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Networked Robots:
Flying Robot Navigation using a Sensor Net

Peter Corke∗ Ron Peterson† Daniela Rus‡

April 18, 2003

Abstract

This paper introduces the application of a sensor network to navigate a flying robot. We have developed distributed
algorithms and efficient geographic routing techniques to incrementally guide one or more robots to points of interest
based on sensor gradient fields, or along paths defined in terms of Cartesian coordinates. The robot itself is an integral
part of the localization process which establishes the positions of sensors which are not known a priori.

We use this system in a large-scale outdoor experiment with Mote sensors to guide an autonomous helicopter
along a path encoded in the network. A simple handheld device, using this same environmental infrastructure, is used
to guide humans.

1 Introduction

We wish to create more versatile information systems by using networked robots and sensors: thousands of small
low-cost sensors embedded in the environment, mobile sensors, robots, and humans all interacting to cooperatively
achieve tasks. This is in contrast to today’s robots which are complex monolithic engineered systems that operate
alone.

Recent advances have shown the possibilities for low cost wireless sensors, with developments such as the MICA
Mote [10, 11] along the path to the ultimate goal of smart dust recently implemented on a single chip called Spec [1].
Other technologies such as AutoId will soon embed in every manufactured article a wireless device with a globally
unique identifier. This leads to a paradigm shift in robotics which has traditionally used a small number of expensive
robot-borne sensors. The new model is ubiquitous sensors embedded in the environment with which the robot interacts:
to deploy them, to harvest data from them, and to task them. The sensors may be static or mobile.

A robot network consists of a collection of robots distributed over some area that form an ad-hoc network. The
nodes of the network may be heterogeneous and include mobile robots, mobile and static sensors. Each sensor is
equipped with some limited memory and processing capabilities, multiple sensing modalities, and communication
capabilities. Thus we extend the notion of sensor networks which has been studied by the networking community
for static sensors to networks of robots that have natural mobility. An ad-hoc network is a temporary wireless net-
work formed without the aid of any established infrastructure or centralized administration. This network can support
robot-robot communications, or in a first responder scenario also support human-human and human-robotic commu-
nications. Such systems are well-suited for tasks in extreme environments, especially when there is no computation
and communication infrastructure and the environment model and the task specifications are uncertain and dynamic.

Navigation is an example of how simple nodes distributed over a large geographical area can assist with global
tasks. The nodes sample the state of the local environment and communicate that to nearby neighbors, either continu-
ously or in the event of some significant change. Hop by hop communication is used to propagate this information and
distribute it throughout the network while also providing a cheap distance measure. For example, consider dispersing
a sensor network over a large forest to monitor forest fires. The sensors are dropped with a flying robot and they
can localize using GPS locations that are beamed down from the robot. Once localized, they sense and propagate
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Figure 1: (Left) Helicopter in the air over the sensor network consisting of 54 Motes [10, 11]. The Motes sit on top of
the dark flower pots. (Center)Helicopter. (Right) A sensor network with a path marked by sensor nodes. In response
to an environment trigger, the sensor network computes a new path for the helicopter and an intermediate path to guide
the helicopter to the new path.

temperature levels to compute a temperature gradient for the region. The occurrence of a new fire will be signaled
throughout the network automatically. In addition, the sensor network can also compute a shortest path to the fire, and
safe paths to exit for people in the area. The sensor network can use this information to guide robots to the location of
the fire along the path computed by the network, which may change due to environmental conditions such as shifting
winds. The same information can be used to guide search and rescue teams to the humans along different paths. Thus,
multiple goals and paths can co-exist within the system.

Robot guidance is achieved by the interaction between the robot and a local node which has access to global state
via the network. The reverse is also possible, the robot may inject data into the network based on its superior sensory
or reasoning capability, for example configuring the network by reprogramming its nodes, synchronizing clocks,
deploying new sensors to fill in communication gaps, or calibrating sensors by transmitting reference values sensed
by the robot. The ability to re-task and reposition sensors in a network by sending state changes or uploading new
code greatly enhances the utility of such a network. It allows different parts of the network to be tailored to specific
tasks, capabilities to be added or changed, and information to be stored in the nodes in the network. The capabilities
of robots or people is extended through interaction with the network, extending their senses and ability to act over a
massive area.

In this paper we focus on robot networks, where each node is capable of sensing and communication, and some
of the nodes are capable of actuation. We build on our previous work in networked robots [7, 14, 15] and controlling
flying robots [6] and describe the navigation of a flying robot with a massively distributed network.

More specifically, we build on important previous work in sensor networks [2–5, 8], ad-hoc networks [10–12, 16,
17], and robotics [7, 13] and examine in more detail robot networks that provide directions to a moving user (a robot
or a human). We examine the networked interaction between the moving user and the rest of the system that includes
using the mobile node to localize the sensors, computing distributed maps and paths across the network, and using the
network to guide a flying robot. We present efficient geographic routing techniques which minimize network power
consumption and radio congestion. This requires node localization and we present for the first time experimental
results for localization using a flying robot. These concepts have been experimentally validated with a physical sensor
network consisting of 54 Mote sensors [10, 11] and an autonomous helicopter.

2 Navigating with a Sensor Network

Sensors sample local state information. They can perform simple local computation, store information locally or
communicate it. We assume that the sensors have reliable (not perfect) communication with nearby neighbors and
non-reliable communication with the rest of the network. The sensors form an ad-hoc network. The network can be
extended to include mobile nodes such as flying robots, ground robots, or humans.

We have developed and implemented a control algorithm that allows flying robots to fly along paths computed
adaptively by a sensor network and communicated incrementally to the robot. The information necessary for naviga-
tion control is distributed between the robot and the network. The network contains local data about the environment
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and can use this data to generate global maps, while the robot has information about the task.
Our flying robot can be thought of as a mobile node in the sensor network. The flying robot is equipped with a

sensor node that allows the robot to be networked to the rest of the system. The robot does not have direct access
to remote sensor data because the communication ranges are limited and there is no other infrastructure available to
the robot. However, by using ad-hoc routing, navigation information that takes the entire region into account can be
delivered to the robot. This data distribution is useful for applications where the path of the flying robot depends on
environmental conditions. The robot’s access to data detected and communicated by remote sensors via networking
allows it to respond quickly to far away events by adjusting its flying direction.

The problem can be formulated as follows. A sensor network is dispersed over a large geographical area. A flying
robot is tasked to travel along a path across this area to reach multiple goal locations that may change dynamically.
The sensor network computes the goals and the best path that visits each goal adaptively. Note that multiple robots
can be guided to different goals at the same time by the system, along different paths. The robot, which is equipped
with a GPS receiver, is also used to initially localize the nodes.

The algorithm that realizes this type of cooperative control of a mobile robot requires three modules. The nodes in
the sensor network need location information in order to support path computation. The nodes in the network must be
able to efficiently compute, modify, and store a path for the mobile robot. The mobile robot must be able to interact
with the sensor network to receive the path and to respond to changes in the path. The following sections detail the
algorithms for these three capabilities.

2.1 Node Localization

A critical aspect of our approach is that the nodes are localized — for efficient routing and for knowing the location
of the sensed events. For a large sensor network this requirement could be limiting since it would be impractical (for
reasons of cost and power consumption) for each node to have GPS capability. Here we describe how this can be
achieved by a differential GPS equipped flying robot interacting with the sensor network during a post-deployment
initialization phase.

We assume that the sensors have been deployed from the robot in a way that covers the area of interest uniformly
but not necessarily regularly. The flying robot can sweep across the area of the sensor network, for example along a
random path or a path defining a grid, beaming down GPS coordinates.

The node localization problem has been previously discussed by others. Simić and Sastry [2] present a distributed
algorithm that localizes a field of nodes in the case where a fraction of nodes are already localized. Bulusu etal. [5]
propose a localization method that uses fixed beacons with known position. Galystyan etal. [9] described a contraint-
based method whereby an individual node refines its position estimate based on location broadcasts from a moving
agent. All results reported to date have been based on simulation and assume a circular radio communications region
which is far from reality.

We have developed five simple approaches to localization that do not require inter node communications. Such
constraints may improve localization accuracy but at the expense of increased power consumption and network con-
gestion. In Section 3.2 we show empirically that these algorithms are practical and compare them using experimental
data.

The flying robot broadcasts its position pi = (xi, yi) which is received with strength si. Each sensor listens for
GPS broadcasts from the helicopter and improves its location estimate over time using one of the following algorithms.

1. Take the strongest received message so far, as the best estimate of node position.

if si > smax then
smax = si

p̂ = pi

2. Take the mean of the received position as the estimate p̂i = Σipi

i

3. Take the signal strength weighted mean of the received position as the estimate p̂i = Σisipi

Σisi

4. Take the median of received position as the estimate p̂i = median(p1···i)

5. Consider each received position as a constraint [9] on the node position which is considered to lie within the
rectangular region Q. Qi = Qi−1 ∩ [xi − d, xi + d] × [yi − d, yi + d] At each step we constrain the node
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to lie in the intersection of its current region, Qi−1, and a square region of side length 2d centered on the GPS
transmission. The position estimate of the node is taken as the centroid of the region Qi. The parameter d should
reflect the size of the radio communications region.

Note that algorithms 2, 3 and 4 can be modified so that the estimate is only updated when si > smin which
artificially reduces the size of the radio communications region.

2.2 Path Computation

Algorithm 1 The Path routing algorithm.
NewPathFlag = FALSE
if a PathMessage is received then

// Ignore the message if it has already been seen. I.e., we
// are seeing the same message resent from another sensor.
if PathMessage.MessageID ! = oldMessageID then

oldMessageID = PathMessage.MessageID
// Check if this sensor is on the path.
while there are PathMessage.PathSegments left in the PathMessage do

Calculate minimum Distance from PathMessage.PathSegment to this Sensor
if Distance < PathMessage.PathWidth then

// This sensor is on the Path
First time here, erase previously stored path
NewPathFlag = TRUE
Rebroadcast the PathMessage
Activate this sensor for robot guidance
Store PathSegment
SegmentCount++

if NewPathFlag == FALSE then
// This sensor is not on the path. Check if it should
// forward the message towards the path.
Compute heading1 from Sender to this sensor.
Compute heading2 from Sender to start of path.
Compute distance between this sensor and vector from Sender to start of path.
if (abs(heading1 − heading2) < THRESHOLD) && (distance < SETWIDTH) then

// This sensor is in the direction of the start of path.
Rebroadcast the PathMessage.

A sensor network with localized nodes can monitor the environment and encode a map of the environment in
sensor spaces as described in [14]. Areas of the sensor network where sensors have triggered events can be represented
as obstacles. The map is a distributed representation of these obstacles. This is not an accurate geometric map. The
nodes in the network provide some information about how far from the event each node is. If the sensors are uniformly
distributed, the smallest number of communication hops to a sensor that triggers “yes” to the event is a measure of
the distance. Such a map can be constructed incrementally and adaptively as an artificial potential field using hop-by-
hop communication. The “obstacles” correspond to events and have repulsing values and the goal has an attracting
value. The potential field is computed in the following way. Each node whose sensor triggers an “event” diffuses
the information about the event to its neighbors in a message that includes its source node id, the potential value, and
the number of hops from the source of the message to the current node. This message is used to update the potential
value at the current node. The node then broadcasts a message with its new potential value and number of hops to its
neighbors.

The rest of the section details a protocol called Path routing, which is an instance of geographic routing tailored to
navigation [12]. It uses hop by hop communication to identify the sensor nodes on the path. A message is broadcast
which contains a list of coordinates. Each sensor that receives it does a computation to determine if it is within
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pathwidth distance of a line connecting the coordinates, thus the sensors must have knowledge of their location. Good
localization of the sensors has benefits other than in routing; it can greatly increase the value and usefulness of the
data sensed and collected by the sensors (see section 2.1.) Sensors that are on the path forward the path message;
those further away do not. Sensors on the path change an internal state variable indicating they are on a path and
store only those segments of the path that they are on. This information can later be queried by the mobile node and
used for navigation. Compared to flooding protocols, where all nodes receive and forward the information, the path
routing protocol greatly reduces the amount of message traffic, which also leads to reductions in power use. It has
the disadvantage of being susceptible to gaps in the sensor field, around which it cannot route if the gap cuts across
the path. This can be alleviated to some extent by choosing an appropriate path width or by adding acknowledgment
messages to assure the path message reaches its destination. An approach similar to Greedy perimeter routing [12]
could also be used to route around obstacles. The rest of this section presents the details.

A path is an array of X,Y coordinates designating way points along a route. A path comprises one or more sections,
each of which is a set of up to 111 straight line segments defined by way points. To establish a path, a base-station or
robot sends a Path message. This message is 118 bytes long and its payload includes up to 12 way point coordinates
and a path id.

There are two phases involved in establishing an active path. One is to get the Path message to the area where the
path starts, the other is to activate the path by storing it in the sensors that lay along the path (see Figure 1(Right)).
This two phase routing and distribution algorithm is summarized in Algorithm 1.

Nearby sensors that hear the Path message examine it and use the knowledge of their own location and the location
of the path segments (in the message) to determine if they are on the path and within the path width defined in the
message. If they are, they rebroadcast the message and set an internal flag to indicate they are on an active path. If
they are not on the path, then they again use the knowledge of their location and the location of the sender (contained
in the message) to determine if they are in the direction of where the path starts and if they are within a preset width
of that direction vector (see Figure 1(Right)). If they are, they forward the message. If not, they remain silent. In this
way the Path message is routed in the general direction of the start location of the path, without flooding the entire
sensor network with messages.

When the message reaches the path it is routed only along the path, activating the sensors on the path. To prevent
infinite loops of messages (i.e., a message back and forth from one side of the path to the other forever since it always
gets forwarded toward the path) each sensor keeps track of the unique ID in the path message for the last N messages
it received. If a message is received that has already been processed before, it is ignored. Note that multiple paths
can be computed, stored, and updated by the network to match multiple robots and multiple goals. This can be easily
supported by marking each robot, goal, and path pair with an id.

A distributed motion planning protocol runs continuously in parallel with the map computation to compute, store,
and update paths. Different path computation algorithms can be run as distributed protocols on top of the distributed
map. For example, the safest path to the goal (which maintains the largest possible distance to each “obstacle”) can be
identified with a distributed protocol using dynamic programming [14]. The shortest path to the goal can be computed
very easily by following the sensor value gradient. We are currently testing ideas on path adaptation based on changes
detected by the sensors.

2.3 Robot Navigation

The path stored in the sensor field can be used to navigate the robot. Similar to the way the path message is propagated,
the process has two phases, firstly getting to where the path starts, and secondly being guided along the path. In some
situations the first phase may not be needed (e.g., the path may always be computed to include the known location of
the robot or the robot could always be told where the start of the path is.) One important goal in this first phase is to
avoid flooding the entire network with messages in an attempt to discover location.

For the robot to find the path, first one (or all) of the sensors that know they are near the start of the path send out
three messages that contain the location of the start of the path. The messages also each contain a heading, set 120
degrees apart2, a width for the vector they will travel along, and a maximum range beyond which they are not intended
to travel. The messages are forwarded out to that range in each of the three directions. The sensors that forward the

1Limited by Mote message length.
2Other patterns of radiation (a star pattern of 72 degrees) might increase the likelihood of intercepts occurring, though they also increase the

number of sensors involved.
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Algorithm 2 The QueryPath algorithm for robot guidance.
while forever do

// Seek path information from the sensors
Broadcast a QueryOnPath message
Listen for the first sensor to reply
if a sensor replies with an OnPathAck message then

Send a QueryPath message to that sensor
// The sensor should reply with a list of PathSegments it is on
if that sensor replies with a QueryAck message then

Store the PathSegments from the QueryAck message in order of precedence.
// Guide the robot
if Robot has reached current Waypoint then

Get next Waypoint from list in order of precedence
Head for next Waypoint

messages store the location of the start of the path. The robot at some later time sends out the same sort of messages
in three directions. If the robot and path start are in range of each others messages, the message paths will cross (due
to using a 120 degree dispersal angle.) The sensor(s) at the crossing will have a stored location for the start of the path
and a location for the robot and can send a directional message (perhaps with a gradually increasing width since the
robot may have moved slightly) back to the robot telling it where the start of the path is. In this way only the sensors
along specific lines out to a max range carry messages instead of the entire network. This might be a good general
approach to finding the nearest location of any resource the sensor field knows about. After the initialization phase
that places the robot on the path, the navigation guidance algorithm summarized as Algorithm 2 is used to control the
motion direction of the robot.

The robot starts by sending out a QueryOnPath message which includes the sender’s id and location. If received
by a sensor on the path it replies with a QueryAck message which includes the path section, some consecutive way
points, and an indication of where these way points fit into the path. By gathering lists of segments from multiple
sensors the entire path can be assembled piece by piece as the robot moves. Paths that cross themselves allow for some
fault tolerance in the robots knowledge of the path, since if the robot loses the path, it may have a future segment of
it already stored if it has passed an intersection. Once the robot has acquired path segments from a sensor, it can then
arrange them in order of precedence and follow them in order. Thus the path itself is independent of the sensor’s own
location and can be specified to any level of precision needed.

3 Experiments

3.1 Experimental setup

The Sensor Network Hardware Our algorithms are hardware independent but the message formats used by the
networked system are hardware dependent. We use a sensor network that consists of 54 Mica Motes [10, 11], see
Figures 1 and 3(Center). Each node contains a main processor and sensor board. The Mote handles data process-
ing tasks, A/D conversion of sensor output, RF transmission and reception, and user interface I/O. It consists of an
Atmel ATMega128 microcontroller (with 4 MHz 8 bit CPU, 128KB flash program space, 4K RAM, 4K EEPROM),
a 916 MHz RF transceiver (50Kbits/sec, nominal 100ft range), a UART and a 4Mbit serial flash. A Mote runs for
approximately one month on two AA batteries. It includes light, sound, and temperature sensors, but other types of
sensors may be added. Each Mote runs the TinyOS operating system. The sensors are currently programmed to react
to sudden increases in light and temperature but other sensory modes are possible. The sensors need to know their
location coordinates and are localized using the GPS localization algorithm in Section 2.1, but the coordinates can also
be provided to each sensor from a base-station.

The Autonomous Robot The CSIRO helicopter, see Figure 1, is a hobby type (60 class) JR Ergo, which has a
limited, 5kg, payload capability. This helicopter differs from other similar projects in using low-cost sensors for
control. These include a custom inertial measurement unit, magnetometer and a vision system. The vision system,
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implemented in software, provides height relative to the ground and speed from optical flow between consecutive
frames at 5Hz. A flight computer located in the nose acts as the interface between the helicopter and the control
computer, allowing the computer to monitor or take over any servo channel.

The control computer is an 800MHz P3 with solid-state disks running the LynxOS operating system. It is respon-
sible for running the vision software, the control loops and data logging. A 1Hz differential GPS receiver and a Proxim
radio ethernet card are also fitted. A Mote is fitted to the nose of the helicopter (visible in Figure 1) and functions as a
base-station. It communicates over a serial link with the control computer which runs application software to interact
with the sensor network on the ground.

Experimental site In March 2003 we conducted outdoor experiments with a robot helicopter (equipped with a Mote)
and 54 Mica Motes (see Figures 1 and 3) at the CSIRO site in Brisbane. The Motes were placed at the nodes of a
6m grid on a gentle slope. The grid was established using tape measures and the corner points were surveyed using
differential GPS, and the coordinates of the other points were interpolated.

Experiments showed that the radio range of the Motes was dramatically reduced when they were placed on damp
soil. Subsequently we placed them on inverted flower pots which kept them one wavelength above ground and im-
proved the signal quality significantly. A base-station Mote connected to a laptop was used to control the Mote
network.

3.2 Localization Results

In this section we compare empirically the performance of the five different approaches to localization introduced
in Section 2.1 using data acquired during experiments. The error between estimated and actual mote coordinate for
each of the algorithms is shown in Figure 2(Left). The results have been computed offline using GPS coordinates
obtained from the actual helicopter path shown in Figure 2(Right) The parameters used were d = 20 and smin = 470.
We can see that the mean and weighted mean are biased, particular in the Easting direction, due to the path taken
by the helicopter or the lobe shape of the Mote antenna. The method, ’best’, is simple but has high residual error.
The median does not perform significantly better than the mean estimates, and would be problematic to compute with
small amounts of memory. The constraint based method is arguably the best performer and is computationally cheap,
though it is sensitive to the choice of d. The error should be considered with respect to the accuracy of differential
GPS itself which is of the order of several metres.

We note that the methods do not require a range estimate derived from signal strength, a difficult inverse problem,
nor make any assumption about the size or shape of the radio communications region.

3.3 Path Computation Results

In order to measure the sensor network response to computing, updating and propagating path information we have
implemented the algorithms described in Section 2.2 on the deployed sensor network. Several different types of path
have been tried. Figure 3 shows the results from five different runs. Each path consists of 17 intermediate points,
arranged in a U shape around the exterior of the Mote grid. The spacing between each two Motes was 6 meters so
the total path length was 96 meters. The average path propagation time is 1.7 seconds which translates into a speed of
56 m/sec. This propagation time is very fast as compared to the moving speed of the flying robot. We conclude that
the path computation is practical for controlling the navigation of a flying robot that needs to adapt its path to changes
in the environment.

For our geographic routing we observed 2 to 6 messages per sensor along the path, whereas for flooding all the
sensors become involved in message forwarding, each of them receiving between 14 to 17 messages. This vector
style of routing is much more efficient in number of messages, and the percentage of sensors involved in message
forwarding becomes less and less as the size of the entire network grows.

3.4 Navigation Results

Our experiments have demonstrated that the robot helicopter can hover and follow a path. We can configure the sensor
field with arbitrary paths and change them dynamically. The helicopter can interact with the sensor field and retrieve
path segment information. A second joint field experiment, targeted for June 2003, will be used to collect navigation
data.
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3.4.1 Lessons Learned

We have gained several insights into networked robots. Data loss is not rare in sensor networks. This is due to network
congestion, transmission interference, and garbled messages. We observed that the transmission range of one direction
may be quite different from that of the opposite direction. Thus, the assumption that if a node receives a packet from
another node, it can send back a packet is too idealistic. Network congestion is very likely when the message rate is
high. This is aggravated when the nodes in proximity of each other try to send packets at the same time. For a sensor
network, because of its small memory and simplified protocol stack, congestion is a big problem. The uncertainty
introduced by data loss, asymmetry, congestion, and transient links is fundamental in sensor networks and should be
carefully considered in developing models and algorithms for systems that involve sensor networks.

3.4.2 Extension to Guiding Humans

The ideas behind guiding the navigation of robots can be extended to guiding humans augmented by a hand-held
device. It is based on the metaphor of a flashlight and is called a sensory Flashlight, see Figure 3(Right). It comprises
an analog compass, alert LED, pager vibrator, and a Berkeley Mote [11].

When pointed in a specific direction, the Flashlight collects information from all the sensors located in that di-
rection and provides its user with feedback. For the navigation task this feedback consists of a vibration when the
flashlight is pointed in the direction of travel computed by the network. The device can also issue commands to the
sensors in the direction it is pointing.

We have deployed 12 Mote sensors along corridors in our building and used the Flashlight and the path guidance
approach presented here to guide a human user out of the building. Figure 3(Right) shows the map. The Flashlight
interacted with sensors to compute the next direction of movement toward the exit. For each interaction, the user
did a rotation scan until the Flashlight was pointed in the direction computed from the sensor data. The user then
walked in that direction to the next sensor. Each time we recorded the correct direction and the direction detected
by the Flashlight. The directional error was 8% (or 30 degrees) on average. However, because the corridors and
office doorways are wide, and the sensors sufficiently dense, the exit was identified successfully. The user was never
directed toward a blocked or wrong configuration. An interesting question is how dense should the sensors be, given
the feedback accuracy.

4 Conclusions

We have described a sensor network and developed novel algorithms that provide guidance information to robot or
human users. Such a network greatly extends the sensory reach of an individual robot or human and provides for many
different modes of navigation. The interaction is also bidirectional. The robot is able to provide information to the
network and we have demonstrated the power of this in the task of node localization.

We have implemented the navigation protocols on a network of 54 Mote sensors in a large-scale outdoor setting,
and tested aspects of helicopter and sensor network interaction. Experiments have shown the effectiveness of geo-
graphic or vector routing, and the efficacy of using the flying robot to localize nodes. Various localization algorithms
were compared using experimental data. We were able to load paths into the deployed sensor field and manually test
the robot and human navigation algorithms. Future work will focus on gathering data from robot navigation trials and
demonstrating sensor-based path adaptation.

Acknowledgments

This work is a collaborative project between the Dartmouth Robotics Laboratory and the CSIRO Robotics & Au-
tomation team. The authors would like to thank the rest of the CSIRO helicopter team: Jonathan Roberts, Gregg
Buskey, Srikanth Saripalli (University of Southern California), Graeme Winstanley, Leslie Overs, Pavan Sikka, Elliot
Duff, Matthew Dunbabin, Stuart Wolfe, Stephen Brosnan, and Craig Worthington, and our pilot Fred Proos. The
authors also thank the rest of the Dartmouth sensor network team: Qun Li and Michael de Rosa. Support for this
work was provided through the NSF awards 0225446, EIA-9901589, IIS-9818299, and IIS-99R12193, ONR award
N00014-01-1-0675 and the Darpa TASK program. We are grateful for it.

9



References

[1] http://robotics.eecs.berkeley.edu/ pister/smartdust/.

[2] Distributed localization in wireless sensor networks, Available at citeseer.nj.nec.com/464015.html, 2002.

[3] Jon Agre and Loren Clare. An integrated architeture for cooperative sensing networks. Computer, pages 106 –
108, May 2000.

[4] P. Bergamo and G. Mazzimi. Localization in sensor networks with fading and mobility. In Proceedings of IEEE
PIMRC, Lisbon, Portugal, 2002.

[5] N. Bulusu, J. Heidemann, and D. Estrin. Adaptive beacom placement. In Proceedings of the 21st Conference on
Distributed Computing Systems, Phoenix, AZ, 2001.

[6] G. Buskey, J. Roberts, P. Corke, P. Ridley, and G. Weyth. Sensing and control for a small-size helicopter. In
Experimental Robotics VIII, pages 476–486, Ischia, Italy, 2002.

[7] A. Das, G. Kantor, V. Kumar, G. Pereira, R. Peterson, D. Rus, S. Singh, and J. Spletzer. Distributed search and
rescue with robot and sensor teams. In To appear in Field and Service Robotics, Japan, July 2003.

[8] Deborah Estrin, Ramesh Govindan, and John Heidemann. Embedding the internet. Communications of ACM,
43(5):39–41, May 2000.

[9] A. Galstyan, B. Krishnamachari, and K. Lerman. Distributed online localization in sensor networks using a
moving target. submitted to 2003 acm senssys.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture directions for network
sensors. In ASPLOS, 2000.

[11] Jason Hill, Philip Bounadonna, and David Culler. Active message communication for tiny network sensors. In
INFOCOM, 2001.

[12] B. Karp and H.T. Kung. GPSR: Greedy Perimeter Stateless Routing for wireless networks. In Proceedings of
MobiCom 2000, Aug. 2000.

[13] J.-C Latombe. Robot Motion Planning. Kluwer, New York, 1992.

[14] Qun Li, Michael de Rosa, and Daniela Rus. Distributed algorithms for guiding navigation across a sensor net. In
Dartmouth Computer Science Technical Report TR2002-435. Submitted to MobiCom 2003, 2003.

[15] Ron Peterson and Daniela Rus. Interacting with a sensor network. In Proceedings of the 2002 Australian
Conference on Robotics and Automation, Auckland, NZ, November 2002.

[16] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Communications of the ACM, 43(5):51–58,
May 2000.

[17] Elizabeth Royer and C-K. Toh. A review of current routing protocols for ad hoc mobile wireless networks. In
IEEE Personal Communication, volume 6, pages 46 – 55, April 1999.

10


