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ABSTRACT
Compared to human vision, conventional machine vision composed of an image sensor and processor
suffers from high latency and large power consumption due to physically separated image sensing and
processing. A neuromorphic vision system with brain-inspired visual perception provides a promising
solution to the problem. Here we propose and demonstrate a prototype neuromorphic vision system by
networking a retinomorphic sensor with a memristive crossbar. We fabricate the retinomorphic sensor by
usingWSe2/h-BN/Al2O3 van der Waals heterostructures with gate-tunable photoresponses, to closely
mimic the human retinal capabilities in simultaneously sensing and processing images. We then network
the sensor with a large-scale Pt/Ta/HfO2/Ta one-transistor-one-resistor (1T1R) memristive crossbar,
which plays a similar role to the visual cortex in the human brain.The realized neuromorphic vision system
allows for fast letter recognition and object tracking, indicating the capabilities of image sensing, processing
and recognition in the full analog regime. Our work suggests that such a neuromorphic vision systemmay
open up unprecedented opportunities in future visual perception applications.

Keywords: van der Waals heterostructure, retinomorphic sensor, memristive crossbar, brain-inspired
visual perception, neuromorphic computing

INTRODUCTION
The human vision system (HVS) is mainly com-
posed of the retina and visual cortex of the brain.
It shows a powerful capability in visual percep-
tion while consuming far less than 20 W of power.
Such features of the HVS strongly rely on the si-
multaneous sensing and early processing of visual
information in the retina and parallel visual cog-
nition in the visual cortex [1,2]. Inspired by the
HVS, artificial vision systems (also known as ma-
chine vision) were developed to achieve capabili-
ties similar to visual perception [3]. However, in
conventional artificial vision systems, high redun-
dant visual data throughput and physical separation
of sensing and processing lead to high latency and
large power consumption.Moreover, processing the
non-structural visual data that involve heavy matrix
multiplications to realize pattern recognition further

increases the latency and energy consumption due
to the well-known memory wall in the von Neu-
mann architecture,which renders great challenges in
practical applications, especially with the explosive
growth of visual information every day. Thus, it is
highly desirable todevelopneuromorphic vision sys-
tems throughhighly precise emulationof theHVS to
solve such challenges [4].

Prior works have shown that the memristive
crossbar is one of themost promising neuromorphic
architectures [5–9]. It holds great promise in pro-
cessing image and video data with many advantages
such as ultra-low power consumption and parallel
computing by exploiting the physical attributes of
the crossbar [5,8,10–14]. Besides, an artificial neu-
ral network (ANN) implemented on thememristive
crossbar enables the capability of pattern recogni-
tion and resembles the processes of visual cognition
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Figure 1. The neuromorphic vision system. The diagram schematically shows the human vision system in (a) and the neuro-
morphic vision system in (b), which contains a retinomorphic sensor and a memristive network.

by the HVS [15,16]. To develop a memristive
crossbar-based neuromorphic vision system, one
needs to network it with a retinomorphic sensor
which is able to closely mimic the physical organiza-
tions andbiological functions of the retina. Although
previous proposals allow for simultaneously achiev-
ing sensing and early processing of the visual infor-
mation based on conventional materials, they fail
to mimic the hierarchical organization of the retina
[17–21]. Interestingly, recent efforts have shown
the potential of two-dimensional (2D) materials in
neuromorphic computing [22–33] and in-sensor
processing [17,18,27–29,32–34], due to their gate-
tunable electronic and optoelectronic properties.
Stacking of distinct 2Dmaterials would form adiver-
sity of van der Waals (vdW) heterostructures with
richer optoelectronic properties [35–39] for various
applications such as retinomorphic sensors [40].

In this work, we propose a neuromorphic vision
system composed of a retinomorphic sensor and a
memristive crossbar. We fabricate the retinomor-
phic sensor based on WSe2/h-BN/Al2O3 vdW het-
erostructure to emulate the retinal function of
simultaneously sensing and processing an image.
The image pre-processing occurring in the sensor

enables the drastic reduction of the subsequent
computational workload in the neural network im-
plemented with the memristive crossbar. Further-
more, we network the sensor with a large-scale
Pt/Ta/HfO2/Ta 1T1R memristive crossbar to re-
alize distinct applications, e.g. image recognition
and object tracking. This work indicates that the
proposed neuromorphic vision system is promis-
ing in real-time and low-power visual perception
applications.

RESULTS AND DISCUSSION
Figure 1a shows a schematic diagram of the HVS,
two primary components of which are the retina and
visual cortex. The function of the retina is to sense
and convert the light signals representing image in-
formation (e.g. a tree) into electrical signals through
the photoreceptor. The electrical signals then
quickly flow to the bipolar cell through the visual
pathway and are processed to extract the key charac-
teristics. The retained image information after early
processing is eventually transmitted to the visual
cortex through the optic nerve to achieve further
processing and understanding of the sensed image
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information. With the early processing occurring
in the retina, the redundant information irrelevant
to the image can be discarded and consequently
the understanding of the image is accelerated in
the visual cortex, which has inspired a hierarchical
model of object recognition that has been widely
used in computer vision [41,42]. By closely mim-
icking the HVS, we propose a neuromorphic vision
system composed of a retinomorphic sensor and
a memristive network, as schematically shown
in Fig. 1b. We built the retinomorphic sensor
by assembling vdW heterostructure devices and
implemented thememristive network by fabricating
a large-scale memristive crossbar, which will be later
discussed in detail. With this proposed technology,
we can use the retinomorphic sensor to emulate the
hierarchical organization and biological functions of
the retina and avoid the physical separation between
sensing and processing that is seen in conventional
machine vision. In this way, the burden imposed on
the limited transmission bandwidth in conventional
machine vision can be released and the resulting
high latency is minimized. The advantage of early
processing in the retinomorphic sensor is not lim-
ited to high-speed transmission, but it also enables
drastic reduction of the processing load of the image
in the networked memristive crossbar, which emu-
lates the function of the visual cortex of the human
brain. Using the neuromorphic crossbar to replace
the conventional processor based on the von Neu-
mann architecture, the sensed analog information
can be directly processed without analog–digital
conversion. Moreover, the frequent data movement
between processing and memory unit, as seen in
conventionalmachine vision, can be eliminated, giv-
ing rise to low latency and low power consumption.

We use vdW heterostructure to fabricate the
retinomorphic sensor which emulates the hierarchi-
cal structure and biological function of the retina in
a natural way. Figure 2a schematically shows a 3× 3
phototransistor array used as the retinomorphic sen-
sor, inwhich each vdWheterostructuredevice serves
as a pixel. To fabricate the vdW heterostructure de-
vice, we mechanically exfoliated WSe2 (∼20 nm)
and h-BN (∼35 nm) flakes and then transferred
themonto theAl2O3 dielectric layer (8nm) in a con-
secutive way. The fabrication details are provided in
theMethods section.

We then characterized electrical behaviors of the
vdW devices under the conditions of dark and light
illumination. Under the light illumination, the de-
vices exhibit distinct optoelectronic characteristics
under different polarities of back-gate voltage, with
results shown in Fig. 2b. At the positive gate voltage
(e.g. Vg = 2 V), the device shows an On photore-
sponse, while applying negative gate voltage (e.g.

Vg = −12 V) results in an Off photoresponse.
Current-voltage characteristics at different gate
voltages and field effect curves are shown in Sup-
plementary Figs 1 and 2, respectively. The Off
photoresponse is related to the light induced charge
transfer and resulting electrical field screening effect
of the gate voltage [43–45], which is totally different
from the negative photoconductivity phenomenon
reported in ReS2/h-BN/MoS2 heterostructure.
These distinct photoresponses of the vdW device
resemble the light-stimulated biological response
of the bipolar cell in the retina, which is a key com-
ponent for processing sensed information in the
visual pathway [46], and the timescale of photore-
sponse is comparable to the retina (Supplementary
Fig. 3) [47]. By assembling nine vdW heterostruc-
ture devices into an array as shown in Fig. 2a, we
are able to process the visual information on the
pixel level. The processed image is represented as
the variation of output current (�Ids), which is a
summation of current in all individual vdW devices
of the retinomorphic sensor through Ohm’s law
and Kirchhoff’s current law. Note that we used the
mechanically exfoliated 2D materials flakes at the
proof-of-concept stage. However, large-area 2Dma-
terials can be used to achieve vertical integration in
the future, since previous works have demonstrated
successful synthesis of wafer-scale single-crystal 2D
materials [48–50].

With separate control of gate voltage, we use
the retinomorphic sensor to implement different
convolution kernels to process the Lenna image
(Fig. 2c). The grayscale information of the Lenna
image was first converted into a sequence of volt-
age signals. Subsequently, the voltage signals were
used to control the light intensity of the laser through
a voltage relay to scan the image line by line. The
varying light intensity shed on the sensor causes the
change of�Ids and represents the image processing.
Eventually, the processed image was reconstructed
by using the measured �Ids. Figure 2d presents the
processed Lenna image by edge enhancement. Ap-
parently, the profiles of the processed image are en-
hanced over that of the original image. To math-
ematically confirm the validity of this kernel, we
counted grayscales of the original (orange) and the
processed (green) images and presented the distri-
bution of counts versus grayscales in the histogram,
with results shown in Fig. 2e. Compared to the
broad grayscales distribution in the original image,
the grayscales of the processed image exhibit a very
narrow distribution, which follows a Gaussian dis-
tribution. For comparison, we also carried out cor-
responding simulations, which are in good agree-
ment with the experimental results (Supplementary
Fig. 4).
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Figure 2. Gate-tunable photoresponse of the retinomorphic sensor and its applications in image processing. (a) 3 × 3
retinomorphic sensor based on WSe2/h-BN/Al2O3 vdW heterostructure device as shown in the optical image. The scale
bar is 15 μm. (b) The corresponding On or Off photoresponse of the heterostructure device at Vds = 0.15 V. (c) The original
Lenna image. The processed image by edge enhancement (d) and stylization (f) implemented with the retinomorphic sensor.
(e) Grayscale distribution of the original Lenna (orange) and processed one with the edge enhancement (green). The experi-
mental data are fitted with a Gaussian function (black solid line). (g) The comparison between the experimental results (blue,
stylization in f) and the simulation of grayscales distributed in the two diagonal lines (left and right) of the Lenna image.

In addition to the edge enhancement, we also
implemented the image stylization kernel with the
sensor to process the Lenna image in a different
manner. As shown in Fig. 2f, the processed image is
consistent with the simulation results. Similarly, we
evaluated the validity of this kernel bymaking a com-
parisonbetween the processed (or simulated) image
and the inverted original image (Supplementary
Fig. 5).The normalized error is defined as (GExp/Sim
− Gi)/255×100%, where GExp/Sim and Gi respec-
tively represent the grayscale in the left and right
diagonals of the experimental (or simulation) image
and the inverted original image. Figure 2g shows
the experimental and simulation errors versus pixel
positions along the left and right diagonals. Notably,
the experimental error is nearly identical to the error

of simulation and is <20% in the majority of cases.
We also calculated the structural similarity (SSIM)
to comprehensively characterize the similarity be-
tween the experimental and the simulation images
by taking light intensity, contrast and structural in-
formation into account. The SSIM parameter varies
from 0 to 1 and is widely used in computing vision
for evaluating the similarity of two images.TheSSIM
of the images by the edge enhancement and styl-
ization is 0.59 and 0.38, respectively. Although the
SSIM is not large enough due to the non-uniformity
of device performance, it is still an indication that
the retinomorphic sensor may benefit intelligent
Internet of Things applications with increasing
demand for the early processing of sensed visual
information.
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Figure 3. Neuromorphic vision system comprised of the retinomorphic sensor and the memristive crossbar. (a) The flow chart
schematically illustrates the image sensing and processing by the retinomorphic sensor and image recognition by the mem-
ristive crossbar. (b) The linear I-V performance of the memristor with different conductances. (c) The image recognition by the
neuromorphic vision system. Left panel: ‘N’, ‘J’ and ‘U’ for training the memristive neural network; Right panel: Recognition
accuracy. (d) Comparison of recognition accuracy with and without the retinomorphic sensor.

Networking the retinomorphic sensor with a
large-scale memristive crossbar allows for realiza-
tion of brain-inspired visual perception applications
(Fig. 3a). In such a networked system, the memris-
tive crossbar is integratedwith the 1T1R cell tomiti-
gate the sneak-path current issue.The fabricationde-
tails of crossbar are given in the Methods section.
We characterized the fundamental I-V characteris-
tics of the memristive device with different conduc-
tances and presented the corresponding results in
Fig. 3b. The excellent linearity of the I-V curves al-
lows for accurate analog computing on the memris-
tive crossbar and the emulation of the function of
the visual cortex in the brain. Thus, networking the
retinomorphic sensor with the memristive crossbar
enables us to closely mimic the biological function
of the HVS and realize image sensing, processing
and recognition in the full analog regime. Based on
the networked system, an image can be detected and
pre-processedby the sensor to remove redundant in-
formation and only retain key information.The out-
put from the sensor is converted into voltage signals
and then input into the trained memristive neural

network for perception without suffering issues re-
lated to analog–digital conversion.

The brain-inspired neuromorphic vision system
is very efficient in pattern recognition. To demon-
strate the image recognition, we used 2100 images
of (8 × 8) English alphabets ‘N’, ‘J’ and ‘U’ (left
panel in Fig. 3c and Supplementary Fig. 6). No sig-
nificant degradation was observed in the process
of image sensing and processing (Supplementary
Fig. 7), indicating the robustness of the retinomor-
phicdevices.The recognitionoutput is a columnvec-
tor ranging from 0 to 1, as demonstrated in the bot-
tom left of Fig. 3a.Themaximumoutput value in the
column vector corresponds to the recognized letter.
The neuromorphic visual system achieves a 100%
recognition accuracy (right panel in Fig. 3c).The ex-
cellent performance of the neuromorphic visual sys-
tem in image recognition suggests that integrating
the retinomorphic sensor and memristive crossbar
may open up a new avenue for achieving highly com-
pact and efficient intelligent machine vision.

Early processing of the image in the retinomor-
phic sensor of the neuromorphic vision system
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Figure 4. Object tracking of neuromorphic vision system. (a) The flow chart of the object tracking based on the neuromorphic
vision system. The box represents the field of view defined by the retinomorphic sensor. By using the sensor, the cross edge
in the field of view is extracted as its key feature. Once the cross is recognized by the ANN, the position information (Xn, Yn)
of the cross at Tn is input into a trained RNN to achieve the object tracking. (b) The trajectory of the cross measured by the
neuromorphic vision system (green line with dots) is compared with the predicted trace by RNN (orange line with dots).

can accelerate image recognition in the memris-
tive neural network, which shows an advantage in
processing a large number of images. For proof-
of-concept demonstration, we have used 15 000
handwritten numerals (8 × 8) derived from the
Modified National Institute of Standards and Tech-
nology database as the test input. The recognition
output is a 1 × 10 column vector ranging from 0
to 9.The maximum output value in the column vec-
tor corresponds to the recognizednumeral.Wecom-
pared the recognition accuracy with andwithout the
retinomorphic sensor, with results shown in Supple-
mentary Fig. 8. Although the early processing of the
handwritten numerals in the retinomorphic sensor
leads to a negligible improvement of the recognition
accuracy, it remains effective in accelerating conver-
gence speed of the recognition with the retinomor-
phic sensor, which is not obvious due to the lim-
ited size of the fabricated memristive crossbar and
the pixel-to-pixel variation of the retinomorphic sen-
sor. We show that expanding the memristive neural
network scale drastically speeds up the convergence
of the numeral recognition (Fig. 3d), as compared
to that without the retinomorphic sensor. Note that
further optimization of fabrication processes, and
expanding the retinomorphic sensor array and the
memristor crossbar array, are expected to consider-
ably improve the recognition accuracy and conver-
gence rate.

The neuromorphic vision system is also promis-
ing in the task of object tracking. Figure 4a schemat-
ically illustrates a flow chart of the object tracking.
The box refers to the field of view defined by the
retinomorphic sensor and the cross is the tracked
target. The profile of the moving cross is extracted
by the retinomorphic sensor and input into a recur-
rent neural network (RNN) as spatiotemporal fea-
tures to enable the cross tracking. To demonstrate
this proof of principle, we set a threshold current
value for the retinomorphic sensor before measure-
ment. At the beginning, the cross in the field of view
is sensed and processed by the retinomorphic sen-
sor. Then the processed cross is recognized by a
trained memristive neural network. Afterwards, the
coordinates of edge position are measured as out-
put when the total current in the retinomorphic sen-
sor exceeds the threshold value (middle panel of
Fig. 4a). By considering all the positions of pixels in
the edge of the cross, we obtain the averaged coor-
dinates (Xn, Yn) at a certain moment Tn. To track
the cross, the location information at a certain mo-
ment is input into an RNN for predicting the loca-
tion of the moving cross at the next moment, which
has already been used to process temporal data on
the memristive crossbar [12,51,52].

We demonstrate cross tracking by networking
the retinomorphic sensor with RNN. The RNN
used for cross tracking includes two-input neurons,
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ten-hidden layer neurons and two-output neurons.
We trained the RNN as below: the coordinates (Xn,
Yn) at Tn and Hn−1 are fed into the hidden layer to
generate Cn and Hn (as schematically illustrated in
the middle panel of Fig. 4a), where Cn represents
the coordinates predicted by RNN at Tn and Hn is
the state vector at Tn generated from the previous
state Hn−1 in the hidden layer. The backpropaga-
tion through time algorithm was implemented for
the RNN training, and the mean squared error was
reduced to less than 10−2 after training 150 epochs
(the details for the RNN training are provided in the
Methods section). After training, the neuromorphic
vision system is able to track the crosswith good per-
formance. Figure 4b compares themoving trajectory
measured by the neuromorphic vision system and
that predicted by the RNN.The good agreement be-
tween two traces indicates that the neuromorphic vi-
sion system is promising in object tracking, which is
further supported by the real-time tracking video as
shown in the Supplementary Movie.

CONCLUSION
In summary, we, for the first time, realize a neuro-
morphic vision system by networking a retinomor-
phic sensor with a large-scale memristive crossbar.
The sensor has been fabricated by using WSe2/h-
BN/Al2O3 vdW heterostructure to emulate the
function of retinal information processing. The
1T1R memristive crossbar in the networked sys-
tem serves as the brain-inspired neural network for
visual perception. With such a networked system,
we demonstrate image recognition and object track-
ing, highlighting the potential application of im-
age sensing, processing and recognition in the full
analog regime. Our work indicates that we may
envision promising applications of the neuromor-
phic vision system at the edge of the Internet of
Things.

METHODS
Fabrication and measurement of
phototransistor array
The bottom electrodes (Ti 2 nm/Au 30 nm) on the
silicon substrate were patterned by a standard elec-
tron beam lithography (EBL) and lift-off process
with 15 μm width. The Al2O3 are subsequently de-
posited by atom layer deposition (ALD) onto the
bottom electrodes. WSe2 and h-BN flakes were me-
chanically exfoliated and transferred onto the Al2O3
layer to fabricate the vdWheterostructures, followed
by an annealing process at 573 K in an argon at-

mosphere for 2 hours. We deposited Pd 5 nm/Au
45 nm onto the heterostructure as the source and
drain electrodes respectively and annealed the fabri-
cated devices again to remove resist residue. To con-
firm the thickness ofmaterials used,wehaveused the
atom force microscopy (AFM). All the fabricated
vdW devices were then placed onto the designed
printed circuit boards and interconnected to each
other by using standard bonding techniques. The
phototransistor arraywas then connected to our lab-
made switching matrix box. A data acquisition card
(National Instruments, PCIe-6351) and current am-
plifier (Stanford Research Systems, Model SR570)
were used for current measurements. A source mea-
surement unit (Keithley, 2636A) was used to ap-
ply gate voltages to the devices in the retinomorphic
sensor.

Image processing with the
phototransistor array
To demonstrate image processing, we have used the
128 × 128 Lenna image. The image was segmented
and converted into a sequence of 3 × 3 voltage sig-
nals by Python to drive a 3× 3 laser array.The laser
array was controlled by a multichannel relay and
LabVIEW. Eventually, the measured data were rear-
ranged in a sequence to construct the processed im-
age by Python. All measurements were performed in
a nitrogen atmosphere. The image of measurement
system is provided in Supplementary Fig. 9.

The analysis of the processed Lenna
image
For the image processed by edge enhancement,
we analyzed the original (Fig. 2c), experimental
(Fig. 2d) and simulation (Supplementary Fig. 4) by
Python to extract the grayscale of each pixel in these
images and presented the counts distribution in the
histogram with a Gaussian fit curve. For the styliza-
tion image, we first used Python to invert the orig-
inal Lenna image to obtain a new image. Then the
grayscale of each pixel on the diagonals of this image
and other processed images (including experimen-
tal and simulation) were compared and normalized
with respect to 255 as the operation error.

Fabrication and training of a large-scale
memristive crossbar
The large-scale memristor crossbars were inte-
grated with transistor arrays via photo lithography,
thin-film deposition and lift-off technology. We
sputtered Ag/Pd as a metal vias, followed by a lift-
off process and annealing of the samples at 573 K
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for 1.5 h. We sputtered a Pd/Ta adhesive layer as
the bottom electrode. We deposited a 5 nm HfO2
switching layer using ALD. Photo lithography and
reactive ion etch (RIE) were utilized to pattern the
switching layer. Finally, we sputtered a thickTa layer
as the top electrode and thick Pd layer as the passi-
vation layer, respectively.

We connected eachmemristor with a single tran-
sistor in series to mitigate the sneak-path current
issue. To demonstrate brain-inspired visual percep-
tion, we networked the retinomorphic sensor with
the memristive crossbar. We converted the current
outputs of the retinomorphic sensor into voltage
signals through a current-to-voltage converter and
then transferred the voltage signals to input vectors
matching the size of the memristive crossbar for
training the ANN.TheANN contains a hidden layer
with 37 neurons. In each layer of the ANN, we fed
the input vectors into the crossbar through row lines
and measured output vectors from column lines.
Each weight value was represented by the difference
in conductance between two memristors. Error
backpropagation was conducted by reading out
the conductance of the memristors and calculating
the corresponding error in the computer. The
cross-entropy loss function and root mean square
propagation were chosen for weight update. Amini-
batch size of 100 was used in the training process.

Training of the recurrent neural network
We constructed a recurrent neural network con-
taining two input-neurons, ten hidden-neurons
and two output-neurons. By constantly training,
the predicted trace would be close to the experi-
mental trace. The goal of the training process was
to minimize a loss function L, which is a function
of the network output yt and the target y ttarget . We
summed the mean square loss error over all time
steps L = ∑P

p=1
∑T

t=1
1
2‖y t − y ttarget‖2, for the

prediction experiment, where p indexes over the
sample. Specifically, the gradients were calculated
using the backpropagation through time algorithm.
The output of the last layer in the recurrent neural
network and the output delta of the hidden layer
were calculated through δty = g ′(y t − y ttarget) and
δth = f ′((W(δty )

T + U (δt+1
h )T)T , respectively,

where g′ and f ′ are the derivative of the activation
functions, T represents time interval, and W and
U are the weight matrices for the input layer and
hidden input layer of RNN, respectively.
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