
 Open access Journal Article DOI:10.1007/S10207-003-0022-8

Networked cryptographic devices resilient to capture — Source link

Philip D. MacKenzie, Michael K. Reiter

Institutions: Alcatel-Lucent, Carnegie Mellon University

Published on: 01 Nov 2003 - International Journal of Information Security (Springer Berlin Heidelberg)

Topics: Password, Key (cryptography), Public-key cryptography, Tamper resistance and Cryptographic protocol

Related papers:

 Server-assisted generation of a strong secret from a password

 Random oracles are practical: a paradigm for designing efficient protocols

 Threshold cryptosystems

 A method for fast revocation of public key certificates and security capabilities

 A method for obtaining digital signatures and public-key cryptosystems

Share this paper:

View more about this paper here: https://typeset.io/papers/networked-cryptographic-devices-resilient-to-capture-
4nn3isw1jg

https://typeset.io/
https://www.doi.org/10.1007/S10207-003-0022-8
https://typeset.io/papers/networked-cryptographic-devices-resilient-to-capture-4nn3isw1jg
https://typeset.io/authors/philip-d-mackenzie-236camw1x7
https://typeset.io/authors/michael-k-reiter-4k7g4scflj
https://typeset.io/institutions/alcatel-lucent-2bmvvq5s
https://typeset.io/institutions/carnegie-mellon-university-2nn2m0cz
https://typeset.io/journals/international-journal-of-information-security-2syzb7ev
https://typeset.io/topics/password-icm9c6m2
https://typeset.io/topics/key-cryptography-1breo2wa
https://typeset.io/topics/public-key-cryptography-3azjg9vw
https://typeset.io/topics/tamper-resistance-23g2vzkm
https://typeset.io/topics/cryptographic-protocol-2ldsbqme
https://typeset.io/papers/server-assisted-generation-of-a-strong-secret-from-a-5c5cujii0u
https://typeset.io/papers/random-oracles-are-practical-a-paradigm-for-designing-1xnb3tuiuw
https://typeset.io/papers/threshold-cryptosystems-3ovah1ozdi
https://typeset.io/papers/a-method-for-fast-revocation-of-public-key-certificates-and-dms1399b78
https://typeset.io/papers/a-method-for-obtaining-digital-signatures-and-public-key-4idf1wm60r
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/networked-cryptographic-devices-resilient-to-capture-4nn3isw1jg
https://twitter.com/intent/tweet?text=Networked%20cryptographic%20devices%20resilient%20to%20capture&url=https://typeset.io/papers/networked-cryptographic-devices-resilient-to-capture-4nn3isw1jg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/networked-cryptographic-devices-resilient-to-capture-4nn3isw1jg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/networked-cryptographic-devices-resilient-to-capture-4nn3isw1jg
https://typeset.io/papers/networked-cryptographic-devices-resilient-to-capture-4nn3isw1jg

Networked Cryptographic Devices Resilient to Capture

(Extended Abstract) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Philip MacKenzie Michael K. Reiter

Bell Labs, Lucent Technologies, Murray Hill, New Jersey, USA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{philmac,reiter}@research.bell-labs.com

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We present a simple technique by which a device that

performs private key operations (signatures or decryptions)
in networked applications, and whose local private key is
activated with a password or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPIN, can be immunized to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoff-
line dictionary attacks in case the device is captured. Our
techniques do not assume tamper resistance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the device,
but rather exploit the networked nature of the device, in that
the device’s private key operations are pe formed using a
simple interaction with a remote sewer: This sewer; how-
ever; is untrusted-its compromise does not reduce the se-
cur iv of the device’s private key unless the device is also
captured-and need not have a prior relationship with the
device. We further extend this approach with support fo r
key disabling, by which the rightj‘ul owner of a stolen de-
vice can disable the device’s private key even if the attacker
already knows the user’s password.

1. Introduction

A device that performs signatures or decryptions using
the private key of a public key pair, and that stores the pri-
vate key locally on stable storage, is typically vulnerable to
exposure of that private key if the device is captured. While
encryption of the private key under a password is common,
the ease with which passwords succumb to offline dictio-
nary attacks (e.g., see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[35, 27, 18, 411) implies that better
protections are needed. Many such protections have been
proposed, but most require tamper-resistance of the device.
Others used in practice replace the password with a stronger
key stored on another device that the user holds, thus mov-
ing the burden of protection to that device.

In this paper we propose a simple, software-only tech-
nique to render the private key of a networked device in-
vulnerable to offline dictionary attacks, even if the device is
captured. Our technique exploits the fact that the device has

network connectivity at the time it is required to perform a
private key operation, and thus can interact with a remote
party at that time to complete the operation. This is char-
acteristic of virtually any device involved in an interactive
authentication or key exchange protocol.

The way in which we exploit network connectivity is to
postulate a remote server that assists the device in perform-
ing its private key operation. This remote server need not
have any preexisting relationship with, or knowledge of, the
device (though the device needs a public key for the server).
Moreover, the server is untrusted: we prove that the server,
even if i t misbehaves, gains no information that would help
it to compute signatures that verify with the device’s pub-
lic key or to decrypt messages encrypted under the device’s
public key. The only behavior that we require of the server
is that i t execute the correct protocol to respond to a well-
formed request, and that it stop responding to invocations
pertaining to a device’s public key (perhaps for a period
of time) after it has received sufficiently many malformed
requests associated with this public key. This latter behav-
ior is required to prevent an online dictionary attack against
the password. We note, however, that this feature does not
present a denial-of-service vulnerability, since in our prolo-
col, an attacker can conduct an online dictionary attack only
after it has captured the device-and so use of the device by
the legitimate user is presumably already denied.

We present two types of protocols that achieve the above
properties. These types functionally differ on whether they
enable the device’s private key to be disabled. If the device
is stolen, i t is natural for the device’s rightful owner to wish
to disable the use of the private key, to account for the pos-
sibility that the attacker already knows the user’s password
(e.g., by observing the user type it) or can guess it in very
few tries (e.g., due to his intimate knowledge of the user). In
one type of protocol we present, the user can issue a request
to the server to disable future use of the private key associ-
ated with the device’s public key. Once the server receives
this request and verifies it is well-formed, the device’s key
is rendered (provably) useless to the attacker, even if the at-

12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1081-6011/01 $10.00 0 2001 EEE

mailto:philmac,reiter}@research.bell-labs.com

tacker knows the user’s password. The attacker will thus be
unable to employ the key in future interactive protocols or
to decrypt future encrypted messages. This feature is espe-
cially useful if revocation of the device’s public key via a
public key infrastructure (e.g., a certificate revocation list)
has an associated delay (if i t exists at all); in contrast, using
our scheme the private key can be disabled immediately.

The ability to disable a private key seems to come at a
cost in terms of compatibility with existing protocols. Our
protocol without this feature is compatible with any public
key cryptosystem or signature scheme in use by the device,
and any protocol using them. In contrast, our protocols sup-
porting key disabling are dependent on the type of private
key operations in use; here we give protocols for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARSA [38]
signatures and ElGamal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[171 decryption. These easily gen-
eralize to many other signature and decryption protocols.
In addition, to achieve provable security, our signature pro-
tocols supporting key disabling expose the message being
signed to the server. As such, it is compatible only with
applications that sign public data. This is consistent with,
e.g., TLS 1 .O [151, but is incompatible with protocols that
sign private data before encrypting it. There are variations
of our RSA signature protocol, for example, that do not re-
quire the message to be disclosed to the server, but proving
them secure requires nonstandard assumptions about the se-
curity of RSA.

2. Prior work

The work of which we are aware whose goals are most
related to ours is [24]. This work proposes methods to en-
crypt a DSA or RSA private key using a password so that
guesses at the password cannot be verified by an attacker
who captures the device holding that private key. This fea-
ture comes at a severe price, however. For example, the
device’s “public” key must be kept secret, even from the
device itself: obviously if the attacker learns the public key,
then he can verify a successfully decrypted private key. So,
the public key must be hidden from all but a few trusted
servers that verify signatures produced by the device or en-
crypt messages for the device. And, i t is essential that no
verifiable plaintext be encrypted, since this, too, could be
used to verify guesses at the password. In contrast, our work
achieves similar goals without imposing such awkward sys-
tem constraints. Our solutions require nothing of the system
surrounding the device other than the ability for the device
to communicate over a network when i t performs private
key operations.

One way zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto partially reach our goals is to simply not
store the device’s private key on the device, but rather
have the device download i t from the server when needed
(e.g., [36]). Indeed, one of our protocols somewhat re-
sembles this approach. To ensure that the private key is

downloaded only to the user’s device, the device first proves
it has been given the user’s password. For this purpose
there are numerous published protocols by which the de-
vice can authenticate to and exchange a key with a server
using a password input by its user, without exposing that
password to offline dictionary attacks. Some protocols re-
quire the device to already have a public key for the server
(e.g., [30,23, 19]), others do not (e.g., [9,26,40,5, 11,3 I]).
Since the device stores at most only public information, its
capture is of no consequence. On the other hand, in all
of these protocols, the server either knows the user’s pass-
word or else can mount an offline dictionary attack against
it. More importantly, when these protocols are used for the
retrieval of a private key from the server, the private key
(which would most likely be encrypted with the password)
would be exposed to the server after a successful offline dic-
tionary attack on the password. Recent proposals resort to
multiple servers and require that at most some threshold co-
operate in a dictionary attack [191, but nevertheless this re-
mains a differentiator of our approach: our server is entirely
untrusted. A second differentiator of our work is that prior
work does not permit key disabling to address the possibil-
ity that an attacker already knows the user’s password or
guesses i t quickly: once the attacker guesses the password
and downloads the private key, the attacker can use it for an
unlimited time. In contrast, we present protocols in which
the private key can be disabled, even zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAafter the attacker has
captured the user’s device and guessed the user’s password.

Short of rendering the device’s private key invulnerable
to an offline dictionary attack once the device is captured,
perhaps the next best thing is to ensure that the private key
cannot be used to sign messages dated before the device
was captured. This is achieved by fonvard secure signa-
ture schemes, which intuitively change the private key (but
not the public key) over time so that the captured private
key can be used to sign messages only dated in the future
(e.g., [4, 291). If the device can sense that its private key is
about to be discovered, as might be possible if the device
is a coprocessor with tamper detection circuitry, then an-
other alternative is for the device to change the private key
when i t detects a pending compromise so that future signa-
tures subliminally disclose to an authority receiving those
signatures that the device has been compromised [22]. In
contrast to these approaches, our goal is to prevent any fu-
ture signatures by the attacker once the device is captured,
rather than permitting them in a limited way (as forward
secure signature schemes do) or in a way that subliminally
alerts an authority (as in [22]).

Finally, our use of a server to assist the device in per-
forming signatures or decryptions is reminiscent of sewer
aided protocols, whereby the computational burden of a se-
cret cryptographic computation is moved from the device to
a more powerful server. Some of these protocols place trust

13

in the server and thus expose the device’s private informa-
tion to i t (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[l , 16]), while others attempt to hide the
private key from the server but nevertheless have the server
do the bulk of the computation (e.g., [33, 2,251). Our work
differs in its goals: our intention is to render the device im-
pervious to an offline dictionary attack once captured, rather
than to reduce the computation required of the device. On
the contrary, in our protocols, the device ends up performing
at least as much computation as i t would if i t were to per-
form the secret computation entirely itself. While it seems
fairly straightforward to combine our protocols with some
of these techniques, doing so while maintaining provable
security looks to be a challenge. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Preliminaries

In this section we informally state the goals for our sys-
tems. We also introduce preliminary definitions and nota-
tion that will be necessary for the balance of the paper.

3.1. Goals

We presume a system with a device dvc and a server svr
that communicate by exchanging messages over a public
network. In our protocols, the device is used either for gen-
erating signatures or decrypting messages, and does so by
interacting with the server. The signature or decryption op-
eration is password-protected, by a password zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT O . The sys-
tem is initialized with public data, secret data for the device,
secret data for the user of the device (i.e., T O) , and secret
data for the server. The public and secret data associated
with the server should simply be a certified public key and
associated private key, which most likely would be set up
well before the device is initialized. The device-server pro-
tocol allows a device operated by a legitimate user (i.e., one
who knows T O) to sign or decrypt a message with respect to
the public key of the device, after communicating with the
server. In those schemes supporting key disabling, device
initialization may create additional secret data that, if sent
to the server, will cause the server to no longer execute the
decryption or signing protocol with that device.

Each adversary we consider is presumed to control the
network; i.e., the attacker controls any inputs to dvc or svr,
and observes their outputs. Moreover, an adversary can
“capture” certain resources. The possible resources that
may be captured by the attacker are dvc, svr, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATO. Once
captured, the entire static contents of the resource become
known to the attacker. The one restriction on the adversary
is that if he captures dvc, then he does so after dvc initial-
ization and while dvc is in an inactive state-i.e., dvc is not
presently executing the protocol with T O as input-and that
T O is not subsequently input to the device by the user. This
decouples the capture of dvc and T O , and is consistent with

our motivation that dvc is captured while not in use by the
user and, once captured, is unavailable to the user.

We denote by ADV(S), where S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg {dvc,svr,ro}, the
class of adversaries who succeed in capturing the elements
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. As such, ADV(&) E ADV(&) if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASI (I S 2 . The se-
curity goals of our schemes are informally stated as follows:

I. Any adversary in ADV({svr,ro}) is unable to forge
signatures or decrypt messages for the device (with
overwhelming probability).

11. Any adversary in ADv({dvc}) can forge signatures
or decrypt messages for the device with probability at
most q/ID1 after zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq invocations of the server, where D
is the space from which the user’s password is drawn
(uniformly at random).

111. Any adversary in ADV({dvc,svr}) can forge signa-
tures or decrypt messages for the device only if it suc-
ceeds in an offline dictionary attack on the user’s pass-
word.

IV. Any adversary in ADv({dvc, T O }) can forge signatures
or decrypt messages for the device only until the device
key is disabled (in those schemes supporting key dis-
abling), and subsequently cannot forge signatures or
decrypt messages for the device.

3.2. Definitions

In order to state our protocols to meet the goals outlined
in Section 3.1, we first introduce some definitions and nota-
tion.

Security parameters Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK be the main cryptographic se-
curity parameter; a reasonable value today may be K = 160.
We will use X > K as a secondary security parameter for
public keys. For instance, in an RSA public key scheme
may we may set X = 1024 to indicate that we use 1024-bit
moduli.

Hash functions We use h, with an additional subscript as
needed, to denote a hash function. Unless otherwise stated,
the range of a hash function is (0, l}”.

We do not specify here the exact security properties (e.g.,
one-wayness, collision resistance, or pseudorandomness)
we will need for the hash functions (or keyed hash func-
tions, below) that we use. To formally prove that our pro-
tocols meet every goal outlined above, we generally require
that these hash functions behave like random oracles [6].
(For heuristics on instantiating random oracles, see [6].)
However, for certain subsets of goals, weaker properties
may suffice; details will be given in the individual cases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

14

Keyed hash functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA keyed hash function family is
a family of hash functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{fv} parameterized by a secret
value w. We will typically write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfv(m) as f (v ,m) , as this
will be convenient in our proofs. In this paper we employ
various keyed hash functions with different ranges, which
we will specify when not clear from context.

We will also use a specific type of keyed hash function,
a message authentication code (MAC). We denote a MAC
family as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{mac,}. In this paper we do not require MACS
to behave like random oracles, but to have the following
standard property: If a is unknown, then given zero or more
pairs <mi, mac,(mi)>, it is computationally infeasible to
compute any pair <m, mac,(m)> for any new m # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmi.

Encryption schemes An encryption scheme E is a triple
(G,,,, E , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD) of algorithms, the first two being probabilis-
tic, and all running in expected polynomial time. G,,,
takes as input lX and outputs a public key pair (p k , s k) ,
i.e., (p k , s k) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt Genc(lX). E takes a public key zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp k and a
message m as input and outputs an encryption c f o rm; we
denote this c t Epk (m). D takes a ciphertext c and a secret
key sk as input and returns either a message m such that c is
a valid encryption of m, if such an m exists, and otherwise
returns 1. Our protocols require an encryption scheme se-
cure against adaptive chosen ciphertext attacks [37]. Practi-
cal examples can be found in [7, 131.

Signature schemes A digital signature scheme S is a
triple (GSPg , SI V) of algorithms, the first two being proba-
bilistic, and all running in expected polynomial time. Gszg
takes as input lX and outputs a public key pair (p k , s k) ,
i.e., (pk , s k) t Gszg(lA). S takes a message m and a se-
cret key sk as input and outputs a signature 0 for m, i.e.,
(I t S,,(m). V takes a message m, a public key p k , and
a candidate signature d for m as input and returns the bit
b = 1 if 0’ is a valid signature for m, and otherwise re-
turns the bit b = 0. That is, b t V&(m,d). Naturally, if
(I t Ssk(m), then Vpk(m,a) = 1.

We say a signature scheme is niatchable if for each
public key p k produced by GSzg(lA) there is a single se-
cret key sk that would be produced (i.e., the probability
of (p k , s k) t GSzg(lX) and (pk ,sk ’) t Gszg(lX) with
sk # sk‘ is zero), and there is a probabilistic algorithm M
that runs in expected polynomial time and that takes as in-
put a public key pk and a secret key sk, and returns 1 if sk is
the single private key corresponding to p k (i.e., if Gszg (1’)
could have produced (p k , sk) with non-zero probability)
and returns 0 otherwise. In most popular signature schemes,
including those we consider here, there is a straightforward
way to implement the M function. (We can define match-
able encryption schemes similarly.)

4. A simple protocol without key disabling

We begin by presenting a simple protocol for achieving
goals I, 11, and I11 described in Section 3.1. Since this pro-
tocol remains the same regardless of whether the device is
used to decrypt or sign, here we discuss the protocol us-
ing terminology as if the device is used for signing. This
scheme is parameterized by the device’s signature scheme
S and an encryption scheme E for the server,’ and works
independently of the form of S and E . We thus refer to this
protocol as “generid”, and denote the protocol by GENERIC.

The intuition behind GENERIC is exceedingly simple. At
device initialization time, the private key of the device is
encrypted in a way that can be recovered only with the co-
operation of both the device (if it is given the user’s pass-
word) and the server. This ciphertext, called a ticket, also
embeds other information that enables the server to authen-
ticate requests that accompany the ticket as coming from a
device that has been given the user’s password. When the
device is required to perform an operation with its private
key, it sends the ticket to the server. The device accompa-
nies the ticket with evidence of its knowledge of the user’s
password; the server can check this evidence against infor-
mation in the ticket. The server then performs a transfor-
mation on the ticket to “partially decrypt” it, and returns the
result to the device. The device completes the decryption
to recover its private key. The device may then use the pri-
vate key for performing the required operations, and may
even cache the key in volatile memory for some period of
time so that additional operations can be performed without
contacting the server for each one.

Note that a protocol of this form cannot support key dis-
abling: if an attacker captures the device and guesses the
user’s password (i.e., the adversary is in ADV({dvc, T O })) ,

then it can retrieve the private key and keep i t forever. Lim-
iting the damage an attacker can do in this case requires
assistance from some external mechanism for revoking the
device’s public key, if such a mechanism exists.

In the following two sections, we detail the steps of
the initialization algorithm and the key retrieval protocol.
This protocol can be formally proven (in the random oracle
model) to meet goals 1-111 of Section 3.1, though we omit
this proof here due to space limitations.

4.1. Device initialization

The inputs to device initialization are the server’s public
encryption key pk,,,, the user’s password TO, the device’s
public signature verification key pkdvc, and the correspond-
ing private signing key skdvc. The steps of the initialization

‘When speaking about security of this and later protocols against off-
line dictionary attack, we also include a parameter ’D to denote a dictionary
of the possible passwords.

15

algorithm proceed as follows, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘‘z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS” is used to
denote assignment to z of an element of S selected uni-
formly at random.

The values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, a , r , pkdvc, and pk,,, are saved in stable stor-
age on the device. All other values, including skdvc, TO, b
and c, are deleted from the device. We assume that f out-
puts a value of length equal to the length of Skdvc. For the
protocol of Section 4.2, we assume this length is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA.

The value r is the “ticket” to which we referred pre-
viously. Note that this ticket encapsulates a value c from
which the device can recover Skdvc with knowledge of the
user’s password. The server’s role in the key retrieval pro-
tocol will thus involve decrypting this ticket and sending c
to the device (encrypted). Note that c does not provide the
basis for the server to mount an attack against Skdvc, since
the server does not know U. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2. Key retrieval protocol

The input provided to the device to initiate the key re-
trieval protocol is the input password zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7r and all of the values
saved on stable storage in the initialization protocol of Sec-
tion 4.1. The protocol by which the device retrieves Skdvc is
shown in Figure I .

In Figure I , p is an authenticator that proves knowledge
of 7r to the server. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp acts as a one-time pad by which the
server encrypts c to return it to the device. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is an encryp-
tion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/3 and p to securely transport them to the server. The
value S is a message authentication code that is generated
from the MAC key a stored on the device, and that the
server uses to confirm that this request actually originated
from the device. Though 6 is not required to prove secu-
rity of this protocol, it nevertheless is important in practice:
it enables the server to distinguish requests bearing 7 but
not originating from the device (i.e., mac,(<y,T>) # S),
from requests bearing T that originate from the device but
for which the device’s knowledge of the user’s password
cannot be verified (i.e., p # b). The latter category may in-
dicate an online dictionary attack, and accordingly the ticket
r should be ignored (perhaps for some period of time) after
sufficiently many such requests. The former type should not
“count against” r , however, since they do not pose a risk to
the password; indeed, the authenticator ,f3 is never checked
in these cases. On the contrary, if this former category were
treated like the latter, then this would enable a denial-of-
service attack on T (i.e., the device) in which an attacker,
having seen r pass on the network, submits requests to the
server containing T and random values for y and 6.

dvc svr

77
t

~ ~~

Figure 1. GENERIC key retrieval protocol

It is important for security that the device delete D, p and,
of course, sk when it is done with them, so that none of
these values are available to an attacker who subsequently
captures the device. In particular, these values should never
be stored on stable storage on the device to ensure, e.g., that
they will disappear from the device if the device crashes.

Brief intuition for the security of this protocol is as fol-
lows. First, goal I is achieved due to the encryption of Skdvc

by f (v , T O) , since an adversary in ADV({svr, no}) does not
know U. Goal I1 is achieved since the only way an adver-
sary in ADv({dvc}) gains information about the password
is by submitting guesses at p (or rather, P ’ s resulting from
guesses at the password) to the server. Finally, even an ad-
versary in ADv({dvc, svr}) is required to conduct an offline
dictionary attack against the password to discover skdvc,

since Skdvc is encrypted using f (v , T O) .

5. Systems supporting key disabling

In this section we present protocols that satisfy all of the
goals of Section 3.1, including the ability for the user to
disable the private key of the device even after the attacker
has captured the device and guessed the user’s password.
As described in Section 4, the reason that key disabling is
not possible with GENERIC is that the device’s private key is
recovered by the device as part of that protocol. As a result,
an attacker who captures the device and guesses the user’s
password can recover the private key and use it indefinitely.

16

In order to make key disabling possible, we thus de-
sign protocols in which the private key is never recovered
by the device. Rather, the device performs each signature
or decryption operation individually by interacting with the
server. This is achieved by 2-out-of-2 function sharing,
where the function being shared is the device’s signature
or decryption function. More precisely, when the device is
initialized, two shures of the device’s private key are gener-
ated. The first share is constructed so that i t can be gener-
ated from the user’s password and information stored on the
device. The second share, plus other data for authenticating
requests from the device, are encrypted under zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApk,,, to form
the device’s ticket. Both shares are then deleted from the
device. In the device’s signature or decryption protocol, the
device sends its ticket plus evidence that i t was given the
user’s password, the server verifies this using information
in the ticket, and then the server contributes its portion of
the computation using its share. Together with the device’s
contribution using its share (generated from the user’s pass-
word), the signature or decryption can be formed.

Disabling the private key skdv, can be achieved by re-
questing that the server permanently ignore the device’s
ticket. Once this is done, further queries by the attacker-
specifically, any adversary in ADV({dvc, 7ro})-will not
yield further signatures or decryptions. Of course, to pre-
vent a denial-of-service attack against the device even with-
out i t being stolen, requests to disable the device’s ticket
must be authenticated; our protocols achieve this, too. Our
protocolsprovably meet all of the goals stated in Section 3.1
in the random oracle model.

The feature of key disabling apparently comes with costs
in terms of compatibility with existing protocols. For ex-
ample, in the signature protocol we demonstrate here, the
server learns the message m being signed. It is therefore
important that m be public information if the server is un-
trusted. ‘This requirement is consistent with signatures in
TLS 1.0 1151, for example, since in that protocol, parties
sign only public information. However, i t may be incon-
sistent with other protocols that encrypt private information
after signing i t . Second, due to our use of function sharing
in these protocols, they are generally dependent on the par-
ticular signature or decryption algorithm in use. In the fol-
lowing subsections, we describe protocols for RSA signa-
tures and ElGamal decryption, though our techniques also
generalize to many other signature and decryption schemes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.1. S-RSA: a protocol for RSA signatures

In this section we suppose the device signs using a
standard encode-then-sign RSA signature algorithm (e.g.,
“hash-and-sign” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[141) as described below. Accordingly, we
refer to this protocol as S-RSA. The public key of the de-
vice is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp k d v c = <e,N> and the secret key is skdvc =

<d, N , +(N)>, where ed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-4(,N) 1, N is the product of two
large prime numbers, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 I S the Euler totient function.
(The notation E ~ (N) means equivalence modulo c$(N).)
The device’s signature on a message m is defined as fol-
lows, where encode is the encoding function associated
with S, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtcstg denotes the number of random bits used
in the encoding function (e.g., = 0 for a deterministic
encoding function):

S < d . N , 4 (N) > (m) : t R (0 , 1 I t i s 2 g

s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt (encode(m, T)) ~ mod N
return <s, r>

Here, the signature is = < s , T > , though i t may not be
necessary to include T if it can be determined from m and
s. We remark that “hash-and-sign’’ is an example of this
type of signature in which the encoding function is simply
a (deterministic) hash of m, and that PSS [8] is another ex-
ample of this type of signature with a probabilistic encod-
ing. Both of these types of signatures were proven secure
against adaptive chosen message attacks in the random or-
acle model [6, 81. Naturally any signature of this form can
be verified by checking that se zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEN encode(m,r). In the
function sharing primitive used in our protocol, d is broken
into shares dl and d2 such that d l + d2 ~ ~ (~ 1 d [IO].

5.1.1. Device initialization

The inputs to device initialization are the server’s public en-
cryption key pk,,,, the user’s password TO, the device’s pub-
lic key pkdvc = <e, N>, and the corresponding private key
skdvc = <d, N , 4 (N) > . The initialization algorithm pro-
ceeds as follows:

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt R (0, I}”
‘U t hdsbl (t)

7.J t R {0,1>”
(L t R {0,1}“

b +- h(7ro)
dl +- f (v , r o)
dz t d - dl mod 4 (N)
T +- E p k , , , (<al b, U , dz, N >)

Here, we assume that f outputs an element of (0, l}XfK.
The values t , U, a , r , pkdvc, and pk,,, are saved on stable
storage in the device. All other values, including U , b, d, dl,
dz, $ (N) , and TO, are deleted from the device. The values t
and 7- should be backed up offline for use in disabling if the
need arises. The value T is the device’s “ticket” that i t uses
to access the server.

5.1.2. Signature protocol

Here we present the protocol by which the device signs a
message m. The input provided to the device for this pro-

17

tocol is the input password zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7r , the message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, and all of the
values saved on stable storage in the initialization protocol
of Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.1.1. The protocol is described in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.

dvc svr

77 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c

U + - P @ 7 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dl f(v17r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s t u(encode(m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT)) ~ ~ mod N
abort if se zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$jv encode(m, T)

return <s. r>

Figure 2. S-RSA signature protocol

In Figure 2 , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/3 is a value that proves the device’s knowl-
edge of 7r to the server. p is a one-time pad by which the
server encrypts v to return it to the device. T is a tci,ig-bit
value used in the encode function. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is an encryption of m,
T , p and p to securely transport them to the server. 6 is a
message authentication code computed using a , to show the
server that this request originated from the device. As in
Section 4, S is not necessary to prove security relative to the
goals of Section 3. I , but nevertheless is important in prac-
tice to prevent denial-of-service attacks. It is important that
the device delete p, d l , and p when the protocol completes,
and to never store them on stable storage.

The intuition behind the security of this protocol is simi-
lar to that for the GENERIC protocol. The major difference,
however, is that only the server’s contribution v to the signa-
ture of m is returned to the device, not S k d v c (or the server’s
share of it). This is what makes key disabling possible, as
described in Section 5.1.3.

The efficiency of the S-RSA protocol will generally be
worse than the signing efficiency of the underlying RSA
signature scheme, not only because of the message and en-

cryption costs, but also because certain optimizations (e.g.,
Chinese remaindering) that are typically applied for RSA

signatures cannot be applied in S-RSA. Nevertheless, since
dvc can compute (encode(m, T)) ~ ~ mod N while awaiting
a response from svr, a significant portion of the device’s
computation can be parallelized with the server’s.

5.1.3. Key disabling

Suppose that the device has been stolen, and that the user
wishes to permanently disable the private key of the device.
Provided that the user backed up t and T before the device
was stolen, the user can send t , ~ to the server. Upon re-
covering <a, b, U , dz, N > t Dsk,,, (T) , the server verifies
that U = h&bf(t) and, if so, records T on a disabled list.
Subsequently, the server should refuse to respond to any re-
quest containing the ticket T . This requires that the server
store T (or a hash of it) on a “blacklist”. Rather than stor-
ing T forever, though, the server can discard T once there is
no danger that p k d v c will be used subsequently (e.g., once
the public key has been revoked). Note that for security
against denial-of-service attacks (an adversary attempting
to disable T without t) , we do not need h&bl to be a random
oracle, but simply a one-way hash function.

5.2. D-ELG: a protocol for ElGamal decryption

In this section we give a protocol by which the device
can perform decryption with an ElCamal [171 private key,
using our techniques to gain the same benefits as S-RSA
yielded for RSA signatures. We focus here on decryption
(versus signatures), and ElCamal (versus RSA), to demon-
strate the breadth of cryptographic operations to which our
techniques apply. Indeed, protocols for decryption with an
RSA private key follow naturally from the protocol of Sec-
tion 5.1. While protocols for signature schemes based on
discrete logarithms (e.g., DSA [28]) do not immediately fol-
low from the protocol of this section, they can be achieved
using more specialized cryptographic techniques, as corol-
laries of [32].

For ElGamal encryption, the public and private keys
of the device are p k d v c = <g,p,q,y> and S k d v c =
<g, p , q , z>, respectively, where p is an A-bit prime, g is an
element of order q in Z;, z is an element of Z, chosen uni-
formly at random, and y = g” mod p . For generality (and
reasons that will become clearer later), we describe the D-
ELG protocol using an abstract specification of “ElGamal-
like” encryption. An ElGamal-like encryption scheme is an
encryption scheme in which (i) the public and private keys
are as above; and (ii) the decryption function D can be ex-
pressed in the following form:

18

D<g,p,q,z> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAabort if valid(c) = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt select(c)
z t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw” modp
m t reveal(z, c)
return zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm

Above, valid(c) tests the well-formedness of the ciphertext
c; it returns 1 if well-formed and 0 otherwise. select(c) re-
turns the argument w that is raised to the x-th power mod-
ulo p. reveal(z, c) generates the plaintext m using the re-
sult z of that computation. For example, in original ElCa-
mal encryption, where q = p - 1 and c = <cl ,cq> =
< g k mod p, myk mod p> for some secret value k E Z,,
valid(<cl, c2>) returns 1 if c1,c2 E Z; and 0 otherwise;
select(<cl,c2>) returns c l ; and reveal(z, <cl ,cz>) re-
turns c2z- l mod p. We note, however, that the private key
is not an argument to valid, select, or reveal; rather, the pri-
vate key is used only in computing z. Using this frame-
work, the D-ELG protocol is described in the following
subsections. We will discuss various EIGamal-like encryp-
tion functions and their use in this protocol in Section 5.2.4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.2.1. Device initialization

The inputs to device initialization are the server’s public en-
cryption key pk,,,, the user’s password zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATO, the device’s pub-
lic key Pkdvc = <g,p, q , y>, and the corresponding private
key Skdvc = <g,p, q , x>. The initialization algorithm pro-
ceeds as follows:

t t R (0, l}“ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2) +R {0,1)“

b + h(no)
5 1 + f (v ,no)

‘U t hdsbl(t)

a t R {0,1}”

x2 t x - x1 mod q
y2 t g”2 mod p
t Epk,,, (<a , b, U , g,P, q, x2>)

Here we assume that f outputs an element of (0, 1}21ql. The
values U, a, y2, T , pkdvc, plc,,, and t are saved on stable
storage in the device. All other values, including U , b, z,
21, 22, and TO, are deleted from the device. The values t
and r should be backed up offline for use in disabling i f the
need arises. The value T is the device’s “ticket” that it uses
to access the service.

5.2.2. Decryption protocol

Figure 3 describes the protocol by which the device de-
crypts a ciphertext c generated using the device’s public key
in an EICamal-like encryption scheme. The input provided
to the device for this protocol is the input password n, the
ciphertext c, and all of the values saved on stable storage in

the initialization protocol of Section 5.2.1. In Figure 3, hzkp

is assumed to return an element of Z,.

dvc svr

<a, b, U , P , q,g, xZ>

<c, P, P> t Dsk,,, (7)

Dsk,,, (T)

abort if mac,(y, 7) # S

abort if P # b V valid(c) = 0
w t select(c)
U t w”2 modp

U‘ t w r mod p
e t hzkp(<v, v’, gT mod p>)
s e x2e + r mod q

77 t P @ <u,e,s>

r t R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ g

77
e-

<u,e,s> t p ~ ~
w t select(c)
abort if e # hzkp(<V, wSuPe mod ~ , g ~ (y 2) - ~ mod p>)
5 1 +- f (U , T)

p t wxl modp
return revealruu mod P , c)

Figure 3. D-ELG decryption protocol

The reader should observe in Figure 3 that the device’s
decryption function is implemented jointly by dvc and
svr. Moreover, < v , e, s> constitutes a noninteractive zero-
knowledge proof from svr (the “prover”) to dvc (the “ver-
ifier”) that svr constructed its contribution U correctly. As
before, P is a value that proves the device’s knowledge of T

to the server. y is an encryption of c, /3, and p to securely
transport them to the server. S is a message authentication
code computed using a , to show the server that this request
originated from the device.

Decryption via the D-ELG protocol is somewhat more
costly than decryption in the underlying EICamal-like en-
cryption scheme. As in S-RSA, we recommend that dvc
compute /I while awaiting a response from svr in order to
parallelize computation between the two.

19

5.2.3. Kev disabling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvalid(c): <c1,c2,c~,c4,cg> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt c

Like S-RSA, the D-ELG protocol also supports key dis-
abling. Assuming that the user backed up zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt and T before the
device was stolen, the user can send t , T to the server. Upon
recovering <a, b, U , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg , p , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ> t Dsksv, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T), the server

w1 t g ” (~ 2) - ‘ ~ mod p
9’ + h2(<Cl,C2,W>) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w2 t (g’)c5(c3)-c4 mod p
return (cq = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhzkp(<g’ , c 3 , w~>))

verifies that U = hdsbl(t) and, if so, records T on a disabled
list. Subsequently, the server should refuse to respond to
any request containing the ticket T . We remind the reader
that this requires the server to store T (or a hash of it) on a
“blacklist”. Rather than storing T forever, though, the server
can discard 7- once there is no danger that pkdvc will be used
subsequently (e.g., once the public key has been revoked).

5.2.4. Choices for ElGamal-like encryption

select(c): <c1,c2,c3,c4,cg> t c
return c2

reveal(z,c): <cl,cZ,c3,~4,cg> t c
return hl(z) @ c1

A second proposal from [39], called TDH2, can also be
used to instantiate our protocol and achieve the stronger ver-
sion of goal IV.

There are several possibilities for EIGamal-like encryption
schemes that, when used to instantiate the description of

,--. Proof of security for S-RSA

Figure 3, result in a protocol that provably satisfies goals I-
IV. That said, the precise senses in which a particular in-
stance can satisfy goal IV deserve some discussion. The

In this section we provide a formal proof of security for
the S-RSA system in the random oracle model.

most natural definition of security for key disabling is that
an adversary in Ar)v({dvc, no)) who is presented with a
ciphertext c after the key has been disabled will be unable
to decrypt e. A stronger definition for key disabling could
require that c remain indecipherable even if c were given
to the adversary before key disabling occurred, as long as c
were not sent to svr before disabling.

If the original ElCamal scheme is secure against indif-
ferent chosen ciphertext attacks [37], then the protocol of
Figure 3 can be proven secure in the former sense when in-
stantiated with original EIGamal. However, the security of
ElCamal in this sense has not been established, and is an
active area of research (e.g., see [34]). There are, however,
EIGamal-like encryption schemes that suffice to achieve
even the latter, stronger security property, such as the fol-
lowing proposal from [39] called TDHI . In this scheme, q
is a Ic-bit prime factor of p - 1. Encryption of a message m
proceeds as follows:

E < g , ~ , q , g > (m) : +R z q

c1 t hl(yk mod p) @ m
c2 t g k m o d p
a t R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,
.9/ +- h2(<Cl,C2,ge modp>)
c 3 t (g l) k modp

c j t e + kc4 mod q

The tuple <cl, c2, c3, c4, cg> is the ciphertext. Above, hl

outputs a value from (0, l)lmi, and hz outputs an element
of the subgroup of Zz generated by g. For example, this can
be achieved by defining h2(z) = (h’(z))(P-’)/q mod p for
some other hash function h‘. Decryption takes the following
form:

c4 h z k p (< d , C 3 7 (d)‘ m o d p >)

6.1. Definitions

In order to state and prove security of our protocol for-
mally, we must first state requirements for the security of a
pseudorandom function, of an encryption scheme, of a sig-
nature scheme, and of S-RSA.

Pseudorandom functions A pseudorandom function
family is a family of functions fu parameterized by a se-
cret value U , which has the following security property: It
is computationally infeasible to distinguish between an ora-
cle for the fu function, where v is chosen randomly, and an
oracle for a perfectly random function (with the same input
and output ranges). See [20] for a formal definition.

Security for encryption schemes We specify adaptive
chosen-ciphertext security [37] for an encryption scheme
& = (G,,,, E, D). (For more detail, see [3, Property IND-
CCA21.) An attacker A is given pk , where (p k , s k) t
Genc(lA). A is allowed to query a decryption oracle that
takes a ciphertext as input and returns the decryption of
that ciphertext (or I if the input is not a valid ciphertext).
At some point A generates two equal length strings X O
and X1 and sends these to a test oracle, which chooses
b +-R (0, 1}, and returns Y = Epk(Xb) . Then A contin-
ues as before, with the one restriction that it cannot query
the decryption oracle on Y. Finally A outputs b’, and suc-
ceeds if b’ = b. We say an attacker A (q,c)-breaks & if
the attacker makes q queries to the decryption oracle, and
2 . Pr(A succeeds) - 1 2 E . Note that this implies

Pr(A guesses 0 I b = 0) - Pr(A guesses 0 I b = 1) 2 E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20

Security for signature schemes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWe specify existential
unforgeability versus chosen message attacks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[21] for a sig-
nature scheme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS = (Gsigl S , V) . A forger is given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp k ,
where (pk , s k) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt G,ig(lX), and tries to forge signatures
with respect to p k . It is allowed to query a signature ora-
cle (with respect to s k) on messages of its choice. It suc-
ceeds if after this it can output a valid forgery (m, a) , where
V,k(m, a) = I, but nz was not one of the messages signed
by the signature oracle. We say a forger (q,c)-breaks a
scheme if the forger makes y queries to the signature ora-
cle, and succeeds with probability at least E.

Security for S-RSA Let S-RSA[&,D] denote an S-
RSA system based on an encryption scheme & and
dictionary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2). A forger is given <e, N > where
(<e,N>, <d ,N ,4 (N)>) t G R S A (~ ~) , the public data
generated by the initialization procedure for the protocol,
and certain secret data of the device, server, and/or the
user's password (depending on the type of forger). The
goal of the forger is to forge RSA signatures with respect
to <e, N > . There is a dvc oracle, a disable oracle, a svr
oracle, and (possibly) random oracles h and f . A random
oracle may be queried at any time. It takes an input and re-
turns a random hash of that input, in the defined range. The
disable oracle may be queried with getVals. It responds
with a value t and the device's ticket T .

The svr oracle may be queried with serve and disable.
On a serve(y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 , ~) query, which represents the receipt of
a message in the S-RSA protocol ostensibly from the de-
vice, i t either aborts or returns an output message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77 (with
respect to the secret server data generated by the initializa-
tion procedure). On a disable(t, 7) query, which represents
a disable request, the svr oracle rejects all future queries
with the ticket T if t corresponds to T (see Section 5.1.3).

The dvc oracle may be queried with start and finish. We
assume there is an implicit notion of sessions so that the
dvc oracle can determine the start query corresponding to
a finish query. On a start(m) query, which represents a re-
quest to initiate the S-RSA protocol, the dvc returns an out-
put message <?, 6, T>, and sets some internal state (with
respect to the secret device data and the password gener-
ated by the initialization procedure). On the corresponding
finish(q) query, which represents the device's receipt of a
response ostensibly from the server, the dvc oracle either
aborts or returns a valid signature for the message m given
as input to the previous start query.

A forger of type ADV({svr:no}), ADv({dvc,svr}), or
ADV({dvc}) succeeds if after this it can output a pair
(m, <s,r>) where se EN encode(m,r) and,therc was
no start(m) query. A type ADv({dvc,no}) forger siic-

ceeds if after this i t can output a pair (m, <s,r>) where
se encode(m, T) and there was no serve(?, 6,~) query,
where Dsl;,,,(y) = <7n, *, *>, before a disable(t, T) query

that disables the device's ticket 7.

Let qdvc be the number of start queries to the device. Let
qsvr be the number of server serve queries. For Theorem 6.2,
where we model h and f as random oracles, let qh and q f be
the number of queries to the respective random oracles. Let
qo be the number of other oracle queries not counted above.
Let Q = (qdvc, qsvr, qo, qh , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 5) . In a slight abuse of notation,
k t IQ1 = qdvc + qsvr -t qo + qh + q f , i.e., the total number
of oracle queries. We say a forger (Q, €)-breaks S-RSA if
it makes oracle queries (of the respective type and to the
respective oracles) and succeeds with probability at least E.

6.2. Theorems

Here we prove that if a forger breaks the S-RSA system
with probability non-negligibly more than what is inher-
ently possible in a system of this kind then either the under-
lying RSA signature scheme or the underlying encryption
scheme used in S-RSA can be broken with non-negligible
probability. This implies that if the underlying RSA sig-
nature scheme and the underlying encryption scheme are
secure, our system will be as secure as inherently possible.

We prove security separately for the different types of at-
tackers from Section 3.1. The idea behind each proof is a
simulation argument. We assume that a forger F can break
the S-RSA system, and then attempt to construct a forger
F' for the underlying RSA signature scheme. Basically F'
will run F over a simulation of the S-RSA system, and
when F succeeds in breaking S-RSA (in a way not inher-
ently possible, as discussed above), then F* will succeed in
breaking the underlying RSA signature scheme.

In the security proof against a device-compromising
forger F , there is a slight complication. If F were able
to break the encryption scheme of the server, a forger F"
as described above may not be able to simulate properly.
Thus we show that either F succeeds (in a way not inher-
ently possible) in a simulation where the encryptions are
of strings of zeros, and thus we can construct a forger F*
that breaks the underlying RSA signature scheme, or F does
not succeed (in a way not inherently possible) in that sim-
ulation, and thus i t must be able to distinguish the true en-
cryptions from the zeroed encryptions. Then we can con-
struct an attacker .4 that breaks the underlying encryption
scheme. In addition, we note that the device-compromising
forgers for which we prove this result are even stronger than
allowed in Section 3: after capturing dvc, the forger is per-
mitted to cause dvc to initiate the S-RSA protocol on ames-
sage of the forger's choice, with dvc using the correct pass-
word TO even if the forger docs not know ?r0. This models
a forger that may be able to capture the static data from the
device without capturing the device itself, i.e., without the
knowledge of the user.

For proving security against all types of forgers, one

21

must assume that both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh and f behave as random oracles.
However, for certain types of forgers, weaker hash function
properties suffice.' For proving security against a forger in
ADV({dvc}), we make no requirement on the f function,
and we only require h to have a negligible probability of
collisions over the dictionary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1231 were polynomial
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK , then i t would suffice for h to be a collision resistant
hash function. If ID1 were super-polynomial, that property
would not suffice. However, it would suffice for h to be
a permutation.3 For proving security against a forger in
ADV({svr, no}), we make no requirement on the h func-
tion, and it would suffice for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ f v } to be a pseudorandom
function family. For proving security against a forger in
ADV({dvc, T O }) , we make no requirement on either h or f .

In the theorems below, we use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA''x" to indicate equality to
within negligible factors. Moreover, in our simulations, the
forger F is run at most once, and so the times of our sim-
ulations are straightforward and omitted from our theorem
statements. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 6.1 Let { fu} be a pseudorandomjiinction fam-
ily. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy p e ADv({svr, n o }) forger (Q, €)-breaks the S-
RSA[€, D] scheme, then there exists a forger that (qdvc, E ') -

breaks the underljing RSA signature scheme with E' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM E .

Proof Given F E ADV({svr,no}) that (Q,~)-breaks the
S-RSA[&, D] scheme, we construct a forger F* for the un-
derlying RSA signature scheme. F* is given public key
<e, N > for the RSA signature scheme and simulates the
S-RSA system for F , so that any forgery constructed by F
will be a forgery in the underlying RSA signature scheme.

Simulation: F* gives <e, N > to F as the device's pub-
lic signature key. Then F* generates the server's key pair
(plcsvr, skSvr), and gives that to F . Next F* generates the
user password no +-R V and gives that to F . Finally F*
generates <a, b, U , dp , N > for the ticket r in the normal
way, using random t , w E (0, l}", except that dp is drawn
randomly from Zp,.

F* responds to svr queries as in the real protocol. F*
responds to dvc start(m) queries by querying the signature
oracle to get U = <s, r> and then responding as in the real
protocol using that r value. F* responds to a dvc finish(q)
query corresponding to a start(m) query by computing v =

@ p (where p was computed in the start(m) query) and
checking that v - N (encode(m, T)) ~ ~ . If this is false, F*
has dvc abort. Otherwise, F' returns the 0 returned from
the signature oracle query in the start query. F* responds
to a getVals query to the disable oracle by returning t , T.

Analysis: Let S-RSA' be the S-RSA protocol with f u
replaced with a perfectly random function, and let E" be the

2Minimizing reliance on the random oracle model is generally de-
sirable, since random oracles are not a standard cryptographic assump-

tion [121.
3Also, certain weaker properties for h would lead to provable security,

but with weaker bounds in the theorem.

probability that F produces a forgery when run against S-

RSA'. By the pseudorandomness of f , E" x E . Now let
E' be the probability that F forges in the simulation, and
hence the probability that F* forges in the underlying RSA
signature scheme. One can see that the simulation above
is statistically indistinguishable from S-RSA' to F , and so
E' x E/ ' x E. 0

Theorem6.2 Let h and f be random oracles. If a
type ADv({dvc, svr}) forger (?j, €)-breaks the S-RSA[€, D]
scheme, then there exists a forger F* that (qdvc, €')-breaks
the underlying RSA signature scheme with E' M E - -

IDI .

Proof Given F E ADv({dvc, svr}) that (?j, €)-breaks the
S-RSA[&, D] scheme, we construct a forger F* for the un-
derlying RSA signature scheme. F* is given public key
<e, N > for the RSA signature scheme and simulates the
S-RSA system for F , so that any forgery construct by F
without F guessing the password (as described below) will
be a forgery in the underlying RSA signature scheme.

Simulation: F* gives <e, N > to F as the device's pub-
lic signature key. Then F* generates the server's key pair
(pksvr, sksvr), and gives that to F . Next F' generates the
secret user password TO +R D. Finally, F* generates the
data <a, b, U , da, N > for the ticket r in the normal way, us-
ing random t , U E (0, l}", except that dp is drawn randomly
from ZN. F* gives a, U , and r = Epk,,,(<a, b ,u , d2, N >)
to F.

F* responds to an h (~) or f(w',n) query as a normal
random oracle would, except that i t aborts if n = no (for an
h () query) or 7r = no and w' = v (for an f() query).

A responds to queries to the svr, dvc, and disable oracles
as in the proof of Theorem 6.1.

Analysis: Unless F makes a query TO) or f (w,To) ,

which occurs with probability at most w, the simula-
tion is indistinguishable from the real protocol to F , so if F
produced a forgery with probability E in S-RSA, F* would
produce a forgery with probability at least E' M E -

0

Q h f q f

IDI
in the underlying RSA signature scheme.

Theorem 6.3 Suppose h has a negligibleprobability of col-
lision over ID. I f a type ADV({dvc}) forger (q ,~) -b reaks
the S-RSA[&,D] scheme where E = + q!~, then either

there exists an attacker A* that (2qsvr, €')-breaks & with
E' M or there exists a forger F* that (q d v c , E / ') -

breaks the underlying RSA signature scheme with E'' M f .

Proof: Given F E ADv({dvc}) that (Q,~)-breaks the S-

RSA[&, VI scheme, we show that either we can construct
a forger F* for the underlying RSA signature scheme, or
an attacker A* against &. We first show that if forger F
wins (as defined below) against a certain simulation with
probability greater than + $, we can construct a forger

ID1

l (1+Qdvc) '

/'Dl

22

F* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthat can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(q d v c , €’’)-break the underlying RSA signature
scheme with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE“ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= f . Assuming F does not win against that
simulation with the probability stated above, then we show
that we can construct an attacker 4 * that (2qs,,, €’)-breaks
& with E’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx &.

Part I F* is given public key <e, N > for the RSA
scheme and simulates the S-RSA system for F . We say
F wins against the simulation if F produces a valid forgery
or if F makes a successful online password guess. This is
defined as F making a server query with input (y , 6 , ~ ’) ,
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS = mac,(<y, T >) for the mac key a stored on the
device, and either (1) T’ is the ticket stored on the device and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y is a ciphertext not generated by a device start query, and
where <m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT , p, p> t D,ksv, (y), and = h(n0); or (2)
r’ ismot the ticket stored on the device but y was generated
by a device start query, and where <a’, b‘, U’, dk, N‘> t
Dsk,.,(7’), and b’ = h(n0).

Part I Simulation: F* gives <e, N > to F as the device’s
public signature key. Then F* generates the server’s key
pair (plcsvr, S k S v r) , and gives pk,,, to F . Next F* generates
the secret user password zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno t~ D. Finally, F* generates
<a, b, U , dz, N > for the ticket T in the normal way, using
random t , U E (0, l}K, except that da is drawn randomly
from ZN. F* gives a, U , and T = Epk,,, (03‘“+“) to F.

F’ responds to a getVals query to the disable oracle by
returning t , 7.

F* responds to a svr disable(t’,T’) query as a normal
server would, but using the U value generated in the initial-
ization if 7’ = T . F* responds to serve(y, 6 , ~ ’) queries for
a r‘ that has not been disabled as follows:
Case 1: (y , 6 , ~ ‘) is from a dvc start(m) query: Return
p @ ,((encode(m,r))dz mod N) where m, r , and p were
from the start query.
Case 2: y and r’ are from a dvc start query, but not 6: Be-
have like a normal server (i.e., svr will abort).
Case 3: T’ = T , but y is not from a dvc start query: Verify
the mac like a normal server, but using the a value from ini-
tialization as the mac key. Then compute <m, T , p, p> t
Dsk,,;(y). Abort the simulation if p = b (this is a successful
onlinepassword guess), and have svr abort if p # b.
Case 4: T’ # T , but y is from a dvc start query: Com-
pute <a‘, b ’ , ~ ’ , & , N’> t Dsksv,(r’). Verify the mac like
a normal server, using mac key a’. Abort the simulation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif

b‘ = b (this is a successful online password guess), and have
svr abort if b’ # b.
Case 5: r’ # r and y is not from a dvc start query: Behave
like a normal server.

F* responds to a dvc start(m) query as in Theorem 6.1,
except setting y = Epk,,, (O l m l + K s z g +) c + X) . F* responds to
a dvc finish(77) query as in Theorem 6.1.

Part I Analysis: The probability that F makes a success-
ful online password guess is at most &, disregarding negli-
gible probabilities (since TO was chosen randomly and h has

a negligible probability of collision over D), so if F wins
against the simulation with probability at least $ + fi, i t
produces a forgery with probability at least $, and thus F*
produces a forgery in the underlying RSA signature scheme
with probability at least 6’’ M $.

Part 2 For the second part of the proof, we assume that
the probability of F winning in Part 1 is at most + f . P I
Then we construct an attacker A* that breaks & with prob-
ability &. Our attacker A* is given a public key pk’
from I , and runs a simulation of the S-RSA system for F.

First consider a simulator that gives pk’ to F as the
server’s public encryption key, and then simulates S-RSA
exactly, but using a decryption oracle to decrypt messages
encrypted under key pk‘ by the adversary. There will be at
most 2qSvr of these. (Note that the decryptions of T and any
y generated by the dvc would already be known to the simu-
lator.) This simulation would be perfectly indistinguishable
from the real protocol to F . Now consider the same simula-
tion, but with the ticket and all y values generated by the de-
vice changed to encryptions of strings of zeros. (Naturally,
the server pretends the encryptions are of the normal mes-
sages, not strings of zeros.) The latter simulation is equiv-
alent to the Part 1 simulation, except that the attacker does
not abort on a successful online password guess. Still, the
probability of F forging in the latter simulation is at most
fi + $, while the probability of F forging in the former
simulation is at least fi + 4.

Now we use a standard hybrid argument to construct A’.
Let experiment j E (0, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqdvc + 1) correspond to the first
j ciphertexts (generated by A*) be of the normal messages,
and the remainder be encryptions of strings of O’s, and let
p , be the probability of F forging in experiment j. Then the
average value for i E (0 , . . . , q d v c } ofp,+l - p , is at least
L

Therefore, to construct A*, we simply have A* choose
a random value z E (0,. . . , qdvc}, and run experiment i as
above, but calling the test oracle for the (i + l)st encryption
to be generated by the simulator, where the two messages
X , and XI submitted to the test oracle are the normal mes-
sage and the string of zeros, respectively. Then A* outputs
0 if F forges (meaning i t believes .U, was encrypted by the
test oracle), and 1 otherwise. By the analysis above, A*
breaks & with probability &, disregarding negligible

2(1+4 ’dvc) .

probabilities. 0

Theorem 6.4 Suppose the underlying RSA signature
scheme is deterministic (i.e., K~~~ = 0). If a type
ADV((dvc, no}) forger (q, €)-breaks the S-RSA[€, D]
scheme, then either there exists an attacker A* that
(2q,,,, €‘)-breaks & with E’ x &, or there exists a
forger F* that (2qsvr, €“)-breaks the utiderljing RSA signa-
ture scheme with E” % ;.

23

Proof: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGiven zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ADv({dvc, T O }) that (GI €)-breaks the S-
RSA[&, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD] scheme, we show that either we can construct
a forger F* for the underlying RSA signature scheme, or
an attacker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA* against E . We first construct a forger F*
that runs F against a simulation of S-RSA, such that if F
forges in the simulation with probability 5 , F* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2qsvr, E ”) -

breaks the underlying RSA signature scheme with E’’ M 5 .
Assuming F does not forge a signature in that simulation
with probability 5 then we show that we can construct an
attacker A* that (2qsvr, €’)-breaks E with E’ M

Part I F* is given public key <e, N > for the RSA
scheme and simulates the S-RSA system for F .

Part I Simulation: F* gives <e, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN> to F as the device’s
public signature key. Then F* generates the server’s key
pair (pk,,,, .sksvr), and gives pk,,, to F . Next F* generates
the data a, b, U , and d l in the normal way, using random
t , v E {0,1}“, but computes7 = Ep~, , , (03Kc f2X) . F* gives
a, U, and T to F .

F* responds to a getVals query to the disable oracle by
returning t , T.

F* responds to a svr disable(t ’ ,~’) query as a normal
server would. F* responds to svr serve(y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 , ~ ’) queries for
a T’ that has not been disabled as follows:
Case I : (y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, T‘) is from a dvc s tar t (m) query: Query
the signature oracle to get <s,r> (where Irl = 0, since
the signature scheme is deterministic), and then return zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p@ (s/(encode(m, T)) ~ ’ mod N) where p is from the start
query.
Case 2: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy and T’ are from a dvc start query, but not 6: Be-
have like a normal server (i.e., the svr will abort).
Case 3: T’ = T, but y is not from a dvc start query:
Say < r r i , ~ , P , p > t Dsk,,,(y). Behave like a normal
server, but if p = b, then query the signature oracle to get
0 = <s, r>, and return p @ (s/(encode(m, ~ -)) ~ l mod N) .
Case 4: T’ # T, but y is from a dvc s tar t (m) query: Say
<a’, b’, U’, d i , N’> t DSkrv, (T’). Behave like a normal
server, but using m, T , /3, and p from the dvc start(m) query.
Case 5: T’ # T and y is not from a dvc start query: Behave
like a normal server.

F* responds to a dvc start(m) query as a normal
dvc would, except setting y = Epk,v,(Olml+“+X). For
a dvc finish(7) query corresponding to a start(m) query
that returned (y,d,.r), if 7 was not returned from a svr
serve(y, 6 , ~) query, have dvc abort. Otherwise F* returns
the signature found in that serve(?, 6, T) query.

Part I Analysis: If F forges in the simulation, then F*
forges in the underlying signature scheme.

Purr 2 The second part of the proof is similar to Part 2 of
the proof of Theorem 6.3, except with t,b replaced by E, and

no term. o

7. Conclusion

Dictionary attacks against password-protected private
keys are a significant threat if the device holding those keys
may be captured. In this paper we have presented an ap-
proach to render devices invulnerable to such attacks. Our
approach requires the device to interact with a remote server
to perform its private key operations. Therefore, i t is pri-
marily suited to a device that uses its private key in inter-
active cryptographic protocols (and so necessarily has net-
work connectivity to reach the server when use of its private
key is required). A prime example is a device that plays
the role of a client in the TLS protocol with client authen-
tication. Though our protocol requires the device to inter-
act with a remote server, we prove that this server poses no
threat to the device. Specifically, it gains no significant ad-
vantage in forging signatures that can be verified with the
device’s public key or decrypting messages encrypted un-
der the device’s public key. In particular, it cannot mount
a dictionary attack to expose the device’s private key. Even
if both the device and server are compromised, the attacker
must still succeed in an offline dictionary attack before sign-
ing on behalf of the device.

In addition to the above properties, we presented proto-
cols that further provide the feature of key disabling. This
enables the user to disable the device’s private key immedi-
ately, even after the device has been captured and even if the
attacker has guessed the user’s password. Once disabled,
the device’s key is provably useless to the attacker (provided
that the attacker cannot also compromise the server). Key
disabling is thus an effective complement to any public key
revocation mechanism that might exist, particularly if there
is a delay for revoking public keys.

24

References zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1191 W. Ford and B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS . Kaliski, Jr. Server-assisted generation of a strong

N. Asokan, G. Tsudik, and M. Waidner. Server-supported signatures.
./oifrJid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACoinputer Securih 5(I) , 1997.

P. BCguin and J. J. Quisquater. Fast server-aided RSA signatures se-
cure against active attacks. In Advunces in Cryptology-CRYPT0 '95
(Lecture Notes in Computer Science 963), pp. 57-69, 1995.

M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations
among notions of security for public-key encryptoin schemes. In
Advunces in CI:\./~t"l(~gy-CRYPTO '98 (Lecture Notes in Computer
Science 1462), pp. 2 6 4 5 , 1998.

M. Bellare and S . Miner. A forward-secure digital signature scheme.
In Advcirices in Cryptohgy-CRYPT0 '99 (Lecture Notes in Com-
puter Science 1666). pp. 431438, 1999.

M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated
key exchange secure against dictionary attacks. In Advunce.7 iri
Cryptology-EUROCRYPT 2000 (Lecture Notes in Computer Sci-
ence 1807). pp. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA139-1 55, 2000.

M. Bellare and P. Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In lSt ACM Conference
on Computer und Co~~rrirurri~.(iti(~~r.~ Security, pp. 62-73, Nov. 1993.

M. Bellare and P. Rogaway. Optimal asymmetric encryption. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAd-
vu-nces in Cryptology-EUROCRYPT '91 (Lecture Notes in Com-
puter Science 950). pp. 92-1 1 I . 1995.

M. Bellare and P. Rogaway. The exact security of digital signatures-
How to sign with RSA and Rabin. In Advunces in Cryptology-
EUROCRYPT '96 (Lecture Notes in Computer Science 1070), pp.
399416, 1996.

S. M. Bellovin and M. Memtt. Encrypted key exchange: Password-
based protocols secure against dictionary attacks. In I992 IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASym-
posium on Secirrie (incl Privucy, pp. 72-84, 1992.

C. Boyd. Digital multisignatures. In H. J . Beker and F. C. Piper,
editors, Cryptogruphy id Coding, pp. 241-246. Clarendon Press,
1989.

V. Boyko, P. MacKenzie, and S. Patel. Provably secure password au-
thentication and key exchange using Diffie-Hellman. In Advurices in
Cry/~t~)/ogy-EUR0CRYP T ZOO0 (Lecture Notes in Computer Sci-
ence I807), pp. 156- I7 I , 2000.

R. Canetti, 0. Goldreich and S. Halevi. The random oracle method-
ology. revisited. In O O ~ " ACM ~yrriposirmi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon T/reory of Computing,
pp. 209-218, 1998.

R. Cramer and V. Shoup. A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack. In Advunces
i n Cryptology-CRYP TO '98 (Lecture Notes in Computer Science
1462), pp. 13-25. 1998.

D. E. Denning. Digital signatures with RSA and other public-key
cryptosystems. Co~~r~~ i i f~ r i c (i t i o~ r .~ of the ACM 27(4):388-392, Apr.
1984.

T. Dierks and C. Allen. The TLS protocol version I .O. IETF Request
for Comments 2246, Jan. 1999.

D. Dean, T. Berson, M. Franklin, D Smetters and M. Spreitzer. Cryp-
tography as a network service. In 2001 1SOC S ~ m p o s i i i ~ n on Network
und Disrribirted System Secxr ih, Feb. 200 I .

T. EIGamal. A public key cryptosystern and a signature scheme based
on discrete logarithms. 1EEE T,.un.wrctions on hifiwmutioti Theory
3 1:469472, 1985.

D. Feldmeier and P. Kam. UNIX password security-Ten years later.
In Advunce.r in Cryptology-CRYPT0 '89 (Lecture Notes in Com-
puter Science 435). 1990.

. .

secret from a password. In 5th IEEE hrernutioncr/ Workshop on En-
terprise Security, 2000.

[20] 0. Goldreich, S. Goldwasser and S . Micali. How to construct random
functions. Journul of the ACM 33(4):792-807, Oct. 1984.

[21] S . Goldwasser, S . Micali, and R. L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Jour-
nu/ ~ j " Coniputbig 17(2):281-308, Apr. 1988.

[22] J. Histad, J. Honsson, A. Juels, and M. Yung. Funkspiel schemes:
An alternative to conventional tamper resistance. In 7th ACM Con-
,ference on Computer nrrd Corniiru,iicntiorrs Security, pp. 125-1 33,
Nov. 2000.

[23] S . Halevi and H. Krawczyk. Public-key cryptography and password
protocols. In 5t" ACM Conference on Computer und Comniunicu-
tioiir Secrrriry, pp. 122-131, 1998.

[24] D. N. Hoover and B. N. Kausik. Software smart cards via crypto-
graphic camouflage. In 1999 IEEE Symposium on Security und Pri-
vucy, pp. 208-2 15, May 1999.

[25] S . Hong, J . Shin, H. Lee-Kwang, and H. Yoon. A new approach to
server-aided secret computation. In lSt Internuriontrl Conference on
Informution Security and Crypmlogy, pp. 33-45, 1998.

[26] D. Jablon. Strong password-only authenticated key exchange. ACM
Computer Communicurion Review 26(5):5-20, 1996.

[27] D. Klein. Foiling the cracker: A survey of, and improvements to,
password security. In 2nd USENIX Security Workshop, Aug. 1990.

[28] D. W. Kravitz. Digital signature algorithm. U.S. Patent 5,231,668, 27
July 1993.

[29] H. Krawczyk. Simple forward-secure signatures from any signature
scheme. In 7th ACM Conference on Computer trnd Communicution
Security, pp. 108-1 15, Nov. 2000.

[30] T. M. A. Lomas, L. Gong, J. H. Saltzer, and R. M. Needham. Reduc-
ing risks from poorly chosen keys. ACM Operutirrg Systems Review
23(.5):14-18. Dec. 1989.

[31] P. MacKenzie, S. Patel, and R. Swaminathan. Password authenti-
cated key exchange based on RSA. In Advurices in CryptoIogy-
ASIACRYPT2000, pp. 599-613, 2000.

[32] P. MacKenzie and M. K. Reiter. Two-party generation of DSA signa-
tures. Manuscript, 2001.

[33] T. Matsumoto, K. Kato, and H. Imai. Speeding up computation with
insecure auxiliary devices. In Advunces in Cryptology-CRYPT0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'88
(Lecture Notes in Computer Science 403), pp. 497-506, 1989.

[34] U. Maurer and S . Wolf. The Diffie-Hellman protocol. Designs,
Codes, und Cryptogruphy 19: 147-1 7 I , Kluwer Academic Publish-
ers, 2000.

[35] R. Moms and K. Thompson. Password security: A case history.
Cor,rniunicutiorIs of the ACM, 22(I 1):594-597, Nov. 1979.

[36] R. Perlman and C. Kaufman. Secure password-based protocol for
downloading a private key. In 1999 Nenvork wid Distributed Sy.rterrr
Security Symposium. Feb. 1999.

[37] C. Rackoff and D. Simon. Noninteractive zero-knowledge proof
of knowledge and chosen ciphertext attack. In Advunces in

[38] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Coiiiniimircrrio,i.r of

the ACM 21(2):12&126, Feb. 1978.

[39] V. Shoup and R. Cennaro. Securing threshold cryptosystems against
chosen ciphertext attack. In Advunces in Cryprology-EUROCRYP T

[40] T. Wu. The secure remote password protocol. In 19YR Nehwrk und
Dis/ribirred System Securih Symnpo.riirm, Feb. 1999.

[41] T. Wu. A real-world analysis of Kerberos password security. In I999
Network und Disrribured Sjsrcm Security Swrrposium, Feb. 1999.

Cr~ptO/og~-CRYPTO '91, pp. 4 3 3 4 4 , 1991.

'98, pp. 1-16, 1998.

25

