
Networking Low-Power Energy Harvesting
Devices: Measurements and Algorithms

Maria Gorlatova, Student Member, IEEE, Aya Wallwater, and Gil Zussman, Senior Member, IEEE

Abstract—Recent advances in energy harvesting materials and ultra-low-power communications will soon enable the realization of

networks composed of energy harvesting devices. These devices will operate using very low ambient energy, such as energy

harvested from indoor lights. We focus on characterizing the light energy availability in indoor environments and on developing energy

allocation algorithms for energy harvesting devices. First, we present results of our long-term indoor radiant energy measurements,

which provide important inputs required for algorithm and system design (e.g., determining the required battery sizes). Then, we focus

on algorithm development, which requires nontraditional approaches, since energy harvesting shifts the nature of energy-aware

protocols from minimizing energy expenditure to optimizing it. Moreover, in many cases, different energy storage types (rechargeable

battery and a capacitor) require different algorithms. We develop algorithms for calculating time fair energy allocation in systems with

deterministic energy inputs, as well as in systems where energy inputs are stochastic.

Index Terms—Energy harvesting, ultra-low-power networking, active RFID, indoor radiant energy, measurements, energy-aware

algorithms

Ç

1 INTRODUCTION

RECENT advances in the areas of solar, piezoelectric, and
thermal energy harvesting [40], and in ultra-low-power

wireless communications [49] will soon enable the realiza-
tion of perpetual energy harvesting wireless devices. When
networked together, they can compose rechargeable sensor
networks [26], [41], [54], networks of computational
RFIDs [20], and Energy Harvesting Active Networked Tags
(EnHANTs) [15], [18]. Such networks will find applications
in various areas, and therefore, the wireless industry is
already engaged in the design of various devices (e.g., [5]).

In this paper, we focus on devices that harvest
environmental light energy. Since there is a three orders of
magnitude difference between the light energy available
indoor and outdoor [18], [42], significantly different
algorithms are required for different environments. How-
ever, there is lack of data and analysis regarding the energy
availability in such environments. Hence, over the past two
years, we have been conducting a first-of-its-kind measure-
ment campaign that enables characterizing the energy
availability in indoor environments. We describe the results
and show that they provide insights that can be used for
the development of energy-harvesting-aware algorithms
and systems.

Clearly, there has been an extensive research effort in the
area of energy efficient algorithms for sensor networks and

for wireless networks in general. However, for devices with

renewable energy sources, fundamentally different pro-

blems arise. Hence, in the second part of this paper, we

focus on developing algorithms for determining the energy

spending rates and the data rates in various scenarios.
To describe our contributions, we introduce below

several dimensions of the vast algorithm design space for

energy-harvesting devices:

. Environmental energy model: deterministic and par-
tially predictable energy profile, stochastic process,
and model-free.

. Energy storage type: battery and capacitor.

. Ratio of energy storage capacity to energy harvested:
large to small.

. Time granularity: subseconds to days.

. Problem size: stand-alone node, node pair (link),
cluster, and multihop network.

The combinations of values along these dimensions

induce several “working points,” some of which have been

studied recently (see Section 2).

1.1 Environmental Energy Models

The model representing harvested energy depends on

various parameters such as the energy source (e.g., solar

or kinetic), the properties of the environment, and the

device’s behavior (stationary, semistationary, or mobile).

Fig. 1 provides examples of radiant (light) energy sources in

different settings. In Fig. 1a, the energy availability is time-

dependent and predictable. On the other hand, in Fig. 1b

that corresponds to an indoor environment, it is time-

dependent and periodic, but harder to predict. Time-

dependent and somewhat periodic behaviors (along with

inputs such as weather forecasts) would allow to develop

an energy profile [12], [27]. We will refer to ideal energy

profiles that accurately represent the future as deterministic
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profiles, and to those that are inaccurate as partially
predictable profiles.

Energy behavior that does not warrant a time-dependent
profile appears in Fig. 1c, which shows the irradiance
recorded by a mobile device carried around Times Square in
New York City at nighttime. In this case, the energy can be
modeled by a stochastic process. Other scenarios where
stochastic models are a good fit are a floorboard that gathers
energy when stepped on and a solar cell in a room where
lights go on and off as people enter and leave. Finally, in
some settings not relying on an energy model (a model-free
approach) is most suitable.

1.2 Energy Storage Types—Linear and Nonlinear

To operate when not directly powered by environmental
energy, energy harvesting devices need energy storage: a
rechargeable battery or a capacitor. Rechargeable batteries can be
modeled by an ideal linear model, where the changes in the
energy stored are linearly related to the amounts of energy
harvested or spent, or more realistically by considering
their chemical characteristics [43]. Use of capacitors for
storing harvested energy recently started gaining attention
[18], [20], [26], [54]. In this paper, we consider nonlinearity of
capacitor-based devices: in a simple capacitor-based device,
the amount of power harvested depends both on the
amount of energy provided (irradiance), and on the amount of
energy stored [20], [35]. The nonlinear relations are demon-
strated in Fig. 2.1

1.3 Storage Capacity, Decision Timescale, and
Problem Size

Storage capacity versus amount of energy harvested. Energy
storage capacity can vary from 0.16 J for an EnerChips
device [1] to 4,700 J for an AA battery. The environmental
energy availability also varies widely, from thousands

of J=cm2=day in sunny outdoor conditions to under
2 J=cm2=day in indoor environments (see Section 4).
Different combinations require different algorithmic ap-
proaches. For example, when the storage is small compared
to the harvesting rate, the algorithms must continuously
keep track of the energy levels, to guarantee that the storage
is not depleted or that recharging opportunities are not
missed. On the other hand, with relatively large storage,
simpler algorithms can be used.

Time granularity. Nodes can characterize the received
energy and make decisions on timescales from seconds to
days. This timescale is related to the storage-harvesting
ratio and the environmental energy model.

Problem/network size. Energy harvesting affects nodes’
individual decisions, pairwise (link) decisions, and beha-
vior of networked nodes (e.g., routing and rate adaptation).

1.4 Our Contributions

First, we present the results of a 16 month-long indoor radiant
energy measurements campaign and a mobile outdoor light
energy study that provide important inputs to the design of
algorithms. We discuss the energy available in various
indoor environments. We also show that in indoor
environments, the energy models are mostly partially
predictable and that simple parameters can significantly
improve predictions when the time granularity is at the
order of days. The indoor light energy traces that we have
collected are available at enhants.ee.columbia.edu and in
the CRAWDAD repository [19]. To the best of our knowl-
edge, this work is the first to present long-term indoor
radiant energy measurements.

Second, we formulate resource allocation problems for
energy-harvesting devices. The energy available to such
devices often varies in time (e.g., throughout the day or
among different days). Hence, in this paper, we aim to
achieve “smooth” allocation of resources along the time axis in
the presence of varying environmental energy.

We consider deterministic energy profile and stochastic
environmental energy models, for battery-based systems
and for capacitor-based systems, and focus on the cases of a
single node and a node pair (link). For the deterministic
profile environmental energy model, we use the lexico-
graphic maximization and utility maximization frameworks
to obtain the energy spending rate allocations for a node
and the data rate allocations for a link. For the stochastic
environmental energy model, we consider the case in which
the energy inputs are i.i.d. random variables (e.g., a mobile
device outdoors), and show how to treat it as an average-cost
Markov decision process (MDP). We obtain optimal energy
spending policies (both for battery-based and capacitor-
based systems) for a single node and a node pair (link) that
can be precomputed in advance. To the best of our
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Fig. 1. Examples of different light energy sources: (top) deterministic
profile (Las Vegas, NV [3], outdoors), (middle) partially predictable
profile (New York, NY, a static indoor node), and (bottom) stochastic
process (New York, NY, a mobile node in Times Square at nighttime).

1. Solar cells have highly nonlinear output-versus-voltage characteristics,
as demonstrated in Fig. 2. In simple systems, the voltage of the solar cell is
determined by the voltage of the energy storage device. Within the battery
operating range, the battery voltage is nearly constant. Capacitor voltage, on
the other hand, is directly related to the energy stored on a capacitor, and
changes substantially as energy is harvested or spent.

Fig. 2. An example of harvested power versus energy storage curves for
a capacitor-based light energy harvesting system.



knowledge, our work is the first that models the nonlinearity
of the capacitor-based system illustrated in Fig. 2. We
provide numerical results that demonstrate its effect.

This paper is organized as follows: Section 2 reviews the
related work. Section 3 presents the model and Section 4
describes the measurements. Sections 5 and 6 describe
algorithms for the deterministic profile and stochastic
process energy models, respectively. Section 7 presents
the numerical results. We summarize and discuss future
work in Section 8.

2 RELATED WORK

Energy efficiency in wireless networks has long been a
subject of research. In comparison, energy harvesting in
wireless networks has only recently started gaining atten-
tion. The developments in this area include wireless
energy-harvesting device design and development [26],
[41], [46], [47], [53], [54], and exploration of theoretic and
algorithmic approaches.

In this paper, we characterize indoor light energy for low-
power energy-harvesting devices. Since large-scale outdoor
solar panels have been used for decades, properties of the
Sun’s energy were examined in depth [3], [31], [42].
Practical outdoor solar energy considerations for energy-
harvesting in sensor networks (e.g., light obstructions and
scattering) were discussed in [47]. Until recently using
indoor light energy for networking applications was
considered impractical, and indoor light was studied
mostly in the areas of architecture and ergonomics [21],
[44]. However, in these domains, the important factor is how
humans perceive the given light (photometric characterization—
i.e., measurements in Lux) rather than the energy of the light
(radiometric characterization). Photometric measurements by
sensor nodes were reported in [2] and [20]. Photometric
measurements, however, do not provide energetic char-
acterization, and there is currently lack of data (e.g., traces)
and analysis (e.g., variability, predictability, and correla-
tions) regarding energy availability [42].

This paper also deals with resource allocation for energy-
harvesting devices. The related work in this area can be
classified according to the environmental energy model
employed and related to the general settings described in
the previous section:

. Deterministic profile. In [23] and [27], duty cycle
adaptations (mostly for single nodes) are considered.
Transmission power adaptation and transmission
scheduling for a scenario with an energy-harvest-
ing transmitter and two receivers are examined in
[50] and [8], respectively. For a network, various
metrics are considered including data collection
rates [12], data retrieval rates [51], throughput
maximization [11], and routing efficiency [33].
Per-slot short-term predictions are used to obtain
(per-slot) data rates in [34].

. Partially predictable profile. While considering en-
ergy predictable, [11], [27], [34], [38] have provi-
sions for adjustments in cases in which the
predictions are inaccurate.

. Stochastic process. Dynamic activation of energy-
harvesting sensors is described in [25] for a single

node, and for a cluster in [28]. Admission and power
allocation control policies are developed in [13].
Routing and scheduling policies are developed in
[30]. Maximizing the utility of the average data rates
via joint power allocation and energy management is
examined in [24]. Energy allocation policies for
source-channel coding are developed in [10].

. Model-free approach. Duty cycle adjustments for a
single node (and under the linear storage model) are
examined in [48]. A capacitor-based system is pre-
sented and the capacitor leakage is studied in [54].

We aim to allocate nodes’ resources in a “smooth” way
with respect to time. The need for policies that enable such
behavior in energy-harvesting devices has been previously
noted [12], [27], [37], [48]. Smoothing node duty cycles
using a control theory approach is examined in [48]. Energy
allocation vectors with minimal variance are sought in [37].
Both [37] and [48] consider linear energy storage models
and focus mainly on single node scenarios. We note that
the approach introduced in [52] for throughput optimiza-
tion in QoS-constrained single node scenarios (for non-
energy-harvesting devices) can also be used to achieve
smooth energy allocation in energy-harvesting devices
(where finite energy storage constraint can be related to
the QoS buffer constraint [50]). A throughput optimization
framework for energy-harvesting nodes [11], developed in
parallel with our work, can also be extended to achieve
smooth resource allocation. However, applications of these
frameworks to energy-harvesting scenarios result in im-
plicit assumptions of linear energy storage. The model
developed in this paper allows incorporating general
(linear and nonlinear) energy storage models. Furthermore,
we formulate problems and present practical algorithms for
both single node and link scenarios.

We note that resource allocation in energy harvesting
devices has some similarities with power consumption
scheduling in power networks (e.g., [32] and references
therein). However, these works consider scenarios where
energy sources are centralized and infinite. In contrast, in
our settings energy availability is restricted, and is specific
to each node and each time slot.

3 MODEL AND PRELIMINARIES

In this paper, we focus both on light measurements and on
resource allocation problems. The relationships between
variables characterizing energy availability are illustrated
in Fig. 3. Table 1 summarizes the notation.

We focus on discrete-time models, where the time axis is
separated into K slots, and a decision is made at the
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Fig. 3. A schematic diagram of the relationships between energy

parameters: irradiance (I), irradiation (H), energy available to a device

(D), and energy harvested by the device (Q).



beginning of a slot i (i ¼ f0; 1; . . . ; K � 1g). We denote the
energy storage capacity by C and the amount of energy
stored by BðiÞ (0 � BðiÞ � C). We denote the initial and the
final energy levels by B0 and BK , respectively.

Our measurements record irradiance, radiant energy
incident onto surface (in W=cm2), denoted by I. Irradiation
HT (in J=cm2) is the integral of irradiance over a time period
T . In characterizing environmental light energy, we are
particularly interested in diurnal (daily) environmental
energy availability. For T ¼ 24 hours, we denote the daily
irradiation by Hd.

The amount of energy (in J) a solar cell with given physical
properties (size, efficiency) can harvest in a time slot i is
denoted by DðiÞ. For a solar cell with area A and efficiency
�, DðiÞ ¼ A � � �HðiÞ. For the numerical results presented in
this paper we use A ¼ 10 cm2 and � ¼ 1% (i.e., efficiency of
an organic solar cell) [18].

The energy a node harvests from the environment in a
time slot i is denoted by QðiÞ. QðiÞ is a function of DðiÞ, and
may also depend on BðiÞ. Specifically, for a battery-based
device, QðiÞ ¼ DðiÞ. For a capacitor-based device, QðiÞ ¼
qðDðiÞ; BðiÞÞ, where qðDðiÞ; BðiÞÞ is a nonlinear function of
DðiÞ (see Section 1.2). We refer to energy storage where QðiÞ
is linear in DðiÞ as linear energy storage, and to energy
storage where QðiÞ is nonlinear in DðiÞ as nonlinear energy
storage. Functions qðDðiÞ; BðiÞÞ for a capacitor, derived from
capacitors’ electric properties, are shown in Fig. 2. To derive
numerical results for nonlinear energy storage, we use
qðDðiÞ; BðiÞÞ ¼ DðiÞ �DðiÞ � ðBðiÞ � C=2Þ2=ð�nonlin � ðC=2Þ2Þ,
where �nonlin is the energy storage nonlinearity parameter.2

These functions have properties similar to the functions
shown in Fig. 2.

The energy spending rate is denoted by sðiÞ. The
“storage evolution” of energy harvesting devices can be
expressed as

BðiÞ ¼ minfBði� 1Þ þQði� 1Þ � sði� 1Þ; Cg: ð1Þ

We denote the total amount of energy the device is
allocating by Q̂, where Q̂ ¼

P
i QðiÞ þ ðB0 �BKÞ. For

simplicity, some of the developed energy allocation algo-
rithms use quantized BðiÞ and QðiÞ values. We denote the
quantization resolution by �.

We consider the behavior of single nodes and node pairs
(links). We denote the endpoints of a link by u and v, and

use these as subscripts for link enpoints’ energy variables
(e.g., Cu and B0;u correspond, respectively, to node u’s
energy storage capacity and initial storage state). We
denote the data rates of u and v by ruðiÞ and rvðiÞ,
respectively. For a single node, we optimize the energy
spending rates sðiÞ, which can provide inputs for determin-
ing transmission power, duty cycle, sensing rate, or commu-
nication rate. For a link, we optimize the communication
rates ruðiÞ and rvðiÞ. We denote the costs to transmit and
receive a bit by ctx and crx.

Often the incoming energy varies throughout the day or

among different days. We aim to allocate the energy or the

data rates as much as possible in a uniform way with respect to

time. We achieve this objective by using the lexicographic

maximization and utility maximization frameworks. These

frameworks are typically applied to achieve fairness among

nodes [9], [12], [29], [34], [39]. In this paper, we apply them to

achieve time-fair resource allocation. In the lexicographic

maximization framework, we lexicographically maximize

the vector fsð0Þ; . . . ; sðK � 1Þg (for a node), or the vector

fruð0Þ; . . . ; ruðK � 1Þ, rvð0Þ; . . . ; rvðK � 1Þg (for a link). In

utility maximization framework, wemaximize
PK�1

i¼0 UðsðiÞÞ

(for a single node) or
PK�1

i¼0 ½UðruðiÞÞ þ UðrvðiÞÞ� (for a link),

where Uð�Þ are concave nondecreasing twice-differentiable

continuous functions (e.g., Uð�Þ ¼ logð�Þ, Uð�Þ ¼
ffiffiffiffiffiffi
ð�Þ

p
, Uð�Þ ¼

ð�Þ1��=ð1� �Þ; � > 1).3 To derive numerical results, we use

Uð�Þ ¼ logð�Þ or Uð�Þ ¼ logð1þ ð�ÞÞ. In general, the solutions

obtained by applying the two frameworks are not the same.

The solutions are identical in certain cases, such as those

examined in Lemma 1 and in Observation 1.

4 CHARACTERIZING LIGHT ENERGY

To characterize indoor energy availability, since June 2009
we have been conducting a light measurement study in
office buildings in New York City. In this study, we take
long-term measurements of irradiance (I, in units W=cm2) in
several indoor locations, and also study a set of shorter-
term indoor and outdoor mobile device measurements.
Table 2 provides a summary of the indoor measurement
locations. The locations are shown schematically in Fig. 4.
For the measurements, we use TAOS TSL230rd photometric
sensors [4] installed on LabJack U3 DAQ devices. These
photometric sensors have a high dynamic range, allowing
to capture widely varying irradiance conditions. We
verified the accuracy of the sensors with a NIST-traceable
Newport 818-UV photodetector. In addition to the indoor
measurements, we also analyze a set of outdoor irradiance
traces provided by the US Department of Energy National
Renewable Energy Laboratory (NREL) [3].

The provided measurements and irradiance traces can be
used to determine the performance achievable by a parti-
cular device, for system design (e.g., choosing a suitable
energy storage or energy harvesting system component), and
for determining which algorithms to use. The traces we have
collected can also be used as energy feeds to simulators and
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TABLE 1
Nomenclature

2. We note that QðiÞ ¼ DðiÞ for �nonlin !1.

3. We note that the utility maximization framework achieves proportional
fairness for Uð�Þ ¼ logð�Þ and max-min fairness for Uð�Þ ¼ ð�Þ1��=ð1� �Þ with
�!1 [36].



emulators. The traces are available at enhants.ee.columbia.
edu and in the CRAWDAD repository [19].

4.1 Device Energy Budgets and Daily Energy
Availability

Sample irradiance measurements (for three setups over the
same 10 days) are provided in Fig. 5. One use of the
measurements is to determine energy budgets for indoor
energy harvesting devices. Hence, we calculate the total
daily irradiation Hd, representing energy incident onto 1 cm2

area over the entire course of a day. Fig. 6 demonstrates the
Hd values for setup L-1. Table 2 presents the average and
the standard deviation values, Hd and �ðHdÞ. These bit rates
are calculated assuming solar cell efficiency of � ¼ 1%

(i.e., efficiency of an organic solar cell) and solar cell size
A ¼ 10 cm2. We note that for the different setups, the Hd

values vary greatly. The differences are related to office
layouts, presence or absence of direct sunlight, as well as
the use of shading, windows, and indoor lights. Table 2 also
shows the bit rate r a node would be able to maintain
throughout a day when exposed to irradiation Hd. As an
energy cost to communicate, 1 nJ/bit is used [18].4 These bit
rates can be seen as “communication budgets” for light
energy harvesting devices (such as EnHANTs [18], [46],
[53]) deployed in indoor environments.

To predict daily energy availability Hd, a node can use a
simple exponential smoothing approach, calculating a pre-
dictor for slot i, cHdðiÞ, as cHdð1Þ  Hdð0Þ, cHdðiÞ  � �Hdði�
1Þ þ ð1� �Þ � cHdði� 1Þ for � constant, 0 � � � 1. The error
for such a simple predictor is relatively high. For example,
for setup L-1 the average prediction error is over 0:4Hd, and
for setup L-2 it is over 0:5Hd. For the outdoor data sets, the
average prediction errors are approximately 0:3Hd.

Improving the energy predictions for outdoor conditions
using weather forecasts has been studied in [31] and [45]. We
examined whether the Hd values in the indoor settings are
correlated with the weather data [6]. We determined
statistically significant correlations for all setups except L-2.5

This suggests that for some indoor setups the energy

predictions may be improved, similar to outdoor environ-
ments, by incorporating the weather forecasts into the
predictions.

Work week pattern also influences indoor radiant energy
in office environments, particularly for setups that do not
receive direct sunlight. For setup L-2, for example, Hd ¼

1:63 J=cm2 on weekdays, and Hd ¼ 0:37 J=cm2 on weekends
(it receives, on average, 9.7 hours of office lighting per day
on weekdays and under 1 hour on weekends). By keeping
separate predictors for weekends and weekdays, the
average prediction error for the weekdays is lowered from
0:5Hd to 0:26Hd.

We also examined correlations between the Hd values of
different data sets, and determined statistically significant
correlations for a number of setups. For example, for setups
L-1 and L-2 located in the same room, � ¼ 0:56 (p < :001),
and for setups L-1 and L-5 facing in the same direction,
� ¼ 0:71 (p < :001).6 This indicates that in a network of
energy harvesting devices, a device will be able to infer some
information about its peers’ energy availability based on its own
(locally observed) energy state.

4.2 Short-Term Energy Profiles

To characterize energy availability at different times of day,
we determine the HT values for different 0.5 hour intervals
T , generating energy profiles for the setups. Sample energy
profiles are shown in Fig. 7, where the left side shows the
irradiance curves corresponding to different days overlayed
on each other, and the right side shows the HT values, with
errorbars representing �ðHT Þ. Due to variations in illumina-
tion and occupancy patterns, the energy profiles of different
locations can be very different. For example, while setup L-3
exhibits daylight-dependent variations in irradiance, for
setup L-2 the irradiance is either 0 or 45 �W=cm2 for most of
the day (as this setup receives mostly indoor light). In
addition, while for setup L-2 the lights are often on during
late evening hours, for setup L-3 it is almost never the case.
The demonstrated �ðHT Þ values suggest that these energy
inputs generally fall under the partially predictable profile
energy models.
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TABLE 2
Light Energy Measurement Setups—Average Daily Irradiation and Achievable Bit Rates

4. The bit rate is calculated as r ¼ A � � �Hd=ð3,600 � 24Þ=ð10
�9Þ.

5. The correlation coefficients of the Hd values with the weather data are
as follows: L-1: � ¼ 0:35 (p < :001), L-2: no statistically significant (p < :05)
correlation, L-3: � ¼ 0:137 (p < :05), L-4: � ¼ 0:29 (p < :001), L-5: � ¼ 0:24
(p < :05), and L-6: � ¼ 0:71 (p < :001).

6. We also detected the following statistically significant correlations:
fL-1; L-3g: � ¼ �0:19 (p < :05), fL-3; L-4g: � ¼ 0:52 (p < :001), fL-3; L-6g:
� ¼ 0:25 (p < :05), and fL-4; L-6g: � ¼ 0:47 (p < :001).



We have studied whether, similarly to outdoor environ-
ments, in the indoor environments the accuracy of the
energy profile for a given day can be improved when a
device has observed some of the incoming energy [7], [31].
We examined correlations between the amount of energy
collected in a particular time slot i, HT ðiÞ, and the amount
of energy available in some later time slot j, HT ðjÞ (where
j > i). We also examined correlations between the amount
of energy collected up to a particular time slot j,P

i�j HT ðiÞ, and the energy collected over the subsequent
time slots,

P
i>j HT ðiÞ.

7 We determined that such correla-
tions are present in indoor environments, but are generally
stronger in outdoor settings. For example, for the outdoor
setup O-1 the correlation between the energy received in
the 21st time slot (10:30-11:00 AM) and in the 33rd time slot
(16:30-17:00 PM) is � ¼ 0:5 (p < :001), while for the indoor
setup L-1 it is � ¼ 0:2 (p < :001). For the outdoor setup O-1,
the correlation between the amount of energy received
before 08:00 AM,

P
i�16 HT ðiÞ, and the amount of energy

received after 08:00 AM,
P

i>16 HT ðiÞ, is � ¼ 0:77 (p < :001),
while for the indoor setup L-3 it is � ¼ 0:31 (p < :001). These
results suggest that profile prediction techniques developed
for outdoor systems may be extended to indoor environ-
ments, but their performance indoors is likely to be worse.

4.3 Mobile Measurements

We have also conducted shorter term experiments for mobile
devices. Table 3 provides a summary of the measurements
conducted, demonstrating average irradiance I, standard

deviation of the irradiance �ðIÞ, and the corresponding
sustainable bit rate r. It can be observed that energy
availability differs drastically for different experimental
conditions.

A sample irradiance trace for a measurement setup
carried around Times Square in New York City at nighttime
(measurement set M-6) was shown in Fig. 1c. Fig. 8
demonstrates an irradiance trace of a device carried around
a set of indoor and outdoor locations (note the log scale of
the y-axis) during mid-day on a sunny day (measurements
set M-1). These measurements highlight the disparity
between the light energy available indoors and outdoors.
For example, inside a lab, the irradiance was 70 �W=cm2,
while in sunny outdoor conditions it was 32 mW=cm2.
Namely, the outdoor to indoor energy ratio was more than
450 times. In general, we observed that mobile devices’
energy levels are diverse, poorly predictable, and could in
some cases be represented by stochastic energy models.

5 DETERMINISTIC ENERGY PROFILE

In this section, we consider the deterministic profile energy
model (similar to the models studied in [12], [27], and
[38]). We formulate optimization problems that apply to
both linear and nonlinear energy storage8 for a single node
and for a link, and introduce algorithms for solving the
formulated problems.

5.1 Single Node: Optimizing Energy Spending

To achieve smooth energy spending for a node, we
formulate the following problems where we optimize the
node energy allocation vector fsðiÞg using the utility
maximization and lexicographic maximization frameworks.

Time Fair Utility Maximization (TFU) Problem:

max
sðiÞ

XK�1

i¼0

UðsðiÞÞ; ð2Þ

s:t: : sðiÞ � BðiÞ 8 i; ð3Þ

BðiÞ � Bði� 1Þ þQði� 1Þ � sði� 1Þ 8 i � 1; ð4Þ

BðiÞ � C 8 i; ð5Þ

Bð0Þ ¼ B0; BðKÞ � BK ; ð6Þ

BðiÞ; sðiÞ � 0 8 i: ð7Þ
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Fig. 5. Sample irradiance measurements in locations L-2, L-3, and O-1

Fig. 6. Long-term daily irradiation (Hd) for setup L-1 (15 August 2009-
13 September 2010).

Fig. 4. A schematic diagram of the indoor irradiance measurement
locations L-1-L-6.

7. Additional correlation results are available in [16].
8. Recall that a linear energy storage model applies to a battery and that a

nonlinear energy storage model may represent a capacitor.



Recall that UðsðiÞÞ is a concave nondecreasing function.
Recall, additionally, that for linear energy storage, QðiÞ ¼
DðiÞ, and for nonlinear energy storage, QðiÞ ¼ qðDðiÞ; BðiÞÞ
(see Section 3). Constraint (3) ensures that a node does not
spend more energy than it has stored, (4) and (5) represent
the energy storage evolution dynamics, and (6) sets the
initial and final energy storage levels to B0 and BK .

Time Fair Lexicographic Assignment (TFLA) Problem:

Lexicographically maximize: fsð0Þ; . . . ; sðK � 1Þg ð8Þ

s:t:: constraints ð3Þ-ð7Þ:

Fig. 9 shows an example of node energy allocation
vectors fsðiÞg obtained by solving the TFU and the TFLA
problems. Fig. 9a shows the energy profile fDðiÞg used as
an input to these problems. This energy profile corre-
sponds to the light energy available in an indoor location
L-1 (see Table 2). Fig. 9b shows the energy allocation
vectors fsðiÞg obtained by solving the TFLA problem under
the linear energy storage model and by solving the TFU
problem under the nonlinear energy storage model.9

Next, we provide a general algorithm (for linear and
nonlinear energy storage) of a relatively high complexity, a
faster algorithm for linear energy storage, and a very fast
algorithm for large linear energy storage.

Assuming energy inputs and energy storage to be
quantized, the TFU problem can be solved by the dynamic
programming-based Time Fair Rate Assignment (TFR) algo-
rithm (Algorithm 1).10

In the TFR algorithm, for each fi; BðiÞg we determine

hði; BðiÞÞ ¼ max
sðiÞ�BðiÞ

½UðsðiÞÞ

þ hðiþ 1;minðBðiÞ þQðiÞ � sðiÞ; CÞÞ�:

Going “backwards” from i ¼ K � 1, we thus obtain a vector

fsð0Þ; . . . ; sðK � 1Þg that maximizes hð0; B0Þ; this is the

optimal energy allocation vector. Recall that we denote the

energy quantization resolution by �. In the TFR algorithm,

we calculate hði; BðiÞÞ for each of the K � ðC=�Þ tuples

GORLATOVA ET AL.: NETWORKING LOW-POWER ENERGY HARVESTING DEVICES: MEASUREMENTS AND ALGORITHMS 7

Fig. 7. Sample energy profiles for indoor locations L-1, L-2, L-3, and for the outdoor installation O-1. Left: irradiance measurements from several
different days, overlayed; Right: HT values, with errorbars representing �ðHT Þ.

TABLE 3
Mobile Light Energy Measurements—Average Irradiance and Achievable Bit Rates

Fig. 8. Irradiance measurements recorded by a mobile device: a mix of
indoor and outdoor conditions (note the log scale of the y-axis).

9. The solutions were obtained for the following parameters: C ¼ 0:5 � Q̂,
B0 ¼ BK ¼ 0:4 � C, UðsðiÞÞ ¼ logðsðiÞÞ, and �nonlin ¼ 1:05.

10. While other ways of solving the TFU problem can be considered,
dynamic programming offers a natural solution approach.



fi; BðiÞg. Maximizing an instance of hði; BðiÞÞ requires
considering all sðiÞ such that sðiÞ � BðiÞ � C. Thus, for
each tuple fi; BðiÞg, the TFR algorithm performs at most
C=� operations. The running time of the TFR algorithm is,
therefore, OðK � ½C=��2Þ.

For linear energy storage (qðDðiÞ; BðiÞÞ ¼ DðiÞ, i.e., a
battery), we refer to the TFU and the TFLA problems as
TFU-LIN and TFLA-LIN. For these problems, we obtain the
following Lemma, whose proof is given in Appendix I,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TMC.2012.154.

Lemma 1. The optimal solutions to the TFU-LIN problem and
the TFLA-LIN problem are equal.

For solving the TFLA-LIN and the TFU-LIN problems, we
develop the Progressive Filling (PF) algorithm (Algorithm 2),
inspiredby the algorithms formax�min fair flowcontrol [9].
The PF algorithm starts with sðiÞ  0 8 i, and iterates
through the slots, increasing the sðiÞ value of each slot by �
on every iteration. The algorithm verifies that increasing sðiÞ
does not result in shortage of energy for other slots, or in the
lackof final energyBK .An sðiÞvalue is increasedonlywhen it
does not interfere with the spending in slots with smaller sðiÞ
values, thus the resulting solution ismax�min fair. At each
step of the PF algorithm, the verification subroutine of
complexity OðKÞ is executed. Recall that Q̂ ¼

P
i QðiÞ þ

ðB0 �BKÞ. The algorithm takes Q̂=� spending increase
steps, and K additional steps to “fix” the slots. Thus, the PF
algorithm runs inOðK � ½K þ Q̂=��Þ time.Assuming thatK is
small compared to Q̂=�, for C and Q̂ that are on the same
order, the PF algorithm is faster than the TFR algorithm.

Finally, when the energy storage is large compared to the
energy harvested, the TFLA-LIN and TFU-LIN problems can
be solved easily. Below we define Large Storage (LS) and
generalized Large Storage (LS-gen) Conditions, and demon-
strate that when they hold, the optimal policy is a simple
one.11 Let sðiÞ ¼ Q̂=K 8 i, and let ~BðiÞ ¼ ½

Pi�1
j¼0 QðjÞ� � ði�

1Þ � sðiÞ 8 i 1 � i � K.

Definition 1. The LS Conditions hold, if

B0 � j min
1�i�K

~BðiÞj

and

C �B0 � max
1�i�K

~BðiÞ:

Definition 2. The LS-gen Conditions hold, if B0 � ½
P

i QðiÞ� �
ð1� 1=KÞ and C �B0 � ½

P
i QðiÞ� � ð1� 1=KÞ.

The proofs of the following lemmas are given in
Appendices II and III, which are available in the online
supplemental material, respectively.

Lemma 2. When the LSConditions or the LS-genConditions hold,
the optimal solution to the TFLA-LIN is sðiÞ ¼ Q̂=K 8 i.

Lemma 3. When the LS Conditions or the LS-gen Conditions
hold, the optimal solution to the TFU-LIN, for UðsðiÞÞ that are
twice differential strictly concave on ð0; Q̂�, and that satisfy

ðIÞ U 0ð�Þ > 0 on ð0; Q̂� and U 0ð0Þ ¼ 0;

or ðIIÞ U 0ð�Þ > 0 on ½0; Q̂�;

or ðIIIÞ U 0ð�Þ > 0 on ð0; Q̂� and lim
x!0

UðxÞ ¼ �1;

is sðiÞ ¼ Q̂=K 8 i.

Examples of Uð�Þ that satisfy (I), (II), and (III) include:
(I): Uð�Þ ¼ ð�Þ1��=ð1� �Þ for 0 < � < 1 [36], (II): Uð�Þ ¼
logð�þ ð�ÞÞ for � > 0, used, for � ¼ 1, in, for example, [11],
[14], and (III): Uð�Þ ¼ logð�Þ, used in, for example, [34].
Verifying that the LS Conditions (or the LS-gen Conditions)
hold and determining the corresponding optimal policy is
computationally inexpensive.

5.2 Link: Optimizing Data Rates

For a link, we formulate the following problems where we
optimize data rate allocation vectors fruðiÞg, frvðiÞg.

Link Time Fair Utility Maximization (LTFU) problem:

max
ruðiÞ;rvðiÞ

XK�1

i¼0

½UðruðiÞÞ þ UðrvðiÞÞ�; ð9Þ

s:t: : ctxruðiÞ þ crxrvðiÞ � suðiÞ 8 i; ð10Þ

ctxrvðiÞ þ crxruðiÞ � svðiÞ 8 i;

u; v: constraints ð3Þ-ð7Þ:
ð11Þ
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Fig. 9. (a) Node energy profile fDðiÞg, and (b) the corresponding energy
allocation vectors fsðiÞg obtained by solving the TFLA problem (for
linear energy storage model) and the TFU problem (for nonlinear energy
storage model).

11. To determine if the LS Conditions hold, a node needs to know
fQð0Þ; . . . ; QðK � 1Þg, while determining if the LS-gen Conditions hold
requires only the knowledge of

P
i QðiÞ. LS-gen Conditions can be used, for

example, if light energy harvesting nodes characterize their energy
availability by the daily irradiation Hd and do not calculate their energy
profiles (see Section 4.2).



Link Time Fair Lexicographic Assignment (LTFL) problem:

Lexicographically maximize :

fruð0Þ; . . . ; ruðK � 1Þ; rvð0Þ; . . . ; rvðK � 1Þg

s:t:: ð10Þ; ð11Þ; u; v: constraints ð3Þ-ð7Þ:

ð12Þ

Since the optimal solution to the LTFL problem is max�
min fair, it assigns the data rates such that ruðiÞ ¼ rvðiÞ8 i
(since for the max�min fairness objective no increase in
one of the rates can “outweigh” the decrease in the other).
Thus, the LTFL problem can be restated as

Lexicographically maximize : frð0Þ; . . . ; rðK � 1Þg; ð13Þ

s:t:: rðiÞ � ðctx þ crxÞ � minðsuðiÞ; svðiÞÞ 8 i; ð14Þ

u; v: constraints ð3Þ � ð7Þ;

where rðiÞ ¼ ruðiÞ ¼ rvðiÞ.

Examples of solutions to the LTFU and LTFL problems

are shown in Fig. 10. Fig. 10a shows the energy profiles of

nodes u and v. These energy profiles correspond to the light

energy available in indoor locations L-1 and L-2 (see

Table 2) on the same day. Fig. 10b shows the data rate

allocation vectors fruðiÞg and frvðiÞg obtained by solving

the LTFU and the LTFL problems.12

In general, the solutions to the LTFL and LTFU problems
are not the same. The following observation, whose proof
appears in Appendix IV, which is available in the online
supplemental material, identifies a case where the solutions
are identical.

Observation 1. When ctx ¼ crx, the LTFL problem and the
LTFU problem have the same solution.

For quantized energy values, the LTFU problem can be
solved with an extension of the TFR algorithm, referred to
as LTFR. Over all fruðiÞ; rvðiÞg such that ctxruðiÞ þ crxrvðiÞ ¼
suðiÞ � BuðiÞ; ctxrvðiÞ þ crxruðiÞ ¼ svðiÞ � BvðiÞ, the LTFR al-
gorithm determines, for each fi; BuðiÞ; BvðiÞg,

hði; BuðiÞ; BvðiÞÞ ¼ max½UðruðiÞÞ þ UðrvðiÞÞ þ hðiþ 1;

minðBuðiÞ þQuðiÞ � suðiÞ; CuÞ;

minðBvðiÞ þQvðiÞ � svðiÞ; CvÞÞ�:

Vectors fruð0Þ; . . . ; ruðK � 1Þg and frvð0Þ; . . . ; rvðK � 1Þg
that maximize hð0; B0;u; B0;vÞ are the optimal. Since this

formulation considers all fi, BuðiÞ, BvðiÞg combinations and

examines all feasible rates ruðiÞ and rvðiÞ for each combina-

tion, the overall complexity of the LTFR algorithm is

OðK � ½Cu=��
2 � ½Cv=��

2Þ.
For linear energy storage, the LTFL problem can be

solved by an extension of the PF algorithm, referred to as

the LPF algorithm. Similarly to the PF algorithm, the LPF

algorithm goes through all slots and increases the slots’

allocation by � when an increase is feasible. Unlike the PF

algorithm, however, the LPF algorithm allocates the energy

of both nodes u and v. The running time of the LPF

algorithm is OðK � ½K þ ðQ̂u þ Q̂vÞ=��Þ.
Solving the LTFU or the LTFL problems directly may be

computationally taxing for small devices with limited

capabilities. Instead, the nodes may use the following low

complexity heuristic algorithms, which do not require

extensive exchange of information.
Decoupled Rate Control (DRC) algorithms. Initially, nodes u

and v determine independently from each other their energy

spending rates suðiÞ and svðiÞ for every slot i (i.e., using the

PF algorithm). Then, for each slot i, under constraints (10)

and (11), the nodes obtain a solution to

max
ruðiÞ;rvðiÞ

UðruðiÞÞ þ UðrvðiÞÞ

if the LTFU problem is being solved (LTFU-DRC algo-

rithm), and to max rðiÞ if the LTFL problem is being solved

(LTFL-DRC algorithm). These subproblems (each considers

a single slot i) can be easily solved. For the LTFL-DRC

algorithm, due to (14), the subproblem solution is

rðiÞ ¼ minðsuðiÞ; svðiÞÞ=ðctx þ crxÞ. For the LTFU-DRC algo-

rithm, a closed-form Oð1Þ solution to the subproblem can

be obtained for each particular function UðsðiÞÞ. For

example, for UðsðiÞÞ ¼ logðsðiÞÞ with ctx ¼ �crx, � > 1 [18],

for the case of svðiÞ ¼ �suðiÞ, 0 � � � 1, the optimal solution

is either fruðiÞ; rvðiÞg ¼ ðsuðiÞ=ðcrx � ð�
2� 1ÞÞÞf�� �; � � �� 1g

or fruðiÞ; rvðiÞg ¼ fsvðiÞ=ð2 � crxÞ; svðiÞ=ð2 � ctxÞg.
For linear energy storage, when the storage is large

compared to the energy harvested for both u and v, solving a

single instance of the LTFU-DRC or LTFL-DRC problem

obtains the overall solution. Moreover, as shown in the

lemma below, in this case the DRC solution is optimal. Thus,

in such case the optimal solution can be calculated with

little computational complexity. The proofs of the following

lemmas are given in Appendices V and VI, which are

available in the online supplemental material, respectively.

Lemma 4. If the LS Conditions or the LS-gen Conditions hold

for nodes u and v, the LTFL-DRC algorithm obtains the

optimal solution to the LTFL problem.

Lemma 5. If the LS Conditions or the LS-gen Conditions hold

for nodes u and v, for Uð�Þ that are twice differential strictly

concave on ð0; R� where R ¼ maxfQ̂u; Q̂vg=minfctx; crxg,

and that satisfy

ðIÞ U 0ð�Þ > 0 on ð0; R� and U 0ð0Þ ¼ 0;

or ðIIÞ U 0ð�Þ > 0 on ½0; R�;

or ðIIIÞ U 0ð�Þ > 0 on ð0; R� and lim
x!0

UðxÞ ¼ �1;
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12. The solutions were obtained for the following parameters:
Cu ¼ Cv ¼ 0:5 � Q̂u, B0;u ¼ B0;v ¼ BK;u ¼ BK;v ¼ 0:25 � Cu, ctx ¼ 0:1 nJ/bit,
crx ¼ 1 nJ/bit [18], UðrðiÞÞ ¼ logðrðiÞÞ, and QðiÞ ¼ DðiÞ (linear energy
storage).

Fig. 10. (a) Energy profiles of link endpoints u and v, and (b) the
corresponding data rate allocation vectors fruðiÞg and frvðiÞg obtained
by solving the LTFL and the LTFU problems.



the LTFU-DRC algorithm obtains the optimal solutions to
the LTFU problem.

In Section 7, we provide numerical results demonstrating
the rate allocation vectors fruðiÞ; rvðiÞg obtained by using
the DRC algorithms to solve the LTFU and LTFL problems.

6 STOCHASTIC ENERGY MODELS

In this section, we study models in which the energy
harvested in a slot is an i.i.d. random variable D. For
tractability, we assume that D takes one of M discrete
values ½d1; . . . ; dM � with probability ½p1; . . . ; pM �. D may
represent, for example, the energy harvested by a mobile
device in a short (seconds or minutes) time slot. For time
slots of days, it may represent the daily irradiation Hd

received by a device (when the energy storage is relatively
large, variations in energy availability within a day may be
abstracted, and Hd can be used to characterize energy
availability). We formulate the control problems and
determine corresponding policies for a single node and
for a link. The formulations apply to linear and nonlinear
(e.g., a capacitor) energy storage models. For a given
distribution of D, the optimal policy needs to be calculated
once. Thus, operating according to the optimal policy does
not require frequent computations.

Spending Policy Determination (SPD) problem. For a given
distribution of D, determine the energy spending rates sðiÞ
such that

max
sðiÞ

lim
K!1

1

K

XK�1

i¼0

UðsðiÞÞ: ð15Þ

This discrete time stochastic control process is an average cost
MDP, and can be solved with standard MDP solution
techniques. For example, using value iteration approach
and applying dynamic programming, we consider a large
number of slots K, and going “backwards” from i ¼ K � 1,
for each fi; BðiÞg, determine

hði; BðiÞÞ ¼ max
sðiÞ�BðiÞ

IE
D
½UðsðiÞÞ

þ hðiþ 1;min½BðiÞ þ qðDðiÞ; BðiÞÞ � sðiÞ; C�Þ�

¼ max
sðiÞ�BðiÞ

�
UðsðiÞÞ þ

XM

j¼1

pdj � hðiþ 1;

min½BðiÞ þ qðdj; BðiÞÞ � sðiÞ; C�Þ

�
:

ð16Þ

Performing this iterative procedure for a large number of

slots K, we obtain, for each energy storage level BðiÞ, a

corresponding stationary (same for all values of i) sðiÞ

value that approaches the optimal [22]. Although policy

calculations are computationally expensive (the running

time of this algorithm is Oð½C=��2 �M �KÞ), such a policy

needs to be computed only once for a particular

distribution of D. Fig. 11 presents example optimal energy

spending policies obtained by solving the SPD problem

for linear and nonlinear energy storage models. The daily

irradiation Hd for setup L-1 (see Fig. 6) is used as the

random variable D.13

For a link, we define the following problem.
Link Spending Policy Determination (LSPD) Problem:

max
ruðiÞ;rvðiÞ

lim
K!1

1

K

XK�1

i¼0

½UðruðiÞÞ þ UðrvðiÞÞ�: ð17Þ

Similarly to the SPD problem, the LSPD problem can be

solved with standard approaches to solving MDPs. For

example, using value iteration approach, we determine, for

each fi; BuðiÞ; BvðiÞg,

hði; BuðiÞ; BvðiÞÞ ¼ max IE
Du;Dv

½UðruðiÞÞ þ UðrvðiÞÞ

þ hðiþ 1;min½BuðiÞ þ qðDuðiÞ; BuðiÞÞ

� suðiÞ; Cu�;min½BvðiÞ þ qðDvðiÞ; BvðiÞÞ

� svðiÞ; Cv�Þ�;

ð18Þ

where the maximization is over all fruðiÞ; rvðiÞg such that

ctxruðiÞþ crxrvðiÞ ¼ suðiÞ �BuðiÞ, ctxrvðiÞþ crxruðiÞ ¼ svðiÞ �

BvðiÞ. This procedure is computationally complex. Similarly

to the SPD problem, it needs to be solved for a large number

of slots K, and has the complexity Oð½Cu=��
2 � ½Cv=��

2 �

Mu �Mv �KÞ. However, it needs to be computed only once.

Fig. 12 demonstrates example optimal link rate assignment

policy fruðiÞ; rvðiÞg as a function of fBuðiÞ; BvðiÞg obtained

by solving the LSPD problem. The daily irradiation Hd for
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Fig. 11. Optimal energy spending rates sðiÞ corresponding to different
energy storage levels, obtained by solving the SPD problem for linear
and nonlinear energy storage models.

Fig. 12. Optimal communication rates ruðiÞ (top) and rvðiÞ (bottom)
corresponding to different energy storage states, obtained by solving the
LSPD problem.

13. The solutions were obtained for the following parameters:
C ¼ 2:7 � IEðDðiÞÞ, UðsðiÞÞ ¼ logð1þ sðiÞÞ, and �nonlin ¼ 1:3.



setup L-1 (see Fig. 6) is used as the random variable Du and

the random variable Dv.
14

The MDP formulations can be easily extended to
consider other parameters, such as the cost to change the
energy spending rates sðiÞ, or the cost to change data rates
ruðiÞ and rvðiÞ.

7 NUMERICAL RESULTS

This section provides numerical results demonstrating the
use of the algorithms described in Section 5. Measurement
traces described in Section 4 are used as inputs to
the algorithms.

Fig. 13 shows the optimal energy spending allocation
vectors fsðiÞg for the TFU and the TFLA problems
presented in Section 5.1, for different values of energy
storage capacity C and initial energy storage state B0.

15 The
energy profile fDðiÞg used as an input to these algorithms
is shown in Fig. 13a. It corresponds to the average daily
energy profile for the indoor location L-3 (see Table 2).
Fig. 13b demonstrates the energy spending rate allocations
fsðiÞg that solve the TFLA-LIN and the TFU-LIN problems
(that is, linear energy storage model). These spending rates
were obtained using the PF algorithm. It can be observed
that larger energy storage allows for “smoother” energy
allocation. For this energy profile fDðiÞg, the LS Conditions
described in Section 5 are matched when C ¼ 2 J and
B0 ¼ 1 J. It can be observed that in this case the energy
spending rate allocation vector fsðiÞg corresponds to the
optimal policy given by Lemmas 2 and 3. Fig. 13c shows the
optimal solutions of the TFU problem with nonlinear energy
storage (for �nonlin ¼ 1:1) obtained using the TFR algorithm.
Such a system has not been analyzed before.

Fig. 14 shows the numerical results for the link data rate
determination problems presented in Section 5.2. The
energy profiles of indoor setups L-1 and L-2 (see Fig. 10a)
were used as inputs to the algorithms. The optimal
solutions to the LTFL and the LTFU problems for linear
energy storage model have been shown in Fig. 10. Fig. 14a
shows the optimal solution to the LTFU problem for
nonlinear energy storage (for �nonlin ¼ 1:1) obtained using
the LTFR algorithm. Fig. 14b shows the communication rate
assignment vectors fruðiÞg and frvðiÞg calculated using a
simple LTFU-DRC algorithm for linear energy storage. In
this example, the LTFU-DRC algorithm obtains data rate

assignments fruðiÞ; rvðiÞg that are similar to those obtained
by optimally solving the LTFU-LIN problem.

8 CONCLUSIONS AND FUTURE WORK

Motivated by recent advances in the areas of energy
harvesting and ultra-low-power communications, in this
work, we focus on energy harvesting devices. We described
the first long-term indoor radiant energy measurements cam-
paign that provides useful energy traces, as well as insights
into the design of systems and algorithms. We developed
algorithms for deterministic environments that uniquely
determine the energy management and data rate control
policies for linear and nonlinear energy storage models, for
single node and node pair (link) scenarios. The algorithms for
the predictable case also provide insight into the partially
predictable case. We developed algorithms for stochastic
environments that can provide nodes with simple pre-
computed decision policies. We used the algorithms to
obtain numerical results for various cases.

We covered a few “working points” in the design space
described in Section 1. Yet, there are still many otherworking
points to study. In particular, although some algorithms
have been developed for networks of nodes, most of them
are too complex for resource-constrained nodes. In our
ongoing work, we are analyzing the performance of simple
policies for energy harvesting devices for single node and
link cases [14]. We plan to develop simple energy-harvest-
ing-aware algorithms for networks of nodes, additionally
considering various other problem dimensions. Moreover,
we plan to evaluate these algorithms in an energy harvesting
active networked tags (EnHANTs) testbed that we are
currently building [46], [53].
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14. The solutions were obtained for the following parameters:
C ¼ 2:1 � IEðDðiÞÞ, ctx ¼ 1 nJ/bit, crx ¼ 2 nJ/bit, UðsðiÞÞ ¼ logð1þ sðiÞÞ, and
QðiÞ ¼ DðiÞ (linear energy storage).

15. The solutions were obtained for the following parameters: BK ¼ B0

and UðsðiÞÞ ¼ logðsðiÞÞ.

Fig. 13. (a) Energy profile fDðiÞg, and energy spending rate
assignments fsðiÞg, obtained by (b) solving the TFLA-LIN and
TFU-LIN problems, and by (c) solving the TFU problem for nonlinear
energy storage.

Fig. 14. Communication rates ruðiÞ and rvðiÞ obtained by solving the
LTFL and the LTFU problems.
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