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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We present a simple technique by which a device that 

performs private key operations (signatures or decryptions) 
in networked applications, and whose local private key is 
activated with a password or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPIN, can be immunized to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoff- 
line dictionary attacks in case the device is captured. Our 
techniques do not assume tamper resistance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the device, 
but rather exploit the networked nature of the device, in that 
the device’s private key operations are pe formed using a 
simple interaction with a remote sewer: This sewer; how- 
ever; is untrusted-its compromise does not reduce the se- 
cur iv  of the device’s private key unless the device is also 
captured-and need not have a prior relationship with the 
device. We further extend this approach with support fo r  
key disabling, by which the rightj‘ul owner of a stolen de- 
vice can disable the device’s private key even if the attacker 
already knows the user’s password. 

1. Introduction 

A device that performs signatures or decryptions using 
the private key of a public key pair, and that stores the pri- 
vate key locally on stable storage, is typically vulnerable to 
exposure of that private key if the device is captured. While 
encryption of the private key under a password is common, 
the ease with which passwords succumb to offline dictio- 
nary attacks (e.g., see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[35, 27, 18, 411) implies that better 
protections are needed. Many such protections have been 
proposed, but most require tamper-resistance of the device. 
Others used in practice replace the password with a stronger 
key stored on another device that the user holds, thus mov- 
ing the burden of protection to that device. 

In this paper we propose a simple, software-only tech- 
nique to render the private key of a networked device in- 
vulnerable to offline dictionary attacks, even if the device is 
captured. Our technique exploits the fact that the device has 

network connectivity at the time it is required to perform a 
private key operation, and thus can interact with a remote 
party at that time to complete the operation. This is char- 
acteristic of virtually any device involved in an interactive 
authentication or key exchange protocol. 

The way in which we exploit network connectivity is to 
postulate a remote server that assists the device in perform- 
ing its private key operation. This remote server need not 
have any preexisting relationship with, or knowledge of, the 
device (though the device needs a public key for the server). 
Moreover, the server is untrusted: we prove that the server, 
even if i t  misbehaves, gains no information that would help 
it to compute signatures that verify with the device’s pub- 
lic key or to decrypt messages encrypted under the device’s 
public key. The only behavior that we require of the server 
is that i t  execute the correct protocol to respond to a well- 
formed request, and that it stop responding to invocations 
pertaining to a device’s public key (perhaps for a period 
of time) after it has received sufficiently many malformed 
requests associated with this public key. This latter behav- 
ior is required to prevent an online dictionary attack against 
the password. We note, however, that this feature does not 
present a denial-of-service vulnerability, since in our prolo- 
col, an attacker can conduct an online dictionary attack only 
after it has captured the device-and so use of the device by 
the legitimate user is presumably already denied. 

We present two types of protocols that achieve the above 
properties. These types functionally differ on whether they 
enable the device’s private key to be disabled. If the device 
is stolen, i t  is natural for the device’s rightful owner to wish 
to disable the use of the private key, to account for the pos- 
sibility that the attacker already knows the user’s password 
(e.g., by observing the user type it) or can guess it in very 
few tries (e.g., due to his intimate knowledge of the user). In 
one type of protocol we present, the user can issue a request 
to the server to disable future use of the private key associ- 
ated with the device’s public key. Once the server receives 
this request and verifies it is well-formed, the device’s key 
is rendered (provably) useless to the attacker, even if the at- 
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tacker knows the user’s password. The attacker will thus be 
unable to employ the key in future interactive protocols or 
to decrypt future encrypted messages. This feature is espe- 
cially useful if revocation of the device’s public key via a 
public key infrastructure (e.g., a certificate revocation list) 
has an associated delay (if i t  exists at all); in contrast, using 
our scheme the private key can be disabled immediately. 

The ability to disable a private key seems to come at a 
cost in terms of compatibility with existing protocols. Our 
protocol without this feature is compatible with any public 
key cryptosystem or signature scheme in use by the device, 
and any protocol using them. In contrast, our protocols sup- 
porting key disabling are dependent on the type of private 
key operations in use; here we give protocols for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARSA [38] 
signatures and ElGamal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 171 decryption. These easily gen- 
eralize to many other signature and decryption protocols. 
In addition, to achieve provable security, our signature pro- 
tocols supporting key disabling expose the message being 
signed to the server. As such, it is compatible only with 
applications that sign public data. This is consistent with, 
e.g., TLS 1 .O [ 151, but is incompatible with protocols that 
sign private data before encrypting it. There are variations 
of our RSA signature protocol, for example, that do not re- 
quire the message to be disclosed to the server, but proving 
them secure requires nonstandard assumptions about the se- 
curity of RSA. 

2. Prior work 

The work of which we are aware whose goals are most 
related to ours is [24]. This work proposes methods to en- 
crypt a DSA or RSA private key using a password so that 
guesses at the password cannot be verified by an attacker 
who captures the device holding that private key. This fea- 
ture comes at a severe price, however. For example, the 
device’s “public” key must be kept secret, even from the 
device itself: obviously if  the attacker learns the public key, 
then he can verify a successfully decrypted private key. So, 
the public key must be hidden from all but a few trusted 
servers that verify signatures produced by the device or en- 
crypt messages for the device. And, i t  is essential that no 
verifiable plaintext be encrypted, since this, too, could be 
used to verify guesses at the password. In contrast, our work 
achieves similar goals without imposing such awkward sys- 
tem constraints. Our solutions require nothing of the system 
surrounding the device other than the ability for the device 
to communicate over a network when i t  performs private 
key operations. 

One way zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto partially reach our goals is to simply not 
store the device’s private key on the device, but rather 
have the device download i t  from the server when needed 
(e.g., [36]). Indeed, one of our protocols somewhat re- 
sembles this approach. To ensure that the private key is 

downloaded only to the user’s device, the device first proves 
it  has been given the user’s password. For this purpose 
there are numerous published protocols by which the de- 
vice can authenticate to and exchange a key with a server 
using a password input by its user, without exposing that 
password to offline dictionary attacks. Some protocols re- 
quire the device to already have a public key for the server 
(e.g., [30,23, 19]), others do not (e.g., [9,26,40,5,  11,3 I]).  
Since the device stores at most only public information, its 
capture is of no consequence. On the other hand, in all 
of these protocols, the server either knows the user’s pass- 
word or else can mount an offline dictionary attack against 
it. More importantly, when these protocols are used for the 
retrieval of a private key from the server, the private key 
(which would most likely be encrypted with the password) 
would be exposed to the server after a successful offline dic- 
tionary attack on the password. Recent proposals resort to 
multiple servers and require that at most some threshold co- 
operate in a dictionary attack [ 191, but nevertheless this re- 
mains a differentiator of our approach: our server is entirely 
untrusted. A second differentiator of our work is that prior 
work does not permit key disabling to address the possibil- 
ity that an attacker already knows the user’s password or 
guesses i t  quickly: once the attacker guesses the password 
and downloads the private key, the attacker can use it for an 
unlimited time. In contrast, we present protocols in which 
the private key can be disabled, even zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAafter the attacker has 
captured the user’s device and guessed the user’s password. 

Short of rendering the device’s private key invulnerable 
to an offline dictionary attack once the device is captured, 
perhaps the next best thing is to ensure that the private key 
cannot be used to sign messages dated before the device 
was captured. This is achieved by fonvard secure signa- 
ture schemes, which intuitively change the private key (but 
not the public key) over time so that the captured private 
key can be used to sign messages only dated in the future 
(e.g., [4, 291). If the device can sense that its private key is 
about to be discovered, as might be possible if the device 
is a coprocessor with tamper detection circuitry, then an- 
other alternative is for the device to change the private key 
when i t  detects a pending compromise so that future signa- 
tures subliminally disclose to an authority receiving those 
signatures that the device has been compromised [22]. In 
contrast to these approaches, our goal is to prevent any fu- 
ture signatures by the attacker once the device is captured, 
rather than permitting them in a limited way (as forward 
secure signature schemes do) or in a way that subliminally 
alerts an authority (as in [22]). 

Finally, our use of a server to assist the device in per- 
forming signatures or decryptions is reminiscent of sewer 
aided protocols, whereby the computational burden of a se- 
cret cryptographic computation is moved from the device to 
a more powerful server. Some of these protocols place trust 
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in the server and thus expose the device’s private informa- 
tion to i t  (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ l ,  16]), while others attempt to hide the 
private key from the server but nevertheless have the server 
do the bulk of the computation (e.g., [33, 2,251). Our work 
differs in its goals: our intention is to render the device im- 
pervious to an offline dictionary attack once captured, rather 
than to reduce the computation required of the device. On 
the contrary, in our protocols, the device ends up performing 
at least as much computation as i t  would if i t  were to per- 
form the secret computation entirely itself. While it seems 
fairly straightforward to combine our protocols with some 
of these techniques, doing so while maintaining provable 
security looks to be a challenge. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Preliminaries 

In this section we informally state the goals for our sys- 
tems. We also introduce preliminary definitions and nota- 
tion that will be necessary for the balance of the paper. 

3.1. Goals 

We presume a system with a device dvc and a server svr 
that communicate by exchanging messages over a public 
network. In our protocols, the device is used either for gen- 
erating signatures or decrypting messages, and does so by 
interacting with the server. The signature or decryption op- 
eration is password-protected, by a password zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT O .  The sys- 
tem is initialized with public data, secret data for the device, 
secret data for the user of the device (i.e., T O ) ,  and secret 
data for the server. The public and secret data associated 
with the server should simply be a certified public key and 
associated private key, which most likely would be set up 
well before the device is initialized. The device-server pro- 
tocol allows a device operated by a legitimate user (i.e., one 
who knows T O )  to sign or decrypt a message with respect to 
the public key of the device, after communicating with the 
server. In those schemes supporting key disabling, device 
initialization may create additional secret data that, if sent 
to the server, will cause the server to no longer execute the 
decryption or signing protocol with that device. 

Each adversary we consider is presumed to control the 
network; i.e., the attacker controls any inputs to dvc or svr, 
and observes their outputs. Moreover, an adversary can 
“capture” certain resources. The possible resources that 
may be captured by the attacker are dvc, svr, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATO. Once 
captured, the entire static contents of the resource become 
known to the attacker. The one restriction on the adversary 
is that if he captures dvc, then he does so after dvc initial- 
ization and while dvc is in an inactive state-i.e., dvc is not 
presently executing the protocol with T O  as input-and that 
T O  is not subsequently input to the device by the user. This 
decouples the capture of dvc and T O ,  and is consistent with 

our motivation that dvc is captured while not in use by the 
user and, once captured, is unavailable to the user. 

We denote by ADV(S),  where S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg {dvc,svr,ro}, the 
class of adversaries who succeed in capturing the elements 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. As such, ADV(&)  E ADV(&) if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASI (I S 2 .  The se- 
curity goals of our schemes are informally stated as follows: 

I. Any adversary in ADV({svr,ro}) is unable to forge 
signatures or decrypt messages for the device (with 
overwhelming probability). 

11. Any adversary in ADv({dvc}) can forge signatures 
or decrypt messages for the device with probability at 
most q/ID1 after zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq invocations of the server, where D 
is the space from which the user’s password is drawn 
(uniformly at random). 

111. Any adversary in ADV({dvc,svr}) can forge signa- 
tures or decrypt messages for the device only if it suc- 
ceeds in an offline dictionary attack on the user’s pass- 
word. 

IV. Any adversary in ADv({dvc, T O } )  can forge signatures 
or decrypt messages for the device only until the device 
key is disabled (in those schemes supporting key dis- 
abling), and subsequently cannot forge signatures or 
decrypt messages for the device. 

3.2. Definitions 

In order to state our protocols to meet the goals outlined 
in Section 3.1, we first introduce some definitions and nota- 
tion. 

Security parameters Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK be the main cryptographic se- 
curity parameter; a reasonable value today may be K = 160. 
We will use X > K as a secondary security parameter for 
public keys. For instance, in an RSA public key scheme 
may we may set X = 1024 to indicate that we use 1024-bit 
moduli. 

Hash functions We use h, with an additional subscript as 
needed, to denote a hash function. Unless otherwise stated, 
the range of a hash function is (0, l}”. 

We do not specify here the exact security properties (e.g., 
one-wayness, collision resistance, or pseudorandomness) 
we will need for the hash functions (or keyed hash func- 
tions, below) that we use. To formally prove that our pro- 
tocols meet every goal outlined above, we generally require 
that these hash functions behave like random oracles [6].  
(For heuristics on instantiating random oracles, see [6].) 
However, for certain subsets of goals, weaker properties 
may suffice; details will be given in the individual cases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Keyed hash functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA keyed hash function family is 
a family of hash functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{fv} parameterized by a secret 
value w. We will typically write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfv(m) as f (v ,m) ,  as this 
will be convenient in our proofs. In this paper we employ 
various keyed hash functions with different ranges, which 
we will specify when not clear from context. 

We will also use a specific type of keyed hash function, 
a message authentication code (MAC). We denote a MAC 
family as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{mac,}. In this paper we do not require MACS 
to behave like random oracles, but to have the following 
standard property: If a is unknown, then given zero or more 
pairs <mi, mac,(mi)>, it is computationally infeasible to 
compute any pair <m, mac,(m)> for any new m # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmi. 

Encryption schemes An encryption scheme E is a triple 
(G,,,, E ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD) of algorithms, the first two being probabilis- 
tic, and all running in expected polynomial time. G,,, 
takes as input lX and outputs a public key pair ( p k , s k ) ,  
i.e., ( p k ,  s k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt Genc( lX).  E takes a public key zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp k  and a 
message m as input and outputs an encryption c f o rm;  we 
denote this c t Epk (m).  D takes a ciphertext c and a secret 
key sk as input and returns either a message m such that c is 
a valid encryption of m, if such an m exists, and otherwise 
returns 1. Our protocols require an encryption scheme se- 
cure against adaptive chosen ciphertext attacks [37]. Practi- 
cal examples can be found in [7, 131. 

Signature schemes A digital signature scheme S is a 
triple (GSPg , SI V) of algorithms, the first two being proba- 
bilistic, and all running in expected polynomial time. Gszg 
takes as input lX and outputs a public key pair ( p k , s k ) ,  
i.e., (pk ,  s k )  t Gszg(lA). S takes a message m and a se- 
cret key sk as input and outputs a signature 0 for m, i.e., 
(I t S,,(m). V takes a message m, a public key p k ,  and 
a candidate signature d for m as input and returns the bit 
b = 1 if 0’ is a valid signature for m, and otherwise re- 
turns the bit b = 0. That is, b t V&(m,d).  Naturally, if 
(I t Ssk(m),  then Vpk(m,a) = 1. 

We say a signature scheme is niatchable if for each 
public key p k  produced by GSzg(lA) there is a single se- 
cret key sk that would be produced (i.e., the probability 
of ( p k , s k )  t GSzg(lX) and (pk ,sk ’ )  t Gszg(lX) with 
sk # sk‘ is zero), and there is a probabilistic algorithm M 
that runs in expected polynomial time and that takes as in- 
put a public key pk and a secret key sk,  and returns 1 if sk is 
the single private key corresponding to p k  (i.e., if Gszg (1’) 
could have produced ( p k ,  sk )  with non-zero probability) 
and returns 0 otherwise. In most popular signature schemes, 
including those we consider here, there is a straightforward 
way to implement the M function. (We can define match- 
able encryption schemes similarly.) 

4. A simple protocol without key disabling 

We begin by presenting a simple protocol for achieving 
goals I, 11, and I11 described in Section 3.1. Since this pro- 
tocol remains the same regardless of whether the device is 
used to decrypt or sign, here we discuss the protocol us- 
ing terminology as if the device is used for signing. This 
scheme is parameterized by the device’s signature scheme 
S and an encryption scheme E for the server,’ and works 
independently of the form of S and E .  We thus refer to this 
protocol as “generid”, and denote the protocol by GENERIC. 

The intuition behind GENERIC is exceedingly simple. At 
device initialization time, the private key of the device is 
encrypted in a way that can be recovered only with the co- 
operation of both the device (if it is given the user’s pass- 
word) and the server. This ciphertext, called a ticket, also 
embeds other information that enables the server to authen- 
ticate requests that accompany the ticket as coming from a 
device that has been given the user’s password. When the 
device is required to perform an operation with its private 
key, it sends the ticket to the server. The device accompa- 
nies the ticket with evidence of its knowledge of the user’s 
password; the server can check this evidence against infor- 
mation in the ticket. The server then performs a transfor- 
mation on the ticket to “partially decrypt” it, and returns the 
result to the device. The device completes the decryption 
to recover its private key. The device may then use the pri- 
vate key for performing the required operations, and may 
even cache the key in volatile memory for some period of 
time so that additional operations can be performed without 
contacting the server for each one. 

Note that a protocol of this form cannot support key dis- 
abling: if an attacker captures the device and guesses the 
user’s password (i.e., the adversary is in ADV({dvc, T O } ) ) ,  

then it  can retrieve the private key and keep i t  forever. Lim- 
iting the damage an attacker can do in this case requires 
assistance from some external mechanism for revoking the 
device’s public key, if such a mechanism exists. 

In the following two sections, we detail the steps of 
the initialization algorithm and the key retrieval protocol. 
This protocol can be formally proven (in the random oracle 
model) to meet goals 1-111 of Section 3.1, though we omit 
this proof here due to space limitations. 

4.1. Device initialization 

The inputs to device initialization are the server’s public 
encryption key pk,,,, the user’s password TO,  the device’s 
public signature verification key pkdvc, and the correspond- 
ing private signing key skdvc. The steps of the initialization 

‘When speaking about security of this and later protocols against off- 
line dictionary attack, we also include a parameter ’D to denote a dictionary 
of the possible passwords. 
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algorithm proceed as follows, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘‘z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS” is used to 
denote assignment to z of an element of S selected uni- 
formly at random. 

The values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, a ,  r ,  pkdvc,  and pk,,, are saved in stable stor- 
age on the device. All other values, including skdvc, TO,  b 
and c, are deleted from the device. We assume that f out- 
puts a value of length equal to the length of Skdvc. For the 
protocol of Section 4.2, we assume this length is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. 

The value r is the “ticket” to which we referred pre- 
viously. Note that this ticket encapsulates a value c from 
which the device can recover Skdvc with knowledge of the 
user’s password. The server’s role in the key retrieval pro- 
tocol will thus involve decrypting this ticket and sending c 
to the device (encrypted). Note that c does not provide the 
basis for the server to mount an attack against Skdvc, since 
the server does not know U. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2. Key retrieval protocol 

The input provided to the device to initiate the key re- 
trieval protocol is the input password zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7r and all of the values 
saved on stable storage in the initialization protocol of Sec- 
tion 4.1. The protocol by which the device retrieves Skdvc is 
shown in Figure I .  

In Figure I ,  p is an authenticator that proves knowledge 
of 7r to the server. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp acts as a one-time pad by which the 
server encrypts c to return it to the device. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is an encryp- 
tion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/3 and p to securely transport them to the server. The 
value S is a message authentication code that is generated 
from the MAC key a stored on the device, and that the 
server uses to confirm that this request actually originated 
from the device. Though 6 is not required to prove secu- 
rity of this protocol, it nevertheless is important in practice: 
it enables the server to distinguish requests bearing 7 but 
not originating from the device (i.e., mac,(<y,T>) # S), 
from requests bearing T that originate from the device but 
for which the device’s knowledge of the user’s password 
cannot be verified (i.e., p # b). The latter category may in- 
dicate an online dictionary attack, and accordingly the ticket 
r should be ignored (perhaps for some period of time) after 
sufficiently many such requests. The former type should not 
“count against” r ,  however, since they do not pose a risk to 
the password; indeed, the authenticator ,f3 is never checked 
in these cases. On the contrary, if this former category were 
treated like the latter, then this would enable a denial-of- 
service attack on T (i.e., the device) in which an attacker, 
having seen r pass on the network, submits requests to the 
server containing T and random values for y and 6. 

dvc svr 

77 
t 

~ ~~ 

Figure 1. GENERIC key retrieval protocol 

It is important for security that the device delete D, p and, 
of course, sk when it is done with them, so that none of 
these values are available to an attacker who subsequently 
captures the device. In particular, these values should never 
be stored on stable storage on the device to ensure, e.g., that 
they will disappear from the device if the device crashes. 

Brief intuition for the security of this protocol is as fol- 
lows. First, goal I is achieved due to the encryption of Skdvc 

by f ( v ,  T O ) ,  since an adversary in ADV( {svr, no}) does not 
know U. Goal I1 is achieved since the only way an adver- 
sary in ADv({dvc}) gains information about the password 
is by submitting guesses at p (or rather, P ’ s  resulting from 
guesses at the password) to the server. Finally, even an ad- 
versary in ADv({dvc, svr}) is required to conduct an offline 
dictionary attack against the password to discover skdvc,  

since Skdvc is encrypted using f ( v ,  T O ) .  

5. Systems supporting key disabling 

In this section we present protocols that satisfy all of the 
goals of Section 3.1, including the ability for the user to 
disable the private key of the device even after the attacker 
has captured the device and guessed the user’s password. 
As described in Section 4, the reason that key disabling is 
not possible with GENERIC is that the device’s private key is 
recovered by the device as part of that protocol. As a result, 
an attacker who captures the device and guesses the user’s 
password can recover the private key and use it indefinitely. 
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In order to make key disabling possible, we thus de- 
sign protocols in which the private key is never recovered 
by the device. Rather, the device performs each signature 
or decryption operation individually by interacting with the 
server. This is achieved by 2-out-of-2 function sharing, 
where the function being shared is the device’s signature 
or decryption function. More precisely, when the device is 
initialized, two shures of the device’s private key are gener- 
ated. The first share is constructed so that i t  can be gener- 
ated from the user’s password and information stored on the 
device. The second share, plus other data for authenticating 
requests from the device, are encrypted under zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApk,,, to form 
the device’s ticket. Both shares are then deleted from the 
device. In the device’s signature or decryption protocol, the 
device sends its ticket plus evidence that i t  was given the 
user’s password, the server verifies this using information 
in the ticket, and then the server contributes its portion of 
the computation using its share. Together with the device’s 
contribution using its share (generated from the user’s pass- 
word), the signature or decryption can be formed. 

Disabling the private key skdv, can be achieved by re- 
questing that the server permanently ignore the device’s 
ticket. Once this is done, further queries by the attacker- 
specifically, any adversary in ADV( {dvc, 7ro})-will not 
yield further signatures or decryptions. Of course, to pre- 
vent a denial-of-service attack against the device even with- 
out i t  being stolen, requests to disable the device’s ticket 
must be authenticated; our protocols achieve this, too. Our 
protocolsprovably meet all of the goals stated in Section 3.1 
in the random oracle model. 

The feature of key disabling apparently comes with costs 
in terms of compatibility with existing protocols. For ex- 
ample, in the signature protocol we demonstrate here, the 
server learns the message m being signed. It is therefore 
important that m be public information if  the server is un- 
trusted. ‘This requirement is consistent with signatures in 
TLS 1.0 1151, for example, since in that protocol, parties 
sign only public information. However, i t  may be incon- 
sistent with other protocols that encrypt private information 
after signing i t . Second, due to our use of function sharing 
in these protocols, they are generally dependent on the par- 
ticular signature or decryption algorithm in use. In the fol- 
lowing subsections, we describe protocols for RSA signa- 
tures and ElGamal decryption, though our techniques also 
generalize to many other signature and decryption schemes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.1. S-RSA: a protocol for RSA signatures 

In this section we suppose the device signs using a 
standard encode-then-sign RSA signature algorithm (e.g., 
“hash-and-sign” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141) as described below. Accordingly, we 
refer to this protocol as S-RSA. The public key of the de- 
vice is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp k d v c  = <e,N> and the secret key is skdvc = 

<d, N ,  +(N)>, where ed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-4( ,N)  1, N is the product of two 
large prime numbers, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 I S  the Euler totient function. 
(The notation E ~ ( N )  means equivalence modulo c$(N).) 
The device’s signature on a message m is defined as fol- 
lows, where encode is the encoding function associated 
with S,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtcstg denotes the number of random bits used 
in the encoding function (e.g., = 0 for a deterministic 
encoding function): 

S < d . N , 4 ( N ) > ( m ) :  t R  ( 0 ,  1 I t i s 2 g  

s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt (encode(m, T ) ) ~  mod N 
return <s,  r> 

Here, the signature is = < s , T > ,  though i t  may not be 
necessary to include T if it can be determined from m and 
s. We remark that “hash-and-sign’’ is an example of this 
type of signature in which the encoding function is simply 
a (deterministic) hash of m, and that PSS [8] is another ex- 
ample of this type of signature with a probabilistic encod- 
ing. Both of these types of signatures were proven secure 
against adaptive chosen message attacks in the random or- 
acle model [6, 81. Naturally any signature of this form can 
be verified by checking that se zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEN encode(m,r).  In the 
function sharing primitive used in our protocol, d is broken 
into shares dl and d2 such that d l  + d2 ~ ~ ( ~ 1  d [IO]. 

5.1.1. Device initialization 

The inputs to device initialization are the server’s public en- 
cryption key pk,,,, the user’s password TO, the device’s pub- 
lic key pkdvc = <e, N>,  and the corresponding private key 
skdvc = <d, N ,  4 ( N ) > .  The initialization algorithm pro- 
ceeds as follows: 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt R  (0, I}” 
‘U t hdsbl ( t )  

7.J t R  {0,1>” 
(L t R  {0,1}“ 

b +- h(7ro) 
dl +- f ( v , r o )  
dz t d - dl mod 4 ( N )  
T +- E p k , , ,  (<al b, U ,  dz, N > )  

Here, we assume that f outputs an element of (0, l}XfK. 
The values t ,  U, a ,  r ,  pkdvc, and pk,,, are saved on stable 
storage in the device. All other values, including U ,  b, d, dl,  
dz, $ ( N ) ,  and TO, are deleted from the device. The values t 
and 7- should be backed up offline for use in disabling if the 
need arises. The value T is the device’s “ticket” that i t  uses 
to access the server. 

5.1.2. Signature protocol 

Here we present the protocol by which the device signs a 
message m. The input provided to the device for this pro- 
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tocol is the input password zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7r ,  the message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, and all of the 
values saved on stable storage in the initialization protocol 
of Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.1.1. The protocol is described in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.  

dvc svr 

77 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c 

U + - P @ 7 7  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dl f(v17r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s t u(encode(m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ) ) ~ ~  mod N 
abort if se zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$jv encode(m, T )  

return <s. r> 

Figure 2. S-RSA signature protocol 

In Figure 2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/3 is a value that proves the device’s knowl- 
edge of 7r to the server. p is a one-time pad by which the 
server encrypts v to return it to the device. T is a tci,ig-bit 
value used in the encode function. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is an encryption of m, 
T ,  p and p to securely transport them to the server. 6 is a 
message authentication code computed using a ,  to show the 
server that this request originated from the device. As in 
Section 4, S is not necessary to prove security relative to the 
goals of Section 3. I ,  but nevertheless is important in prac- 
tice to prevent denial-of-service attacks. It is important that 
the device delete p, d l ,  and p when the protocol completes, 
and to never store them on stable storage. 

The intuition behind the security of this protocol is simi- 
lar to that for the GENERIC protocol. The major difference, 
however, is that only the server’s contribution v to the signa- 
ture of m is returned to the device, not S k d v c  (or the server’s 
share of it). This is what makes key disabling possible, as 
described in Section 5.1.3. 

The efficiency of the S-RSA protocol will generally be 
worse than the signing efficiency of the underlying RSA 
signature scheme, not only because of the message and en- 

cryption costs, but also because certain optimizations (e.g., 
Chinese remaindering) that are typically applied for RSA 

signatures cannot be applied in S-RSA. Nevertheless, since 
dvc can compute (encode(m, T ) ) ~ ~  mod N while awaiting 
a response from svr, a significant portion of the device’s 
computation can be parallelized with the server’s. 

5.1.3. Key disabling 

Suppose that the device has been stolen, and that the user 
wishes to permanently disable the private key of the device. 
Provided that the user backed up t and T before the device 
was stolen, the user can send t , ~  to the server. Upon re- 
covering <a, b,  U ,  dz, N >  t Dsk,,, ( T ) ,  the server verifies 
that U = h&bf(t) and, if so, records T on a disabled list. 
Subsequently, the server should refuse to respond to any re- 
quest containing the ticket T .  This requires that the server 
store T (or a hash of it) on a “blacklist”. Rather than stor- 
ing T forever, though, the server can discard T once there is 
no danger that p k d v c  will be used subsequently (e.g., once 
the public key has been revoked). Note that for security 
against denial-of-service attacks (an adversary attempting 
to disable T without t ) ,  we do not need h&bl to be a random 
oracle, but simply a one-way hash function. 

5.2. D-ELG: a protocol for ElGamal decryption 

In this section we give a protocol by which the device 
can perform decryption with an ElCamal [ 171 private key, 
using our techniques to gain the same benefits as S-RSA 
yielded for RSA signatures. We focus here on decryption 
(versus signatures), and ElCamal (versus RSA), to demon- 
strate the breadth of cryptographic operations to which our 
techniques apply. Indeed, protocols for decryption with an 
RSA private key follow naturally from the protocol of Sec- 
tion 5.1. While protocols for signature schemes based on 
discrete logarithms (e.g., DSA [28]) do not immediately fol- 
low from the protocol of this section, they can be achieved 
using more specialized cryptographic techniques, as corol- 
laries of [32]. 

For ElGamal encryption, the public and private keys 
of the device are p k d v c  = <g,p,q,y> and S k d v c  = 
<g, p ,  q ,  z>, respectively, where p is an A-bit prime, g is an 
element of order q in Z;, z is an element of Z, chosen uni- 
formly at random, and y = g” mod p .  For generality (and 
reasons that will become clearer later), we describe the D- 
ELG protocol using an abstract specification of “ElGamal- 
like” encryption. An ElGamal-like encryption scheme is an 
encryption scheme in which (i) the public and private keys 
are as above; and (ii) the decryption function D can be ex- 
pressed in the following form: 
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D<g,p,q,z> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAabort if valid(c) = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt select(c) 
z t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw” modp 
m t reveal(z, c) 
return zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 

Above, valid(c) tests the well-formedness of the ciphertext 
c; it returns 1 if well-formed and 0 otherwise. select(c) re- 
turns the argument w that is raised to the x-th power mod- 
ulo p.  reveal(z, c) generates the plaintext m using the re- 
sult z of that computation. For example, in original ElCa- 
mal encryption, where q = p - 1 and c = <cl ,cq> = 
< g k  mod p, myk mod p> for some secret value k E Z,, 
valid(<cl, c2>) returns 1 if c1,c2 E Z; and 0 otherwise; 
select(<cl,c2>) returns c l ;  and reveal(z, <cl ,cz>) re- 
turns c2z- l  mod p. We note, however, that the private key 
is not an argument to valid, select, or reveal; rather, the pri- 
vate key is used only in computing z. Using this frame- 
work, the D-ELG protocol is described in the following 
subsections. We will discuss various EIGamal-like encryp- 
tion functions and their use in this protocol in Section 5.2.4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.2.1. Device initialization 

The inputs to device initialization are the server’s public en- 
cryption key pk,,,, the user’s password zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATO, the device’s pub- 
lic key Pkdvc = <g,p, q ,  y>, and the corresponding private 
key Skdvc = <g,p, q ,  x>. The initialization algorithm pro- 
ceeds as follows: 

t t R  (0, l}“ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2) +R {0,1)“ 

b + h(no) 
5 1  + f ( v ,no )  

‘U t hdsbl(t)  

a t R  {0,1}” 

x2 t x - x1 mod q 
y2 t g”2 mod p 
t Epk,,, (<a ,  b, U ,  g,P, q, x2>) 

Here we assume that f outputs an element of (0, 1}21ql. The 
values U,  a,  y2, T ,  pkdvc, plc,,, and t are saved on stable 
storage in the device. All other values, including U ,  b, z, 
21, 22, and TO, are deleted from the device. The values t 
and r should be backed up offline for use in disabling i f  the 
need arises. The value T is the device’s “ticket” that it uses 
to access the service. 

5.2.2. Decryption protocol 

Figure 3 describes the protocol by which the device de- 
crypts a ciphertext c generated using the device’s public key 
in an EICamal-like encryption scheme. The input provided 
to the device for this protocol is the input password n, the 
ciphertext c, and all of the values saved on stable storage in 

the initialization protocol of Section 5.2.1. In Figure 3, hzkp 

is assumed to return an element of Z,. 

dvc svr 

<a, b,  U , P ,  q,g, xZ> 

<c, P, P> t Dsk,,, (7) 

Dsk,,, ( T )  

abort if mac,(y, 7) # S 

abort if P # b V valid(c) = 0 
w t select(c) 
U t w”2 modp 

U‘ t w r  mod p 
e t hzkp(<v, v’, gT mod p>) 
s e x2e + r mod q 

77 t P @  <u,e,s> 

r t R  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ g  

77 
e- 

<u,e,s> t p ~ ~  
w t select(c) 
abort if e # hzkp(<V,  wSuPe mod ~ , g ~ ( y 2 ) - ~  mod p>) 
5 1  +- f ( U , T )  

p t wxl modp 
return revealruu mod P ,  c) 

Figure 3. D-ELG decryption protocol 

The reader should observe in Figure 3 that the device’s 
decryption function is implemented jointly by dvc and 
svr. Moreover, < v ,  e, s> constitutes a noninteractive zero- 
knowledge proof from svr (the “prover”) to dvc (the “ver- 
ifier”) that svr constructed its contribution U correctly. As 
before, P is a value that proves the device’s knowledge of T 

to the server. y is an encryption of c, /3, and p to securely 
transport them to the server. S is a message authentication 
code computed using a ,  to show the server that this request 
originated from the device. 

Decryption via the D-ELG protocol is somewhat more 
costly than decryption in the underlying EICamal-like en- 
cryption scheme. As in S-RSA, we recommend that dvc 
compute /I while awaiting a response from svr in order to 
parallelize computation between the two. 
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5.2.3. Kev disabling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvalid(c): <c1,c2,c~,c4,cg> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt c 

Like S-RSA, the D-ELG protocol also supports key dis- 
abling. Assuming that the user backed up zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt and T before the 
device was stolen, the user can send t ,  T to the server. Upon 
recovering <a, b,  U ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg , p ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ> t Dsksv, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T), the server 

w1 t g ” ( ~ 2 ) - ‘ ~  mod p 
9’ + h2(<Cl,C2,W>) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w2 t (g’)c5(c3)-c4 mod p 
return (cq = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhzkp(<g’ ,  c 3 ,  w~>))  

verifies that U = hdsbl(t) and, if so, records T on a disabled 
list. Subsequently, the server should refuse to respond to 
any request containing the ticket T .  We remind the reader 
that this requires the server to store T (or a hash of it) on a 
“blacklist”. Rather than storing T forever, though, the server 
can discard 7- once there is no danger that pkdvc will be used 
subsequently (e.g., once the public key has been revoked). 

5.2.4. Choices for ElGamal-like encryption 

select(c): <c1,c2,c3,c4,cg> t c 
return c2 

reveal(z,c): <cl,cZ,c3,~4,cg> t c 
return hl(z) @ c1 

A second proposal from [39], called TDH2, can also be 
used to instantiate our protocol and achieve the stronger ver- 
sion of goal IV. 

There are several possibilities for EIGamal-like encryption 
schemes that, when used to instantiate the description of 

,--. Proof of security for S-RSA 

Figure 3, result in a protocol that provably satisfies goals I- 
IV. That said, the precise senses in which a particular in- 
stance can satisfy goal IV deserve some discussion. The 

In this section we provide a formal proof of security for 
the S-RSA system in the random oracle model. 

most natural definition of security for key disabling is that 
an adversary in Ar)v({dvc, no))  who is presented with a 
ciphertext c after the key has been disabled will be unable 
to decrypt e. A stronger definition for key disabling could 
require that c remain indecipherable even if c were given 
to the adversary before key disabling occurred, as long as c 
were not sent to svr before disabling. 

If the original ElCamal scheme is secure against indif- 
ferent chosen ciphertext attacks [37], then the protocol of 
Figure 3 can be proven secure in the former sense when in- 
stantiated with original EIGamal. However, the security of 
ElCamal in this sense has not been established, and is an 
active area of research (e.g., see [34]). There are, however, 
EIGamal-like encryption schemes that suffice to achieve 
even the latter, stronger security property, such as the fol- 
lowing proposal from [39] called TDHI .  In this scheme, q 
is a Ic-bit prime factor of p - 1. Encryption of a message m 
proceeds as follows: 

E < g , ~ , q , g > ( m ) :  +R z q  

c1 t hl(yk mod p) @ m 
c2 t g k  m o d p  
a t R  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, 
.9/ +- h2(<Cl,C2,ge modp>) 
c 3  t ( g l ) k  modp 

c j  t e + kc4 mod q 

The tuple <cl, c2, c3, c4, cg> is the ciphertext. Above, hl 

outputs a value from (0, l)lmi, and hz outputs an element 
of the subgroup of Zz generated by g. For example, this can 
be achieved by defining h2(z) = (h’(z))(P-’)/q mod p for 
some other hash function h‘. Decryption takes the following 
form: 

c4 h z k p ( < d , C 3 7  (d)‘ m o d p > )  

6.1. Definitions 

In order to state and prove security of our protocol for- 
mally, we must first state requirements for the security of a 
pseudorandom function, of an encryption scheme, of a sig- 
nature scheme, and of S-RSA. 

Pseudorandom functions A pseudorandom function 
family is a family of functions fu parameterized by a se- 
cret value U ,  which has the following security property: It 
is computationally infeasible to distinguish between an ora- 
cle for the fu function, where v is chosen randomly, and an 
oracle for a perfectly random function (with the same input 
and output ranges). See [20] for a formal definition. 

Security for encryption schemes We specify adaptive 
chosen-ciphertext security [37] for an encryption scheme 
& = (G,,,, E,  D). (For more detail, see [3, Property IND- 
CCA21.) An attacker A is given pk ,  where ( p k , s k )  t 
Genc(lA). A is allowed to query a decryption oracle that 
takes a ciphertext as input and returns the decryption of 
that ciphertext (or I if the input is not a valid ciphertext). 
At some point A generates two equal length strings X O  
and X1 and sends these to a test oracle, which chooses 
b +-R (0, 1}, and returns Y = Epk(Xb) .  Then A contin- 
ues as before, with the one restriction that it cannot query 
the decryption oracle on Y. Finally A outputs b’, and suc- 
ceeds if b’ = b. We say an attacker A (q,c)-breaks & if 
the attacker makes q queries to the decryption oracle, and 
2 .  Pr(A succeeds) - 1 2 E .  Note that this implies 

Pr(A guesses 0 I b = 0) - Pr(A guesses 0 I b = 1) 2 E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Security for signature schemes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWe specify existential 
unforgeability versus chosen message attacks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[21] for a sig- 
nature scheme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS = (Gsigl S ,  V ) .  A forger is given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp k ,  
where (pk ,  s k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt G,ig(lX), and tries to forge signatures 
with respect to p k .  It is allowed to query a signature ora- 
cle (with respect to s k )  on messages of its choice. It suc- 
ceeds if after this it can output a valid forgery (m, a) ,  where 
V,k(m, a )  = I, but nz was not one of the messages signed 
by the signature oracle. We say a forger (q,c)-breaks a 
scheme if the forger makes y queries to the signature ora- 
cle, and succeeds with probability at least E. 

Security for S-RSA Let S-RSA[&,D] denote an S- 
RSA system based on an encryption scheme & and 
dictionary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2). A forger is given <e, N >  where 
(<e,N>,  <d ,N ,4 (N)> )  t G R S A ( ~ ~ ) ,  the public data 
generated by the initialization procedure for the protocol, 
and certain secret data of the device, server, and/or the 
user's password (depending on the type of forger). The 
goal of the forger is to forge RSA signatures with respect 
to <e, N > .  There is a dvc oracle, a disable oracle, a svr 
oracle, and (possibly) random oracles h and f .  A random 
oracle may be queried at any time. It takes an input and re- 
turns a random hash of that input, in the defined range. The 
disable oracle may be queried with getVals. It responds 
with a value t and the device's ticket T .  

The svr oracle may be queried with serve and disable. 
On a serve(y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 , ~ )  query, which represents the receipt of 
a message in the S-RSA protocol ostensibly from the de- 
vice, i t  either aborts or returns an output message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77 (with 
respect to the secret server data generated by the initializa- 
tion procedure). On a disable(t, 7 )  query, which represents 
a disable request, the svr oracle rejects all future queries 
with the ticket T if t corresponds to T (see Section 5.1.3). 

The dvc oracle may be queried with start and finish. We 
assume there is an implicit notion of sessions so that the 
dvc oracle can determine the start query corresponding to 
a finish query. On a start(m) query, which represents a re- 
quest to initiate the S-RSA protocol, the dvc returns an out- 
put message <?, 6, T>,  and sets some internal state (with 
respect to the secret device data and the password gener- 
ated by the initialization procedure). On the corresponding 
finish(q) query, which represents the device's receipt of a 
response ostensibly from the server, the dvc oracle either 
aborts or returns a valid signature for the message m given 
as input to the previous start query. 

A forger of type ADV({svr:no}), ADv({dvc,svr}), or 
ADV({dvc}) succeeds if after this it can output a pair 
(m, <s,r>) where se EN encode(m,r) and,therc was 
no start(m) query. A type ADv({dvc,no}) forger siic- 

ceeds if after this i t  can output a pair (m,  <s,r>)  where 
se encode(m, T )  and there was no serve(?, 6,~) query, 
where Dsl;,,,(y) = <7n, *, *>, before a disable(t, T )  query 

that disables the device's ticket 7. 

Let qdvc be the number of start queries to the device. Let 
qsvr be the number of server serve queries. For Theorem 6.2, 
where we model h and f as random oracles, let qh and q f  be 
the number of queries to the respective random oracles. Let 
qo be the number of other oracle queries not counted above. 
Let Q = (qdvc, qsvr, qo, qh ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 5 ) .  In a slight abuse of notation, 
k t  IQ1 = qdvc + qsvr -t qo + qh + q f ,  i.e., the total number 
of oracle queries. We say a forger (Q, €)-breaks S-RSA if 
it makes oracle queries (of the respective type and to the 
respective oracles) and succeeds with probability at least E. 

6.2. Theorems 

Here we prove that if a forger breaks the S-RSA system 
with probability non-negligibly more than what is inher- 
ently possible in a system of this kind then either the under- 
lying RSA signature scheme or the underlying encryption 
scheme used in S-RSA can be broken with non-negligible 
probability. This implies that if the underlying RSA sig- 
nature scheme and the underlying encryption scheme are 
secure, our system will be as secure as inherently possible. 

We prove security separately for the different types of at- 
tackers from Section 3.1. The idea behind each proof is a 
simulation argument. We assume that a forger F can break 
the S-RSA system, and then attempt to construct a forger 
F' for the underlying RSA signature scheme. Basically F' 
will run F over a simulation of the S-RSA system, and 
when F succeeds in breaking S-RSA (in a way not inher- 
ently possible, as discussed above), then F* will succeed in 
breaking the underlying RSA signature scheme. 

In the security proof against a device-compromising 
forger F ,  there is a slight complication. If F were able 
to break the encryption scheme of the server, a forger F" 
as described above may not be able to simulate properly. 
Thus we show that either F succeeds (in a way not inher- 
ently possible) in a simulation where the encryptions are 
of strings of zeros, and thus we can construct a forger F* 
that breaks the underlying RSA signature scheme, or F does 
not succeed (in a way not inherently possible) in that sim- 
ulation, and thus i t  must be able to distinguish the true en- 
cryptions from the zeroed encryptions. Then we can con- 
struct an attacker .4 that breaks the underlying encryption 
scheme. In addition, we note that the device-compromising 
forgers for which we prove this result are even stronger than 
allowed in Section 3: after capturing dvc, the forger is per- 
mitted to cause dvc to initiate the S-RSA protocol on ames- 
sage of the forger's choice, with dvc using the correct pass- 
word TO even if the forger docs not know ?r0. This models 
a forger that may be able to capture the static data from the 
device without capturing the device itself, i.e., without the 
knowledge of the user. 

For proving security against all types of forgers, one 
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must assume that both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh and f behave as random oracles. 
However, for certain types of forgers, weaker hash function 
properties suffice.' For proving security against a forger in 
ADV({dvc}), we make no requirement on the f function, 
and we only require h to have a negligible probability of 
collisions over the dictionary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1231 were polynomial 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ,  then i t  would suffice for h to be a collision resistant 
hash function. If ID1 were super-polynomial, that property 
would not suffice. However, it would suffice for h to be 
a permutation.3 For proving security against a forger in 
ADV({svr, no}), we make no requirement on the h func- 
tion, and it would suffice for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ f v }  to be a pseudorandom 
function family. For proving security against a forger in 
ADV({dvc, T O } ) ,  we make no requirement on either h or f .  

In the theorems below, we use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA''x" to indicate equality to 
within negligible factors. Moreover, in our simulations, the 
forger F is run at most once, and so the times of our sim- 
ulations are straightforward and omitted from our theorem 
statements. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 6.1 Let { fu} be a pseudorandomjiinction fam- 
ily. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy p e  ADv({svr, n o } )  forger (Q, €)-breaks the S- 
RSA[€, D] scheme, then there exists a forger that (qdvc, E ' ) -  

breaks the underljing RSA signature scheme with E' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM E .  

Proof Given F E ADV({svr,no}) that (Q,~)-breaks the 
S-RSA[&, D] scheme, we construct a forger F* for the un- 
derlying RSA signature scheme. F* is given public key 
<e, N >  for the RSA signature scheme and simulates the 
S-RSA system for F ,  so that any forgery constructed by F 
will be a forgery in the underlying RSA signature scheme. 

Simulation: F* gives <e, N >  to F as the device's pub- 
lic signature key. Then F* generates the server's key pair 
(plcsvr, skSvr), and gives that to F .  Next F* generates the 
user password no +-R V and gives that to F .  Finally F* 
generates <a, b, U ,  dp ,  N >  for the ticket r in the normal 
way, using random t ,  w E (0, l}", except that dp is drawn 
randomly from Zp,. 

F* responds to svr queries as in the real protocol. F* 
responds to dvc start(m) queries by querying the signature 
oracle to get U = <s, r> and then responding as in the real 
protocol using that r value. F* responds to a dvc finish(q) 
query corresponding to a start(m) query by computing v = 

@ p (where p was computed in the start(m) query) and 
checking that v - N  (encode(m, T ) ) ~ ~ .  If this is false, F* 
has dvc abort. Otherwise, F' returns the 0 returned from 
the signature oracle query in the start query. F* responds 
to a getVals query to the disable oracle by returning t ,  T. 

Analysis: Let S-RSA' be the S-RSA protocol with f u  
replaced with a perfectly random function, and let E" be the 

2Minimizing reliance on the random oracle model is generally de- 
sirable, since random oracles are not a standard cryptographic assump- 

tion [ 121. 
3Also, certain weaker properties for h would lead to provable security, 

but with weaker bounds in the theorem. 

probability that F produces a forgery when run against S- 

RSA'. By the pseudorandomness of f ,  E" x E .  Now let 
E' be the probability that F forges in the simulation, and 
hence the probability that F* forges in the underlying RSA 
signature scheme. One can see that the simulation above 
is statistically indistinguishable from S-RSA' to F ,  and so 
E' x E/ '  x E. 0 

Theorem6.2 Let h and f be random oracles. If a 
type ADv( {dvc, svr}) forger (?j, €)-breaks the S-RSA[€, D] 
scheme, then there exists a forger F* that (qdvc, €')-breaks 
the underlying RSA signature scheme with E' M E - - 

IDI . 

Proof Given F E ADv({dvc, svr}) that (?j, €)-breaks the 
S-RSA[&, D] scheme, we construct a forger F* for the un- 
derlying RSA signature scheme. F* is given public key 
<e, N >  for the RSA signature scheme and simulates the 
S-RSA system for F ,  so that any forgery construct by F 
without F guessing the password (as described below) will 
be a forgery in the underlying RSA signature scheme. 

Simulation: F* gives <e, N >  to F as the device's pub- 
lic signature key. Then F* generates the server's key pair 
(pksvr,  sksvr), and gives that to F .  Next F' generates the 
secret user password TO +R D. Finally, F* generates the 
data <a, b, U ,  da, N >  for the ticket r in the normal way, us- 
ing random t ,  U E (0, l}", except that dp is drawn randomly 
from ZN. F* gives a, U ,  and r = Epk,,,(<a, b ,u ,  d2, N > )  
to F.  

F* responds to an h ( ~ )  or f(w',n) query as a normal 
random oracle would, except that i t  aborts if n = no (for an 
h ( )  query) or 7r = no and w' = v (for an f() query). 

A responds to queries to the svr, dvc, and disable oracles 
as in the proof of Theorem 6.1. 

Analysis: Unless F makes a query  TO) or f (w,To) ,  

which occurs with probability at most w, the simula- 
tion is indistinguishable from the real protocol to F ,  so if F 
produced a forgery with probability E in S-RSA, F* would 
produce a forgery with probability at least E' M E - 

0 

Q h f q f  

IDI 
in the underlying RSA signature scheme. 

Theorem 6.3 Suppose h has a negligibleprobability of col- 
lision over ID. I f a  type ADV({dvc}) forger (q ,~) -b reaks  
the S-RSA[&,D] scheme where E = + q!~, then either 

there exists an attacker A* that (2qsvr, €')-breaks & with 
E' M or there exists a forger F* that ( q d v c ,  E / ' ) -  

breaks the underlying RSA signature scheme with E'' M f .  

Proof: Given F E ADv({dvc}) that (Q,~)-breaks the S- 

RSA[&, VI scheme, we show that either we can construct 
a forger F* for the underlying RSA signature scheme, or 
an attacker A* against &. We first show that if forger F 
wins (as defined below) against a certain simulation with 
probability greater than + $, we can construct a forger 

ID1 

l (  1+Qdvc )  ' 

/'Dl 
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F* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthat can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( q d v c ,  €’’)-break the underlying RSA signature 
scheme with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE“ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= f . Assuming F does not win against that 
simulation with the probability stated above, then we show 
that we can construct an attacker 4 *  that (2qs,,, €’)-breaks 
& with E’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx &. 

Part I F* is given public key <e, N >  for the RSA 
scheme and simulates the S-RSA system for F .  We say 
F wins against the simulation if F produces a valid forgery 
or if F makes a successful online password guess. This is 
defined as F making a server query with input ( y , 6 , ~ ’ ) ,  
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS = mac,(<y, T > )  for the mac key a stored on the 
device, and either (1) T’ is the ticket stored on the device and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y is a ciphertext not generated by a device start query, and 
where <m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  p, p> t D,ksv, (y), and = h(n0); or ( 2 )  
r’ ismot the ticket stored on the device but y was generated 
by a device start query, and where <a’, b‘, U’,  dk, N‘> t 
Dsk,.,(7’), and b’ = h(n0). 

Part I Simulation: F* gives <e, N >  to F as the device’s 
public signature key. Then F* generates the server’s key 
pair (plcsvr, S k S v r ) ,  and gives pk,,, to F .  Next F* generates 
the secret user password zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno t~ D. Finally, F* generates 
<a, b, U ,  dz, N >  for the ticket T in the normal way, using 
random t ,  U E (0, l}K, except that da is drawn randomly 
from ZN. F* gives a, U ,  and T = Epk,,, (03‘“+“) to F.  

F’ responds to a getVals query to the disable oracle by 
returning t ,  7. 

F* responds to a svr disable(t’,T’) query as a normal 
server would, but using the U value generated in the initial- 
ization if 7’ = T .  F* responds to serve(y, 6 , ~ ’ )  queries for 
a r‘ that has not been disabled as follows: 
Case 1: ( y , 6 , ~ ‘ )  is from a dvc start(m) query: Return 
p @ ,((encode(m,r))dz mod N )  where m, r ,  and p were 
from the start query. 
Case 2: y and r’ are from a dvc start query, but not 6: Be- 
have like a normal server (i.e., svr will abort). 
Case 3: T’ = T ,  but y is not from a dvc start query: Verify 
the mac like a normal server, but using the a value from ini- 
tialization as the mac key. Then compute <m, T ,  p,  p> t 
Dsk,,;(y). Abort the simulation if p = b (this is a successful 
onlinepassword guess), and have svr abort if p # b. 
Case 4: T’ # T ,  but y is from a dvc start query: Com- 
pute <a‘, b ’ , ~ ’ , & ,  N’> t Dsksv,(r’). Verify the mac like 
a normal server, using mac key a’. Abort the simulation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif 

b‘ = b (this is a successful online password guess), and have 
svr abort if b’ # b. 
Case 5: r’ # r and y is not from a dvc start query: Behave 
like a normal server. 

F* responds to a dvc start(m) query as in Theorem 6.1, 
except setting y = Epk,,, ( O l m l + K s z g + ) c + X ) .  F* responds to 
a dvc finish(77) query as in Theorem 6.1. 

Part I Analysis: The probability that F makes a success- 
ful online password guess is at most &, disregarding negli- 
gible probabilities (since TO was chosen randomly and h has 

a negligible probability of collision over D),  so if F wins 
against the simulation with probability at least $ + fi, i t  
produces a forgery with probability at least $, and thus F* 
produces a forgery in the underlying RSA signature scheme 
with probability at least 6’’ M $. 

Part 2 For the second part of the proof, we assume that 
the probability of F winning in Part 1 is at most + f .  P I  
Then we construct an attacker A* that breaks & with prob- 
ability &. Our attacker A* is given a public key pk’ 
from I ,  and runs a simulation of the S-RSA system for F.  

First consider a simulator that gives pk’ to F as the 
server’s public encryption key, and then simulates S-RSA 
exactly, but using a decryption oracle to decrypt messages 
encrypted under key pk‘ by the adversary. There will be at 
most 2qSvr of these. (Note that the decryptions of T and any 
y generated by the dvc would already be known to the simu- 
lator.) This simulation would be perfectly indistinguishable 
from the real protocol to F .  Now consider the same simula- 
tion, but with the ticket and all y values generated by the de- 
vice changed to encryptions of strings of zeros. (Naturally, 
the server pretends the encryptions are of the normal mes- 
sages, not strings of zeros.) The latter simulation is equiv- 
alent to the Part 1 simulation, except that the attacker does 
not abort on a successful online password guess. Still, the 
probability of F forging in the latter simulation is at most 
fi + $, while the probability of F forging in the former 
simulation is at least fi + 4. 

Now we use a standard hybrid argument to construct A’. 
Let experiment j E (0, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqdvc + 1) correspond to the first 
j ciphertexts (generated by A*) be of the normal messages, 
and the remainder be encryptions of strings of O’s, and let 
p ,  be the probability of F forging in experiment j. Then the 
average value for i E (0 , .  . . , q d v c }  ofp,+l - p ,  is at least 
L 

Therefore, to construct A*, we simply have A* choose 
a random value z E (0,. . . , qdvc}, and run experiment i as 
above, but calling the test oracle for the ( i  + l)st encryption 
to be generated by the simulator, where the two messages 
X ,  and XI submitted to the test oracle are the normal mes- 
sage and the string of zeros, respectively. Then A* outputs 
0 if F forges (meaning i t  believes .U, was encrypted by the 
test oracle), and 1 otherwise. By the analysis above, A* 
breaks & with probability &, disregarding negligible 

2(1+4 ’dvc ) .  

probabilities. 0 

Theorem 6.4 Suppose the underlying RSA signature 
scheme is deterministic (i.e., K~~~ = 0). If a type 
ADV((dvc, no}) forger (q, €)-breaks the S-RSA[€, D] 
scheme, then either there exists an attacker A* that 
(2q,,,, €‘)-breaks & with E’ x &, or there exists a 
forger F* that (2qsvr, €“)-breaks the utiderljing RSA signa- 
ture scheme with E” % ;. 
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Proof: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGiven zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ADv({dvc,  T O } )  that (GI €)-breaks the S- 
RSA[&, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD] scheme, we show that either we can construct 
a forger F* for the underlying RSA signature scheme, or 
an attacker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA* against E .  We first construct a forger F* 
that runs F against a simulation of S-RSA, such that if F 
forges in the simulation with probability 5 ,  F* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2qsvr, E ” ) -  

breaks the underlying RSA signature scheme with E’’ M 5 .  
Assuming F does not forge a signature in that simulation 
with probability 5 then we show that we can construct an 
attacker A* that (2qsvr, €’)-breaks E with E’ M 

Part I F* is given public key <e, N >  for the RSA 
scheme and simulates the S-RSA system for F .  

Part I Simulation: F* gives <e, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN> to F as the device’s 
public signature key. Then F* generates the server’s key 
pair (pk,,,, .sksvr), and gives pk,,, to F .  Next F* generates 
the data a,  b, U ,  and d l  in the normal way, using random 
t , v  E {0,1}“, but computes7 = Ep~, , , (03Kc f2X) .  F* gives 
a, U,  and T to F .  

F* responds to a getVals query to the disable oracle by 
returning t ,  T. 

F* responds to a svr disable(t ’ ,~’) query as a normal 
server would. F* responds to svr serve(y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 , ~ ’ )  queries for 
a T’ that has not been disabled as follows: 
Case I :  (y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, T‘) is from a dvc s tar t (m) query: Query 
the signature oracle to get <s,r> (where Irl = 0, since 
the signature scheme is deterministic), and then return zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p@ (s/(encode(m, T ) ) ~ ’  mod N) where p is from the start 
query. 
Case 2: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy and T’ are from a dvc start query, but not 6: Be- 
have like a normal server (i.e., the svr will abort). 
Case 3: T’ = T, but y is not from a dvc start query: 
Say < r r i , ~ , P , p >  t Dsk,,,(y). Behave like a normal 
server, but if p = b, then query the signature oracle to get 
0 = <s, r>, and return p @  (s/(encode(m, ~ - ) ) ~ l  mod N ) .  
Case 4: T’ # T, but y is from a dvc s tar t (m) query: Say 
<a’, b’, U’, d i ,  N’> t DSkrv, (T’). Behave like a normal 
server, but using m, T ,  /3, and p from the dvc start(m) query. 
Case 5: T’ # T and y is not from a dvc start query: Behave 
like a normal server. 

F* responds to a dvc start(m) query as a normal 
dvc would, except setting y = Epk,v,(Olml+“+X). For 
a dvc finish(7) query corresponding to a start(m) query 
that returned (y,d,.r), if 7 was not returned from a svr 
serve(y, 6 , ~ )  query, have dvc abort. Otherwise F* returns 
the signature found in that serve(?, 6, T) query. 

Part I Analysis: If F forges in the simulation, then F* 
forges in the underlying signature scheme. 

Purr 2 The second part of the proof is similar to Part 2 of 
the proof of Theorem 6.3, except with t,b replaced by E, and 

no term. o 

7. Conclusion 

Dictionary attacks against password-protected private 
keys are a significant threat if the device holding those keys 
may be captured. In this paper we have presented an ap- 
proach to render devices invulnerable to such attacks. Our 
approach requires the device to interact with a remote server 
to perform its private key operations. Therefore, i t  is pri- 
marily suited to a device that uses its private key in inter- 
active cryptographic protocols (and so necessarily has net- 
work connectivity to reach the server when use of its private 
key is required). A prime example is a device that plays 
the role of a client in the TLS protocol with client authen- 
tication. Though our protocol requires the device to inter- 
act with a remote server, we prove that this server poses no 
threat to the device. Specifically, it gains no significant ad- 
vantage in forging signatures that can be verified with the 
device’s public key or decrypting messages encrypted un- 
der the device’s public key. In particular, it cannot mount 
a dictionary attack to expose the device’s private key. Even 
if both the device and server are compromised, the attacker 
must still succeed in an offline dictionary attack before sign- 
ing on behalf of the device. 

In addition to the above properties, we presented proto- 
cols that further provide the feature of key disabling. This 
enables the user to disable the device’s private key immedi- 
ately, even after the device has been captured and even if the 
attacker has guessed the user’s password. Once disabled, 
the device’s key is provably useless to the attacker (provided 
that the attacker cannot also compromise the server). Key 
disabling is thus an effective complement to any public key 
revocation mechanism that might exist, particularly if there 
is a delay for revoking public keys. 
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