Lawrence Berkeley National Laboratory Recent Work

Title
NETWORKING REQUIREMENTS AND FUTURE ALTERNATIVES
Permalink
https://escholarship.org/uc/item/49v17437

Author

Brown, A.
Publication Date
1987-06-01

③ Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA, BERKELEY

Information and Computing Sciences Division

Presented at the Workshop on Computer Networks, San Diego, CA,
 Congress on Computer Networks to Support Research in the UUMEUTE saction United States: A Study of Critical Problems and Future Options," Federal Coordinating Council on Science, Engineering, and Technology (FCCSET), Volume II, 1987

Networking Requirements and Future Alternatives
A. Brown, A.F. Fath, J. Fitzgerald, P. Gross, D. Hall, J. Haverty, C.M. Kennedy, T. Lasinski, F. McClain, P. McGregor, S. Merola, H. Montgomery, S.G. Munshi, G. Ricart, R.T. Roca, S. Ruttenberg, D. Stevens, and B. Wilhelmson

June 1987
-TWO WEEK LOAN COPY

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

NETWORKING REQUIREMENTS AND FUTURE ALTERNATIVES

Alison Brown ${ }^{1}$, A. Fredrick Fath ${ }^{2}$, John Fitzgerald ${ }^{3}$, Philip Gross ${ }^{4}$, Dennis Hall ${ }^{5}$, Jack Haverty ${ }^{6}$, Charles M. Kennedy ${ }^{7}$, Thomas Lasinski ${ }^{8}$, Fred McClain ${ }^{9}$, Patrick McGregor ${ }^{10}$, Sandy Merola ${ }^{11}$, Hugh Montgomery ${ }^{12}$, Sushil G. Munshi ${ }^{13}$, Glenn Ricart ${ }^{14}$, Richard T. Roca ${ }^{15}$, Stan Ruttenberg ${ }^{16}$, David Stevens ${ }^{17}$, Bob Wilhelmson ${ }^{18}$.

As part of "A Report to the Congress on Computer Networks to Support Research In the United States - A Study of Critical Problems and Future Options", by the Federal Coordinating Council on Science, Engineering and Technology(FCCSET), Volume II, Reports from the Workshop on Computer Networks February 17-19, 1987 San Diego, California, Preliminary Issue June 1987.

[^0]
1. NETWORKING REQUIREMENTS AND FUTURE ALTERNATIVES

Sandy Merola
Lawrence Berkeley Laboratory

Abstract

The Working Group on Networking Requirements and Future Alternatives recommends creation of an international, interagency networking facility for science, whose 15-year mission is - to ensure that U.S. scientists have available the most advanced wide area networking facilities in the world, and - to ensure that U.S. wide area network technology maintains a position of world leadership. A minimum of $1.5-\mathrm{Mbit/s}$ access to major government and academic research centers should be provided. Such a network would greatly benefit the competitive position of the United States in scientific research. It would also place the U.S. in a leadership position in utilization of high bandwidth, wide area networks. United States industries supporting wide area network technologies would gain a significant competitive advantage over other countries. An ongoing program of research and development into both wide area network technology and network management is necessary for this endeavor to be successful.

As part of the second year study, the Working Group recommends that an interagency coordinating committee be established to identify short-term implementation issues that can be investigated and resolved in parallel with long-term issues. This would provide immediate benefit to the nation's scientific community.

1.1. BACKGROUND

Many scientific research facilities in the U.S. consist of a single, large, and costly installation such as a synchrotron light source, a supercomputer, a wind tunnel, or a particle accelerator. These facilities provide the experimental apparatus for groups of scientific collaborators located throughout the country. The facilities cannot be duplicated in all states because of cost. Wide area networks are the primary mechanism for making such facilities available nationwide. Examples include governmentsupported wide area networks such as ARPANET, HEPnet, MFENET, MILNET, NASnet, NSFnet, SPAN, and so on, as well as commercial facilities such as Tymnet, BITNET, and AT\&T leased lines. The cost of such networks is generally much less than the cost of the research facility.

Congress recently enacted legislation calling for an investigation of the future networking needs over the next 15 years for the nation's academic and federal research computer programs. The Federal Coordinating Council on Science, Engineering and Technology (FCCSET) formed a Network Study Group to coordinate investigation of the benefits, opportunities for improvements, and available options with particular attention to supercomputing. Within the Network Study Group, the Working Group on Network Requirements and Future Alternatives was formed to identify network demand during the next 5 years and to recommend a strategy for meeting that demand. This document is the Working Group's report.

1.2. APPROACH

The following approach was taken.

- The networking plans of the U.S. research community were analyzed, so that a 5 -year network demand summary can be created.
- Corporations that provide telecommunications services were surveyed, with particular attention to the possible use of fiber optics and related cost/capacity gains.
- Issues related to interagency sharing of network facilities were identified.
- Alternative methodologies for meeting total network demand were considered.
- A 5-year networking strategy was developed and presented to the FCCSET Network Study Group.

1.3. NETWORK DEMAND SUMMARY

Four methods of estimating network demand were used.

- Analysis of existing network utilization: Wide area networks are used by scientists to access unique remote facilities (supercomputers, accelerators, analysis software, and databases) and as a critical mechanism for communication and coordination among the large geographically distributed U.S. and international scientific collaborations (Figure 1 and Section 1.9). High-speed local area networks are being connected to low-speed wide area networks throughout the research community. Communication speeds of $1.5 \mathrm{Mbit} / \mathrm{s}$, digital data service (DDS), and packet networks have been introduced to wide area networks, and their use has become widespread. Nevertheless, wide area networking capacity has not kept up with the capacity of local area networks. Some wide area networks handle both high data volume and highly interactive traffic over the same communications links. This results in suboptimal performance. At the functional level, wide area network user interfaces have not kept up with their counterparts in local area networks.

The Working Group heard presentations of current and planned networking in the Department of Defense, Department of Energy, National Aeronautics and Space Administration, and the National Science Foundation (NSF). Many scientific research centers funded by these agencies are physically connected to more than one network. The backbones for the major networks are similar in topology, and existing network links throughout the community are generally fully utilized. Some of these networks are severely overloaded, resulting in significant performance degradation. Additionally, more ubiquitous access is needed by the university research community, especially at smaller institutions. For example, there is a clear unmet need for nationwide, high-speed access to large scientific databases. The Working Group noted that in many cases demand for capacity seriously exceeded current supply. ${ }^{1-3}$

- Estimation based on typical site: A direct estimation of network demand was made using a major NSF university site as a basis. Network usage included wide area network facilities for supercomputer access as well as an extensive local area network. An absolute level of network demand for the next 5 years was estimated using three different models: task, user, and external flow. The task model focused on the network load generated by typical network tasks. The user model identified demand as a function of typical university network users. The external flow model centered on the university as an entity and estimated networking demand between it and other external locations. The three values of predicted network traffic were in agreement within an order of magnitude. They indicated a thousandfold increase in needed capacity over current network resources. ${ }^{4}$

Figure 1. Principal networking sites - see Section 1.9 for a listing

- Extrapolation from experience with local area networks: This method also projected need for a thousandfold increase in wide area network capacity over the next 5 years. A remote supercomputer access scenario was presented to demonstrate how network transparency can increase the speed and accuracy with which engineering decisions can be made. It was argued that one order of magnitude is needed to create a nationwide distributed file system on an existing $56-\mathrm{kbit} / \mathrm{s}$ network; another order of magnitude is needed to provide interactive monochrome graphics ${ }^{5,6}$ and a third order of magnitude is needed to accommodate expected increases in basic computer speeds. As more users are added, further increases in demand are anticipated.
- Estimation based on expanded user community: The above analyses estimate load increases for existing network topologies. There is an important additional need to extend network service to the smaller universities throughout the nation. This would add another factor of 2 to 3 to the above estimates. Since by definition these research sites are not currently connected to an existing wide area network, this represents a demand for more communications lines rather than an increase in line speeds. ${ }^{1}$
There is a further need to extend network service to international sites. Access to overseas scientific collaborations would significantly enhance the quality of U.S. science by providing researchers with access to remote experimental apparatus, data, and personnel. It would also enhance U.S. prestige in the scientific research community by providing overseas collaborators with access to U.S. facilities, data, and personnel. The effect on network traffic would be negligible, but network size would be increased dramatically.

1.4. SUPPLY

Several major U.S. telecommunications corporations were represented on the panel. They jointly provided a summary of expected industry-wide technological trends over the next 5 years. ${ }^{7-10}$ Cost/capacity forecasts and opportunities for use of fiber optic technology in the U.S. scientific research community were also presented.

The leading trends in U.S. telecommunications technology are the decreasing cost of component materials and the widespread, though not ubiquitous, availability of fiber optics (Figure 2). The transport capabilities of the U.S. telecommunications industry will greatly increase during the next 5 years, as witnessed by the following observations. Packet switching rates are expected to rise to 10,000 packets per second ($25 \mathrm{Mbit} / \mathrm{s}$). Digital circuits are widely available at $56 \mathrm{kbit} / \mathrm{s}$ today. Within the next 5 years, Integrated Services Digital Network (ISDN) switched and nonswitched circuits ranging from $64 \mathrm{kbit} / \mathrm{s}$ to $1.5 \mathrm{Mbit} / \mathrm{s}$ will be available in the larger metropolitan areas of the U.S. The digital interexchange transmission rates available to users are at $1.5 \mathrm{Mbit} / \mathrm{s}$ in general and will rise to $45 \mathrm{Mbit} / \mathrm{s}$ between larger metropolitan areas. Services of $150 \mathrm{Mbit} / \mathrm{s}$ could be made available by special arrangement. ISDN $64-\mathrm{kbit} / \mathrm{s}$ service will be present in about 20% of the U.S. market by the end of the 5 -year period. The ability of the user to customize service (such as time of day conversion and simultaneous coordinated voice and data), as well as the availability and general use of applications services (such as X. 400 mail and electronic document interchange) will dramatically increase.

Figure 2. Fiber optic network links. ${ }^{11}$

Fiber optic technology is driving media costs downward. The cost of basic private line telecommunications services could fall by a factor of 20% to 50% during the upcoming 5 years. Any expectation that fiber would more dramatically reduce costs to the typical telecommunications user must be balanced by the recognition that the fiber itself is only one component of total transmission service cost.

It was recognized that the combination of fiber optic technology and the large amount of aggregate interagency demand may offer the scientific research community unique opportunities to acquire increasingly cost-effective bandwidth. This is only possible in the case of a long-term lease of very high bandwidth circuits. This ensures industry recovery of capital investment costs. If such a national network infrastructure were established as a long-term interagency goal, migration to such a topology is possible using existing standard telecommunications technologies, including satellite, microwave, copper, and fiber optic transmission media.

1.5. ALTERNATIVES

1.5.1. Supplying Capacity

The need to increase wide area network capacity by a thousandfold is justified both by increased opportunities for scientific breakthroughs and by the need to maintain the nation's position of world leadership in wide area network technology. Although industry projections indicate the necessary bandwidth will certainly be available as a national backbone, the required bandwidth will not be available all the way to the end user's site. The Working Group felt the most cost-effective way to proceed would be to provide the needed bandwidth in stages.

The Working Group recognized that a factor of 30 improvement could be achieved simply and cost effectively by:
(1) tuning existing protocol implementations and managing access,
(2) installing smarter congestion control algorithms,
(3) upgrading existing 56 -bit/s trunks to 1.5 - and $45-\mathrm{Mbit} / \mathrm{s}$ lines in a judicious manner, and
(4) providing type-of-service routing for efficient performance on high data volumes as well as highly interactive traffic. ${ }^{3}$
Beyond that, another factor of 30 is needed to meet the projected demand. The Working Group identified two promising approaches:
(1) develop more optimal distribution of network services between user systems and server systems to make more efficient use of the available bandwidth, and
(2) develop powerful gateway computers that compress data entering wide area networks and decompress the data at its destination. Such machines could also provide encryption without significant additional overhead.

The two approaches are entirely complementary. Thus, each might contribute a factor of 5 or 6 , for a combined factor of 30 . However, optimal distribution software is not available today, and data compression computers are only available for video compression. Therefore, applied research in these and other promising approaches is required.

1.5.2. Improved Usability

The Working Group agreed that an interagency, international network would significantly enhance the U.S. scientific research environment. To ensure ease of use, some peripheral issues must be addressed.

- Global management and planning: The ARPANET provides valuable experience in operating connected networks without global management. For example, ARPANET management reported that traffic generated by external networks created internal performance problems that are unmanageable. Similarly, inefficient protocol implementations cannot be prevented, since no central authority exits. This results in reduced network performance for all users. ARPANET management concluded that globa' management is essential to provide guaranteed performance. The Working Group agreed with this conclusion.
- User services: Consulting help and documentation are necessary for any facility accessed directly by end users. However, most scientists are not interested in networks per se, but only in the resources they make available. If a network could be made transparent or nearly so, the need for consulting help and documentation would be significantly reduced.
- Reliability: A wide area network in scientific research must be more reliable than many existing networks because of its critical role in supporting operation of remote experiments.
- Extensibility: The network will grow significantly in the next 15 years. It must be possible to expand it incrementally and to join it with other networks, both national and international.
- Evolutionary: To prevent obsolescence, the network must be tolerant of change. It must be designed in such a way that new protocols and services can be added without significantly disrupting existing services. This ensures the nation's scientists will keep a competitive edge in advanced networking technology. The rich environment for development of new products ensures that the technology itself maintains a competitive edge.

1.6. CONCLUSIONS

Five major conclusions about future networking requirements were drawn by the working group.
(1) An interagency scientific network facility should be created whose 15 -year mission is

- to ensure that U.S. scientists have available the most advanced networking facilities in the world, and
- to ensure that U.S. wide area network technology maintains a position of world leadership.
(2) A phased implementation plan should be developed to provide these advanced network facilities to the nation's scientists. Rough guidelines should be to increase the effective capacity of existing networks tenfold in 3 years, a hundredfold in 5 years, and a thousandfold in 10 years.
- Existing wide area scientific networks should be overhauled to provide $56-\mathrm{kbit} / \mathrm{s}$ service to end users at about 30% of maximum load. Trunk lines of 1.5 to $45 \mathrm{Mbit} / \mathrm{s}$ would be necessary in some areas to provide the needed bandwidth to end users. Existing protocol implementations should be checked and uned to eliminate unnecessary congestion from inefficient implementations. Networks from all U.S. government agencies funding academic and federal scientific research would be upgraded.
- Modern networking facilities such as wide area network file systems, distributed scientific databases, distributed window systems, and distributed operating systems should be developed
and installed, along with facilities for users to find and use network resources from remote sites. Existing communications facilities should be upgraded tenfold to $1.5 \mathrm{Mbit} / \mathrm{s}$ to end users as necessary to handle anticipated increases in load. Very high bandwidth trunk lines may be necessary in some areas to provide the needed $1.5-\mathrm{Mbit} / \mathrm{s}$ service to end users.
- More advanced facilities such as wide area color graphics capabilities and remote control of experiments should be developed and introduced. Existing communications capacity should be upgraded tenfold to handle the load increase by using hardware and software technology developed as a result of applied research.
- To handle an anticipated increase in hardware speeds, existing communications links should be upgraded another tenfold as newer and faster computers become available in the mid 1990s.
- New local area network facilities should be tracked so that the more promising new products can be made available in wide area networks.
- Coverage should be expanded so that most colleges and universities in the U.S. will have access to the network in 5 years, with the remainder having access in 10 years.
(3) An applied research and development program in advanced communications and network techniques should be implemented to provide the following.
- Provide the technology needed to increase the effective bandwidth of communications links would involve
- more optimal distribution of functions between local hosts and remote hosts to minimize the need for raw network bandwidth,
- high-performance systems that compress data entering a wide area network and decompress it at its destination,
- development of gateway technology in general, and
- utilization of formal language theory and other innovative techniques to design components that fail in a diagnosable manner.
- Provide better ways to access remote resources that are needed to increase opportunities for scientific breakthroughs. Local area networks are the only cost-effective testbed for such facilities today. As capacity of wide area networks increases, a new source for network innovations can be expected to emerge:
- Provide better tools and techniques for management of networks as needed.
(4) An ongoing basic research program into future network architectures to ensure continued leadership in use of scientific networks, as well as national leadership in wide area network technology, is necessary.
(5) The panel recommends that issues of network design, cost analysis, management authority, and implementation be addressed by the second year study. Within this framework, an interagency coordinating committee should be established to identify issues that can be investigated and resolved in the short term. An important short-term issue is implementation of the first factor of 30 improvement to existing networks. This can provide immediate benefit to the nation's scientific community.

1.7. BENEFITS

Implementation of the above recommendations would provide the U.S. scientific research community with a significant competitive advantage. Modernization of the nation's wide area networks by increasing speed, functionality, and size increases opportunities for research advances significantly. 5, 6 Greater network speed can reduce the time required to perform a given experiment and increase both the volume of data and the amount of detail that can be seen. Scientists accessing supercomputers would benefit particularly, because access speed is often critical in this work. Improved functionality frees scientists to concentrate directly on their experimental results rather than on operational details of the network. Increased network size extends these opportunities to tens of thousands of individuals located at smaller academic institutions throughout the nation. These modemization measures would significantly enhance the nation's competitive edge in scientific research.

The components of a shared network infrastructure would obviously benefit from global management, and the positive effects of such an approach would be widespread. Centralized administration of research in wide area networks would minimize duplication of effort and provide rapid resolution of identified high-priority problems. A global management structure would also allow a matrix approach to this distributed network expertise.

The U.S. communications industries would also gain a significant competitive advantage. Development of modern, low-cost distributed computing facilities for wide area networks would help maintain the United States position of world leadership in networking technology. Use of these products in support of science would accelerate the development of newer products by U.S. industry to meet challenges from both Europe and Japan. The United States would thus gain a position of world leadership in utilization of wide area, high bandwidth networks. This would increase the nation's competitive edge in communications technology as well as scientific research. As a spinoff, it would help maintain the U.S. leadership position in computer architectures, microprocessors, data management, software engineering, and innovative networking facilities.

1.8. WORKING GROUP PARTICIPANTS

Alison Brown Cornell University	David Stevens Lawrence Berkeley Laboratory
A. Fredrick Fath Boeing Computer Services	Bob Wilhelmson National Center for Supercomputing Applications
John Fitzgerald	
Lawrence Livermore National Laboratory	
Philip Gross	
Mitre Corporation -	
Dennis Hall	
Lawrence Berkeley Laboratory	
Jack Haverty	
BBN Communications Corp.	
Charles M. Kennedy	
U.S. Army Ballistic Research Laboratory	
Thomas Lasinski	
NASA Ames Research Center	
Fred McClain	
San Diego Supercomputer Center	
Patrick McGregor	
Contel Business Networks	
Sandy Merola	
Lawrence Berkeley Laboratory	
Hugh Montgomery	
Fermi National Accelerator Laboratory	
Sushil G. Munshi	
United Telecom	
Glenn Ricart	
University of Maryland	
Richard T. Roca	
AT\&T Bell Laboratory	
Stan Ruttenberg	
University Corporation for Atmospheric Research	

Alison Brown
Cornell University
A. Fredrick Fath

Boeing Computer Services
John Fitzgerald
Lawrence Livermore National Laboratory
Philip Gross
Mitre Corporation
Dennis Hall
Lawrence Berkeley Laboratory
Jack Haverty
BBN Communications Corp.
Charles M. Kennedy
U.S. Army Ballistic Research Laboratory

Thomas Lasinski
NASA Ames Research Center
Fred McClain
San Diego Supercomputer Center
Patrick McGregor
Contel Business Networks
Sandy Merola
Lawrence Berkeley Laboratory
Hugh Montgomery
Fermi National Accelerator Laboratory
Sushil G. Munshi
United Telecom
Glenn Ricart
University of Maryland
Richard T. Roca
AT\&T Bell Laboratory
Stan Ruttenberg
University Corporation for Atmospheric Research

David Stevens
Lawrence Berkeley Laboratory
Bob Wilhelmson
National Center for Supercomputing Applications

1.9. PRINCIPAL NETWORKING SITES

This list was compiled by the Lawrence Berkeley Laboratory, Informations and Computing Science Division.

Alabama		Lawrence Berkeley Laboratory (LBL)
	Anniston Army Depot	Lawrence Livermore National Laboratory (LLNL)
	Army Aeromedical Research Laboratory, Fort Racker	Letterman Army Institute of Research
	Army Missile Command	Lockheed Palo Alto Research Laboratories
	Army Safety Center	Logicon, Inc.
	George C. Marshall Space Flight Center	Los Angeles Air Force Station
	Gunter Air Force Station	March Air Force Base
	Maxwell Air Force Base	Mare Island
	University of Alabama, Birmingham	Mather Air Force Base
	University of Alabama, Huntsville	McClellan Air Force Base
Alaska		McDonnel Dougias Computer Systems Company
	University of Alaska, Anchorage University of Alaska, Fairbanks	NAS North Island NASA Resident Office
Arizona		National Aeronautics and Space Administration
	Arizona State University, Tempe	Naval Air Station, Alameda
	Davis Monthan Air Force Base	Naval Ocean Systems Center
	Army Information Systems Command, Fort Huachuca	Naval Personnel Research and Development Center
	Army Small Computer Engineering Center, Sierra Vista	Naval Post Graduate School
	Army Yuma Proving Ground	Naval Sea Systems
	Kitt Peak Observatory	Naval Technical Training Center
	Luke Air Force Base	Naval Weapons Center
	United States Geological Survey Astrogeology	Navy Elex Systems Engineering Center
	University of Arizona, Tucson	Navy Regional Automated Services Center
Arkansas		Navy Supply Center
	Blytheville Air Force Base, Blytheville	Norton Air Force Base
	University of Arkansas, Fayetteville	Presidio of San Francisco
	University of Arkansas, Little Rock	Rand Corporation
	University of Arkansas, Monticello	Salk Institute
	University of Arkansas, Pine Bluff	San Diego State University
California		San Diego Supercomputer Center
	AMPC	Sandia National Laboratory - Livermore
	Advanced Computer Communications	Schlumberger Caslab
	Advanced Decision Systems	Science Applications Inc. - La Jolla
	Aerospace Corporation	Science Applications Inc. - Pleasanton
	Air Force Systems Command	Scripps Clinic and Research Foundation
	AMES Research Center	Scripps Institute of Oceanography
	Army DARCOM Logistic Control Activity	Southwest Fisheries Center
	Beale Air Force Base	Stanford Research Institute International (SRI)
	Califomia Institute of Geology and Planetary Science	Stanford Linear Accelerator Center
	Califomia Institute of Technology	Stanford University
	Digital Equipment Corporation	SUN Microsystems
	Dryden Flight Research Facility	System Development Corporation
	Eaton Corporation	Teknowledge, Incorporated
	Edwards Air Force Base	Travis Air Force Base
	Electronic Data Systems	TRW Inc., Los Angeles
	Energy Applications \& Systems	University of Califomia, Berkeley
	Fleet Anaiysis Center	University of Califomia, Davis
	FMC Corporation	University of Califomia. Irvine
	GA Technologies. Inc.	University of Califomia, San Diego
	George Air Force Base	University of Califomia, San Francisco
	GTE TELENET Communication Corp.	University of Califomia, Santa Barbara
	Headquarters, 6th Army. Presidio of San Francisco	University of Califomia, Santa Cruz
	Institute for Advanced Studies	University of Southern Califomia, Los Angeles
	IntelliCorp	University of Southem Califomia, Marina Del Rey
	ITT/Federal Electric Corporation	Vandenberg AFB
	Jaycor	Xerox Corporation
	Jet Propulsion Laboratory	
	Kestrel Institute	JLL
	La Jolla Institute	Lowry Air Force Base

```
    National Bureau of Standards
    National Center for Atmospheric Research
    Colorado State University
    Ford Aerospace and Communications
    Martin-Marietta Denver Aerospace
    National Oceanic and Atmospheric Administration
    Peterson Air Force Base
    Science Applications Inc.
    Solar Energy Research Institute (SERI)
    University of Colorado
    U.S. Air Force Academy
    U.S. Army, Fort Carson
Connecticut
    Naval submarine School
    Naval Underwater systems Center
    Yale University, New Haven
Delaware
    University of Delaware
District of Columbia
    Andrews Air Force Base
    Bolling Air Force Base
    Defense communications Agency
    Defense Mapping Agency
    George Washington University
    NASA Headquarters
    National Bureau of Standards
    National Science Foundation
    Naval Electronics Systems Security Engineering Center
    Naval Research Laboratory
    Navy Regional Data Automation Center
    USAEASA
    U.S. Air Force, Pentagon
    U.S. Department of Energy
    U.S. Headquarters for the Department of the Ammy
    Walter Reed Army Institute of Research
Florida
    Eglin Air Force Base
    Fleet Training Center
    Florida State University, Tallahassee
    Homestead Air Force Base
    Intemet Systems Corporation
    Interscience, Inc.
    John F. Kennedy Space Center
    MacDill Air Force Base
    Martin Marietta Corporation
    Naval Air Station
    Naval Coastal systems Center
    Naval Training Systems Center
    Patrick Air Force Base
    Service School Command
    Tyndall Air Force Base
    University of Florida, Gainsville
    University of Miami
Georgia
    Auburn University, Aubum
    Georgia Instiute of Technology
    Marine Corps Logistics Base
    Robins Air Force Base
    Skidaway Institute of Oceanography
    University of Georgia, Athens
    U.S. Army, Fort Gillem
    U.S. Army, Fort Gordon
    U.S. Army, Fort McPherson
    U.S. Army, Fort Stewart
Hawaii
    Camp H. M. Smith
    Hickam Air Force Base
```

NEEACTPAC, Pearl Harbor
OINC NUWES, Hawaii Detachment
University of Hawaii
Wheeler Air Force Base
Idaho
Idaho National Engineering Laboratory
University of Idaho
Illinois
Argonne National Laboratory
Astronomy \& Astrophysics Center
Chanute Air Force Base
Fermi National Accelerator Laboratory
Gould Software Division
Headquarters for AMCCOM
Illinois Institute of Technology
McDonnel-Douglas
Naval Hospital
Northwestem University, Chicago
Rock Island Arsenal
Scott Air Force Base
University of Chicago
University of Minois
U.S. Army, Fort Sheridan

Indiana
Grissom Air Force Base
Indiana University
Naval Weapons Support Center
Purdue University
University of Indiana, Bloomington
University of Notre Dame, South Bend
U.S. Army, Fort Ben Harrison

Iowa
Ames Laboratory
Iowa State University
University of Iowa
Kansas
Kansas Stare University, Manhattan
McConnell Air Force Base
University of Kansas, Lawrence
U.S. Army, Fort Leavenworth

Kentucky
University of Kentucky
U.S. Amy, Fort Campbell
U.S. Army, Fort Knox

Louisiana
Barksdale Air Force Base
England Air Force Base
Louisiana State University, Baton Rouge
Michoud Assembly Facility
Navy Regional Data Automation Center
Slidell Computer Complex
U.S. Army, Fort Polk

Maine
Loring Air Force Base
Maryland
Aberdeen proving Ground
Andrews Air Force Base
David Taylor Naval Ship
Federal Data Corporation
Goddard Space Flight Center
Johns Hopkins University
NSSDC
National Bureau of Standards - Gaithersburg
National Computer Security Center
National Institutes of Health
National Security Agency, Fort George G. Meade
Naval Air Logistical Center

	University of Tennessee Vanderbilt University
Texas	
	Baylor College of Medicine
	Baylor University
	Bergstrom Air Force Base
	Brooks Air Force Base
	Carswell Air Force Base
	Dyess Air Force Base
	Geo-Chem Research Associates, Inc.
	Institute for Fusion Studies
	Johnson Space Center
	Kelly Air Force Base
	Lackland Air Force Base
	Laughlin Air Force Base
	Lunar and Planetary Institute
	Lyndon B. Johnson Space Center
	Microelectronics and Computer Technology Comporation
	Randolph Air Force Base
	Rice University
	Rockwell Intemational
	Sheppard Air Force Base
	Southwest Research Institure
	Texas A \& M University
	Texas Accelerator Center
	Texas Southem University
	University of Houston
	University of Texas
	U.S. Army. Fort Bliss
	U.S. Army. Fort Sam Houston
Utah	
	Clearfield Federal Depot
	Dugway Proving Ground
	Hill Air Force Base
	Tooele Army Depot
	Utah State University
	University of Utah
Vermont	
	University of Vermont
Virginia	
	Army Materiel Command
	BBN Communications Corporation
	Boeing Computer Services
	CEBAF
	Center for Seismic Studies
	College of William and Mary
	Computer Sciences Corporation
	Criminal Investigation Command
	Defense Advanced Research
	Defense Communications
	Defense Nuclear Agency
	Electronic Data Systems
	Goddard Space Flight Center
	Honeywell Corporation
	Langley Air Force Base
	Langley Research Center
	Linkabit Corporation
	M/A-COM Government Systems
	Marine Corp Design Center
	Naval Weapons Center
	Norfolk Naval Air Station
	Science Applications Inc. - McLean
	Tamdem Computers, Inc.
	Teledyne Geotech Center for Seismic Studies
	The MITRE Corporation
	U.S. Air Force, Pentagon
	U.S. Army, Fort Belvoir

```
U.S. Army, Fort Lewis
Virginia Polytechnic Institute
Wallops Flight Facility Washington
Battelle Northwest
Flow Research Company
Hanford Engineering Development Laboratory
Stanford Research Institute International (SRI)
Trident Training Facility
University of Washington
Washington State University
West Virginia
University of West Virginia
Wisconsin
University of Wisconsin, Madison
University of Wisconsin, Milwaukee .
Wyoming
F.E. Warren Air Force Base
```


1.10. REFERENCES

1. S. Ruttenberg, "Summary of Agency Network Plans," Volume III, A Report to the Congress on Computer Networks to Support Research in the United States (June 1987).
2. D. Stevens, "DOE Networking Requirements," Volume III, A Report to the Congress on Computer Networks to Support Research in the United States (June 1987).
3. A.F. Fath, "Networking Trends in Data Communications," Volume III, A Report to the Congress on Computer Networks to Support Research in the United States (June 1987).
4. G. Ricart, "Research University Bandwidths," Volume III, A Report to the Congress on Computer Networks to Support Research in the United States (June 1987).
5. D. Hall, W. Johnston, Hutchinson M., et al, "The Effect of Distributed Computing Technology on Wide Area Network Capacity Requirements," Volume III, A Report to the Congress on Computer Networks to Support Research in the United States (June 1987).
6. T.A. Lasinski, "Role of Graphics Workstations in Supercomputing," Volume III, A Report to the Congress on Computer Networks to Support Research in the United States (June 1987).
7. J. Haverty, "Networking: Some Observations on the Future," Volume III, A Report to the Congress on Computer Networks to Support Research in the United States (June 1987).
8. S.G. Munshi, "Industry and Technology Trends," Volume III, A Report to the Congress on Computer Networks to Support Research in the United States (June 1987).
9. R.T. Roca, "AT\&T Presentation Graphics," Volume III, A Report to the Congress on Computer Networks to Support Research in the United States (June 1987).
10. P. McGregor, "Contel Presentation Graphics," Volume III, A Report to the Congress on Computer Networks to Support Research in the United States (June 1987).
11. "The Future of Fiber", Telephone Engineering and Management, p. 52 (February 1, 1987).

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

[^0]: 1) Cornell University, 2) Boeing Computer Services, 3) Lawrence Livermore National Laboratory, 4) Mitre Corporation, 5) Lawrence Berkeley Laboratory, 6) BBN Communications Corp. 7) U.S. Army Ballistic Research Laboratory, 8) NaSA Ames Research Center, 9) San Diego Supercomputer Center, 10) Contel Business Networks, 11) Lawrence Berkeley Laboratory, 12) Fermi National Accelerator Laboratory, 13) United Telecom, 14) University of Maryland, 15) AT\&T Bell Laboratory, 16) University Corporation for Atmospheric Research, 17) Lawrence Berkeley Laboratory, 18) National Center for Supercomputing Applications.
 This work was supported by the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.
