T , · · · ,
ēN (t)=[0 eTN(t)]T , C̄i ∈R

ny×(n+nc), ēi(t) ∈ R
ny , i = 1, . . . , N.

C. Stochastic scheduling protocols

In the following, we will consider two classes of stochastic proto-
cols, which are defined by i.i.d and Markovian process, respectively.
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1) I.i.d scheduling: The choice of σk is assumed to be i.i.d with
the probabilities given by

Prob{σk = i} = βi, i ∈ I, (7)

where βi, i = 0, 1, . . . , N are non-negative scalars and
∑N

i=0 βi = 1.
Here βj , j = 1, ..., N are the probabilities of the measurement yj(sk)
to be transmitted at sk, whereas β0 is the probability of collision.

2) Markovian scheduling: The protocol determines σk through a
Markov Chain. The conditional probability that node j ∈ I gets
access to the network at time sk, given the values of σk−1 ∈ I, is
defined by

Prob{σk = j|σk−1 = i} = πij , (8)

where 0 ≤ πij ≤ 1 for all i, j ∈ I, ∑N
j=0 πij = 1 for all i ∈ I and

σ0 ∈ I is assumed to be given. The transition probability matrix is
denoted by Π = {πij} ∈ R

(N+1)×(N+1).

Remark 3 The i.i.d scheduling is a special case of the Markovian
scheduling. For instance, assume that there are N = 2 sensor nodes
and collisions do not occur, the Markovian scheduling with Π =
[

p 1 − p

p 1 − p

]

, 0 ≤ p ≤ 1, is an i.i.d. scheduling with β1 = p,

β2 = 1− p.

Definition 1 The hybrid system (5)–(6) is said to be exponentially
mean-square stable with respect to x if there exist constants b > 0,
α > 0 such that the following bound holds

E{|x(t)|2} ≤ be−2α(t−t0)E{‖xt0‖2W + |e(t0)|2}, t ≥ t0

for the solutions of the stochastic impulsive system (5)–(6) initialized
with e(t0) ∈ R

ny and x(t) = φ(t), t ∈ [t0 − τM , t0]. The hybrid
system (5)–(6) is exponentially mean-square stable if additionally the
following bound is valid

E{|e(t)|2} ≤ be−2α(t−t0)
E{‖xt0‖2W + |e(t0)|2}, t ≥ t0.

III. NCSS UNDER I.I.D STOCHASTIC SCHEDULING PROTOCOL

A. Stochastic impulsive time-delay model with Bernoulli distributed
parameters

Following [14], we introduce the indicator functions

π{σk=i} =

{

1, σk = i
0, σk 6= i,

i ∈ I, k ∈ Z≥0.

Thus, from (7) it follows that

E{π{σk=i}} = E{[π{σk=i}]
2} = Prob{σk = i} = βi,

E{[π{σk=i} − βi][π{σk=j} − βj ]} =

{

−βiβj , i 6= j,
βi(1− βi), i = j.

(9)
Therefore, the stochastic impulsive system model (5)–(7) can be
rewritten as
{

ẋ(t) = Ax(t) +A1x(tk − ηk) +
∑N

i=1(1− π{σk=i})Biei(t),
ė(t) = 0, t ∈ [tk, tk+1)

(10)
with the delayed reset system






x(tk+1) = x(t−k+1),
ei(tk+1) = (1− π{σk=i})ei(t

−
k+1)

+Ci[x(tk − ηk)− x(tk+1 − ηk+1)], i = 1, . . . , N.
(11)

Remark 4 Applying the Bernoulli-distributed stochastic variables
π{σk=i}, i = 0, 1, . . . , N, the closed-loop system (10)–(11) is pre-
sented as an impulsive time-delay system with stochastic parameters
in the system matrices. Note that the Bernoulli distribution has

previously been applied to NCS with probabilistic measurements
missing [15], stochastic sampling intervals [16], time-delay system
with stochastic interval delays [14], output tracking control under
unreliable communication [17] and fuzzy control for nonlinear NCSs
[18].

B. Exponential mean-square stability of stochastic impulsive delayed
system

Our objective of this section is to derive LMI conditions for
exponential mean-square stability of the stochastic impulsive system
(10)–(11). Consider Lyapunov-Krasovskii functional (LKF):

Ve(t) = V (t, xt, ẋt) +
∑N

i=1 e
T
i (t)Qiei(t),

V (t, xt, ẋt) = Ṽ (t, xt, ẋt) + VG,

VG =
∑N

i=1(τM − ηm)
∫ t

sk
e2α(s−t)|

√
GiCiẋ(s)|2ds,

Ṽ (t, xt, ẋt)=x
T (t)Px(t)+

∫ t

t−ηm
e2α(s−t)xT (s)S0x(s)ds

+
∫ t−ηm
t−τM

e2α(s−t)xT (s)S1x(s)ds

+ηm
∫ 0

−ηm

∫ t

t+θ
e2α(s−t)ẋT (s)R0ẋ(s)dsdθ

+(τM − ηm)
∫ −ηm
−τM

∫ t

t+θ
e2α(s−t)ẋT (s)R1ẋ(s)dsdθ,

P > 0, Sj > 0, Rj > 0, Gi > 0, Qi > 0, α > 0,
j = 0, 1, i = 1, . . . , N, t ∈ [tk, tk+1), k ∈ Z≥0,

(12)
where xt(θ)

∆
= x(t+ θ), θ ∈ [−τM , 0]. Here the term

eTi (t)Qiei(t) ≡ eTi (tk)Qiei(tk), t ∈ [tk, tk+1), i = 1, . . . , N,

is piecewise-constant. The term Ṽ (t, xt, ẋt) represents the standard
Lyapunov functional for systems with a time-varying delay τ (t) ∈
[ηm, τM ]. The novel piecewise-continuous in time term VG is inserted
to cope with the delays in the reset conditions. It is continuous on
[tk, tk+1) and does not grow at the jumps t = tk+1, since

E{VG|t=tk+1
− VG|t=t−

k+1

}
≤ −(τM−ηm)e−2ατM

∑N
i=1

∫ tk+1−ηk+1

tk−ηk
E{|

√
GiCiẋ(s)|2}ds

≤ −e−2ατM
∑N

i=1 E{|
√
GiCi[x(tk−ηk)− x(tk+1−ηk+1)]|2},

(13)
where we applied Jensen’s inequality. The infinitesimal operator L
of Ve(t) is defined as

LVe(t) = lim∆→0+
1
∆
{E{Ve(t+∆)|t} − Ve(t)}. (14)

The following lemma gives sufficient conditions for exponential
stability of (10)–(11) in the mean-square sense:

Lemma 1 If there exist positive constant α, 0 < Qi ∈ R
ni×ni ,

0 < Ui ∈ R
ni×ni , 0 < Gi ∈ R

ni×ni , i = 1, . . . , N, and Ve(t) of
(12) such that along (10) for t ∈ [tk, tk+1)

E{LVe(t) + 2αVe(t)− 1
τM−ηm

∑N
i=1 e

T
i (t)Uiei(t)} ≤ 0, (15)

with

Ωi =

[

−βiQi + Ui (1−βi)Qi

∗ Qi −Gie
−2ατM

]

≤ 0, i = 1, . . . , N.

(16)
Then Ve(t) does not grow in the jumps along (10)–(11)

Θ = E{Ve(tk+1)− Ve(t
−
k+1) +

∑N
i=1 e

T
i (tk)Uiei(tk)} ≤ 0.

(17)
Moreover, the following bounds hold for the solutions of (10)–(11)
with the initial condition xt0 , e(t0):

E{V (t, xt, ẋt)} ≤ e−2α(t−t0)E{Ve(t0)}, t ≥ t0,

Ve(t0) = V (t0, xt0 , ẋt0) +
∑N

i=1 e
T
i (t0)Qiei(t0),

(18)

and
∑N

i=1 E{|
√
Qiei(t)|2} ≤ c̃e−2α(t−t0)E{Ve(t0)}, (19)
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where c̃ = e2α(τM−ηm), implying exponential mean-square stability
of (10)–(11).

Proof: Since
∫ t

tk
e−2α(t−s)ds ≤ τM − ηm, t ∈ [tk, tk+1) and

L[e2αtVe(t)] = e2αt[2αVe(t) + LVe(t)], α > 0, then (15) implies

E{Ve(t)} ≤ e−2α(t−tk)E{Ve(tk)}
+
∑N

i=1 E{eTi (tk)Uiei(tk)}, t ∈ [tk, tk+1).
(20)

Because (16) yields Ui ≤ βiQi < Qi, i = 1, . . . , N, we have

E{V (t, xt, ẋt)} ≤ e−2α(t−tk)E{Ve(tk)}, t ∈ [tk, tk+1). (21)

Note that

E{Ve(tk+1)}=E{Ṽ|t=tk+1
+VG|t=tk+1

+

N
∑

i=1

eTi (tk+1)Qiei(tk+1)}

and

E{eTi (tk+1)Qiei(tk+1)}
= E{|√Qi[(1− π{σk=i})ei(tk)

+Cix(tk − ηk)− Cix(tk+1 − ηk+1)]|2}
= E{(1− βi)e

T
i (tk)Qiei(tk)

+2(1− βi)e
T
i (tk)QiCi[x(tk − ηk)− x(tk+1 − ηk+1)]

+|√QiCi[x(tk − ηk)− x(tk+1 − ηk+1)]|2}, i = 1, . . . , N.

Taking (13) and (16) into account, we obtain

Θ = E{∑N
i=1[|

√
Qiei(tk+1)|2 − |√Qiei(tk)|2]

+VG|t=tk+1
− VG|t=t−

k+1

}
≤ E{∑N

i=1[|
√
Qiei(tk+1)|2 − |√Qiei(tk)|2]}

−e−2ατM
∑N

i=1 E{|
√
GiCi[x(tk−ηk)−x(tk+1−ηk+1)]|2}

≤ ∑N
i=1 E{ζi(t)TΩiζi(t)} ≤ 0,

where ζi(t) = col{ei(tk), Ci[x(tk − ηk) − x(tk+1 − ηk+1)]} and
Ωi is given by (16).

Therefore, the inequalities (17) and (20) with t = t−k+1 imply

E{Ve(tk+1)} ≤ e−2α(tk+1−tk)E{Ve(tk)}
≤ e−2α(tk+1−tk−1)E{Ve(tk−1)}
≤ e−2α(tk+1−t0)E{Ve(t0)}.

(22)

The latter inequality, with k+1 replaced by k and (21) give (18). The
inequality (18) implies exponential mean-square stability of (10)–(11)
with respect to x because

λmin(P )E{|x(t)|2} ≤ E{V (t, xt, ẋt)},
E{V (t0, xt0 , ẋt0)} ≤ vE{‖xt0‖2W }

for some scalar v > 0. Moreover, the inequality (22) with k + 1
replaced by k implies (19) since for t ∈ [tk, tk+1),

e−2α(tk−t0) = e−2α(t−t0)e−2α(tk−t) ≤ c̃e−2α(t−t0). ✷

By using Lemma 1 and the standard arguments for the delay-
dependent analysis, we derive LMI conditions for the exponential
mean-square stability of (10)–(11):

Theorem 1 Given 0 ≤ ηm < τM , α > 0, β0 ≥ 0, βi ≥ 0,
∑N

i=0 βi = 1 and Ki, i = 1, . . . , N . Suppose there exist n × n
matrices P > 0, Sj > 0, Rj > 0, j = 0, 1, S12 and ni × ni

matrices Qi > 0, Ui > 0, Gi > 0, i = 1, . . . , N, such that (16) and

Φ =

[

R1 S12

∗ R1

]

≥ 0, (23)

Σ +ΞTHΞ +
∑N

i=1 βiΞ
T
i HΞi < 0 (24)

are feasible, where

H = η2mR0 + (τM − ηm)2R1+(τM − ηm)
∑N

l=1 C
T
l GlCl,

Σ=F T
1 PΞ+ΞTPF1+Υ−F T

2 R0F2e
−2αηm−F TΦFe−2ατM ,

F1 = [In 0n×(3n+ny)], F2 = [In − In 0n×(2n+ny)],

F =

[

0n×n In −In 0n×n 0n×ny

0n×n 0n×n In −In 0n×ny

]

,

Ξ = [A 0n×n A1 0n×n (1−β1)B1 · · · (1−βN )BN ],
Ξ1 = [0n×4n −B1 0], Ξ2 = [0n×(4n+n1) −B2 0], · · · ,
ΞN = [0 −BN ], Ξj ∈ R

n×(4n+ny),
Υ=diag{S0+2αP,−(S0−S1)e

−2αηm , 0,−S1e
−2ατM , ψ1,· · · ,ψN},

ψj = − 1
τM−ηm

Uj + 2αQj , j = 1, . . . , N.
(25)

Then the solutions of (10)–(11) satisfy the bounds (18) and (19).
Hence, the closed-loop system (10)–(11) with initial condition xt0 ,
e(t0) is exponentially mean-square stable. If the aforementioned
matrix inequalities are feasible with α = 0, then the bounds (18)
and (19) hold also for a sufficiently small α0 > 0.

IV. NCSS UNDER MARKOVIAN STOCHASTIC SCHEDULING

PROTOCOL

In this section, we will derive LMI conditions for exponential
mean-square stability of the stochastic Markovian jump impulsive
system (5), (6), (8) with respect to x. Note that the differential
equation for x given by (5) depends on ej(t) = ej(tk), t ∈ [tk, tk+1)
with j 6= σk, j ∈ I\{0} only. Consider LKF:

Ve(t) = V (t, xt, ẋt) +
∑N

j=1,j 6=σk
eTj (t)Qjej(t), σk ∈ I,

V (t, xt, ẋt) = Ṽ (t, xt, ẋt) + VQ,

VQ = (τM − ηm)
∫ t

sk
e2α(s−t)|√Qẋ(s)|2ds,

t ∈ [tk, tk+1), k ∈ Z≥0, Q > 0, Qj > 0, j = 1, . . . , N,
(26)

where Ṽ (t, xt, ẋt) is given by (12). The following statement holds:

Lemma 2 If there exist positive constant α, matrices 0 < Q ∈
R

n×n, 0 < Qj ∈ R
ni×ni , 0 < Uj ∈ R

ni×ni , j = 1, . . . , N,
and Ve(t) of (26) such that for any i ∈ I along (5)

E{LVe(t) + 2αVe(t)− 1
τM−ηm

×
∑N

j=1,j 6=i e
T
j (t)(Qj − Uj)ej(t)} ≤ 0, t ∈ [tk, tk+1),

(27)
with

Ω̃i =

[

Φi
11 Φi

12

∗ Φi
22

]

≤ 0, (28)

holds, where

Φi
11=

∑N
l=1

∑N
j=0,j 6=l πijC

T
l QlCl−e−2ατMQ,

Φi
12 = [

∑N
l=2(πi0+πil)C

T
1 Q1 · · ·∑N

l=0,l 6=j πil(C
T
j Qj)|j 6=i · · ·

∑N−1
l=0 πilC

T
NQN ],

Φi
22 = diag{∑N

l=2(πi0 + πil)Q1 − U1, · · · ,
∑N

l=0,l 6=j πilQj|j 6=i
−Uj|j 6=i

, · · · ,∑N−1
l=0 πilQN−UN}.

Then Ve(t) satisfies

E{Ve(tk+1)− Ve(t
−
k+1)

+
∑N

j=1,j 6=i e
T
j (tk)(Qj − Uj)ej(tk)} ≤ 0, i ∈ I.

(29)
The bound (18) is valid for the solutions of (5), (6), (8) with the initial
condition xt0 , e(t0), implying exponential mean-square stability of
(5), (6), (8) with respect to x.

Proof: Consider t ∈ [tk, tk+1) and assume that σk = i ∈ I.
Following the proof of Lemma 1, we have from (27)

E{Ve(t)} ≤ e−2α(t−tk)E{Ve(tk)}
+
∑N

j=1,j 6=i E{eTj (tk)(Qj−Uj)ej(tk)}, t ∈ [tk, tk+1).
(30)
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Therefore,

E{V (t, xt, ẋt)} ≤ e−2α(t−tk)E{Ve(tk)}, t ∈ [tk, tk+1).

Note that

E{Ve(tk+1)} = E{Ṽ|t=tk+1
+ VQ|t=tk+1

+
∑N

j=1,j 6=σk+1
eTj (tk+1)Qjej(tk+1)}

and
∑N

j=1,j 6=σk+1
E{eTj (tk+1)Qjej(tk+1)|σk = i}

=
∑N

l=1

∑N
j=0,j 6=l πijE{eTl (tk+1)Qlel(tk+1)}.

Taking (28) into account, we obtain

E{Ve(tk+1|σk = i)− Ve(t
−
k+1)|σk=i

+
∑N

j=1,j 6=i e
T
j (tk)(Qj − Uj)ej(tk)}

≤ E

{

∑N
l=1

∑N
j=0,j 6=l πije

T
l (tk+1)Qlel(tk+1)

−∑N
j=1,j 6=i e

T
j (tk)Ujej(tk)

−e−2ατM |√Q[x(tk − ηk)− x(tk+1 − ηk+1)]|2
}

= E

{

ζ̃Ti (t)Ω̃iζ̃i(t)
}

≤ 0,

where ζ̃i(t) = col{x(tk − ηk)− x(tk+1 − ηk+1), e1(tk), · · · ,
ej|j 6=i

(tk), · · · , eN (tk)} and Ω̃i is given by (28). Therefore, the
inequalities (29) and (30) with t = t−k+1 imply E{Ve(tk+1)} ≤
e−2α(tk+1−tk)E{Ve(tk)} ≤ e−2α(tk+1−t0)E{Ve(t0)}. The latter
inequality, with k+1 replaced by k and (30) give (18), which implies
exponential mean-square stability of (5), (6), (8) with respect to x.
✷

Remark 5 Differently from Lemma 1, in Lemma 2 the inequality
E{Ve(tk+1)} ≤ e−2α(tk+1−t0)E{Ve(t0)} does not give a bound on
eσk

(tk) since Ve(t) of (26) for t ∈ [tk, tk+1) does not depend on
eσk

(tk). That is why Lemma 2 guarantees only mean-square stablility
with respect to x.

By using the above lemma and the arguments of Theorem 1, we
arrive at the following result:

Theorem 2 Given 0 ≤ ηm < τM , α > 0, 0 ≤ πij ≤ 1,
∑N

j=0 πij = 1, i, j ∈ I and Kl, l = 1, . . . , N . Suppose there
exist n× n matrices P > 0, Q > 0, Sj > 0, Rj > 0, j = 0, 1, S12

and nl × nl matrices Ql > 0, Ul > 0, l = 1, . . . , N, such that for
any i ∈ I, the matrix inequalities (23), (28) and Σ̃i + Ξ̃T

i H̃Ξ̃i < 0
are feasible, where the notation Φ is given by (23), and where

H̃ = η2mR0 + (τM − ηm)2R1 + (τM − ηm)Q,

Σ̃i = F̃ iT
1 P Ξ̃i + Ξ̃T

i PF̃
i
1 + Υ̃i − (F̃ i

2)
TR0F̃

i
2e

−2αηm

−(F̃ i)TΦF̃ ie−2ατM ,

Ξ̃i = [A 0n×n A1 0n×n B1 · · · Bj |j 6=i · · · BN ],

F̃ i
1 = [In 0n×(3n+ny−ni)],

F̃ i
2 = [In − In 0n×(2n+ny−ni)],

F̃ i =

[

0n×n In −In 0n×n 0n×(ny−ni)

0n×n 0n×n In −In 0n×(ny−ni)

]

,

Υ̃i = diag{S0+2αP,−(S0−S1)e
−2αηm , 0,−S1e

−2ατM ,

ψ̃1, · · · , ψ̃j |j 6=i, · · · , ψ̃N},
ψ̃j = − 1

τM−ηm
(Qj − Uj) + 2αQj , j = 1, . . . , N.

Then the solutions of (5), (6), (8) satisfy the bound (18), implying
exponential mean-square stability with respect to x. If the aforemen-
tioned matrix inequalities are feasible with α = 0, then the solution
bound holds also for a sufficiently small α0 > 0.

Remark 6 Note that Theorem 1 under i.i.d. scheduling protocol
guarantees exponential mean-square stability with respect to the

TABLE I
COMPLEXITY OF STABILITY CONDITIONS UNDER DIFFERENT PROTOCOLS

(FOR y1, y2 ∈ R
n/2)

Method Decision variables Number and order of LMIs
[3] (RR) 8.5n

2
+ 2.5n two of 6n × 6n,

two of 3n × 3n

[4] (TOD/RR) 3.75n
2
+ 3n two of 5.5n × 5.5n,

one of 2n × 2n

Theorem 1 4.25n
2
+ 4n one of 8n × 8n,

(i.i.d.) two of 2n × 2n

Theorem2 4.5n
2
+ 4n two of 5.5n × 5.5n, one of 2n × 2n,

(Markovian) two of 1.5n × 1.5n

full state col{x, e}, while Theorem 2 under Markovian scheduling
protocol only guarantees exponential mean-square stability with
respect to x. The LMI conditions in Theorems 1 and 2 are different.
In the special case when the Markovian scheduling protocol is i.i.d,
the conditions in Theorem 2 give more conservative results (MATI
and MAD) than those in Theorem 1.

Remark 7 The time-delay approach was developed in [3] and [4]
for the stability analysis of NCSs under RR protocol and under
TOD protocol, respectively. Assume that collisions do not occur. Let
N = 2 and compare the number of scalar decision variables and
the resulting LMIs (application of Schur complement) under different
protocols. See Table I for the complexity of the LMI conditions for
different protocols. Note that Theorem 2 achieves less conservative
results than Theorem 1 at the price of more LMIs (see example in
the next section).

V. EXAMPLE: BATCH REACTOR

We illustrate the efficiency of the given conditions on a benchmark
example of a batch reactor under the dynamic output feedback (see
e.g., [8], [9], [19]), where N = 2 and

A =









1.380 −0.208 6.715 −5.676
−0.581 −4.2902 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104









,

B =









0 0
5.679 0
1.136 −3.146
1.136 0









, C =

[

C1

C2

]

=

[

1 0 1 −1

0 1 0 0

]

,

[

Ac Bc

Cc Dc

]

=









0 0
0 0

0 1
1 0

−2 0
0 8

0 −2
5 0









.

Assume that β0 = 0, π0i = πi0 = 0, i = 0, 1, 2, which means
that collisions do not occur. Let β1 = 0.6 and the transition matrix of
Markov chain σk ∈ {1, 2} as Π1 =

[

0.4 0.6

0.9 0.1

]

. For the values of
ηm given in Table II, by applying Theorems 1 and 2 with α = 0, we
obtain the maximum values of τM = MATI+MAD that preserve
mean-square stability of the impulsive system (5)–(6) (see Table II).
From Table II it is seen that for small transmission delays, our method
essentially improves the results of [9], but is more conservative than
the results obtained via the discrete-time approach. However, the
latter approach becomes complicated for uncertain systems. Polytopic
uncertainties in the system model can be easily included in our
analysis [3], [4]. When ηm > τM/2 (ηm = 0.03, 0.04), note that
our method is still applicable.

Choosing ηm = 0.02, by Theorem 1 with α = 0, we obtain
the corresponding maximum values of τM shown in Figure 2(a) for
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TABLE II
ESTIMATED MAXIMUM VALUES OF τM = MATI+MAD FOR DIFFERENT

ηm

τM \ ηm 0 0.004 0.02 0.03 0.04

[9](MAD = 0.004, TOD) 0.0108 0.0133 - - -
[9] (MAD = 0.004, RR) 0.0088 0.0088 - - -
[8](MAD = 0.03, TOD) 0.069 0.069 0.069 0.069 -
[8] (MAD = 0.03, RR) 0.068 0.068 0.068 0.068 -
[4](TOD/RR) 0.035 0.037 0.047 0.053 0.059
[3] (RR) 0.042 0.044 0.053 0.058 0.063
Theorem 1 (β1 = 0.6) 0.022 0.025 0.039 0.048 0.056
Theorem 2 (Π1) 0.035 0.038 0.049 0.055 0.061
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Fig. 2. (a) Estimated maximum values of τM (β1) by Theorem 1 with α = 0;
(b) Estimated maximum values of τM (π11) by Theorem 2 with α = 0.

different β1. Choosing ηm = 0.02 and π21 = 0.9, by Theorem 2
with α = 0, we obtain the corresponding maximum values of τM
shown in Figure 2(b) for different π11.

VI. CONCLUSIONS

In this note, a time-delay approach has been developed for the sta-
bilization of NCSs under stochastic protocol. Two types of stochastic
protocols, which are defined by the i.i.d and Markovian processes
are proposed. By developing appropriate Lyapunov methods, the ex-
ponential mean-square stability conditions for the delayed stochastic
impulsive system were derived in terms of LMIs. Future work will
involve the optimization of βi, i = 0, 1, . . . , N and Π to obtain
less conservative results, the implementation aspects of the stochastic
protocol in a real wireless network and the consideration of more
general NCS models, including stochastic communication delays and
scheduling protocols for the actuator nodes.
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