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Abstract

Efficient networking has a substantial economic and societal impact in a broad range of
areas including transportation systems, wired and wireless communications and a range of
Internet applications. As transportation and communication networks become increasingly
more complex, the ever increasing demand for congestion control, higher traffic capacity,
quality of service, robustness and reduced energy consumption require new tools and meth-
ods to meet these conflicting requirements. The new methodology should serve for gaining
better understanding of the properties of networking systems at the macroscopic level, as
well as for the development of new principled optimization and management algorithms
at the microscopic level. Methods of statistical physics seem best placed to provide new
approaches as they have been developed specifically to deal with non-linear large scale
systems. This paper aims at presenting an overview of tools and methods that have been
developed within the statistical physics community and that can be readily applied to
address the emerging problems in networking. These include diffusion processes, methods
from disordered systems and polymer physics, probabilistic inference, which have direct
relevance to network routing, file and frequency distribution, the exploration of network
structures and vulnerability, and various other practical networking applications.
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Figure 1: An example of routing configuration on a network: pair of square nodes with specific color
correspond to a specific source-destination pair, circle nodes and edges with specific color correspond to
the path of the corresponding source-destination pair.

1. Introduction

Networking encompasses a variety of tasks related to the communication of information
on networks; for instance routing, frequency allocation, information spreading, distributed
storage and dynamic network exploration. One particularly important aspect of networking
is routing that corresponds to path selection on networks to achieve a given objective, for
instance, to establish a communication path for each of the multiple source-destination
pairs as shown schematically in Fig. 1, to search for a certain node on a network, or to
send a message to a specific set of nodes. Networks determine the underlying topology for
most networking tasks, usually correspond to a group of nodes, such as personal computers
or geographic locations, connected by edges, such as transmission lines or roads.

Indeed, networking and path selection are at the heart of many communication and
logistics applications. One of the most visible examples is the Internet, which connect
computers and servers around the world by transmitting data through wired and wireless
connections from specific sources to specific destinations [1, 2]. Due to the expanding
coverage of the Internet, various overlay networks emerge whose functionality relies on
effective networking. These include peer-to-peer networks (P2P) of individual users who
share overlay network resources; messenger networks that link up users and allow for instant
messages to be transmitted between them; and applications such as Facebook that help
users establish a virtual social network [3]. From their ever increasing popularity, it is clear
that routing and path selection have become an essential part in our way of life.

Other than the Internet, effective networking is essential to many daily essential appli-
cations we take for granted. For instance, transportation networks involve a large number
of simultaneous path selections which constitute complex traffic dynamics [4]. Another
example is sensor networks, for example fire and pollution sensors, which involve spatially
distributed sensors monitoring local conditions and sending messages to a centralized base
station to be communicated further [5]. Networking also represents the distribution of
water in water supply network [6], communication to end-recipient in cloud computing [7],
the allocation of computing powers in computer clusters [8], and even efficient coordination
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of military convoys movement between geographic locations [9].
Due to its wide range of applications and significance, understanding fundamental as-

pects and the dynamics of networking has become part of an important cross-disciplinary
effort. Researchers in engineering, computer science and physics have been eager to apply
their techniques for addressing various aspects of this task. For instance, engineers and
computer scientists are interested in the design of practical protocols to satisfy various
operational constraints such as power capacity, bandwidth and buffer size [10, 11, 12].
Researchers in management science optimize routing and scheduling for low-cost and ef-
ficient transportation [13]. The contribution of the physics community has many facets:
understanding the interaction between competing communication and paths; the interplay
between topology and routing dynamics; the derivation of macroscopic phenomenon such
as phase transitions and how they determine the optimal operational conditions; how com-
munication frequencies, codes and data can be optimally deployed; and the development of
methods to better understand the dynamically changing topology from a minimal number
of measurements.

The present article will focus on the use of methods from statistical mechanics in the
study of networking. We will review basic methods and network models used in the study of
traffic jams and routing, the spread of computer viruses, frequency assignment for wireless
routers, efficient load balancing, resource trafficking, broadcast and multicast on networks
and path optimization. We will discuss the potential algorithmic implications derived
from the study of disordered systems and the use of distributed probabilistic methods for
managing such systems. In addition, we will point to the potential such methods hold for
the future study and control of networking systems represented via the network metaphor.

We note that the present review focuses on networking rather than network and complex
systems studied in a number of review articles in the physics literature. These include
reviews on structural properties [14, 15, 16], mathematical proofs on network diameters and
path lengths [17], network critical phenomenon and spin models [18], dynamical processes
and synchronization [16, 19, 18, 20], and community detection in networks [21].

1.1. Practical Networking Methods

To understand the contribution of physics to networking problems and the potential
they hold for future development, we describe here a few commonly used heuristic meth-
ods employed in the Internet and practical wireless networks, which aim to solve specific
networking tasks and instances.

1.1.1. Routing

Table-based routing methods is a family of techniques used for Internet routing. To use
this method one first has to assign an address to each node in the network, for instance,
the so-called Internet Protocol (IP) address. The next step is to compute a routing table
for each individual node identifying paths to all other nodes in the network, as similar to
those indicated for node 1 and 4 in Fig. 2(a). These tables can be computed to satisfy a
predefined goal, for example to identify the shortest path; minimal path weight algorithms
can be used [22, 23] for optimal routing. A simple example of a routing procedure is given
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Figure 2: (a) A simple example of a table-based routing method in sending a message from node 1 to node
12. (b) An example of position-based routing algorithm in a routing message from node S to node D.

in Fig. 2(a): suppose node 1 has to send a message to node 12, it looks for the entry
of node 12 in its own routing table which indicates that a message to node 12 should
be sent via node 4. The message is then delivered to node 4, whose routing table states
that the message to node 12 should be sent via node 5. The process continues until the
message is delivered to node 12. The success of such table-based methods depend crucially
on the choice of paths indicated by the routing tables, which are usually pre-calculated
and are non-adaptive to changes in topology and traffic conditions, hence may result in
sub-optimal paths when certain routers break down or when traffic is congested. Attempts
to resolve these issues include the calculation of multiple paths for each source-destination
pair [24, 25], or the use of a reactive approach to repeatedly re-calculate the routing tables.

Next, we describe the position-based methods [26, 27, 28, 29], used in wireless network
where the positions of nodes are known, for example, by GPS (global positioning system).
In general, these methods work for networks with frequent topology changes and switches
between individual active and inactive states. A simple example is shown in Fig. 2(b):
suppose node S has to send a message to node D, it forwards the message to the most
suitable node in its neighborhood limited by its own transmission range. There are vari-
ous approaches for determining the must suitable node, for example, S may forward the
message to node A since A has the shortest distance to D [26] projected along the line
connecting S and D, or to B, since B has the shortest Euclidean distance to D [27]. In
these greedy forwarding scenarios, problems such as the absence of a suitable neighbor
or an infinite looping of messages may arrive. Attempts to resolve these issues include
the introduction of recovery modes, for example reset routing around the perimeter of the
trapped region, defined as the region surrounded by a loopy transition of messages [28].

1.1.2. Frequency allocation

Other networking tasks that are currently solved heuristically are, for instance, fre-
quency or channel allocation in cellular networks and radio broadcasting systems. The
goal is to suppress interference between neighboring areas where similar broadcasting radio
frequencies are used. For a small number of radio or television channels, one may manually
assign different frequencies to neighboring base stations. However, the problem becomes
more complicated and infeasible to carry out manually in communication networks with
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a large number of wireless devices, each relying on an individual communication channel.
The problem can be mapped onto a graph coloring problem where no adjacent (interacting)
nodes share the same color (see Section 4.1.1 for details). Heuristic methods of frequency
allocation are proposed in Refs. [30] and [31] in accordance with the graph coloring opti-
mization problem. In these methods, channels are consecutively assigned to users according
to criteria such as minimization of the number of potentially conflicting neighbors or the
decrease in overall channel availability, until all users are assigned frequencies such that
no neighboring assignments are in conflict. In addition to assignment on fixed graphs,
methods have also been devised to tackle the problem of adaptive networks of constantly
changing topologies [32].

Another aspect of the same problem is in the distributive storage of file segments such
that files could be reassembled efficiently upon request. One can map this problem onto a
diversification of color assignment, where each color corresponds to one file segment, such
that for each node a sufficient number of heterogeneous colors (i.e. file segments) are found
in the immediate neighborhood for file reconstruction. Details are found in Section 4.1.2
and Ref. [33]. Various heuristic algorithms have been proposed to optimize color diversify
in graphs of different topology [33, 34]. For instance, in tree networks one can adopt the
method suggested in Ref. [33] to start the color assignment by first coloring the root node
and its nearest neighborhood with the set of all required colors. The process then continues
in a manner similar to epidemic spreading, by coloring nearest empty node to satisfy nodes
which are closest to the root that do not have all the necessary colors. Finally, one obtains
a colored tree which corresponds to an assignment of file segments where every node can
retrieve a complete set of file segments from its immediate neighborhood.

1.1.3. Dynamical network discovery

A technology called route analytics can be employed to monitor dynamical changes in
topology or latency of a router network. In this approach, an analysis appliance is intro-
duced to monitor relations between routers and obtain dynamic information of the network.
When routers exchange information to decide on the routing of particular packets, the ap-
pliance acts as a passive router and passively receive all the information (i.e., it does not
participate in forwarding the packets). The information obtained from the appliance pro-
vides a real-time overview of the state of the network . Other than direct analysis of routing
information, individual link latency may also be inferred from end-to-end information, a
process which is termed network tomography. It involves solving an under-determined
system of linear equations (details are described in Section 5.3). Progress has been made
within the statistical physics community on identifying the conditions for which informa-
tion on link latency can be accurately retrieved as well as in devising methods for solving
individual instances; traditional techniques rely on linear programming techniques to solve
individual instances [35, 36].

1.2. Statistical Physics and Networking

As we can see from the previous subsection, there are already a variety of ingenious
methods for solving specific networking tasks. However, such algorithmic studies often
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offer a heuristic sub-optimal microscopic solutions for solving real instances, leaving the
macroscopic behaviors such as phase transitions and self-organization less understood.
Statistical physics offers insight into the macroscopic behavior of networking from basic
definition of the microscopic interactions, through the use of established techniques such
as spin glass theory [37, 38, 39, 40], which take into account the disorder induced by the
network structure or communicating nodes. It also facilitates the development of principled
algorithms for solving efficiently some of the more difficult networking tasks.

In the past decade statistical mechanics has been applied to a variety of problems which
have origins outside the traditional realm of physics. New insight and understanding that
is inaccessible via traditional techniques have been gained, which have had a substantial
impact in the respective fields and have led to new research directions and the develop-
ment of new methodology. Among all these research activities are diverse problems such
as combinatorial optimization, epidemic spreading and information theory, which facili-
tate the understanding of the appropriate operational regimes and their limitations in the
networking context.

In this article, we will review the applications of physics techniques of both proven
and potential impact on networking tasks. In Section 2 we will review basic network
properties and some of the most commonly used network models that are essential in
the study of networking problems. In Section 3, we will review the master equation and
Markov chain techniques employed to describe probabilistic flow in networks [41], which
are relevant to network search and epidemic spreading in computer networks. In Section 4,
we will review the use of spin glass theory of disordered systems in addressing networking
problems such as wireless frequency allocation, resource allocation and path optimization.
In Section 5, we will review cross-disciplinary links identified between statistical physics
and established concepts in probability and statistics such as Bayesian methods, maximum
likelihood, variational approaches and message passing techniques [39], which have a direct
implication in networking applications. Finally we will mention future directions in the
potential uses of the methods mentioned in the review to networking.

2. Networks Essentials

As networks constitute the underlying topology used in most networking tasks, we will
describe the terminology and notation used in the article in Section 2.1, essential features
and measures in Section 2.2, and the network models studied or introduced by physicists in
Section 2.3. Since network features and models have been included in a number of review
articles [14, 15, 16], we recommend to readers who are familiar with complex networks
models and terminology to skip Sections 2.2 and 2.3 and proceed directly to Section 3. For
the other readers less familiar with complex networks, this section will provide essential
material on networks required for understanding the subsequent sections.

2.1. Terminology and Notation

In this review, we will denote the total number of nodes in a network as N and the
total number of edges as M . Networks are generally classified as undirected or directed
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corresponding to those that consist of undirected or directed edge interactions, respectively.
Nodes are labeled by Latin letters such as i and j, undirected edge between i and j is
denoted by (i, j), while a directed edge from i to j is denoted by 〈i, j〉. In-links and out-

links are used to describe directed edges going in and out of a node. Most networks do
not have parallel edges, i.e., edges with the same pair of end nodes and directions. The
connectivity between nodes are characterized by the adjacency matrix A, with symmetric
entries aij = aji = 1 when an undirected edge exists between nodes i and j, and aij = 1 in
the case of a directed edge from node i to j; and 0 otherwise. We denote by Li the set of
nodes connected to i. The diagonal elements aii in A are set to zero in most cases if link
from node i to itself does not exist. Networks are said to be sparse, or sparsely connected,
when nodes are generally connected to a small number of neighbors compared to N , and
dense, or densely connected when the number of connections per node is O(N). In the
study of disordered systems, the misleading term extreme dilution is sometimes used to
describe a connectivity level smaller than O(N) but much larger than O(1).

2.2. Features and Measures

A number of prominent network features have been observed and identified, and com-
mon measures have been introduced to quantify them. They help reveal the significance
of individual nodes and edges, and the statistical and topological properties of networks.
Some of these measures such as node degree and edge betweenness are of high relevance
to networking systems.

2.2.1. Node and Edge Centrality

Node and edge centrality correspond to the significance of individual nodes and edges
in a network. The simplest yet important centrality measure for nodes is their degree. For
undirected networks, the degree of a node is defined as the number of edges connected to
it, and is usually denoted as ki =

∑
j aij for node i. For directed networks, edges linking a

node can be either going into or out of it, and the in-degree and out-degree of a node are
defined as the number of in-links kini =

∑
j aji and out-links kouti =

∑
j aij, respectively. In

general, nodes with degrees significantly larger than the surrounding nodes are considered
important in the network, and are sometimes called hubs.

Another common measure for node centrality is the node betweenness, a measure based
on the fraction of shortest paths between any pair of nodes that passes through the node
of interest (note that the shortest path is not always unique and in many cases more than
one shortest path exist between a particular pair of nodes.) Nodes are said to have high
betweenness if a substantial fraction of the shortest paths pass through them, and hence
are considered to be important, in particular for networking systems [42]. Denoting the
number of shortest paths from x to y that pass through node i as ni

xy, the normalized
betweenness Bi of node i is given by

Bi =
1

(N − 1)(N − 2)

∑

x,y
x 6=y 6=i

ni
xy

nxy
, (1)
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where nxy is the total number of shortest paths from x to y and (N−1)(N−2) is the number
of unordered node pairs in an undirected network. The above expression is normalized such
that when all the shortest paths between all node pairs pass through i, Bi = 1. We note
that generally ni

xy 6= ni
yx and nxy 6= nyx in directed networks, while in undirected networks

ni
xy = ni

yx and nxy = nyx and the computations of Bi can be simplified by summing only
unordered node pair (x, y) and multiplying the expression by two. A similar measure on
edges is known as edge betweenness, which counts the fraction of shortest paths between
any node pair that passes through the edge of interest. Given n

〈i,j〉
xy is the number of shortest

paths from x to y that pass through the edge 〈i, j〉, the normalized betweenness of edge
〈i, j〉 is defined as

B〈i,j〉 =
1

N(N − 1)

∑

x,y
x 6=y,i 6=j

n
〈i,j〉
xy

nxy
, (2)

where nxy is again the total number of shortest paths from x to y. For an undirected
edge (i, j) in undirected networks, B(i,j) = B〈i,j〉 = B〈j,i〉 and computations can again be
simplified by summing only unordered node pairs (x, y) and multiplying the expression by
two.

2.2.2. Statistical Properties

While node and edge centralities are local measures on individual nodes and links, the
statistical properties of networks measure macroscopic features and are often referred to
as the network characteristics. For instance, the degree distribution p(k) is an impor-
tant statistical property which characterizes the probability that a randomly chosen node
is of degree k; it facilitates measuring and effectively categorizing the network type and
features. For instance, exponential networks correspond to networks where degree distri-
bution is exponentially bounded, i.e., decays exponentially or faster. We will see later on,
in Section 2.3, that random networks [43, 44] and model networks exhibiting small world
phenomenon [45] belong to the class of exponential networks. On the other hand, networks
characterized by a power-law degree distribution are often called scale-free networks. A
substantial amount of effort has been dedicated to the mechanism by which networks grow
to a given degree distribution [15]. In networking systems, which are the focus of this
review, the form of degree distribution has a large influence on traffic congestion [42, 46].

Another useful macroscopic measure, in addition to the degree distribution, is the
correlation between degrees of neighboring nodes. We denote by p(k′|k) the conditional
probability that a node of degree k′ is connected a neighbor of degree k. Uncorrelated

networks are networks where degrees of neighbors are uncorrelated, which gives rise to a
k-independent distribution for k′, p(k′|k) = k′p(k′)/〈k〉, equivalent to the probability of
a randomly chosen edge to be connected to node with degree k′. The average degree of
nearest neighbors of a node of degree k can be expressed as [47]

knn(k) =
∑

k′

k′p(k′|k), (3)
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providing a simple empirical measure of node correlation. When knn(k) is independent
of k, the network is termed uncorrelated; in which case knn(k) = 〈k2〉/〈k〉 [48]. On the
other hand, when knn(k) depends on k, node degrees are correlated. An increasing knn(k)
indicates that nodes with large degrees are connected to each other and the network is
called assortiative; while a decreasing knn(k) indicates that nodes with higher degrees are
connected to nodes with lower degrees and the network is called dissortiative.

An alternative measure for assortiativity is the assortiativity coefficient introduced by
Newman [49]. To evaluate assortiativity, one first defines the excess degree of node i to be
zi = ki − 1, i.e. one less than the actual degree of node i. One then defines q(z) to be the
probability of arriving at a node with excess degree z from a random link, given by

q(z) =
(z + 1) p(z + 1)∑

k k p(k)
=

(z + 1) p(z + 1)

〈k〉 , (4)

where p(k) and q(z) are the degree and excess degree distributions, respectively. The first
factor in the product of (z + 1)p(z + 1), i.e. k p(k), corresponds to the fact that random
walkers are more likely to arrive at nodes with large degrees as they have more edges.
We remark that for Erdös-Rényi (ER) networks described in Sec. 2.3.1, q(k) = p(k). The
assortiativity coefficient is then given by

R =
1

σ2
q

∑

z,z′

zz′[q(z, z′)− q(z)q(z′)] (5)

where q(z, z′) is the probability of a randomly chosen edge with excess degrees z and z′ at
the end nodes. The normalization constant σq is the variance of the distribution q(z) as
given by σq =

∑
z z

2q(z)− [
∑

z zq(z)]
2. The term q(z)q(z′) describes the probability when

the occurrences of z and z′ on an edge are independent. The assortiativity coefficient R is
thus the Pearson coefficient [50] on the correlation between z and z′; R = 1 when z and z′

are completely correlated and R = 0 when no correlation exists between z and z′.
Correlation measures on three nodes were also introduced, in addition to the more

commonly used two-node measures. For instance, the clustering coefficient measures the
popularity of triadic relations/interactions, i.e. the occurrence of triangles in networks.
Clustering coefficients can be defined locally on individual nodes as follows.

Note that the maximum number of links that can appear in the nearest neighborhood
of a node is k(k − 1) in directed networks and k(k − 1)/2 in undirected networks. The
clustering coefficient Ci at node i is defined as the ratio of the number of existing links in
the neighborhood of a node to the maximum possible number

Ci =
1

ki(ki − 1)

∑

x,y∈Li

x 6=y

axy (6)

where Li corresponds to the set of nearest neighbors of node i.
As for undirected networks, one can compute Ci by summing only unordered node pairs

(x, y) and then multiply the summation by two. A unity clustering coefficient for node i
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corresponds to the case where all nearest neighbors of i are connected to each other. The
network clustering coefficient C is just the average of the local clustering coefficient at all
individual nodes C = 〈Ci〉. Note that the clustering coefficient measures the local triadic
relations at a node, and a high clustering coefficient does not reflect the global clustering
of nodes into communities.

2.2.3. Topological Features

Other than statistical properties, the topological structure of networks may show char-
acteristic features that are not necessarily captured by the former. One of the most im-
portant topological features is the emergence of communities, determined by an increased
intra-community link density with respect to the lower inter-community density. Com-
munities typically appear at the mesoscopic scale as they are often small compared the
network size but larger than a few individual nodes. It has been shown that the Internet
exhibits strong community structure corresponding to individual countries or regions [51].
This feature is also observed in social networks, where people are sometimes linked to
others who share similar interests, or are in the same social group [52, 53].

It is often easier to quantify community structure in undirected networks, while the
community detection in directed networks remains an area of research [54, 53]. Given
a specific grouping of nodes, a common measure to quantify the strength of community
structure is known as the modularity Q [55], defined as

Q =
1

2M

∑

i,j
i 6=j

(
aij −

kikj
2M

)
δgi,gj (7)

where gi corresponds to the group label of node i. The quantity kikj/2M corresponds to
the expected number of edges between i and j in the absence of community structure. The
modularity measure thus compares the density of links within the same group to the null
model where nodes are connected regardless of communities. The higher the modularity,
the more prominent is the community structure.

Another important topological feature is the emergence of hierarchical structures. The
most typical examples are tree networks such as taxonomy scheme of animal species and
pedigree chart, where nodes are organized in layers with ancestors and descendants. Hier-
archical structures in such networks are represented by the group of leaf-nodes connected
through the same branch. However, most networks do not have a strict tree-like topology
but instead possess an underlying skeleton or backbone, which is a minimal spanning tree
formed by significant network edges. Examples include the World Wide Web, the Internet
and citation networks [56, 57].

There are several suggested methods to identify and quantify the hierarchical structure
of networks. For instance, one can search for hierarchical paths between any two nodes
by following paths where degrees first go up and then down. If a large fraction of shortest
paths between randomly chosen nodes are hierarchical, the network is said to have a
hierarchical structure [58]. To find the backbone of the network, one can search for the
spanning tree where total edge betweenness is maximized [59]. It was shown that in such
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backbone networks major statistical properties such as exponents of degree distribution
and betweenness distribution are preserved. Another way to quantify hierarchy is by k-
shell decomposition, for instance, in the autonomous system (AS) level of the Internet [60].
We remark that in some cases, networks are not completely modular or hierarchical, but
instead show a mixture of characteristics.

2.2.4. Paths

Paths between nodes correspond to the contiguous set of edges constituting a route from
one node to another. In addition to the betweenness measure, which was described earlier
and involves shortest paths, other network properties are used to evaluate the distance
between nodes. For instance, the average path length is a commonly used measure to
determine the expected level of separation between network nodes. Another measure of
proximity between network nodes is the maximum length of shortest paths among all node
pairs, indicating how far apart remote nodes are; this is sometimes termed the network

diameter. Effective search strategies for finding shortest paths are crucial in networking
applications [61].

An example where path length is employed to characterize node distance is the well-
known six degree of separation paradigm in social networks [62], which suggests that any
two people in the world are separated, on average, by a sequence of six intermediate
contacts (people are represented as nodes, acquaintances as edges). Social network is thus
a small-world network, to be determined formally in Section 2.3, which corresponds to
networks with average path length that scales as logN , compared to regular lattice where
the average shortest distance scales as N . We note that random regular graphs and Erdös-
Renyi networks (random graphs) are small-world in this sense as their average shortest
distance also scales as logN [63]. Other examples of small-world networks include the
power-grid and actor collaboration networks [45].

In directed networks, there are typically pairs of nodes which are not connected by
directed paths, where all individual edges follow the same direction, making path length
undefined. To evaluate the average path length and diameter in directed networks, edges
are sometimes regarded as undirected. A sub-graph in a directed network where all node
pairs are connected by directed path is known as a strongly connected component. Random
walk, an important tool in the exploration of networks, which will be formally introduced
in Section 3, is only guaranteed to coverage on strongly connected networks.

2.3. Network Models

Various network models have been introduced to study and understand the origin of
network features and structure. While many of these models only describe the mechanism
of link formation some suggest also a mechanism for node addition aimed to explain how
networks grow. Understanding these mechanisms is crucial to networking, especially the
resilience to failure and attack described in Section 3.2 and path optimization described in
Section 4.3. In this section, we will briefly review some of more popular network models
and the corresponding implications.

13



2.3.1. Erdös-Rényi Networks

Erdös-Renyi networks are often referred to as random graphs or ER networks. The
most commonly studied version, in which links appear randomly with equal probability,
was first introduced by Gilbert [43]; a closely related variation had been later introduced
and studied by Erdös and Rényi [44]. In an ER network with N nodes, an undirected
edge exists between any node pair with equal probability p independently of other existing
edges. The expected number of edges in ER networks is pN(N−1)/2, and the node degrees
follow a binomial distribution which is effectively approximated by a Poisson distribution
with an average pN when the network size N is large, given by

p(k) =
(pN)k

k!
e−pN . (8)

The probability distribution p(k) has a prominent peak at the expected value 〈k〉 and decays
faster than exponential for k > 〈k〉, which classifies ER as exponential networks. While
p = 1/N is the usual percolation threshold for the network to have a largest connected
component of size O(lnN), it has been shown that when p > ln(N)/N the whole network
tends to be connected with no isolated nodes [63]. The properties of ER networks such
as connectedness and the size of connected components, have been extensively studied by
graph theorists; ER networks are often referred to as random graphs and are denoted as
GN,p [63].

For researchers studying phenomena on complex networks, ER networks are a useful
modeling tool and are considered as a benchmark for comparison with other network mod-
els. Since edges are assigned randomly in ER networks, they do not show any community
or hierarchical structures.

2.3.2. Scale-free Networks

Scale-free networks correspond to networks with a power-law degree distribution, of
the form p(k) = ck−γ, where c is a normalization constant. Many of the networks one
encounters in daily life are characterized by a power-law degree distribution, and thus are
scale-free. Scale-free networks are characterized by a high number of hubs (i.e., highly
connected nodes) which results from the long tail in the degree distribution, compared to
the Poissonian distribution in ER networks.

The most studied model which generates a power-law degree distribution is the Barabási-
Albert (BA) model [64]. The BA model starts initially with m0 nodes, with new nodes
introduced at each time step. The latter are connected to m existing nodes with a prob-
ability proportional to their degrees, i.e. nodes of a large degree are more likely to be
connected. This growth method is often known as preferential attachment or the rich-
get-richer effect; the concept has been used earlier to explain power-laws by Yule [65]
and Simon [66], and is sometimes called the Yule’s process. With regard to networks,
Barabási and Albert showed that growth and preferential attachment are the two essential
ingredients leading to networks with a power-law distribution, and thus the BA model is
often employed for studying phenomenon based on network growth. To obtain the degree
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distribution analytically, one can use the recursive equation [15, 67]

p(k, s, t+ 1) =
k − 1

2t
p(k − 1, s, t) +

(
1− k

2t

)
p(k, s, t), (9)

which describes the probability p(k, s, t) of a node introduced at time s to have a degree
k at time t. The factor k/2t corresponds to the probability that a node of degree k is
chosen by the new node to establish a link at time t. By taking the stationary state limit
p(k) = limt→∞

1
t

∑
s p(k, s, t), Eq. (9) leads to derive a recursion relation relating p(k) and

p(k − 1), resulting in the following expression for p(k)

p(k) =
2m(m+ 1)

k(k + 1)(k + 2)
. (10)

For large k, p(k) ∝ k−3 independent of m and m0, the number of existing nodes at each
time and initial number of nodes, respectively.

Though the BA networks are characterized by a power-law degree distribution, in most
real networks the decay exponents are different from 3. Hence, mechanisms which produce
a tunable exponent have been studied. For instance, the original Yule’s process is employed
in [67]; it is similar to the BA model except that the probability of a new node connecting
to an existing node of degree k is proportional to

k + a

(2m+ a)t
, (11)

where a is a model parameter. It has been shown that the degree distribution at steady
state is given by [67]

p(k) ∝ k−(3+ a
m
) (12)

with an adjustable exponent. The BAmodel corresponds to the case of a = 0. Nevertheless,
the exponent value of γ = −3 does mark the critical point below which the second moment
〈k2〉 diverges due to the divergence of

∑
k k

−n when n ≤ 1. We will see in section 3.2
that the divergence of 〈k2〉 has many important consequences in epidemic spreading and
percolation, which make networks with γ ≤ 3 substantially different from those with γ > 3.

Another simple approach to generate networks with power law degree distributions is
the configuration model (CM) [48] which assigns a degree for every node from a predefined
degree distribution p(k) ∝ k−γ . With the constraint of

∑
i ki being even, edges are added

randomly to fill up all the histogram of ki values. In general, CM generates networks with
any prescribed degree distribution. A different approach to generate networks with power
law distribution is the good-get-richer mechanism [68] in which nodes are characterized by
an intrinsic fitness, and the existence of links between a pair of nodes is proportional to the
product of their fitnesses. Galderalli et al [68] showed that power-law degree distributions
with varying exponents are generated by a power-law or exponential distribution of fitness.
Combinations of the preferential attachment and good-get-richer effect have been also
studied to obtain varying exponents of the power-law degree distributions [69].
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2.3.3. Small World Networks

The small world network model was introduced by Watts and Strogatz to model the
small world phenomenon observed in social networks and is often referred to as WS net-
work [45]. To model networks where average path length scales as logN , Watts and
Strogatz start from a regular ring of N nodes, each with k neighbors in its nearest neigh-
borhood. Each edge is then rewired with probability p to a random node. The case with
p = 0 corresponds to the original regular ring while the case with p = 1 corresponds effec-
tively to a random network. For intermediate values of p, the networks show small average
path length L but large clustering coefficient C, compared to the large coefficients L and
C in regular network and small ones in random networks. These results show that a small
value of p, i.e. a small number of long-range edges would substantially decrease average
path length while keeping local clustering. Long-range edges which connect nodes that
were originally far apart are usually of high betweenness and are essential to the small
world phenomenon. WS networks have a degree distribution p(k) = δk,〈k〉 when p = 0 and
a distribution p(k) similar to ER networks when p = 1; WS networks are thus considered
to be within the family of exponential networks. It has been shown that BA networks
also exhibit small world properties, as their average path length scales approximately as
logN [15].

3. Networking as a Dynamical Process

After introducing measures and models to characterize network structure, we will review
network dynamical processes. They play an important role in tackling various networking-
related problems and searching for optimal networking solutions, for instance, routing and
searching protocols and the containment of computer viruses. In this section, we briefly
describe processes that include random walk, epidemic spreading and cascading failures on
networks. We remark that epidemic spreading and cascading failures have been included in
the comprehensive review by Boccaletti et al [19]. While we will briefly describe essential
concepts and processes, we will focus on more recent developments in the two areas which
are not included in [19], for instance cascading failures on interdependent networks.

3.1. Random Walk

Random walk corresponds to a sequence of random movements in successive time steps.
It was first studied in one dimension to describe a random walker hopping left and right
randomly on a straight line. Given an equal probability for hopping left or right and an
equal distance d on each hop, the position of the random walker from the starting point
after t hops follows a Gaussian distribution with zero mean and variance td2, i.e. the
expected distance of the random walker from the starting point is proportional to

√
td. It

describes a Markov process as, given the present move of the random walker, the probability
of his next position is independent of the history. The analysis of random walks on regular
lattices was later extended to higher dimensions such as 2D and 3D square lattices as
well as on general networks to model different physical phenomena, for instance, Brownian
motion. Some of these studies such as the scaling properties [70] and their relations to

16



the spectra of networks [71] are of high relevance to networking applications. The same
methodology has been adopted by other disciplines; in economics to model the dynamics of
stock price; in biology to describe the movement of molecules in cells; in ecology to model
the predator-prey ecosystem and in computer science for state-space sampling.

In the context of networking, random walk is useful for modeling physical and cy-
ber transport processes, especially the delivery of information from one node to another.
Knowledge of its dynamics, such as the first passage time, return time and cover time [72,
73, 74] are valuable for developing local search strategies. Local search is typically compu-
tationally efficient as it utilizes only local information as compared to centralized search
algorithms which utilize global information. Consequently, the computational complexity
of random walks scales favorably with the system size, which makes it a potentially effi-
cient tool for searching large networks such as the World Wide Web. Thus, random walk
has been modified and applied to rank the significance of webpages in the World Wide
Web [75], to route packets from sources to destinations [76], to identify communities in
directed networks [77], to devise local search algorithms in file sharing systems [78] and to
mitigate congestions in communication networks [79].

3.1.1. Equilibrium Properties and PageRank

A random walk can be represented by a master equation which describes the probability
of a random walker to be at a certain network node. We first denote πi(t) as the probability
that a random walker would arrive at node i after t time steps. The initial condition of
the walker is given by πi(0), for instance, πi(0) = 1/N when the initial position of the
walker is evenly distributed on all network nodes. The master equation which describes
the dynamics of πi(t) is then given by

πi(t+ 1) =

N∑

j=1

aji
kj
πj(t) (13)

for undirected networks. The factor aji/kj represents the transition probability from state
j to i, where aji and kj are the adjacency matrix element and the degree of node i,
respectively. The same equation applies to directed networks by replacing kj in Eq. (13)
by koutj .

Equivalently, Eq. (13) can be represented by matrix multiplication. We first denote
~π(t) to be a vector with elements πi(t) for i = 1 · · ·N . Different initial conditions are
represented by the choice of ~π(0). The dynamics of ~π(t) is then given by

~π(t+ 1) = M · ~π(t) (14)

where M is a left stochastic transition matrix (i.e. column-normalized) with elements
mji = aji/kj for undirected networks and mji = aji/k

out
i for directed ones.

Other than merely a representation, Eq. (14) allows one to determine the convergence
condition for ~π(t) when t → ∞. By Perron-Frobenius theorem, if M is irreducible and
primitive, then as t → ∞ the state probability ~π(t) converges to the unique eigenvector
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of M with eigenvalue 1. The irreducibility and primitivity of the matrix M has a strong
correspondence to its underlying network structure; M is irreducible if the network is
strongly connected, i.e., a path exists from any node to any node. This condition is
readily satisfied for a connected undirected network, but for directed networks there are
typically node pairs with no directed path from one node to another. To satisfy convergence
requirements of a random walk in directed networks, transitions between all nodes should
be allowed, which is essential for search algorithms such as PageRank [75].

The primitivity of a matrix M corresponds to all elements of Mn being positive for
some natural number n. In terms of topology, a network is primitive if all node pairs can
be linked by exactly n hops. To demonstrate that primitivity is not always satisfied we
provide a simple example of an irreducible but non-primitive network with three nodes
and three directed edges, forming a directed triangle. The network is not primitive as
node pairs are connected by either odd or even number of hops, such that Mn always has
zero elements for any n, and the random walk probability ~π(t) does not converge for some
initial conditions.

While it is difficult to show in general that the convergence condition is met, a steady
state probability ~π(t) can be easily obtained at least for undirected networks. It is straight-
forward to show that the vector ~π(∞) with elements

πi(∞) =
ki∑
j kj

=
ki

N〈k〉 (15)

is an eigenvector of M in Eq. (14) with eigenvalue 1, where
∑

j kj is a normalization
constant. This can be readily justified by a direct substitution of πj(∞) into Eq. (13)
when t→ ∞, which yields

πi(∞) =

N∑

j=1

aji
kj
πj(∞) =

N∑

j=1

aji
kj

kj
N〈k〉 =

ki
N〈k〉 . (16)

In other words, Eq. (15) implies that in an undirected network the probability that a node
hosts the random walker in the steady state is proportional to its degree. The same is not
necessarily true for directed networks, as the sum in Eq. (13) implies that πj(∞) is roughly
proportional to kinj , which generally does not cancel the denominator of koutj in Eq. (16)
for directed networks. Consequentially, the steady state of the random walker probability
is less obvious in directed networks.

Here we briefly describe the PageRank algorithm [75] which utilizes the steady-state
random walker probability in directed networks to rank webpages. PageRank forms the
basis of the Google search engine and models a surfer clicking randomly through the hyper-
links on the World Wide Web. In general, the higher the probability of a random walker
arriving at a web page, the higher is the rank given to the page. The underlying mech-
anism is identical to the traditional random walk except that the web surfer occasionally
moves randomly to another website regardless of connectivity; Eq. (14) is then modified
to become

~π(t+ 1) =
λ

N
+ (1− λ)M′ · ~π(t) (17)
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where the elements of M′ are given by

m′
ji = (1− δkout

j
,0)

aji
koutj

+ δkout
j

,0

1

N
, (18)

which is identical to M except for columns that represent nodes with zero out-degree. The
return probability λ represents the probability of the surfer to return to a random page. As
mentioned before, a non-zero λ would introduce possible transitions among nodes which
make the network effectively strongly connected, and thus the PageRank algorithm is
likely to converge. Efforts to analytically approximate PageRank’s asymptotic probability
generally show that πi(∞) ∝ kini [80].

3.1.2. First Passage Time and Coverage Dynamics

Apart from the steady state and its use in PageRank, the dynamics of a random walk
is of great importance for networking applications. The most studied dynamical quantities
include the mean first return time (MFRT) and the mean first passage time (MFPT). We
denote by 〈Ti→j〉, the average time required for a random walker who started at node i
to first arrive at node j on a given graph. The MFRT 〈Ti→i〉 is the average time for the
random walker to return to i after a random walk, while the MFPT 〈Ti→j〉 is the mean
time required to get from i to j. We note that in general 〈Ti→j〉 6= 〈Tj→i〉. Following Kac’s
formula [81, 82], which describes the recurrent probability of discrete stochastic processes,
MFRT of a random walk is given by

〈Ti→i〉 =
1

πi(∞)
, (19)

where πi(∞) is the steady state probability of a random walker to be at node i. An
alternative proof of Eq. (19) will be given below as part of the derivation of MFPT.

The MFPT is clearly dependent on the distance between nodes i and j and on the
network topology. Noh and Rieger derived a general expression for MPFT which is appli-
cable for arbitrary networks [72]. Here we briefly describe their derivation. To obtain the
expression for MPFT, one starts with the relation

πi→j(t) = δt,0δi,j +

t∑

t′=0

πj→j(t− t′)fi→j(t
′) (20)

where the first term enforces the initial condition πi→j(0) = δi,j; and fi→j(t
′) denotes the

probability that a random walker starting at node i first arrives at node j after t′ time
steps. We note that the MFPT from i to j is given by [72]

〈Ti→j〉 =
∞∑

t=0

tfi→j(t) = −f̃ ′
i→j(0), (21)

with f̃i→j(s) being the Laplace transform f̃(s) ≡∑∞
t=0 e

−stf(t). To evaluate the derivative

f̃ ′
i→j(0), one considers the Laplace transform of Eq. (20) and expresses f̃i→j(s) as

f̃i→j(s) =
π̃i→j(s)− δi,j
π̃j→j(s)

. (22)
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Finally, one defines the relaxation moment of πj→j as r
(n)
ij =

∑∞
t=0 t

n[πi→j(t)− πj(∞)] and
expresses π̃i→j(s) as

π̃i→j(s) =
πj(∞)

1− e−s
+

∞∑

n=0

(−1)nr
(n)
ij

sn

n!
, (23)

which can be readily justified by substituting the definition of r
(n)
ij . The combination of

Eqs. (22) and (23) would help us to evaluate f̃ ′
i→j(0), and thus the MFPT

〈T 〉i→j =





N〈k〉
kj

, for j = i

N〈k〉
kj

[r
(0)
jj − r

(0)
ij ]. for j 6= i

(24)

Since πi(∞) = ki/N〈k〉 for undirected network as given by Eq. (15), 〈Ti→i〉 = N〈k〉/ki =
1/πi(∞), which is the expression for first return time of Eq. (19). We refer the reader
to [72] for the detailed derivation.

As r
(0)
jj and r

(0)
ij are governed by the random walk relaxation in the whole network,

there are no explicit expressions for Eq. (24). However, Noh and Reiger were able to
draw a physical interpretation and insight from the difference 〈Tij〉 − 〈Tji〉 [72]. By using
Eq. (24), 〈Tij〉 − 〈Tji〉 = c−1

j − c−1
i with

ci =
ki

r
(0)
ii N〈k〉

, (25)

which they call the random walk centrality. It implies that when a node i has a large
random walk centrality, the difference 〈Tij〉 − 〈Tji〉 tends to be more negative, i.e. the
mean first passage time is shorter from the rest of the network to i than from i to the the
rest of the network. They show that in scale-free network, the variation of r

(0)
ii across nodes

is small compared to the degree k. Hence, the random walk centrality is mainly governed
by k, and nodes with a higher degree would be more efficient in receiving information as
they have a larger random walk centrality. This is important for search algorithms, which
will be discussed in the next subsection.

A simple way to further understand Eq. (24) was suggested in [83]. Consider a random
walker walking on a uncorrelated network from i to j, the MFPT can be estimated by

〈T 〉i→j ≈
∞∑

t=1

t[1− πj(∞)]t−1πj(∞) (26)

where [1 − πj(∞)]t−1πj(∞) is the probability of a random walk through a path of nodes
other than j for t−1 steps and arriving at j at time t. With πj(∞) = kj/N〈k〉 in undirected
networks (see Eq. (15)), the expression in Eq. (26) can be simplified to

〈T 〉i→j ≈
N〈k〉
kj

, (27)
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which reproduces the i-independent components in Eq. (24). Physically, this approximation
is independent of the starting node i and is inversely proportional to πj(∞), implying that
the higher the probability of the random walker to be found at j in the steady state, the
shorter the MFPT to j is.

Another interesting dynamical quantity is the coverage S(t), defined as the fraction
of nodes visited by the random walker by time t. Baronchelli et al [83] provide a simple
argument to derive an approximate form of S(t). One first denotes the fraction of nodes
of degree k visited by the random walker by time t as sk(t); the rate of change of sk(t) can
be written as

∂sk(t)

∂t
= [1− sk(t)]k

[
∑

k′

p(k′|k)ρk′(t)
k′

]
, (28)

where ρk(t) is the probability that a random walker arrives at a vertex of degree k at time
t. The first term on the right hand side is the fraction of newly-visited nodes with degree
k and the second term is the random walker probability of leaving nodes of degree k. By
approximating ρk′(t) ≈ k′/N〈k〉, using the steady-state values, one obtains

∂sk(t)

∂t
= [1− sk(t)]

k

N〈k〉 , (29)

such that

sk(t) = 1− exp

(
− kt

N〈k〉

)
. (30)

The coverage S(t) is then given by S(t) =
∑

k p(k)sk(t). We can see that as t → ∞,
S(t) → 1, implying a full coverage of the network by the random walker. At intermediate
values of t, kt/〈k〉N ≪ 1 and the expansion of Eq. (30) leads to S(t) ∝ t, which is also
observed for random walks on small world networks [70].

Other dynamical properties of random walks that have been studied include the rela-
tionship between passage time and distance [84], universal dynamic scaling functions in
small-world networks [70] and explicit expressions for cover and communication times in
specific graphs [74].

3.1.3. Routing and Searching by Random Walk

Random walk can be applied to model various phenomenon in networking systems.
For instance, in packet-switched networks, the queuing of packets in a single buffer can
be modeled by a one-dimensional biased random walk with hopping rate that depends
on the arrival rate of packets [85]. On the other hand, random walk can be employed
within searching and routing protocols [78, 61, 79, 86, 87] due to its efficiency in searching
complex networks. Here we briefly describe the network traffic model [76] and illustrate
how random walk is applied to networking.

More specifically, one defines the probability of individual nodes to generate a packet
at any time step as λ. Each packet is randomly assigned a destination different from the
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generating node. Following a specific routing protocol, the packet then travels from its
source to its destination and vanishes upon arrival; each node in the network serves as a
packet generator as well as a router. At each time step, node i forwards to its neighbors at
most ci packets waiting in its queue; ci is thus the capacity of router i. In the simplest case,
one can consider infinite queuing capacity and packets are forwarded in a first-in-first-out
(FIFO) basis [42].

By denoting n(t) as the number of undelivered packets traveling in the network at time
t, one expects that n(∞) tends to stabilize when the packet generating rate λ is small,
corresponding to a free-flow state where the numbers of created and delivered packets are
balanced [42]. In contrast, when λ is large, the packets generated outnumber the packets
delivered per time step and n(t) increases with time. This corresponds to a congested

phase where traffic congestions occur. To better illustrate the phenomenon, Arenas et
al [76] introduced an order parameter η which corresponds to the rate of change in the
number of undelivered packets, given by

η(λ) =
1

N
lim
t→∞

〈∆n〉
λ∆t

, (31)

where the total number of generated packets per time step is ∆n = n(t+∆t)−n(t) and the
average 〈· · · 〉 is taken over a time interval ∆t. When η = 0, the system is in the free-flow
state. When η > 0, there is a net increase in the number of undelivered packets and the
network is in a congested phase. With a shortest path routing protocol and a different
capacity per node ci, a phase change at λ = λc (characterized by an abrupt increase in η)
is observed in hierarchical networks, regular networks, ER and scale-free networks [76, 42].

To apply random walk to networking, one adopts a heuristic approach and defines pj→i

to be the probability that j forwards a packet to i. When pj→i takes the form of

pj→i =
kαi∑

i′ aji′k
α
i′
, (32)

where aji′ = 1 denotes the existence of an edge between nodes j and i′ and is zero otherwise,
the packets follow a path governed by preferential random walk. When α > 0, the packets
are more likely to go through nodes with a high degree. An extreme case is α → ∞ such
that packets are always forwarded to neighbors with the highest degree. It was shown that
such routing protocol, though heuristic, is effective in packet transmission through paths
of length proportional to its shortest path in scale-free networks [61]. Such protocol is also
observed to be effective for searching in scale-free networks [78]. Despite a short routing
path, we will see that traffic congestions tend to occur under such routing protocol.

To understand the physical origin of congestion one first denotes ni(t) as the number of
packets waiting at i at time t [86] and expresses the rate of change of ni(t) in the free-flow
state as

dni(t)

dt
= −ni(t) +

N∑

j=1

aijnj(t)pj→i, (33)
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where the first term corresponds to node i forwarding all its packets to its neighbors in
the free-flow state. We note that in the case of uncorrelated networks, the denominator of
Eq. (32) is roughly proportional to kj , such that pj→i ∝ kαi /kj. Together with the steady
state condition of dni(t)/dt = 0, ni(∞) can be written as

ni(∞) ∝ kαi
∑

j

aij
nj(∞)

kj
. (34)

One applies the ansatz nj(∞) ∝ kθj , with some exponent θ, to find that

ni(∞) ∝ kαi
∑

j

aijk
θ−1
j ∝ kα+1

i , (35)

where we have used again the assumption of uncorrelated networks in the derivation of the
last expression. The ansatz of nj(∞) ∝ kθj is self-consistent when θ = α+1, implying that

the number of packets in i at the steady state is proportional to kα+1
i . When α is large,

the hubs in scale-free networks may get overloaded as the number of packets increases as
kα+1
i . Wang et al [86] argued that α = −1 is an alternative routing protocol which balances

the traffic load, although with a longer transmission time and path length for each packet.
They show that in cases of α = −1 and uniform capacity ci, congestions are less likely to
occur and the free-flow state exists for a larger packet generating rate λ.

3.2. Epidemic Spreading

Epidemic spreading corresponds to the spread of disease among individuals, its rele-
vance to networking has been recently recognized by the increasing prevalence of computer
viruses. For instance, Pastor-Satorras and Vespignani [88] relate the absence of epidemic
threshold, defined as a critical epidemic infection/spreading rate below which an epidemic
does not spread, in scale-free networks to the persistent but limited prevalence of computer
viruses on the Internet, despite the presence of anti-virus softwares. On the other hand,
Cohen et al [89] showed that the Internet is resilient to a crash of a large fraction of its
nodes, since a spanning cluster is likely to survive. Such arguments are equivalent to the
absence of percolation threshold, which is strongly related to the prevalence of epidemics
in scale-free networks [90]. Thus, understanding epidemic spreading would help to identify
potential obstacles to effective networking.

Two major models are proposed for studying epidemic spreading [91]. The first is called
the susceptible-infected-susceptible (SIS) model, where healthy individuals may become
infected and susceptible again. In other words, individuals are either currently susceptible
or infected in the SIS model. Computer viruses can be modeled by the SIS model as
infected computers may become susceptible to the same virus again. The second epidemic
model is called the susceptible-infected-removed (SIR) model, where susceptible individuals
may become infected and are then removed, which means either recovery or death. In this
case, individuals are characterized by the three states, susceptible, infected and removed.
The SIR model is more relevant in the public health context such as the spread of influenza,
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where infected individuals may acquire immunity against the disease, but is also relevant
to cases where nodes become immune against computer viruses.

Both SIS and SIR models had been first studied in a completely mixed population
analogous to a fully connected network, and have been later studied on random, small world
and scale-free networks [88, 92, 93]. At every time step, each susceptible individual becomes
infected with probability ν if they are in contact with at least one infected individual. With
a probability δ, each infected individual becomes susceptible in the SIS model or removed
in the SIR model. In cases with effective anti-virus software, δ can be set to 1 as viruses
are isolated once computers are infected [88]. We define the spreading rate as λ = ν/δ and
expect a critical spreading rate λc below which the epidemic dies out quickly, and above
which the diseases spread widely and become persistent. We further denote by ρ(t) the
fraction of infected individuals at time t, such that a steady-state fraction ρ(∞) would be
observed in SIS networks, with ρ(∞) > 0 corresponding to the case when individuals are
occasionally infected. On the other hand, nodes are either ultimately healthy or removed
(i.e. dead or recovered) in the SIR model, with no nodes being infected in the steady state.
SIR models are in fact equivalent to bond percolation model and the widely spreading
phase is equivalent to the existence of giant components, which is relevant to the resilience
of the Internet against router crashes [89].

3.2.1. Steady State of Epidemic Prevalence

To obtain the steady state of the infected fraction, one can write down the rate of
change of ρ(t) as a function of t. For networks with p(k) prominently peaked at k ≈ 〈k〉,
such as ER and small world networks, one can adopt a mean-field approximation [92] and
express the rate of change of ρ(t) in the SIS model as

∂ρ(t)

∂t
= ν[1− ρ(t)]{1− [1− ρ(t)]〈k〉} − δρ(t) (36)

where the factor {1− [1− ρ(t)]〈k〉} corresponds to the probability that at least one of the
〈k〉 neighbors is infected. The first term on the right hand side corresponds to the fraction
of healthy individuals who become infected at time t, while the second term is the fraction
of infected nodes who recover at time t. As we are interested at the critical ratio λ = ν/δ
above which ρ(∞) is greater than zero, we expand {1 − [1 − ρ(t)]〈k〉} to the lowest order
in ρ(t), which simplifies Eq. (36) to [92]

∂ρ(t)

∂t
= ν[1− ρ(t)]ρ(t)〈k〉 − δρ(t). (37)

At the steady state, ∂ρ(t)/∂t = 0 which implies

ρ(∞) = 1− δ

ν〈k〉 = 1− 1

λ〈k〉 , (38)

such that ρ(∞) > 0 only if

λ ≥ λc =
1

〈k〉 . (39)
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For recovery rate δ = 1 (i.e. infected individuals that will recover in the next step), the
critical infection rate becomes νc = λc = 1/〈k〉, which coincides with the bond percolation
threshold in ER networks and implies that viruses become wide-spread if more than one
neighbor is infected on average.

However, for networks with highly skewed degree distribution p(k), the above approxi-
mation of k ≈ 〈k〉 is not valid. Instead of representing the global state by a single ρ(t), one
introduces the variables ρk(t) which correspond to the fraction of infected nodes at time
t among individuals of degree k. One then employs an improved mean-field approxima-
tion [88] and rewrites Eq. (37) as

∂ρk(t)

∂t
= ν[1 − ρk(t)]θk(t)− δρk(t), (40)

where θk(t) corresponds to the probability that a node with degree k is connected to at
least one infected neighbor at time t. If the network is uncorrelated, θk(t) can be expressed
as

θk(t) = 1−
[
1− 1

〈k〉
∑

k′

k′p(k′)ρk′(t)

]k
≈ k

〈k〉
∑

k′

k′p(k′)ρk′(t), (41)

where k′p(k′)/〈k〉 corresponds to the distribution of arriving at a node of degree k from a
randomly chosen edge. We have again expanded the middle term in Eq. (41) to the lowest
order in ρk′ as we are interested in the emergence of small positive fraction of infected
nodes ρk(t). Substitution of Eq. (41) into Eq. (40) and setting it to zero leads to the
critical spreading rate

λSISc =
〈k〉
〈k2〉 . (42)

We remark that the above expression is only valid for uncorrelated network as assumed in
the derivation of Eq. (41). Expression (42) reduces to Eq. (39) when 〈k2〉 = 〈k〉2, i.e. node
degrees are homogeneous. A similar expression of λc for the SIR model is given by

λSIRc =
〈k〉

〈k2〉 − 〈k〉 , (43)

which is obtained by bond percolation approaches [89, 90].
As mentioned in Section 2.3.2, 〈k2〉 diverges for scale-free networks with γ ≤ 3, Eq. (42)

implies that λc = 0 for these scale-free networks with an undesirable implication: the
spread of computer viruses is persistent regardless of spreading rate as the Internet is a
scale-free network with γ ≤ 3 [47]. Some studies argued that this result was obtained under
the assumption of uncorrelated networks while in correlated scale-free networks with no
connection between hubs, a positive λc has been obtained [94]. Several approaches have
been suggested to deal with correlated networks, including a modified expression for θk(t) in
Eq. (41) which depends on the degree correlation given by p(k′|k) [95]. Nevertheless, it was
later shown that regardless of the power-law exponent, diseases would eventually die out on
finite scale-free networks, while in infinite networks diseases would become persistent [96].
We will briefly describe the theory underlying these arguments in the following subsection.
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3.2.2. Propagation Dynamics of Epidemic States

Here we describe a simple approach to obtain a general expression for epidemic threshold
on any network topology [97]. We first introduce a column vector |ρ(t)〉 (the bra-ket nota-
tion is employed here for convenience in later derivations) with elements (ρ1(t), · · · , ρN(t))
corresponding to the probability that individual nodes are infected at time t. The dynamics
of the system is then given by the propagation of |ρ(t)〉 as

|ρ(t+ 1)〉 = W|ρ(t)〉. (44)

where W is the transition matrix.
To obtain an explicit form of W, one first denotes ηi(t) as the probability that none of

the neighbors of i spreads viruses to i at time t, ηi(t) can be expressed as

ηi(t) =

N∏

j=1

{(1− ν)ρj(t) + [1− ρj(t)]}aij =
N∏

j=1

{1− νρj(t)}aij , (45)

where aij ’s are elements of the adjacency matrix, taking a value 1 or 0 when edges exist or
not, respectively. We then express ρi(t + 1) as a function of ρi(t) and ηi(t) by

1− ρi(t + 1) = ηi(t)[1− ρi(t) + δρi(t)] +
δ

2
[1− ηi(t)]ρi(t), (46)

where the first term on the right hand side corresponds to cases when neighbors of i do
not spread viruses to i, and i is either healthy or recovers at time t. The second term
corresponds to cases where neighbors spread viruses but at the same time node i recovers
immediately with probability 1/2. By substitution of Eq. (45) into Eq. (46) and expansion
to the first order of ρ(t), assuming ρ(t) ≪ 1; ρi(t+ 1) can be written as

ρi(t + 1) = (1− δ)ρi(t) + ν
N∑

j=1

aijρj(t). (47)

In terms of |ρ(t+ 1)〉 and |ρ(t)〉, Eq. (47) can be rewritten as

|ρ(t + 1)〉 = [(1− δ)I + νA]|ρ(t)〉, (48)

where I and A are the identity and adjacency matrices, respectively. Equation (48) implies
that the transition matrix in Eq. (44) is W = (1− δ)I + νA.

To make use of the transition matrix, we first note that eigenvectors of A are eigen-
vectors of W. By denoting ΛA,n and |uA,n〉 as the n-th largest eigenvalue of A and its
corresponding right eigenvector, respectively, we have

W|uA,n〉 = [(1− δ)I + νA]|uA,n〉 = (1− δ − νΛA,n)|uA,n〉, (49)

from which we see that the n-th largest eigenvalue of W is given by

ΛW ,n = 1− δ − νΛA,n. (50)
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We can now express W raised to power t in terms of its eigenvalues and its left and right
eigenvectors as

W t =

N∑

n=1

Λt
W ,n|uA,n〉〈uA,n|, (51)

which is the propagator matrix from the initial state |ρ(0)〉 to the state |ρ(t)〉 at time t,
i.e.

|ρ(t)〉 = W t|ρ(0)〉 =
N∑

n=1

Λt
W ,n〈uA,n|ρ(0)〉|uA,n〉. (52)

For undirected networks, A is symmetric and its eigenvalues are real. Hence, the viruses
die out if the largest eigenvalue ΛW ,1 of W is less than one, as for all i ρi(t) → 0 when
t → ∞. Using the expression for ΛW ,n in Eq. (50), the condition of ΛW ,1 < 1 leads to the
epidemic threshold

λc <
1

ΛA,1
, (53)

which relates λc to the largest eigenvalue of A.
Other than the steady state, the propagator matrix also allows one to examine the

dynamics, as the relaxation to the steady state is dominated by the relaxation mode with
the largest eigenvalue when t → ∞. When all eigenvalues of W are less than 1, the
dynamics of the system can be approximated by

|ρ(t)〉 ≈ Λt
W ,1〈uA,1|ρ(0)〉|uA,1〉 as t→ ∞, (54)

which implies that all elements in |ρ(t)〉, and thus the virus prevalence fraction (the sum
of elements in |ρ(t)〉) decays exponentially with a rate proportional to ln ΛW ,1 = ln(1− δ−
νΛA,n).

The expression for epidemic threshold (53) is valid for both correlated and uncorrelated
networks and provides thresholds for different type of graphs when ΛA,1 is known. For
homogeneous networks or ER networks, ΛA,1 ≈ 〈k〉 [98] leading to λc = 1/〈k〉 as derived by
the probabilistic approach in Eq. (39). For uncorrelated scale-free networks, the expression
of ΛA,1 gives rises to the following epidemic threshold [96],

λSIS,SFc =





1√
[kmax]

, for γ > 2.5

〈k〉
〈k2〉 , for 2 < γ < 2.5

(55)

where [kmax] is the ensemble average of kmax over different realizations of graphs. Equa-
tion (55) deviates from Eq. (42) for networks with γ > 2.5, which implies that λc vanishes
in the thermodynamic limit for all scale-free networks, as supported by [kmax] ∝ N1/2 for
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Figure 3: The fraction C of nodes in the giant component after the cascading failures triggered by a
fraction λ of initially failed nodes. The black curve with circles corresponds to failures on a single ER
network with 〈k〉 = 4 and the red and green curves correspond to a NON (network of networks) system
with n = 2 and 3 interdependent ER networks arranged in tree structure, obtained by Eq. (62) (see [105]
for details).

γ ≤ 3 and [kmax] ∝ N1/(γ−1) for γ > 3 [99]. It has been argued [96] that the origin of
the deviation comes from the assumption of mean-field connectivity in Eq. (40), where the
fixed set of specific neighbors of each node (i.e., the quenched topology) is not considered.
Further evidence for the infection decay mechanism is obtained by considering a star-like
graph, such that λc = 1/

√
kmax given by the steady state of Eq. (40), implying the central

hub acts as a self-sustained source of infection. This suggests an anti-virus protocol should
be based on targeted immunization of networking hubs, which may be more effective than
uniform immunization on entire network [100]. Nevertheless, Eq. (55) suggests that the
epidemic threshold vanishes in infinite scale-free networks [97, 96].

3.3. Cascading Failures

Another dynamical macroscopic behavior of a similar flavor to epidemic spreading is
cascading failures. A simple and common example of cascading failures is a massive electric
outage, such as the blackout in the Northeast US on 14th August 2003 [101]. The incident
was triggered by an initial shut down of a generating plant in Ohio, causing the original
loads of the failed plant to be shared among the neighboring plants, overloading some of
the transmission lines. These failed power lines caused overloading of other transmission
lines, and the process repeated leading to a cascade of failures. Similar phenomenon is also
observed and studied in other networking applications such as transportation networks and
models of the Internet [102, 103, 104].

To understand the phenomenon, one has to quantify cascading failures. If we consider
failed nodes and links as to be removed from the network, a common measure to quantify
the influence of failures is the size of the remaining giant component (i.e. the largest
connected cluster). Obivously, the smaller the giant component, the more catastrophic the
failure. We denote the fraction of nodes in the giant component as C, and studies have
shown that C is dependent on factors such as the network topology, the centrality and
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fraction λ of the initially failed nodes. As shown by the black circle curve in Fig. 3, C
decreases as λ increases and exhibits a second-order-like phase transition when λ is greater
than some threshold value, beyond which no giant component exists after the cascade of
failures. This phenomenon occurs in single networks and is already reviewed by Boccaletti
et al [19]. Here we are going to review another interesting phenomenon in cascading failures
which occur in a network of networks (NON) [106, 107, 105] such that the functionality
of nodes in one network depend on nodes from other networks, i.e. the failure of nodes in
one network trigger the failure of corresponding nodes in the other networks.

3.3.1. Failures in Systems of Interdependent Networks

Many networking applications are indeed reliant on such interdependent networks. For
instance, the routers of the Internet rely on a power supply network, which in turn depends
on the control and monitor through the Internet. Initial failure of nodes in one network
may trigger the massive failures in other interdependent networks. Such interdependence
between power network and the Internet was the cause of the electricity blackout in Italy
is September 2003 [106, 108]. Another interesting example is transportation networks, for
instance, the train network is interdependent on the airport network such that a closure of
either an airport or the corresponding train station will have a significant influence on its
counterpart, and may lead to a cascade of failures on both networks.

Here we will follow the line of [105, 109] to demonstrate the cascading failures in a
simple case where individual ER networks are interlinked in a tree-link structure, forming
a NON. We will label the n individual networks by Greek letters such that α = 1, . . . , n.
For simplicity, we will assume that all the ER networks have the same number of nodes
and average degree 〈k〉. If two networks α and β are interdependent, each node in α
depends on (at least) one node in β and vice versa. In this case, a node in α connected
to a failed node in β is assumed to fail and is removed from α. These failed nodes may
fragment network α into isolated sub-clusters. We then assume that only nodes in the
giant component of α remains functional, leading to further increase of failed nodes in α
which in turn influence nodes in network β and other interlinked networks. The process
continuous until a stationary state is reached. For a generalization of the above scenario,
we refer readers to [105, 109].

To analyze cascading failure in interconnected networks, one denotes xα to be the
fraction of functioning nodes remaining in all isolated clusters of network α, and gα(xα)
to be fraction of active nodes belonging to the giant component of α. In other words,
the fraction of nodes in α that are active and belong to the giant component of is Cα =
xαgα(xα) [105]. To obtain an expression for gα(xα), one has to employ the generating
functions Gα(z), for the degree distribution, and Hα(z) for the branching process, whereby
an outgoing link of any node has a probability k Pα(k)/〈k〉α of being connected to a node
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of degree k, which in turn has k − 1 outgoing links

Gα(z) =
∞∑

k=0

zk pα(k), (56)

Hα(z) =

∞∑

k=0

k Pα(k) z
k−1

〈k〉α
=
G′

α(z)

G′
α(1)

=

∞∑

k=0

zkqα(k) . (57)

These have been introduced in [110] and relate to the degree distribution pα(k) and excess
degree distribution qα(k) of network α (see Eq. (4)). We note that for ER networks,
p(k) = q(k) and hence G(z) = H(z) = e〈k〉(z−1).

Suppose that for the original network fα denotes the probability that a randomly se-
lected link in α does not lead to the giant component in α, then if a link leads to a node
with k−1 outgoing links the probability these do not lead to the giant component is fk−1

α .
Note that this probability is also calculated by Hα(fα) leading to the recursive relation
fα = Hα(fα). The probability of a node with degree k not to belong to the giant compo-
nent is fk

α and thus the probability that a randomly selected node does belong to the giant
component is gα = 1−Gα(fα).

In the damaged network with only a fraction xα of nodes remaining, gα(xα) and fα(xα)
are obtained by replacing the argument fα in Hα(fα) and Gα(fα) by the expression derived
for the remaining nodes xαfα(xα) + 1− xα, as suggested in [105, 109] based on the results
obtained for the branching process studied in [111]. These give rise to

gα(xα) = 1−Gα[xαfα(xα) + 1− xα], (58)

fα(xα) = Hα[xαfα(xα) + 1− xα]. (59)

For ER networks with average degree 〈k〉α, since G(z) = H(z), the relation between
the two functions takes a particularly simple form

gα(xα) = 1− fα(xα) = 1− e〈k〉αxα(fα−1) = 1− e−〈k〉αxαgα(xα). (60)

For general topologies it has been shown [105] that

C =

n∏

α=1

(1− λα)gα(xα) (61)

where C is the fraction of nodes in the mutual giant component among all networks. In
cases where a one-to-one correspondence of nodes is established between all pairs of inter-
dependent networks, and where Cα denotes the fraction of nodes in the giant component
of network α, then Cα = C for all α since the remaining functional nodes in pairs of in-
terdependent network must be connected to each other. The parameter λα is the fraction
of initially failed nodes in network α. Assume initial failures occur only in one network,
i.e. λβ = λ and λα = 0 for all α 6= β, then by substitution of Eq. (60) and the rela-
tions C = xαgα(xα) for all α into the Eq. (61), one obtains a self-consistent equation in
C [105, 109] given by

C = (1− λ)
[
1− e−〈k〉C]n (62)
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where the assumption 〈k〉α = 〈k〉 has been utilized.
The largest solution of C in Eq. (62) is shown in Fig. 3 as a function of λ. As we can

see, while the giant component C exhibits a second-order-like phase transition and vanishes
when λ is greater than a threshold value when n = 1; a first-order-like phase transition is
observed when n > 1 suggesting a different cascading failure phenomenon occurs in NON
compared to single networks. The physical reasons behind the difference are investigated
in [112]. Moreover, these results also suggest that NON is more fragile to cascading failures
given the same fraction of initially failed nodes, since the giant component is smaller and
vanishes at smaller for non-zero λ.

However, network interdependence is not necessarily disadvantageous. A study of sand-
pile models on interdependent networks reveals that large cascades are mitigated by a small
fraction of inter-links between networks [113]. This may be relevant to the tolerance of con-
gestion in transportation and communication networks [103], where load balancing between
networks such as metro and bus networks may suppress congestion cascades. As most of
these studies are specific to particular networks or architectures, we refer the reader to the
original publications for further details.

4. Networking as Disordered Systems

One area of statistical physics that is particularly relevant to networking is the study of
disordered systems, where interactions between variables are fixed, or quenched, and do not
evolve in time, in contrast to the dynamical system variables. If we consider for instance,
a random walk in a particular network, the network topology is quenched (fixed) unlike
the dynamical on-site probability of the walker. We note that most networking systems
are disordered, as networks generally have different quenched topology even if they are
characterized by the same degree distribution p(k). The seemingly small difference in the
topology may lead to severe deviations in their behavior; for example the results of epidemic
threshold in scale-free networks [96]. Thus to obtain the typical behaviors of networking
systems, one has to employ techniques which properly consider the microscopic properties
of specific heterogeneous topologies through averaging over network instances. In this
section, we will see that various networking-related problems are solved by techniques
developed in the field of disordered systems.

In statistical physics, the most extensively studied disordered system is spin glass, a
magnet with randomly distributed ferromagnetic and anti-ferromagnetic interaction cou-
plings between spin variables. The generic Hamiltonian of spin glass can be written as

H = −
∑

(ij)

aijJijsisj , (63)

where aij is an element of the adjacency matrix, si denotes the spin-state of node i and the
set Jij are couplings between spins, which constitute the quenched disorder in the system.
When Jij = J for all pairs of i and j, the spin glass reduces to a ferromagnet. In contrast to
a ferromagnet with only two ground states at zero temperature, spin glasses with randomly
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Figure 4: An example of frustrated system with 3 spins. +J and −J corresponds to ferromagnetic and
anti-ferromagnetic interactions of strength J .

selected sets of Jij generally have different ground states and give rise to a very rich energy
landscape. Technically, the coupling distributions make the analysis, and averaging over
the disorder in particular, difficult.

Spin glasses were first studied on a regular lattice in the Edwards-Anderson (EA)
model [114] and on a fully connected network in the Sherrington-Kirkpatrick (SK) model [115].
They were later extended to ER networks [116], scale-free networks [117] and small world
networks [118].

To obtain the typical behaviors of disordered systems, one can make use of their self-
averaging property, i.e., in the thermodynamic limit the free energy per degree of freedom
(i.e. F/N) of a particular system sampled from a given disorder distribution is equal
to the average over systems with different disorders sampled from the same distribution.
Away from the phase transition point, self-averaging can be considered as a consequence
of the central limit theorem since the free energy is an extensive quantity and increases
linearly with the system size; the distribution of its value becomes more sharply peaked
as N → ∞. Thus, the typical properties of disordered systems are usually represented
by their ensemble average in the thermodynamic limit. However, at the phase transition
point, self-averaging is not necessarily valid due to the presence of long-range correlations.

Apart from the technical difficulties in disorder averaging, frustration between individ-
ual variables also complicate the state space of such systems. Frustrations occur when
individual optimality cannot be achieved globally and some variables are found in sub-
optimal states. A simple example of frustrated system is given in Fig. 4, where one of the
three spin interaction is always in a sub-optimal state regardless of the state of the top
spin. When a finite fraction of frustrated variables are present, the system has to over-
come energy barriers to shift from one low lying state to another. This creates an energy
landscape with numerous valleys, and leads to non-ergodicity and difficulties in locating
the optimal state.

4.1. Frequency Allocation

There are many disordered networking problems which can be analyzed using techniques
from spin glass theory, among them is the problem of frequency allocation in radio and
television broadcasting as well as Wireless Local Area Network (WLAN) access points [119].
An example of frequency allocation problem is shown in Fig. 5(a) where radio broadcasting
to an area is achieved by 4 broadcasting stations (triangles). If all the stations adopt the
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Figure 5: (a) An example of radio broadcasting which shows 4 broadcasting stations (triangles) and their
corresponding range of transmission (dashed circles). (b) Frequency allocation with individual colors
corresponding to the specific frequencies. (c) Mapping the frequency allocation problem onto the graph
coloring problem on a network.

same broadcasting radio frequency, areas lying in the intersection of individual coverages
may suffer from interference. Individual stations thus adopt different frequencies as shown
in Fig. 5(b), such that interference is minimized in areas with overlapping reception. The
same also applies to WLAN as neighboring access points generally use non-overlapping
channels for signal provisions to avoid interference.

The assignment of frequencies in the example of Fig. 5(b) is equivalent to coloring the
graph in Fig. 5(c) where nodes represent stations and edges exist when there is an overlap
between transmission areas of neighboring stations. The problem of finding the minimal
number of channels for non-interfering communication, can be mapped to the graph coloring

problem of theoretical computer science, which corresponds to the coloring of nodes using
a limited number of colors such that no neighbors share the same color. The minimal
number of colors such that the graph is colorable, i.e. all neighbors have different colors,
is termed the chromatic number. In addition, a variant of the graph coloring problem,
called the color diversity problem [120], which we will briefly describe here is relevant to
distributed file storage when accessibility of different file segments is desired, for instance,
in peer-to-peer (P2P) networks.

4.1.1. The Graph Coloring Problem

Graph coloring on regular lattice and planar graphs has been extensively studied in
discrete mathematics. For any planar graphs, Appel and Haken [121, 122] proved that
four colors are sufficient. However, the problem of finding whether a number of colors
is sufficient is NP-complete and requires an exponentially growing computing time-steps
with respect to the system size N , for general graphs. While computer scientists study
the worst case scenarios and establish upper and lower bounds for the colorable threshold,
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physicists aim to predict the typical behavior which involves averaging samples of network
topologies that correspond to the disorder.

To formulate the problem in the framework of statistical physics, we denote σi =
1, · · · , Q to be the color of node i and write the Hamiltonian of the system as

H =
∑

(ij)

aijδσi,σj
=
∑

(ij)

aij

Q∑

q=1

δσi,qδσj ,q, (64)

which is equivalent to the Hamiltonian of a Q-state anitferromagnetic Potts model [123].
To obtain the optimal color configuration, we find the state that minimizes the Hamiltonian
H . If the network is colorable, the ground state energy is zero, and positive otherwise. We
thus examine the ground state energy of H to determine whether a network is colorable or
not, and find the fraction of edges with forbidden color assignments. Networks with more
edges contain more constraints and a larger number of colors is needed to satisfy them.
Given a network model with tunable degree distribution and available colors Q, we expect
to see a transition at 〈k〉 = 〈k〉c below which the graph is colorable and above which it is
not. We call 〈k〉c the coloring threshold of the graph.

Here we outline two general techniques in spin glass theory, namely the replica and
cavity approaches [37, 38], which can be used to analyze the graph coloring problem as
well as other disordered systems. Thus the present subsection serves as a description of
the graph coloring problem as well as an example of how spin glass theory can be applied
to other networking problems.

The Replica Method. To derive the typical behavior of a disordered system, we have
to evaluate the disorder average of the free energy [F ], where [· · · ] denotes the average over
the quenched disorder. As F = −T lnZ, where T and Z represent the temperature and the
partition function, respectively; the average free energy [F ] can be obtained by averaging
a logarithmic function which is technically difficult. One thus employs the replica trick

[lnZ] = lim
n→0

[Zn]− 1

n
(65)

to evaluate the disorder average of Zn instead of lnZ.
As replica calculations are generally rather involved, we will merely outline here the

main steps and refer the interested reader to specific literature on the replica method in
general [37, 38, 39] and on the graph coloring problem in particular [124].

To apply the replica trick one first introduces the replicated partition function Zn

averaged over the disorder

[Zn] = Tr
A
ρ(A)

(
Tr

σ1···σN

e−β
∑

(ij) aijδσi,σj

)n

= Tr
A
ρ(A) Tr

~σ1···~σN

n∏

α=1

e
−β

∑
(ij) aijδσα

i
,σα

j (66)

where the trace represents a summation over all the possible values of the corresponding
variable, ρ(A) corresponds to the probability of generating a graph with adjacency matrix
A, while ~σi corresponds to the replicated vector σα

i with replica indices α = 1, · · · , n. As
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one can see, the disorder average over the topology, represented by TrA, can be readily
carried out for a given ensemble distribution ρ(A). For example, ρ(A) in ER networks
can be represented by the product

∏
(ij)[(1− p)δaij ,0 + pδaij ,1] such that after the disorder

average [Zn] becomes

[Zn] = Tr
~σ1···~σN

∏

(ij)

(
1− p+ p

∏

α

e
−βδσα

i
,σα

j

)
≈ Tr

~σ1···~σN

∏

(ij)

exp

[
p
∏

α

e
−βδσα

i
,σα

j − p

]
, (67)

the assumption of sparse connectivity, i.e. a small value of p, facilitates the derivation of
the final expression.

To proceed, we then decouple the interaction between i and j by rewriting

e
−βδσα

i
,σα

j = e
−β

∑Q
q=1 δq,σα

i
δq,σα

j = 1− (1− e−β)

Q∑

q=1

δq,σα
i
δq,σα

j
(68)

and expand this expression over the product of replica indices α, which leads to

[Zn] = Tr
~σ1···~σN

exp


p




n∑

m=0

(1− e−β)m
∑

(α)m

∑

{q}m

∑

(ij)

m∏

l=1

(δql,σ
αl
i
δql,σ

αl
j
)




 e pN(N−1)

2 , (69)

where we denote (α)m as the set of ordered indices (α1, · · · , αm), the notation (ij) is
used for an ordered set of indices and {q}m is the set of colors {q1, · · · , qm}. We note
that in Eq. (69), the term

∑
(ij)

∏m
l=1(δql,σ

αl
i
δql,σ

αl
j
) can be written as (

∑
i

∏m
l=1 δql,σ

αl
i
)2/2

by neglecting lower order terms of O(N). The interaction between i and j is decoupled,
by further defining, for each value of m and corresponding set of (α)m and {q}m, the

macroscopic order parameters q
(α)m
{q}m =

∑
i

∏m
l=1 δql,σ

αl
i
.

In general, to make further progress in the derivation one has to make further assump-
tions about the correlation between replicas, such as the replica symmetry (RS) assumption
that replica indices are symmetric and indistinguishable. Once the order parameters are
represented in parametric form and the limit of n → 0 is taken, [Zn] can be evaluated by
the method of steepest descent as N → ∞ and the expressions for free energy, energy and
entropy can be derived.

To determine the colorable threshold 〈k〉c for the ER networks, one evaluates the ground
state energy as a function p under the RS assumption to find that 〈k〉c = 1 for Q = 2,
which coincides with simulation results [124]. The phase diagram obtained is physical,
such that all phases have non-negative energy and entropy. The RS assumption appears to
break down for higher Q values close to the threshold; this is manifested by the emergence
of negative entropy values. We will discuss an improved assumption termed the replica

symmetric breaking (RSB) ansatz in the next subsection and in Section 5.2, which facili-
tated the derivation of an improved threshold 〈k〉c ≈ 5.1 for the case of Q = 3 and similar
results for different Q values and degree distributions [125, 126].
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Figure 6: The locally tree-like structure in networks.

The Cavity Method. An alternative method to carry out averages over quenched
disorder is the cavity method based on calculating field distributions once an individual
vertex/edge has been removed. The cavity approach is particularly useful in cases of a
locally tree like structure as shown in Fig. 6(a). In these cases it gives rise to efficient
algorithms for specific instances in addition to insightful analytical results.

To solve the graph coloring problem by the cavity approach, we write the energy of the
descendant node j in the absence of ancestor node i,

Ej\i(σj) = Cj\i +

Q∑

q=1

hqj\iδq,σj
, (70)

by introducing the cavity field ~hj\i = (h1j\i, · · · , hQj\i) [127, 125] and a constant Cj\i, with

superscripts denoting the color q = 1, · · · , Q and subscripts j\i denoting node j in the
absence of i. The most favorable color would have the smallest field. The cavity energy

function Ej\i(σj) describes the energy of the sub-tree terminated at j in the absence of i.
In the zero temperature limit, it is expressed in terms of the cavity energy functions of its
descendants Ej\i(σj)

Ei\l(σi) = min
~σ

[
∑

j 6=l

aij
(
Ej\i(σj) + δσi,σj

)
]

(71)

in which one assumes that the descendant j’s are independent in the absence of i, i.e. the
network is of a locally tree-like structure at i. Though this assumption does not hold in
finite networks with loops, algorithms based on the cavity approach have negligible errors
in finite size systems with low connectivity [128, 129]. To make Eq. (71) into an iterative
form one can rewrite Ei\l(σi) as

Ei\l(σi) = Ci\l +

Q∑

q=1

hi\l,qδq,σi
, (72)
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such that ~hi\l and Ci\l are given by

hqi\l =
∑

j 6=l

aijδq,q∗
j\i
, (73)

Ci\l =
∑

j 6=l

aij(Cj\i + h∗j\i) (74)

where

q∗j\i =

{
argq min(h1j\i, · · · , hQj\i) if a unique optimal color exists for j

−1 if no unique optimal color exists for j
, (75)

h∗j\i = min(h1j\i, · · · , hQj\i). (76)

Physically, Eq. (73) implies that if i selects the color that coincide with the unique optimal
color of j, the cavity field for that color increases by one.

Note that Eq. (73) takes an iterative form of the cavity fields, which leads to potential
algorithmic applications as we will see in Section 4.2. To obtain the macroscopic properties
of the system, we first evaluate the distribution P (~h) of cavity fields by solving the self
consistent equation [127, 125, 126]

P (~h) =
∞∑

z=0

q(z)

∫ z∏

j=1

d~hjP (~hj)

Q∏

q=1

δ

[
hq −

∑

j

δq,q∗j (~hj)

]
, (77)

where q(z) is the excess degree distribution of z = k − 1, the remaining degree of a node
arrived from a random link. Excess degree is used since the cavity field is obtained by
removing one edge thus effectively reducing the number of neighbors. We have emphasized
the dependence of q∗j on ~hj by writing the latter as the argument of q∗j . The above self
consistent equation can be solved by population dynamics [128], where the field distribution

P (~h) is modeled by an evolving population of variables; the fields of individual variables

are calculated iteratively via Eq. (77) by sampling from P (~h).
Finally, we can calculate the ground state energy of the system by expressing the energy

change of an additional node and an additional edge as

∆Enode = min
σi,~σ

[
∑

j

aij
(
Ej\i(σj) + δσi,σj

)
]
−
∑

j

aij min
σj

[
Ej\i(σj)

]
, (78)

∆Elink = min
σi,σj

[
Ei\j(σi) + Ej\i(σj) + δσi,σj

]
−min

σi

[
Ei\j(σi)

]
−min

σj

[
Ej\i(σj)

]
. (79)

Using similar arguments as in the derivation of Eq. (73), one can show that ∆Enode =
minσi

(
∑

j aijδσi,q∗j\i
) and ∆Elink = minσi

(hσi

i\j + δσi,q∗j\i
)−h∗i\j , such that the average ∆Enode
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Figure 7: The schematic phase diagram obtained by Krzakala et al [126, 130, 131] which indicates the
changes in solution space of the graph coloring problem as a function of 〈k〉 (given Q colors). Solution
clusters are represented by grey circles, and red circles correspond to clusters with frozen variables.

and ∆Elink can be expressed in terms of P (~h) as

〈∆Enode〉 =
∞∑

k=0

p(k)

∫ k∏

j=1

d~hjP (~hj)min
q

(
∑

j

δq,q∗j

)
, (80)

〈∆Elink〉 =

∫
d~hid~hjP (~hi)P (~hj)

[
min
qi

(hqii + δqi,q∗j )− h∗i

]
. (81)

The resulting average energy 〈E〉 per node is then given by 〈∆Enode〉 − (〈∆Elink〉〈k〉)/2,
where the second term compensates the energy contribution from additional edges when a
node is added to the network, to maintain the ratio between nodes and edges.

So far we have assumed that a single P (~h) is sufficient to describe the system, which is
equivalent to the replica symmetry assumption in the replica approach. In the RS assump-
tion, a single cluster of states dominates the phase space and a single P (~h) is sufficient
to describe it. It was shown that the cavity calculations with the RS assumption pre-
dict the existence of an unphysical phase characterized by negative energy [127, 125].
Under an improved assumption called the one-step replica symmetry breaking ansatz
(1RSB) [37, 38, 39], a distribution of P (~h) is used to describe the system such that the
derived energy is non-negative for all phases. Physically, the 1RSB ansatz assumes that
the solutions are grouped in clusters in the solution space, and different P (~h) describe
different clusters.

If we consider solutions to be neighbors if they differ in only one color assignment, a
phase diagram indicating the changes in solution space as a function of 〈k〉 in ER systems
was obtained by Krzakala et al [126, 130, 131] by applying the 1RSB ansatz of the cavity
approach, as shown in Fig. 7. Here solution clusters are represented by grey circles, and
red circles correspond to clusters with frozen variables, i.e. variables which exhibit the
same value in all solutions of the clusters. As we can see from the first two panels, the
single solution clusters segments into clusters as 〈k〉 increases. When connectivity further
increases, the problem becomes harder to solve as the number of solution clusters greatly
decreases; the system transits to a regime where the RSB ansatz is valid. In this phase,
numerous low-lying states exist which hinders local search algorithms from finding opti-
mally colorable solutions [127, 125]. The color assignment becomes even more difficult

38



when 〈k〉 increases further and the solution space is dominated by frozen clusters. Finally,
beyond the colorable threshold no solution exists. This phase diagram is important to
most combinatorial problems, including problems relevant to the study of networking and
especially those described in the subsequent subsections. More discussions on the 1RSB
ansatz are found in Section 5.2.

4.1.2. The Color Diversity Problem

A variant of the graph coloring problem, the color diversity problem, is relevant to
distributed file storage particularly in overlay networks. In this problem, we search for the
color configuration that maximizes the number of different colors in the nearest neighbor-
hood of every node. The reasons become obvious if we consider different colors as different
file segments and nodes can retrieve the complete file by searching only in their immediate
neighborhoods [120]. To achieve the goal, we search for the variable state that minimizes
the Hamiltonian

H =
∑

i

(
∑

j

aijδσi,σj
+
∑

j,k

aijaikδσj ,σk

)
=
∑

i

Q∑

q=1

[
δσi,q +

∑

j

aijδq,σj

]2
, (82)

where H increases with the number of identical colors in the nearest neighborhood of a
node. Although the above Hamiltonian maximizes the color diversity at each neighborhood,
it does not guarantee a complete set of color retrieval. To maximize the fraction of nodes
with a complete set of colors, an alternative Hamiltonian can be formulated

H = −
∑

i

Θ

[
Q−

Q∑

q=1

Θ

(
δσi,q +

∑

j

aijδq,σj

)]
, (83)

where the heaviside function Θ(x) = 1 when x > 0 and Θ(x) = 0 otherwise. By minimizing
the Hamiltonian (83), the fraction of nodes with a complete set of colors is maximized, but
without guaranteeing the uniformity of the color distribution.

Unlike the graph coloring problem on random graphs, which becomes more difficult
as 〈k〉 increases, the color diversity problem becomes harder when 〈k〉 decreases, as there
are less neighbors, hence less sources, to retrieve a complete set of color. Given Q colors
and if we denote the number of nodes with incomplete set of colors to be f , we expect to
see a phase transition from a region of f = 0 to f > 0 when 〈k〉 becomes smaller than a
threshold value 〈k〉c, resembling the transition from colorable region to uncolorable region
in graph coloring. Such phenomenon is studied by the cavity approach in [120, 132]. In
the context of file retrieval, search beyond the nearest neighbors is required to recover the
complete file when 〈k〉 < 〈k〉c.

4.2. Resource Allocation

Here we describe another disordered system, that gives rise to the resource allocation
problem, which is highly relevant to networking applications such as the distribution of
load in computer clusters. In addition, a variant of the resource allocation problem can be
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mapped onto a path optimization scenario where sensors communicate with a central base
station through routes on a sparse graph; it may also play a role in exploring instabilities
and redundancies in communication networks. Another variant of the problem that is
relevant to routing in sensor and ad-hoc networks is the source location problem aimed at
identifying the best allocation of base-stations/routers in order to optimize a given cost
while carrying the communication tasks at hand. some aspects of the ubiquitous problem
of routing may also be tackled using approaches developed for resource allocation as we
will see later on.

4.2.1. Re-distribution of Resources

In the resource re-distribution problem, one consider each node i to have resource λi,
randomly drawn from a distribution ρ(λ), such that λ > 0 and λ < 0 correspond to a
surplus and a shortage of resource. Resources are then re-allocated between the nodes.
The real variable yji represents the flow of resources from j to i, the final resource on i
is given by ri = λi +

∑
j∈Li

yji, where Li corresponds to the set of neighbors of i. The
randomly sampled set of λi adds another level of disorder on top of the network topology.
One then minimizes the Hamiltonian given by

H = α
∑

i

ψ(ri) +
∑

(ij)

aijφ(yij), (84)

where ψ(r), the shortage cost which penalizes nodes with negative r, and φ(y), the trans-

portation cost, for instance, to power consumption of electric current, take the form of

ψ(r) = Θ(−r), (85)

φ(y) =
y2

2
. (86)

The heaviside step function takes the value Θ(x) = 1 for x > 0 and 0 otherwise. The
coefficient α in Eq. (84) acts as a parameter which controls the relative weight between
the two costs.

When
∑

i λi ≥ 0 and α → ∞, the ground state of H corresponds to a state with
ri ≥ 0, ∀i, subject to the minimal transportation cost. This case corresponds to the
load balancing problem [133, 134] if one consider λ as the capacity of a node, and the
minimization ofH is equivalent to the balance of loads with the minimal migration of tasks.
In the context of networking and computation, these could be considered as computing
power and tasks to be carried out. On the other hand, if one consider finite positive α,
nodes are allowed to have negative final resources provided that H is still minimized. In
this case, the problem is equivalent to the source location problem [135, 136] where the
positions of sources are optimally located in a network to minimize transportation and the
local penalty correspond to the cost of providing the resource at the node. Details of the
source location problem are discussed in Section 4.2.2.

We first describe how the cavity method is applied to solve the resource allocation
problem. To apply the cavity approach, one considers the local tree structure as in Fig. 6(b)
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and writes the cavity energy function Ei\l(yil) of a node i with a current yil drawn by its
ancestor l, as

Ei\l(yil) = H(Ej1\i, · · · , Ejki−1\i;λi, yil) (87)

where j1, · · · , jki−1 are the ki − 1 neighbors of i other than l, and the functional H corre-
sponds to

H(Ej1\i, · · · , Ejki−1\i;λi, yil) =

min
{yji}


 ∑

j∈Li\l
Ej\i(yji) + αψ


λi − yil +

∑

j∈Li\l
yji


 +

∑

j∈Li\l
φ(yji)


 (88)

in the zero-temperature limit. The first term represents the energies of descendants, the
second the penalty for negative resource once the flow has been taken into account, and the
third is the transportation cost for a given current drawn from i. We note that Ej\i(yji)
is an extensive quantity but depends on the number of iterations; these are calculated
recursively from a vertex dependent intensive energy. One first writes Ej\i(yji) as a sum
of two terms,

Ej\i(yji) = EV
j\i(yji) + Ej\i(0), (89)

where EV
j\i(yji) is called the vertex cavity energy such that EV

j\i(0) = 0, i.e., if no current

is drawn the vertex cavity energy remains the same. This allows us to rewrite Eq. (87) as
a recursion of the intensive quantity EV [136], given by

EV
i\l(yil) = H(EV

j1\i, · · · , EV
jki−1\i;λi, yil)−H(EV

j1\i, · · · , EV
jki−1\i;λi, 0), (90)

which corresponds to a self-consistent form of EV as Eq. (90) satisfies EV
i\l(0) = 0. With

this recursion of intensive EV , one then obtains the self-consistent equation analogous to
Eq. (77) for the functional distribution P [EV (y)] as

P [EV (y)] =

∫
dλρ(λ)

∞∑

z=0

q(z)

∫ z∏

j=1

dEj(yj)P [E
V
j (yj)]

×δ
[
EV (y)−H(EV

j1
, · · · , EV

jz ;λ, y) +H(EV
j1
, · · · , EV

jz ;λ, 0)
]
, (91)

where q(z) is the excess degree distribution of Eq. (4). Given a stable solution of P [EV (y)],
the ground state energy of the system is obtained by evaluating [136]

〈∆Enode〉 =

∫
dλρ(λ)

∞∑

k=0

p(k)

∫ k∏

j=1

dEj(yj)P [E
V
j (yj)]H(EV

j1
, · · · , EV

jk
;λ, 0), (92)

〈∆Elink〉 =

∫
dE1(y)dE2(y)min

y
[E1(y) + E2(−y) + φ(y)] , (93)
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such that the average energy per node is 〈E〉 = 〈∆Enode〉 − (〈∆Elink〉〈k〉)/2.
Note that Eqs. (92)-(93) involve solving a functional distribution P [EV (y)], which is in

general infeasible. However, the form of φ and ψ in Eqs. (86) and (85) results in a piecewise
quadratic expression for EV , which greatly reduces the functional space of P [EV (y)]; we
refer readers to Refs. [134, 136] for technical details. The complex recursion of EV turns
into a simple message passing algorithm which involves messages with only two real values.

As α → ∞, shortage in the load balancing problem can be expressed as a constraint
λi − yil +

∑
j∈Li\l yji ≥ 0 such that H in Eq. (88) takes the form of

H(Ej1\i, · · · , Ejki−1\i;λi, yil) = min
{{yji}|λi−yil+

∑
j∈Li\l

yji≥0}


 ∑

j∈Li\l
Ej\i(yji) +

∑

j∈Li\l

y2ji
2


 . (94)

One can derive an optimization algorithm by explicitly evaluating the above expression
through the expansion of Ej\i(yji) in the neighborhood of a constant value ỹji. Assuming
a small variation of ǫji from ỹji, Ej\i(yji) is given by

Ej\i(yji) = Ej\i(ỹji + ǫji) ≈ Ej\i(ỹji) + aj\iǫji + bj\i
ǫ2ji
2
, (95)

to the second order in ǫji. Evaluating H in Eq. (94) is equivalent to minimizing the
Lagrangian

Li\l =
∑

j∈Li\l

[
Ej\i(ỹji) + aj\iǫji + bj\i

ǫ2ji
2

]
+
∑

j∈Li\l

(ỹji + ǫji)
2

2

+ µi


λi − yil +

∑

j∈Li\l
(ỹji + ǫji)


 , (96)

with respect to ǫji, subject to the Kuhn-Tucker condition µi(λi − yil +
∑

j∈Li\l yji) = 0,

with the Lagrange multiplier µi ≤ 0 ∀i. One can then show that [133]

µi = min


0,


λi − yil +

∑

j∈Li\l

(
ỹji −

aj\i + ỹji
bj\i + 1

)


∑

j∈Li\l

1

bj\i + 1




−1
 , (97)

ǫji = −aj\i + ỹji + µi

bj\i + 1
, (98)

are the optimal solutions. If we interpret ỹji as the current from j to i in the pervious
iteration of the algorithm, then ỹji + ǫji corresponds to the updated optimal current. This
gives rise to a backward message of the algorithm to be explained later. To proceed, one
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differentiates Li\l with respect to yil which gives

ai\l =
∂Li\l
∂yil

= −µi (99)

bi\l =
∂2Li\l
∂y2il

= −Θ(−µi)


∑

j∈Li\l

1

bj\i + 1




−1

, (100)

corresponding to the updated values of ai\l and bi\l of Eq. (95). Equations (98)-(100)
constitute the update rules of the message passing algorithm.

To obtain the optimal configuration of currents by the above algorithm, the procedure
is as follows:

1. pick randomly a node i and select one of its neighbors as ancestor l,

2. compute and send to l the values of ai\l and bi\l based on the estimated drawn current
yil,

3. compute and send to all descendants the corresponding values of ǫji, update yji by
yji → yji + ǫji,

4. repeat steps 1-3 until the messages converge (i.e., change below a predefined limit).

The messages a and b thus constitute the forward message to ancestors and ǫ is the backward
message to descendants. Physically, y = ỹ + ǫ corresponds to the new point at which the
descendants should compute the derivatives a and b of their cavity energy function E(y).
As the above algorithm is derived from the cavity equations under a replica symmetry-like
(RS) ansatz, the convergence of the algorithm is an indication of RS stability. We note that
the algorithm is distributive, as global optimizer and full knowledge of adjacency matrix is
not required for individual nodes.

An alternative distributed algorithm can be derived by minimizing the Lagrangian

L =
∑

i

µi

(
λi +

∑

j∈Li

yji

)
+
∑

ji

y2ji
2

(101)

with respect to yji, where µi(λi +
∑

j∈Li
yji) = 0 is the Kuhn-Tucker condition with La-

grange multiplier µi ≤ 0 ∀i. The optimal solution is given by

yji = µj − µi (102)

µi = min

[
0,

1

ki

(
λi +

∑

j∈Li

µj

)]
. (103)

Equation (103) is iterated until the convergence of all µi, such that optimal configuration
of currents is obtained by Eq. (102). If one considers µj and µi to be the potential of node
j and i, yji can be interpretated as the potential difference between j and i, analogous to
electric circuits with uniform resistance.
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Both algorithms are shown to converge in simulations and yield consistent results with
theoretical predictions in cavity approach [133, 134]. The convergence of message passing
algorithm indicates that the RS ansatz is sufficient to describe the phase space of the load
balancing problem. It was shown in [134] that large currents are found around particularly
rich and poor nodes (i.e. λ ≫ 〈λ〉 and λ ≪ 〈λ〉), as they provide and receive resources
from others to achieve global satisfaction. Nodes with intermediate λ mainly act as relays
between the two groups and are surrounded by intermediate currents. A variant of the load
balancing problem considers edges limited by bandwidth, in analogy to most networking
systems. Behaviors such as bottleneck effect and clustering of balanced nodes are observed
due to the restriction by edges bandwidth [137, 138].

4.2.2. The Optimal Location of Sources

Here we briefly describe the relation between the source allocation problem and deci-
sions on the location of sources in networking systems. Unlike load balancing, the coefficient
α in Eq. (84) is finite, which implies that nodes are allowed to be short of resources after
allocation, i.e. λi +

∑
j∈Li

yji < 0, when transportation cost is high. As ψ(r) takes the
form of a heaviside step function Θ(−r), the shortage cost is independent of the level of
insufficient resources and the shortage nodes can be considered as a requirement for an
installation of new resource providers. If one considers α to be the installation cost of a
source node, e.g. transmitter or server, minimizing H in Eq. (84) is equivalent to locating
the optimal position for source nodes in the network [136].

One expects that when the installation cost α is small compared to transportation
cost, source nodes are installed everywhere. When α increases, source nodes are installed
only at optimal locations. It was shown [135, 136] that the system undergoes abrupt
transitions when α increases, corresponding to the stability of resource penetration to
increasing distance from the source nodes. In addition, it has been shown [135] that
the source location problem is well described by the replica symmetry breaking (RSB)
ansatz, and that the message passing algorithm derived from RS cavity equations does not
converge. Algorithmic procedures such as decimation [129] have to be applied to obtain a
good approximation of the optimal configuration [136].

4.2.3. Routing to Base Stations

Another variant of the resource allocation problem is relevant to optimizing path from
individual sensors to a base station as shown in Fig. 8 [46]. In this case, one considers
establishing a route from nodes to a base station as a hard constraint α → ∞ in the
Hamiltonian H described by Eqs. (84) - (86). To achieve the task of path optimization as
shown in Fig. 8, one makes two modifications to the model: (i) a specific distribution ρ(λ)
of initial resources, namely λ = ∞ for the base station, λ = −1 for transmitting sensor
nodes and λ = 0 for all the other nodes; (ii) limit all the current variables yij to be integers.
Since each sensor is required to achieve non-negative final resources, the ground state of
H is equivalent to an optimal configuration of paths from sensors to base stations, where
path overlap (congestion) is suppressed via the introduction of a penalizing quadratic cost
φ(y) ∝ y2. This problem is also relevant to the Steiner tree problem which we will describe
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Figure 8: An example which show individual sensors (black circles) establishing a single path to a base
station (triangle). Dashed lines correspond to idle links, while thin and thick solid lines correspond to
communication loads of 1 and 2 units, respectively.

in Sec. 4.3.2, where shortest path between sensors and base stations are found without the
consideration for congestion.

Compared to the case with continuous current, the cavity vertex energy EV
j\i(yji) in the

present case has an integer domain and is no longer valid for Taylor series expansion used in
the resource allocation problem (95) making the simplification by the piecewise quadratic
function as in Eqs. (99) and (100) no longer applicable. Nevertheless, other simplifications
can be made such that macroscopic properties of the optimal path configuration and an
practical algorithm are derived [46].

4.3. Route optimization

In addition to frequency and resource allocation, we will review studies of disordered
systems which are relevant to path optimization in networks. In particular, we will review
the statistics of loops in networks, the minimum Steiner trees and a system of interacting
polymers where the latter is relevant to routing between source-destination pairs in sparse
networks.

4.3.1. Circuits and Loops in Networks

Circuits in networks are loops on the network topology, each of which taken on its own
is devoid of intersections, i.e. is a self-avoiding closed path. Circuits are highly relevant to
routing; for instance, finding a path which visits specific nodes on a graph with the lowest
cost is termed the vehicle routing problem [139], which is relevant to the logistics of good
delivery to multiple consumers by a single vehicle. Another related routing problem is the
traveling salesman problem (TSP) [140], which involve finding the so-called Hamiltonian
cycles which visit all the nodes exactly once. The number of cycles present in a graph serves
as useful information for path planning in logistics problems. Marinari et al [141, 142]
showed that the typical entropy of circuits with various length in graphs sampled from a
given set of ensemble can be obtained using tools of statistical physics, in particular the
quenched average entropy can be obtained by the cavity equations. Here we will review
how such entropy can be obtained by following the line of Ref. [141].
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Figure 9: Schematic diagrams showing different alignment of the circuit, as represented by the thick red
line.

To obtain the entropy of circuits, one defines a variable s(ij) = 1 when the circuit passes
the edge between i and j and otherwise s(ij) = 0. One then considers the hamiltonian
H =

∑
(ij) s(ij), such that the partition function is given by [141]

Z(u) = Tr
{s(ij)}

u
∑

(ij) s(ij) =
∑

L

NL(A)e−βL (104)

where u = e−β, L is the length of the circuit and A is the adjacency matrix. One further
defines f(u) = (1/N) lnZ(u) and σ(l) = (1/N) lnNL with l = L/N , such that Z(u) =
exp[N(l(u) ln u+ σ(l))]. In the thermodynamic limit N → ∞, the entropy σ(l) of circuits
with length l is given by

σ(l) = f(u)− l(u) lnu. (105)

By cavity approach or free energy approximation which we will describe in Sec. 5.1.2, f(u)
and l(u) are given by [141]

f(u) =
∞∑

k=2

p(k)

∫ k∏

j=1

[dyjP (yj)] ln

(
1 + u2

∑

i<j

yiyj

)

− 〈k〉
2

∫
dyidyjP (yi)P (yj) ln(1 + uyiyj), (106)

l(u) =
〈k〉
2

∫
dyidyjP (yi)P (yj)

uyiyj
1 + uyiyj

. (107)

where p(k) is the degree distribution and the variable yi is proportional to the partition
function of a case where the circuit passes node i en route to the next node higher up the
tree as shown in Fig. 9(b). In this case the terms u2yiyj and uyiyj in expressions (106)
and (107) are proportional to the partition function of the circuit configuration as shown
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Figure 10: The entropy σ(l) as a function of l for ER graphs and random regular graphs, both with average
degree 〈k〉 = 3.

in Fig. 9(c) and (d) respectively, such that each of the thick red edges contributes a factor
u to the product. The distribution P (y) is given self-consistently by

P (y) = q(0)δ(y) +

∞∑

k=1

q(k)

∫ k∏

j=1

[dyjP (yj)]δ

(
y −

u
∑

j yj

1 + u2
∑

i<j yiyj

)
, (108)

where q(k) is the excess degree distribution and the terms u2yiyj and uyj are proportional to
the partition function of the circuit configuration as shown in Fig. 9(a) and (b) respectively.
This equation resembles the form of the cavity equations (77) and (91) in the previous
examples. The two terms in f(u) resemble the form of the node and link energies in
Eqs. (80) and (81) of the graph coloring problem and Eqs. (92) and (93) in resource
allocation task, but instead of energy the two terms in f(u) correspond to the free energy
contribution from both node and link. The expression of l(u) is equivalent to the energy
of a link.

To evaluate the entropy of circuits, one varies u in the range 0 < u <∞ and computes
the corresponding distribution P (y) from Eq. (108) and hence f(u) and l(u), and makes
use of Eq. (105) to obtain σ(l). Equation (108) can be solved by population dynamics,
and the result of σ(l) in ER graphs with average degree 〈k〉 = 3 when N → ∞ is shown
in Fig. 10. We note that for regular graph with connectivity k, P (y) = δ[y − Y (k)] where
Y (k) is given by [141]

Y (k) =

√
2u(k − 1)− 2

u2(k − 1)(k − 2)
(109)

and can be easily obtained from Eq. (108). The σ(l) of regular graph of connectivity k is
given by

σ(l) = −(1 − l) ln(1− l) + l ln(k − 1) +

(
k

2
− l

)
ln

(
1− 2l

k

)
, (110)
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Figure 11: An example of Steiner tree in a simple network. The chosen of terminal nodes are colored in
black, the Steiner nodes are colored in grey and the Steiner tree is represented by the bold line.

where the case of k = 3 is also shown in Fig. 10, exhibiting the existence of much higher
probability of longer loops in comparison to the corresponding ER case.

Other than the entropy of circuits which was solved by the cavity approach, the trav-
eling salesman problem (TSP) was also mapped into disordered systems and was studied
by both replica [143] and cavity approaches [144]. Other studies of loops in networking
systems include the empirical studies of short loops in the Internet at the level among
autonomous systems (AS) [145], the loop statistics in finite size complex networks [146]
and the derivation of algorithms to detect long loops in real instances [141, 147].

4.3.2. The Minimum Steiner Trees

The minimum spanning tree (MST) problem is extensively studied in mathematics,
physics and computer science [148, 149]. Given an undirected network, a spanning tree

of the network is a tree-like subgraph which connects the set of nodes. When edges are
weighted, the MST decision problem concerns the existence of spanning trees with the sum
of weight on edges being less than a given threshold. Finding the spanning tree with mini-
mal edge weight thus serves as an optimization version of the MST problem. The search for
MST in networks is related to the optimization of signal broadcast. Optimal broadcasting
paths are defined as the spanning trees of minimal distance or traffic load on paths. The
MST problem is also relevant to other networking systems such as transportation [150] and
resistor networks [151].

A similar problem, known as the Steiner tree problem, is also relevant to routing and
networking systems. Given an undirected network and a set of nodes, the minimum Steiner

tree is defined as a tree of minimal weight which connects a given set of nodes, possibly
with the help of other nodes. An example of a Steiner tree is given in Fig. 11, with the set
of node to be connected colored in black and the minimum Steiner tree represented by the
thicker edges. As one can see, the chosen nodes are usually the leaves of the tree and hence
they are called terminal nodes. The non-terminal nodes which constitute the minimum
Steiner tree are called Steiner nodes, and are shaded in grey in Fig. 11. Finding the
minimum Steiner tree thus involves an optimal structure of the tree as well as an optimal
set of Steiner nodes, which makes the related decision task an NP-complete problem [152].
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While spanning trees are relevant to signal broadcast, Steiner trees are related to mul-
ticast communication with fixed recipients. The Steiner tree problem is thus similar to
the source location problem [136] in the sense that optimal paths to a subset of nodes are
found, but the recipients in the latter case are not fixed and installation of extra sources
is required on the non-recipient nodes. One can also map Steiner trees to the optimal
set of routers required to maintain the communication for in-use computers in a network.
This is crucial for the energy-hungry Internet, as redundant routers can be switched off to
save energy. The Steiner trees are also relevant to resilience of networking systems against
router failures.

As compared to the graph coloring and resource allocation problems, the MST and
Steiner tree problems involve global constraints which make analyses difficult. Nevertheless,
one can adopt the cavity approach to derive a local message passing algorithm for obtaining
the MST and Steiner tree solutions on networks.

To apply the cavity approach to the MST and Steiner tree problem, one can follow
[153, 154] to derive the cavity equations for a general case of Steiner trees with depth of
D steps. In this case, one of the terminal node is chosen to be the root node, and the
distances between the root node and all other terminal nodes i in the Steiner trees are
restricted to be at most D. One then defines the variable pi to be the parent of i in the
Steiner tree, such that pi = l with l = 1, · · · , N if i is a terminal node, and pi = l or pi = ∅

for non-terminal nodes. By setting all nodes to be terminal nodes, one obtains the MST.
After defining the local variables, one can force the global constraints by noting that when
pi = l, pl 6= ∅ and di = dl + 1. These constitute constraints for the edge (i, l) by which we
define a variable fil = 1 when they are satisfied and fil = 0 otherwise. The variable fil can
be expressed in terms of fil = gilgli, with gil given by

gil = [1− δpi,l(1− δdi,dl+1)](1− δpi,lδpl,∅). (111)

Similar to the cases of graph coloring and resource allocation, one can write a recursive
relation of the cavity energy function Ei\l(pi, di) as

Ei\l(pi, di) = wipi +
∑

j∈Li\l
min

{pj ,dj |fji(pj ,dj ,pi,di)=1}
[Ej\i(pj , dj)], (112)

where wipi ≥ 0 is the weight on the edge (i, pi) and wi∅ = ∞. The right hand side
of Eq. (112) depends on pi and di via the constraints fji. This recursive equation can
be simplified by parametrization of Ei\l(pi, di) in terms of cavity fields, as in the case of
Eq. (72) in the graph coloring problem and Eq. (95) in the resource allocation problem. We
refer the reader to [153, 154] for the derivation of the cavity fields in the case of Eq. (112),
which leads to a message passing algorithm for solving the MST and Steiner trees problems
on networks.

Other than via the cavity approach, the MST problem has also been analyzed by
mapping it onto a disordered spin glass on regular lattices [155]. The scaling of the energy
change subject to small perturbations about the optimal spanning tree was studied in [156].
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4.3.3. Routing as an Interaction of Polymers

Another area of disordered systems relevant to networking is the study of interacting
polymers on networks. In this case, one can consider the two ends of a polymer to be
the source and the destination, and the polymer allocation on a network to represent the
path, which is similar to the case shown in Fig. 1, where specific colors correspond to the
respective polymers. One can then introduce interaction between the polymers which have
a meaningful interpretation for networking, for instance, a repulsion between overlapping
polymers can balance the individual occupancy of nodes/edges on the network and mitigate
congestion on hubs. These methods have been devised in the area of polymer science [157]
and have been used previously to study the TSP [143, 158] and the loop spectrum in
networks [142].

To capture such interaction, one can define a Hamiltonian H ∝ ∑
j(Ij)

γ as in [159]
where Ij is the number of polymers passing through node j. When γ > 1, overlap of
polymers is penalized such that traffic congestions are suppressed. When γ < 1, overlap
of polymers is encouraged and traffic tends to consolidate on common paths, leaving more
nodes idle and thus can be switched off to reduce energy consumption. When γ = 1, there
is no interaction between polymers and each of them is routed through the shortest path.
To obtain the ground state of the polymer systems, and hence the optimal configuration of
paths, Yeung et al [159] make use of the 0-vector method invented by de Gennes et al [157]
which describes self-avoiding paths on network. As the replica calculation for solving the
system is rather involved, we refer readers to Ref. [159] for details. Nevertheless, a non-
monotonic trend of path length as a function of the number of polymers and a phase
transition at γ = 1 which resembles the transition of the flow pattern of electric currents
in resistor networks [150] is observed.

5. Probabilistic Inference for Networking

Inferring the state of variables x̂ by comparing their probability to be in the various
states given a set of observations ~z is termed probabilistic inference. Accurate probabilistic
inference can take the form of likelihood maximization, Maximum A Posteriori (MAP)
and Marginal Posterior Maximization (MPM). The former merely requires a definition of
the likelihood function for the given noise model while MAP and MPM require a prior
assumption about the state of the variable; the difference between the two is that MAP
examines the probability for the vector state ~x as a whole while MPM considers single
variable marginals. The three methods can be summarized as:

x̂ = argmax~x p(~z | ~x)−Maximum Likelihood

x̂ = argmax~x p(~x | ~z)−MAP (113)

x̂j = argmaxxj
p(xj | ~z)−MPM.

The three methods optimize different cost measures and give rise to different solutions [160,
161]. However, all three inference techniques are NP-hard and are computationally infea-
sible; one therefore resorts to principled approximation methods that are computationally
efficient.
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Figure 12: (a) A three-spin systems and (b) its corresponding factor graph representation.

There are several inference methods which provide efficient and principled estimation
of marginal probabilities for individual variables in networks. For instance, belief propaga-
tion [161, 162] and variational approaches [163]. Here we are interested in belief propaga-
tion and its variants, leading to distributive algorithms with computational complexity that
scales favorably with the system size, which are potentially applicable for large networking
systems. They play an essential role in providing principled probabilistic inference in a
broad range of applications from medical expert systems, to telecommunication. These
methods, that have largely been developed independently in the computer science and
information theory literature, also have deep roots in advanced mean field methods of
statistical physics [161].

5.1. Belief Propagation

Here we describe the belief propagation (BP) algorithm that has been developed inde-
pendently in different communities. The version introduced by Gallager [164] was applied
to decoding in the context of error-correcting codes, Pearl [162] applied it to hierarchi-
cal Bayesian networks for estimating marginal probabilities and Mézard [37] introduced
a macroscopic version of it for analyzing disordered systems. Links between the differ-
ent frameworks were identified [161, 165] and extended to include more advanced ap-
proaches [166] that have been studied within the statistical physics community [167].

Belief propagation methods have been highly successful in a number of areas such as
error-correcting codes [168], communication networks of sensors [169], calibration systems
for sensor location [170], compressed sensing [171] and problems in statistical physic [39,
126]. The method was also applied to the study of combinational problems [125, 126, 129]
and free energy approximation of physical systems.

By denoting xi as the state of node i, the goal of the BP algorithm is to compute the
approximate marginal probability p(xi) for all i in the network. The marginal probability
p(xi) is given by p(xi) =

∑
~x\xi

p(~x), where the sum runs over all possible states of the
system given that node i is in state xi. BP is usually formulated on bipartite factor graphs
which consist of both factor and variable nodes. Regardless of network topology, many
combinatorial problems, optimization problems and spin systems can be mapped onto a
factor graph. We take the three spin system in Fig. 12(a) as an example. It can be mapped
to a factor graph in Fig. 12(b) by introducing the factor nodes fa, fb and fc on the edges,
which characterize the interactions between the connected variable nodes. To see this, one
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can use an analogy with statistical physics and define

fa(x1, · · · , xk) = e−βEa(x1,··· ,xk), (114)

where Ea(x1, · · · , xk) is the energy of the variables x1, · · · , xk through the factor a. For
example, fa(x1, x2) = e−βJ12x1x2 in the spin system of Fig. 12(a) and fa(x1, x2) = e−βδx1,x2

for the graph coloring problem, where variables x represent the assigned colors to the
respective nodes. In this case, the probability that the system is in state ~x is given by [166]

p(~x) =
1

Z
e−β

∑M
a=1 Ea(~xa) =

1

Z

M∏

a=1

fa(~xa), (115)

whereM is the total number of factor nodes and ~xa the state of the variable nodes connected
to a.

5.1.1. The Update Rules and Beliefs Computation

To obtain an approximate pseudo-posterior for the marginal probability one assumes a
local dependence of node and factor probabilities on their immediate neighborhoods. This
assumption is exact on tree-like structures and provides a good approximation in many
other systems. There are two types of messages in the BP algorithm. The first type of
messages are from a factor node i to a variable node a, which we denote by ua→i(xi); it
corresponds to the conditional probability of factor fa given a node value xi - p(fa|xi) up
to normalization. The second type are messages from the variable node i to factor node
a, which we denote as hi→a(xi); it corresponds to the conditional probability of node i
taking the value xi given all the factors connected to it except for fa - p(xi|{f}\a) - up to
normalization. Update rules are obtained via simple Bayesian manipulations; to simplify
the equations one writes the message hi→a(xi) as

hi→a(xi) ∝
∏

b∈Li\a
ub→i(xi), (116)

and the message ua→i(xi) as

ua→i(xi) =
∑

~xa\xi

fa(~xa)
∏

j∈La\i
hj→a(xj), (117)

where the sum runs over all the possible states of variables in factor node a given i is in
the state xi. BP is also known as the sum-product algorithm as Eq. (117) involves a sum
over products, and the BP messages are sometimes called beliefs. The messages can be
initialized as appropriate for the problem at hand. We note that it is not necessary to
normalize the messages as the normalization can be done when marginals of variables are
computed. To compute the marginal of each variable node, we iterate the above update
rules until convergence of all messages and evaluate the pseudo-posterior:

b(xi) =
1

Zi

∏

a∈Li

ua→i(xi), (118)
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where Zi =
∑

xi

∏
a∈Li

ua→i(xi) is a normalization constant, representing the approximate
marginal probability p(xi) obtained by the BP algorithm

One notes that the products over messages ub→i(xi) in Eq. (116) and fields hj→a in
Eq. (117) implicitly assume that the corresponding conditional probabilities can be fac-
torized, indicating statistical independence; BP is therefore exact only on tree networks.
Nevertheless, it converges in many cases where the networks do include loops and hence
is sometimes called the loopy belief propagation [172, 129, 169]. The convergence in loopy
networks is quite remarkable; for instance, they converge to provide high quality solutions
in a sensor network with asynchronous updating schedules, inhomogeneous communication
rate on nodes and evolving datasets [169] as well as in many other applications.

The BP algorithm is equivalent to the cavity approach developed in the spin glass
theory. One way to see this is to identify the messages hi→a(xi) with the partition function
Zi→a(xi) of the network terminated at node i of state xi. One can combine Eqs. (116) and
(117) to give

Zi→a(xi) =
∏

b∈Li\a

∑

~xb\xi

e−βEb(~xb)
∏

j∈Lb\i
Zj→b(xj), (119)

In cases where factor nodes connect only two variable nodes, such that a connects i to l,
and b connects j to i, the above equation is rewritten as

Zi→l(xi) =
∑

~x\xi

e−β
∑

j∈Li\l
Eij(xi,xj)

∏

j∈Li\l
Zj→i(xj), (120)

where the sum runs over all the possible states ~x of the neighbors of i, given that i is
in state xi. Finally, one introduces the free energy function Fi\l(xi) = −T lnZi→l(xi), T
being the temperature, such that in the zero-temperature limit, i.e. 1

T
= β → ∞, the

above expression reduces to the min-sum expression

Fi\l(xi) = min
~x


 ∑

j∈Li\l

(
Fj\i(xj) + Eij(xi, xj)

)

 , (121)

which resembles Eq. (71) derived via the cavity approach. We note that the BP algorithm
is analogous to the cavity approach with the replica symmetry ansatz, and is less likely to
converge to optimal solutions in systems characterized by a multi-valley energy landscape.
In this case, messages fickle between states in different macroscopically separated solu-
tion clusters and fail to converge. An improved version of BP called Survey Propagation

(SP) [129] which considers a distribution of BP messages instead of a single BP message
is described in Section 5.2.

5.1.2. Free Energy Approximation

In addition to its equivalence with the cavity approach, BP is useful for approximating
the free energy of various systems. The simplest way is to make use of the Bethe approxi-
mation [173] and write the approximate free energy as F = U − S with internal energy U
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and entropy S given by [166, 174]

U = −
M∑

a=1

∑

~xa

ba(~xa) ln fa(~xa), (122)

S = −
M∑

a=1

∑

~xa

ba(~xa) ln ba(~xa) +

N∑

i=1

(ki − 1)
∑

xi

bi(xi) ln bi(xi). (123)

The belief ba corresponds to the marginal probability of the factor node a, and the factor
ki−1 in S ensures the entropy of each variable node i is counted exactly once. A variational
approach can then be applied to find bi and ba that minimize the free energy F . Given
that all factor nodes a in the graph are characterized by positive fa(~xa) for any ~xa, Yedidia
et al [174, 166] showed that the local minima of F are the BP fixed points with positive
node and factor beliefs bi(= b(xi)) and ba, respectively given by Eq. (118) and

ba(~xa) =
1

Za

∏

iLa

∏

b∈Li\a
ub→i(xi) (124)

where Za =
∑

~xa

∏
iLa

∏
b∈Li\a ub→i(xi) is a normalization constant.

As loops are always present in networks in general and in structured networks in par-
ticular, Yedidia et al [166] generalized the BP algorithm to include the influence of loops
in node clusters in a similar manner to the cluster variation approach [167]. The general-

ized belief propagation (GBP) algorithm considers factor graphs divided into overlapping
regions, with local loops allowed in each regions. Various approaches are introduced to
identify regions in a factor graph, and the accuracy of GBP greatly depends on the di-
vision of the network to regions. Once the regions are identified, messages are passed
between regions instead of between single nodes. It is shown [166] that the GBP algorithm
converges in cases where BP does not and results in a better estimate of the marginal
probabilities; this is particularly true in structured networks, for instance in image restora-
tion [175]. As more accurate marginal probabilities are computed by the GBP, it also gives
a better approximation of the free energy [166]. Other approaches to address the problem
of loops has been presented [176, 177] and rely on increasingly more complex correlations
between network constituents.

5.2. Survey Propagation

Convergence of the BP algorithm has been observed to fail in systems characterized
by numerous low-lying states separated by high energy barriers (see for instance Fig. 13);
i.e., macroscopically separated solution clusters. One of the reasons for this failure is
that individual BP messages tend to approach states in different valleys, i.e. different
solution clusters, which leads to inconsistent messages. In view of the problem, Mézard
and Zecchina developed an improved version of BP, known as the Survey Propagation (SP),
which incorporates the structure of the energy landscape [129, 178] into the cavity equations
(or equivalently the BP equations) through the introduction of a distribution of messages.
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Figure 13: An energy landscape with multiple valleys.

One can see in examples such as the graph coloring [125, 126], K-satisfiability [129] and
the resource allocation problem [135] that the analytical results derived from the SP cavity
equations are equivalent to the those derived from the 1RSB replica approach.

To understand the underlying physical assumptions of SP, one can identify an energy
valley as a pure state of the system. Each pure state is characterized by a particular set
of BP messages or cavity fields. Systems with multiple valleys are thus described by a
distribution of BP messages for each edge, instead of one particular BP message. One can
further assume that the number of pure states is a function of average energy ǫ = E/N ,
given by [129]

N (ǫ) = exp[Nσ(ǫ)]. (125)

The function σ(ǫ) is called the complexity of the system such that Nσ(ǫ) plays the role of
entropy among pure states. This is to be distinguished from the internal entropy within a
pure state, where different degenerate configurations of on-site variables are considered.

5.2.1. The Update Rules and Decimation Procedures

To derive the SP cavity equation, one first expands the complexity about a reference
energy ǫ0 as

σ(ǫ) ≈ σ(ǫ0) + x(ǫ− ǫ0) (126)

with x = ∂σ/∂ǫ. By fixing the value of x, one is effectively interested at pure states
with average energy ǫ0, as well as states with small deviation from ǫ0. One then writes a
recursion equation for the distribution Pi\l(hi\l) of the cavity field at i in the absence of l,
as

Pi\l(hi\l)N (ǫi\l) ∝
∏

j∈Li

[∫
dhjPj\i(hj\i)N (ǫj\i)

]
δ[hi\l −H(hj1\i, · · · , hjki\i)]. (127)

The products PN on both sides of this equation preserve the average energy close to ǫ0
by a mechanism similar to detailed balance. For instance, if σ(ǫ) is increasing around ǫ0,
states with small average energy ǫ (hence a small N ) are multiplied proportionally by a
large P to counterbalance states with large ǫ (which have a large N ). The distribution
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Pi\l(hi\l) is called the survey of cavity field among pure states, which leads to the name
of the algorithm-survey propagation [129]. The function H(hj1\i, · · · , hjki\i) in Eq. (127)
corresponds to the recursion relation of cavity fields.

By using Eqs. (125) and (126), one can simplify Eq. (127) to obtain

Pi\l(hi\l) ∝
∏

j∈Li

[∫
dhjPj\i(hj\i)

]
δ[hi\l −H(hj1\i, · · · , hjki\i)]e

−x∆E, (128)

where ∆E is the change of energy with the addition of node i to the original network. In
other words,

∆E = min
σi

[Ei\l(σi)]−
∑

j∈Li\l
min[Ej\i(σj)], (129)

where Ei\l(σi) is the cavity energy function of the network terminated at i, and σi the state
of variable i. The term e−x∆E in Eq. (128) is a reweighing factor of the cavity states with
different ǫ values, in order to keep the average energy close to ǫ0. With a particular choice
of x, the above equation can be iterated on the network until Pj\i(hj\i) converges, which
corresponds to the distribution of cavity fields at i among the pure states with energy
density ǫ0.

For inference in specific instances, one runs the SP cavity equations together with a
decimation process. The procedures are as follows. One first chooses a value of x according
the form of σ(ǫ), which corresponds to the ǫ value of interest. We refer the reader to [129]
for computation of σ(ǫ) in specific instances. The cavity equations are then iterated on the
network until convergence; nodes with the highest bias towards one of the states (as given
by all neighboring Pj\i(hj\i)) are then decimated, i.e. their state become fixed to the state
with the highest probability. The SP equations are then re-run, with all the decimated
nodes fixed, until either all nodes are decimated or when the SP solution reduces to a BP
solution, i.e. Pj\i(hj\i) = δ(hj\i−hBP

j\i) for all remaining nodes. This final state corresponds
to the solution obtained by the SP algorithm. In some cases another algorithm such as
WalkSat is used at the final stage of the process [179].

5.3. Network Tomography and Compressed Sensing

We have focused so far on the use of distributed inference methods for optimization
and on identifying the most probable state of individual network nodes, there is another
important task relevant to networking which falls within the field of statistical interference
- network tomography.

Network tomography corresponds to the recovery of the internal characteristics of a
network from the end-point data. A typical case of network tomography that is relevant
to networking is based on monitoring link metrics, such as delay or packet loss, in com-
munication networks through a small number of end-to-end data [180]. For instance, if we
denote the delay of an individual link l as xl, the end-to-end delay along path p as yp, the
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number of links as M and the number of path on which performance are measured as P ,
then the M-component vector ~x and P -component ~y are related by

~y = A · ~x. (130)

where A is a P ×M matrix such that apl = 1 if path p passes through the edge l, and
apl = 0 otherwise. Physically, Eq. (130) assumes that the delay along a path p is the sum
of the delays incurred on all of its constituent links. To obtain the delay on each of the M
individual links, one can measure delays along P paths to obtain the vector ~y and solve
the system of linear equations described in Eq. (130) for ~x.

To find all the components of ~x accurately, one normally requires at least P = M
measurements. However, if ~x is a sparse vector, i.e. only a fraction of links have non-zero
delays, one can employ techniques used in compressed sensing [36] to solve the systems
by making P < M measurements. In this case of sparse ~x, one can achieve the goal by
minimizing the L0 norm of the a vector ~xp [36], i.e. the number of non-zero element in
~xp, subject to the constraint ~y = A · ~xp given by Eq. (130). Minimization of the L0 norm
is known to saturate the theoretical limit α = ρ shown by the dashed line in Fig. 14;
however, as minimization of the L0 norm is typically computationally difficult and most
studies focus on L1 norm minimization instead i.e. finding the vector ~xs such that

~xs = argmin
~xp

||~xp|| (131)

subject to the constraint ~y = A · ~xp given by Eq. (130). One thus expects the above opti-
mization problem leads to a vector ~xs that coincide with the true state ~x. The formulation
of the problem allows for the use of statistical physics approaches, such as the replica and
cavity methods, for carrying out analyses of typical or macroscopic properties. If we de-
note α = P/M and the fraction of non-zero elements in ~x as ρ, Kabashima et al [181] and
Ganguli et al [182] have shown that the reconstruction always leads to the correct state
~x when α > αc(ρ) in the limit M → ∞. While for α < αc(ρ) the probability for finding
the correct solution tends to zero as M → ∞. Hence the critical value αc(ρ) marks the
transition between the two phases, and is given by the solution of the following equations,
by eliminating the variable x [181, 182]

α = 2(1− ρ)

[
(1 + x2)H(x)− x

e−x2/2

√
2π

]
+ ρ(1 + x2) (132)

α = 2(1− ρ)H(x) + ρ (133)

where H(x) ≡ 1√
2π

∫∞
x
dze−z2/2, i.e. a standard Gaussian integral. The results of αc(ρ),

and thus the phase diagram for compressed sensing obtained by minimizing the L1 norm,
are shown in Fig. 14. We refer readers to Refs [181, 182] for the derivations of the above
equations by replica approach.

Recent analysis by Krzakala et al [183] showed the potential of BP based methods
in going beyond the L1 theoretical limit αc(ρ) under various sparsity conditions and as-
sumptions and suggest a clever design of the sampled data that leads to a crystallization
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Figure 14: The phase diagram for compressed sensing by minimizing the L1 norm, obtained in [181, 182].
Correct reconstruction is achieved in the region with α > αc(ρ). The dashed line represents the theoretical
limit α = ρ obtained via L0 norm minimization.

effect in the inference dynamics and saturates the L0 theoretical limit α = ρ. This is
conditioned on the ability to design the obtained measurements and is not applicable for
random measurements.

In addition to the tomography of link delays in communication networks, compressed
sensing can be applied to detect attenuation loss in a region for surveillance purposes [184],
or to detect the location of moving sensors [185]. Another area of research in physics which
is related to the tomography of networking from dynamical data are studies of the inverse
inference problem in Ising models, whereby one is given data of dynamically changing
local magnetizations and correlations between spins, to infer the couplings between all
node pairs and the local magnetic field at each node [186, 187]. Due to the compatibility
of these models with a dynamically evolving network data, they may be applied to infer
the underlying topology in networking systems.

6. Future Directions and Discussions

We showed that methodology from statistical physics is readily available to be used
for modeling and analysis of networking systems. Directly applicable outcomes mostly in-
clude practical algorithms, for example, searching and routing algorithms from preferential
random walk and the cavity and message passing algorithms, which can be used to min-
imize frequency interference and transportation cost. In addition to practical algorithms;
and equally importantly, statistical physics offers a macroscopic overview which predicts
system’s behavior subject to the choice of parameters. Examples include the evaluation
of epidemic thresholds for various network types, the sensitivity of networks to cascad-
ing failures, the prediction of phase transitions to algorithmically difficult regimes in hard
combinatorial problems and the distribution of resources under different topologies and
initial resource distributions. These theoretical macroscopic findings allow decision makers
to foresee potential problems and mitigate them through better design and by taking in
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advance precautionary steps. Such macroscopic insights and forecasts establish an essential
role for statistical physics in the study of networking systems.

We remark that the present review aims mainly to address the most essential topics at
the interface between physics and networking. There exist several other areas in statistical
physics relevant to networking including the synchronization in oscillator networks [20],
critical phenomenon in complex networks [18], scaling properties of the Internet [56, 188,
189] and other communication systems. We refer the reader to these references for details.

Although physicists have already made significant progress in the study of networking
systems, more consolidated efforts are required and expected. We note that the models
studied so far are simple and capture only the fundamental aspects of networking and are
far from capturing all properties of real networking systems. On the one hand, simple
models facilitate theoretical analyses and make the macroscopic picture more coherent and
clear; on the other hand, some emergent features may be lost in the simplified picture.
To have a comprehensive understanding of networking, it is thus crucial to build on the
existing framework, which preserves the compatibility with statistical physical techniques,
a more realistic model of networking systems. For instance, one may consider models with
multi-path communication by file segmentation, buffers of limited capacity in routing and
specific constraints of peer-to-peer networks. We expect to see such progress and their
applications in the near future.
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