
508 Network Science 4 (4): 508–530, 2016. c© Cambridge University Press 2016

doi:10.1017/nws.2016.20

NetworKit: A tool suite for large-scale complex
network analysis

CHRISTIAN L. STAUDT

Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

(e-mail: christian.staudt@kit.edu)

ALEKSEJS SAZONOVS1

Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK

(e-mail: as45@sanger.ac.uk)

HENNING MEYERHENKE

Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

(e-mail: meyerhenke@kit.edu)

Abstract

We introduce NetworKit, an open-source software package for analyzing the structure of large
complex networks. Appropriate algorithmic solutions are required to handle increasingly
common large graph data sets containing up to billions of connections. We describe the
methodology applied to develop scalable solutions to network analysis problems, including
techniques like parallelization, heuristics for computationally expensive problems, efficient
data structures, and modular software architecture. Our goal for the software is to package
results of our algorithm engineering efforts and put them into the hands of domain experts.
NetworKit is implemented as a hybrid combining the kernels written in C++ with a Python
frontend, enabling integration into the Python ecosystem of tested tools for data analysis and
scientific computing. The package provides a wide range of functionality (including common
and novel analytics algorithms and graph generators) and does so via a convenient interface.
In an experimental comparison with related software, NetworKit shows the best performance
on a range of typical analysis tasks.

Keywords: complex networks, network analysis, network science, parallel graph algorithms, data

analysis software

1 Motivation

Network science methodology is increasingly applied to study a variety of real-

world phenomena (Costa et al., 2011; Boccaletti et al., 2006). Consequently, large

network data sets comprising millions of edges are more and more common, and it

is an active current research project to develop scalable methods for the analysis of

large networks. In order to process such massive graphs, we need algorithms whose

running time is essentially linear in the number of edges. Many analysis methods

have been pioneered on small networks (e. g. for the study of social networks prior

1 Parts of the work were performed while Aleksejs Sazonovs was with KIT as part of the RISE program
of the German Academic Exchange Service DAAD.

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


NetworKit 509

to the arrival of massive online social networking services), so that underlying

algorithms with higher complexity were viable. As we shall see in the following,

developing a scalable analysis tool suite often entails replacing them with suitable

linear- or nearly linear-time variants. Furthermore, solutions should employ parallel

processing: While sequential performance is stalling, multicore machines become

pervasive, and algorithms and software need to follow this development. Within

the NetworKit project, scalable network analysis methods are developed, tested

and packaged as ready-to-use software. In this process, we frequently apply the

following algorithm and software engineering patterns: parallelization; heuristics;

or approximation algorithms for computationally intensive problems; efficient data

structures; and modular software architecture. With NetworKit, we intend to push

the boundaries on the size of networks whose structure can be characterized on a

shared-memory parallel computer.

In this work, we give an introduction to the tool suite and describe the method-

ology applied during development in terms of algorithm and software engineering

aspects. We discuss methods to arrive at highly scalable solutions to common

network analysis problems (Sections 2 and 3), describe the set of functionality

(Sections 4 and 5), present example use cases (Section 6), compare with related

software (Section 7), and evaluate the performance of analysis kernels experimentally

(Section 8). Our experiments show that NetworKit is capable of quickly processing

large-scale networks for a variety of analytics kernels, and does so faster and with

a lower memory footprint than closely related software. We recommend NetworKit

for the comprehensive structural analysis of massive complex networks (their size is

primarily limited by the available memory). To this end, a new front end supports

exploratory data analysis with fast graphical reports on structural features of the

network (Section 6.2).

2 Methodology

2.1 Design goals

There is a variety of software packages which provide graph algorithms in general

and network analysis capabilities in particular (see Section 7 for a comparison to

related packages). However, NetworKit aims to balance a specific combination of

strengths:

Performance. Algorithms and data structures are selected and implemented with

high performance and parallelism in mind. Some implementations are among the

fastest in published research. For example, community detection in a 3.3 billion edge

web graph can be performed on a 16-core server with hyperthreading in less than

3 minutes (Staudt and Meyerhenke, 2016).

Usability and Integration. Networks are as diverse as the series of questions we

might ask of them—e. g., what is the largest connected component, what are the

most central nodes in it and how do they connect to each other? A practical tool for

network analysis should therefore provide modular functions which do not restrict

the user to predefined workflows. An interactive shell, which the Python language

provides, is one prerequisite for that. While NetworKit works with the standard

Python 3 interpreter, calling the module from the IPython shell and Jupyter Notebook

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


510 C. L. Staudt et al.

C++ / OpenMP

Data Structures I/OAlgorithms

Cython

Python

Task-oriented Interface Additional
Functionality

Pythonized Classes

Wrapper Classes

NetworKit

submodule submodule

pandas

numpy

matplotlib

ext. Python modules

submodule

Python shell / program

Fig. 1. NetworKit architecture overview (→ represents call from/to). (Color online)

HTML interface (Perez et al., 2013) allows us to integrate it into a fully fledged

computing environment for scientific workflows, from data preparation to creating

figures. It is also easy to set up and control a remote compute server. As a Python

module, NetworKit can be seamlessly integrated with Python libraries for scientific

computing and data analysis, e. g. pandas for data frame processing and analytics,

matplotlib for plotting or numpy and scipy for numerical and scientific computing.

For certain tasks, we provide interfaces to external tools, e. g. Gephi (Bastian et al.,

2009) for graph visualization.

2.2 Architecture

In order to achieve the design goals described above, we implement NetworKit as a

two-layer hybrid of performance-aware code written in C++ with an interface

and additional functionality written in Python. NetworKit is distributed as a

Python package, ready to be used interactively from a Python shell, which is

the main usage scenario we envision for domain scientists. The code can be

used as a library for application programming as well, either at the Python

or C++ level. Throughout the project, we use object-oriented and functional

concepts. Shared-memory parallelism is realized with OpenMP, providing loop

parallelization and synchronization constructs while abstracting away the details

of thread creation and handling. As illustrated in Figure 1, connecting these native

implementations to the Python world is enabled by the Cython toolchain (Behnel

et al., 2011), which is used to integrate native code by compiling it into a Python

extension module. The resulting Python module networkit is organized into several

submodules for different areas of functionality, such as community detection or node

centrality.

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


NetworKit 511

2.3 Framework foundations

As the central data structure, the Graph class implements a directed or undirected,

optionally weighted graph using an adjacency array data structure with O(n + m)

memory requirement for a graph with n nodes and m edges. Nodes are represented by

64-bit integer indices from a consecutive range, and an edge is identified by a pair of

nodes. Edges can be indexed as well, associating an integer index from a consecutive

range with each edge, although this is optional, requiring O(m) additional memory.

We conclude that edge indexing does not impact analysis algorithm performance in

general, on the basis of benchmarks showing no significant running time differences

between enabled and disabled edge indices. The design described above enables a

lean graph data structure, while also allowing arbitrary node and edge attributes to

be stored in any container addressable by indices. In particular, it supports dynamic

modifications to the graph in a flexible manner, unlike the compressed sparse row

format common in high-performance scientific computing. Our graph API facilitates

the concise formulation of graph algorithms on both the C++ and Python layer

(see Figure 3 for an example).

3 Algorithm and implementation patterns

As explained in Section 1, our main focus are scalable algorithms in order to

support network analysis on massive networks. We identify several algorithm and

implementation patterns that help to achieve this goal and present them below

by means of case studies. For experimental results, we express processing speed

in “edges per second,” aggregating real running time over a set of graphs and

normalizing by graph size.

3.1 Parallelism

Our first case study concerns the core decomposition of a graph. The sequential

kernel implemented in NetworKit runs in O(m) time, matching other implemen-

tations (Batagelj and Zaveršnik, 2011). The main algorithmic idea we reuse for

computing the core numbers is to start with k = 0 and increase k iteratively. Within

each iteration phase, all nodes with degree k are successively removed (thus, also

nodes whose degree was larger at the beginning of the phase can become affected by

a removal of a neighbor). Using a bucket priority queue, we can extract and update

nodes accordingly in amortized constant time, resulting in O(m) in total. While this

already scales to large inputs, we can achieve further speedup through parallelization.

The sequential algorithm cannot be made parallel easily due to its sequential access

to the bucket priority queue. For achieving a higher degree of parallelism, we follow

Dasari et al. (2014). Their ParK algorithm replaces the extract-min operation in the

above algorithm by identifying the node set V ′ with nodes of minimum residual

degree while iterating in parallel over all (active) nodes. V ′ is then further processed

similarly to the node retrieved by extract-min in the above algorithm, only in parallel

again. ParK thus performs more sequential work, but with thread-local buffers it

relies on a minimal amount of synchronization. Moreover, its data access pattern is

more cache-friendly, which additionally contributes to better performance.

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


512 C. L. Staudt et al.

Fig. 2. Core decomposition: sequential versus parallel performance. (Color online)

Figure 2 is the result of running time measurements on a test set of networks (see

Section 8 for the setup). On average, processing speed is increased by almost an

order of magnitude through parallelization. Some overhead of the parallel algorithm

implies that speedup is only noticeable on large graphs, hence the large variance.

For example, processing time for the 260 million edge uk-2002 web graph is reduced

from 22 to 2 seconds.

3.2 Heuristics and approximation algorithms

In this example, we illustrate how inexact methods deliver appropriate solutions

for an otherwise computationally impractical problem. Betweenness centrality is a

well-known node centrality measure that has an intuitive interpretation in transport

networks: Assuming that the transport processes taking place in the network are ef-

ficient, they follow shortest paths through the network, and therefore preferably pass

through nodes with high betweenness. For instance, their removal would interfere

strongly with the function of the network. It is clear that network analysts would like

to be able to identify such nodes in networks of any size. NetworKit comes with an

implementation of the currently fastest known algorithm for betweenness (Brandes,

2001), which has O(nm) running time in unweighted graphs.

In order to parallelize the algorithm, several single-source shortest path searches

can be run in parallel to compute the intermediate dependency values whose sum

yields a node’s betweenness. Figure 3 shows C++ code for the parallel version,

which is simplified to focus on the core algorithm. To avoid race conditions, each

thread works on its own dependency array, which need to be aggregated into one

betweenness array in the end (lines 35–39).

We now evaluate the performance of the implementations experimentally (see

Section 8 for settings). Figure 4 shows aggregated running speed over a set of

smaller networks (from Table 3). In practice, this means that the sequential version

of Brandes’ algorithm (BetweennessSeq) takes almost 8 hours to process the 600k

edge graph caidaRouterLevel (representing internet router-level topology (CAIDA,

2003)). Parallelism with 32 (hyper)threads (Betweenness) reduces the running time

to ca. 90 minutes. Still, parallelization does not change the algorithm’s inherent

complexity. This means that running times rise so steeply with the size of the

input graph that computing an exact solution to betweenness is not viable on

the large networks we want to target. In typical use cases, obtaining exact values

for betweenness is not necessary, though. An approximate result is likely good

enough to appreciate the structure of the network for exploratory analysis, and to

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


NetworKit 513

1 // thread-local scores for efficient parallelism
2 count maxThreads = omp_get_max_threads();
3 count z = G.upperNodeIdBound();
4 std::vector<std::vector<double>> scorePerThread(maxThreads, std::vector<double>(z));
5

6 auto computeDependencies = [&](node s) {
7 std::vector<double> dependency(z, 0.0);
8 // run SSSP algorithm and count paths
9 std::unique_ptr<SSSP> sssp;

10 if (G.isWeighted()) {
11 sssp.reset(new Dijkstra(G, s, true, true));
12 } else {
13 sssp.reset(new BFS(G, s, true, true));
14 }
15 sssp->run();
16 // compute dependencies for nodes in order of decreasing distance from s
17 std::vector<node> stack = sssp->getStack();
18 while (!stack.empty()) {
19 node t = stack.back();
20 stack.pop_back();
21 for (node p : sssp->getPredecessors(t)) {
22 double w = sssp->numberOfPaths(p)/sssp->numberOfPaths(t);
23 double c = w * (1 + dependency[t]);
24 dependency[p] += c;
25 }
26 if (t != s) {
27 scorePerThread[omp_get_thread_num()][t] += dependency[t];
28 }
29 }
30 };
31

32 // iterate over nodes in parallel and apply
33 G.balancedParallelForNodes(computeDependencies);
34

35 // add up all thread-local values
36 for (auto& localScore : scorePerThread) {
37 G.parallelForNodes([&](node v){
38 scoreData[v] += localScore[v];
39 });
40 }

Fig. 3. Code example: Parallel calculation of betweenness centrality. (Color online)

Fig. 4. Processing speed of exact and inexact algorithms for betweenness centrality. (Color
online)

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


514 C. L. Staudt et al.

identify a set of top betweenness nodes. Therefore, we use a heuristic approach

based on computing a relatively small number of randomly chosen shortest path

trees (Geisberger et al., 2008). In contrast to the exact algorithm, running the

approximative algorithm with 42 samples takes 6 seconds sequentially. Applying

this algorithm cuts running time by orders of magnitude, but still yields a ranking

of nodes that is highly similar to a ranking by exact betweenness values. We observe

that the distribution of relative rank errors (exact rank divided by approximated

rank) has little variance around 1.0. Nodes on average maintain the rank they

would have according to exact betweenness even with such a small number of

samples. Experiments of this type (see Geisberger et al. 2008) confirm that in typical

cases betweenness can be closely approximated with a relatively small number s of

shortest-path searches. Therefore, we can replace an O(nm) algorithm with one of

time complexity O(sm) in many use cases. The inexact algorithm offers the same

opportunities for parallelization, yielding additional speedups: In the example above,

parallel running time is down to 1.5 seconds on 32 (hyper)threads.

If a true approximation with a guaranteed error bound is desired, NetworKit users

can apply another inexact algorithm (Riondato and Kornaropoulos, 2016) which

accepts an error bound parameter ǫ. It sacrifices some computational efficiency but

allows a probabilistic guarantee that the resulting betweenness scores have at most

±ǫ difference from the exact scores.

3.3 Efficient data structures

The case study on data structures deals with a generative network model, which

simplify complex network research in several respects (see Section 5). Theoretical

analyses have shown that Random hyperbolic graphs (RHGs) (Krioukov et al.,

2010) have many features also found in real complex networks (Bode et al., 2015;

Gugelmann et al., 2012; Kiwi and Mitsche, 2015). During the geometric generation

process, nodes are distributed randomly on a hyperbolic disk of radius R and edges

are inserted for every node pair whose distance is below R. The straightforward RHG

generation process would probe the distance of all pairs, yielding a quadratic time

complexity. This impedes the creation of massive networks. NetworKit provides the

first generation algorithm for RHGs with subquadratic running time (O((n3/2 + m)

log n) with high probability) (von Looz et al., 2015). The acceleration stems primarily

from the reduction of distance computations through a polar quadtree adapted to

hyperbolic space. Instead of probing each pair of nodes, the generator performs

for each node one efficient range query supported by the quadtree. In practice, this

leads to an acceleration of at least two orders of magnitude. With the quadtree-

based approach, networks with billions of edges can be generated in parallel in a

few minutes (von Looz et al., 2015).

3.4 Modular design

In terms of software design, we aim at a modular architecture with encapsulation

of algorithms into software components (classes and modules). Among the benefits

are extensibility and code reuse: For example, new centrality measures can be

easily added by implementing a subclass with the code specific to the centrality

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


NetworKit 515

Table 1. Selection of analysis algorithms contained in NetworKit. Complexity expressed in

terms of n nodes, m edges, s samples, and maximum node degree d.

Category Task Algorithm Time Space

Centrality Degree – O(n) O(n)
Betweenness (Brandes, 2001) O(nm) O(n + m)
ap. betweeenness (Geisberger et al.,

2008),(Riondato and
Kornaropoulos, 2016)

O(sm) O(n + m)

Closeness Shortest-path search
from each node

O(mn) O(n)

ap. closeness (Eppstein and Wang,
2004)

O(sm) O(n)

PageRank Power iteration O(m) Typical
(Section 4.2)

O(n)

Eigenvector
centrality

Power iteration O(m) Typical O(n)

Katz centrality (Katz, 1953) O(m) Typical O(n)
k-path centrality (Alahakoon et al., 2011) See (Alahakoon

et al., 2011)
Local clustering

coefficient
Parallel iterator O(nd2) O(n)

k-core
decomposition

(Dasari et al., 2014) O(m)

Partitions Connected
components

BFS O(m) O(n)

Community
detection

PLM, PLP (Staudt and
Meyerhenke, 2016)

O(m) O(m),O(n)

Global Diameter iFub (Crescenzi et al.,
2013)

O(m) Typical O(n)

computation, while code applicable to all centrality measures and a common

interface remains in the base class. Through these and other modularizations,

developers can add a new centrality measure and get derived measures almost

“for free.” These include for instance the centralization index (Freeman, 1979) and

the assortativity coefficient (Freeman, 1979), which can be defined with respect to

any node centrality measure and may in each case be a key feature of the network.

Modular design also allows for optimizations on one algorithm to benefit other

client algorithms. For instance, betweenness and other centrality measures (such as

closeness) require the computation of shortest paths, which is done via breadth-first

search in unweighted graphs and Dijkstra’s algorithm in weighted graphs, decoupled

to avoid code redundancy (see lines 10–14 in Figure 3).

4 Analytics

The following describes the core set of network analysis algorithms implemented

in NetworKit as of version 4.0. Table 1 summarizes the core set of algorithms for

typical problems. Where applicable, implementations process both weighted and

unweighted graphs appropriately.

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


516 C. L. Staudt et al.

4.1 Global network properties

Global properties include simple statistics such as the number of nodes and edges

and the graph’s density, as well as properties related to distances: The diameter of a

graph is the maximum length of a shortest path between any two nodes. We use the

iFUB algorithm (Crescenzi et al., 2013) both for the exact computation as well as

an estimation of a lower and upper bound on the diameter. iFub has a worst case

complexity of O(nm) but has shown excellent typical-case performance on complex

networks, where it often converges on the exact value in linear time.

4.2 Node centrality

Node centrality measures quantify the structural importance of a node within a

network. More precisely, we consider a node centrality measure as any function which

assigns to each node an attribute value of (at least) ordinal scale of measurement.

The assigned value depends on the position of a node within the network as defined

by a set of edges.

The simplest measure that falls under this definition is the degree, i. e. the

number of connections of a node, to which the graph data structure provides

constant-time access. Eigenvector centrality and its variant PageRank (Brin and

Page, 2012) are implemented in NetworKit based on parallel power iteration,

whose convergence time depends on a numerical error tolerance parameter and

spectral properties of the network, but is among the fast linear-time algorithms

for typical inputs. For betweenness centrality, we provide the solutions discussed

in Section 3.2. Similar techniques are applied for computing closeness centrality

exactly and approximately (Eppstein and Wang, 2004). Our current research extends

the former approach to dynamic graph processing (Bergamini and Meyerhenke,

2015; Bergamini et al., 2015). The local clustering coefficient expresses how many of

the possible connections between neighbors of a node exist, which can be treated

as a node centrality measure according to the definition above (Newman, 2010). In

addition to a parallel algorithm for clustering coefficients, NetworKit also implements

a sampling approximation algorithm (Schank and Wagner, 2005), whose constant

time complexity is independent of graph size.

4.3 Edge centrality, sparsification and link prediction

The concept of centrality can be extended to edges: Not all edges are equally

important for the structure of the network, and scores can be assigned to edges

depending on the graph structure such that they can be ranked (e. g. edge be-

tweenness, which depends on the number of shortest paths passing through an

edge).

A ranking of this kind can also be used to filter edges and thereby reduce

the size of data. NetworKit includes a wide set of edge ranking methods, with

a focus on sparsification techniques meant to preserve certain properties of the

network. For instance, we show that a method that ranks edges leading to high-

degree nodes (hubs) closely preserves many properties of social networks, including

diameter, degree distribution, and centrality measures. Other methods, including

a family of Simmelian backbones, assign higher importance to edges within dense

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


NetworKit 517

regions of the graph and hence preserve or emphasize communities. Details are

reported in our recent experimental study (Hamann et al., 2016). While currently

experimental and focused on one application, namely structure-preserving sparsifi-

cation, the design is extensible so that general edge centrality indices can be easily

implemented.

A somewhat related problem, conceptually and through common methods, is the

task of link prediction. Link prediction algorithms examine the edge structure of

a graph to derive similarity scores for unconnected pairs of nodes. Depending on

the score, the existence of a future or missing edge is inferred. NetworKit includes

implementations for a wide variety of methods (Esders, 2015).

4.4 Partitioning the network

Another class of analysis methods partitions the set of nodes into subsets depending

on the graph structure. For instance, all nodes in a connected component are reachable

from each other. A network’s connected components can be computed in linear time

using breadth-first search. Community detection is the task of identifying groups of

nodes in the network which are significantly more densely connected among each

other than to the rest of nodes. The task can be turned into a well-defined though NP-

hard optimization problem by using community quality measures, first and foremost

modularity (Girvan and Newman, 2002). We approach community detection from

the perspective of modularity maximization and engineer parallel heuristics which

deliver a good trade-off between solution quality and running time (Staudt and

Meyerhenke, 2016). The PLP (Parallel Label Propagation) algorithm implements

community detection by label propagation (Raghavan et al., 2007), which extracts

communities from a labeling of the node set. The Louvain method for community

detection (Blondel et al., 2008) can be classified as a locally greedy, bottom-up

multilevel algorithm. We recommend the PLM (Parallel Louvain Method) algorithm

with optional refinement step as the default choice for modularity-driven community

detection in large networks. PLM can be parametrized to use the multi-resolution

modularity objective function (Lambiotte, 2010) as a remedy for modularity’s

resolution limit, i.e. the behavior of detected communities growing with the input

network size. For very large networks in the range of billions of edges, PLP delivers

a better time to solution, albeit with a qualitatively different solution and worse

modularity.

5 Network generators

Generative network models aim to explain how networks form and evolve specific

structural features. Such models and their implementations as generators have at

least two important uses: On the one hand, algorithm or software engineers want

generators for synthetic datasets which can be arbitrarily scaled and parametrized

and produce graphs which resemble the real application data. On the other

hand, network scientists employ models to increase their understanding of network

phenomena. NetworKit provides a versatile collection of graph generators for this

purpose, summarized in Table 2.

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


518 C. L. Staudt et al.

Table 2. Overview of network generators.

Model [and algorithm] Description

Erdős-Rényi (P. Erdős, 1960) [(Batagelj
and Brandes, 2005)]

Random edges with uniform probability

Planted partition/stochastic blockmodel Dense areas with sparse connections
Barabasi–Albert (Albert and Barabási,

2002)
Preferential attachment process resulting in

power-law degree distribution
Recursive Matrix

(R-MAT) (Chakrabarti et al., 2004)
Power-law degree distribution, small-world

property, self-similarity
Chung–Lu (Aiello et al., 2000) Replicate a given degree distribution
Havel–Hakimi (Hakimi, 1962) Replicate a given degree distribution
hyperbolic unit-disk model (Krioukov

et al., 2010) [(von Looz et al., 2015)]
Large networks, power-law degree distribution

and High clustering
LFR (Lancichinetti and Fortunato,

2009)
Complex networks containing communities

Fig. 5. PPI network analysis pipeline with NetworKit as central component. (Color online)

6 Example use cases

In the following, we present possible workflows and use cases, highlighting the

capabilities of NetworKit as a data analysis tool and a library.

6.1 As a library in an analysis pipeline

A master’s thesis (Flick, 2014) provides an early example of NetworKit as a compo-

nent in an application-specific data mining pipeline (Figure 5). This pipeline performs

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


NetworKit 519

analysis of protein-interaction (PPI) networks and implements a preprocessing stage

in Python, in which networks are compiled from heterogeneous data sets containing

interaction data as well as expression data about the occurrence of proteins in

different cell types. During the network analysis stage, preprocessed networks are

retrieved from a database, and NetworKit is called via the Python frontend. The

C++ core has been extended to enable more efficient analysis of tissue-specific PPI

networks, by implementing in-place filtering of the network to the subgraphs of

proteins that occur in given cell types. Finally, statistical analysis and visualization

is applied to the network analysis data. The system is close to how we envision

NetworKit as a high-performance algorithmic component in a real-world data

analysis scenario, and we therefore place emphasis on the toolkit being easily

scriptable and extensible.

6.2 Exploratory network analysis with network profiles

Utilizing NetworKit as a library requires writing some custom code and some

expertise in selecting algorithms and their parameters. This is one reason why we

also provide an interface that requires just a few lines of code for an exploratory

analysis of large network, and returns an extensive overview. We treat networks as

statistical data sets whose properties should be determined via graph algorithms and

the results summarized via statistical graphics. The underlying module assembles

many algorithms into one analysis pipeline, automates analysis tasks and produces

a graphical report to be displayed in the Jupyter Notebook or exported to an

HTML or LATEX report document. Such a network profile gives a statistical overview

over the properties of the network. It consists of the following parts: First global

properties such as size and density are reported. The report then focuses on a

variety of node centrality measures, showing an overview of their distributions in

the network (see Figure 6). Detailed views for centrality measures (see Figure 7)

follow: Their distributions are plotted in histograms and characterized with standard

statistics, and network-specific measures such as centralization and assortativity are

shown. Furthermore, correlations between centralities are treated as noteworthy

empirical features of the network. For instance, betweenness may or may not be

positively correlated with increasing node degree. The prevalence of low-degree,

high-betweenness nodes may influence the resilience of a transport network, as

only few links then need to be severed in order to significantly disrupt transport

processes following shortest paths. The report displays correlations in the form of a

matrix of Spearman’s correlation coefficients, showing how node ranks derived from

the centrality measures correlate with each other (see Figure 8(b)). Furthermore,

scatter plots for each combination of centrality measure are shown, suggesting the

type of correlation (see Figure 9(a)). The report continues with different ways of

partitioning the network, showing histograms and pie charts for the size distributions

of connected components, modularity-based communities (see Figure 9(b)) and k-

shells, respectively. The default configuration of the module is such that even

networks with hundreds of millions of edges can be characterized in minutes on a

parallel workstation. Furthermore, it can be configured by the user depending on

the desired choice of analytics and level of detail, so that custom reports can be

generated.

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


520 C. L. Staudt et al.

Fig. 6. Overview on the distributions of node centrality measures and size distributions of
different network partitions—here, a Facebook social network. (Color online)

To pick an example from a scientific domain, the human connectome network

con-fiber big maps brain regions and their anatomical connections at a relatively

high resolution, yielding a graph with ca. 46 million edges. As the resolution of

brain imaging technology improves, connectome analysis is likely to yield ever more

massive network data sets, considering that the brain at the neuronal scale is a

complex network on the order of 1010 nodes and 1014 edges. On a first look, the

network has properties similar to a social network, with a skewed degree distribution

and high clustering. The pattern of correlations (Figure 8(b)) differs from that of

a typical friendship network (Figure 8(a)), with weaker positive correlations across

the spectrum of centrality measures. As one observation to focus on, we may pick

the strong negative correlation between the local clustering coefficient on the one

hand and the PageRank and betweenness centrality on the other. High betweenness

nodes are located on many shortest paths, and high PageRank results from being

connected to neighbors which are themselves highly connected. Thus, the correlations

point to the presence of structural hub nodes that connect different brain regions

which are not directly linked. Also, a look at a scatter plot generated (Figure 9(a))

reveals more details on the correlations: The local clustering coefficient steadily falls

with node degree, a majority of nodes having high clustering and low degree, a few

nodes having low clustering and high degree. Both observations are consistent with

the finding of connector hub regions situated along the midline of the brain, which

are highly connected and link otherwise separated brain modules organized around

smaller provincial hubs (Sporns and Betzel, 2016).

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


NetworKit 521

Fig. 7. Detailed view on the distribution of node centrality scores—here, local clustering
coefficients of the 3 billion edge web graph uk-2007. (Color online)

Fig. 8. Correlation between node centrality measures. (a) in the social network fb-Texas84.
(b) in the connectome network con-fiber big. (Color online)

Fig. 9. Statistical graphics from the profile of the connectome graph con-fiber big. (a) Scatter
plot of degree and local clustering coefficient. (b) Size distribution of modularity-based
communities. (Color online)

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


522 C. L. Staudt et al.

Another aspect we can focus on is community structure. There has been extensive

research on the modular structure of brain networks, indicating that communities

in the connectivity network can be interpreted as functional modules of the

brain (Sporns and Betzel, 2016). The communities found by the PLM modularity-

maximizing heuristic in the con-fiber big graph can be interpreted accordingly.

Their size distribution (Figure 9(b), in which a green pie slice represents the size

of a community) shows that a large part of the network consists of about 30

communities of roughly equal size, in addition to a large number of very small

communities (grey). While a thorough analysis of these findings would certainly need

to incorporate domain-specific knowledge, these examples illustrate how NetworKit’s

capability to quickly generate an overview of structural properties can be used to

generate hypotheses about the network data.

7 Comparison to related software

Recent years have seen a proliferation of graph processing and network analysis

software which vary widely in terms of target platform, user interface, scala-

bility and feature set. We therefore locate NetworKit relative to these efforts.

Although the boundaries are not sharp, we would like to separate network analysis

toolkits from general purpose graph frameworks (e. g. Boost Graph Library and

JUNG (O’Madadhain et al., 2003)), which are less focused on data analysis workflows.

As closest in terms of architecture, functionality and target use cases, we see

igraph (Csardi and Nepusz, 2006) and graph-tool (Peixoto, 2006). They are packaged

as Python modules, provide a broad feature set for network analysis workflows, and

have active user communities. Like NetworKit, igraph, and graph-tool address

the scalability issue by implementing core data structures and algorithms in C

or C++. graph-tool builds on the Boost Graph Library and parallelizes some

kernels using OpenMP. These similarities make those packages ideal candidates for

an experimental comparison with NetworKit (see Section 8.2). NetworkX (Hagberg

et al., 2008) is also a mature toolkit and the de-facto standard for the analysis of

small to medium networks in a Python environment, but not suitable for massive

networks due to its pure Python implementations, and often orders of magnitude

slower than NetworKit. The aforementioned packages have a substantial core feature

set in common with NetworKit and a broader feature set or different feature choices

in some areas. Python as a lingua franca makes it easy to build workflows combining

features from multiple packages.

Other projects are geared toward network science but differ in important aspects

from NetworKit. Gephi (Bastian et al., 2009), a GUI application for the Java

platform, has a strong focus on visual network exploration. Pajek (Batagelj and

Mrvar, 2004), a proprietary GUI application for the Windows operating system,

also offers analysis capabilities similar to NetworKit, as well as visualization features.

The variant PajekXXL uses less memory and thus focuses on large datasets.

The SNAP (Leskovec and Sosič, 2014) network analysis package has also recently

adopted the hybrid approach of C++ core and Python interface. Related efforts

from the algorithm engineering community are KDT (Lugowski et al., 2012) (built on

an algebraic, distributed parallel backend), GraphCT (Ediger et al., 2013) (focused on

massive multithreading architectures such as the Cray XMT), STINGER (a dynamic

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


NetworKit 523

Table 3. Networks used in this paper.

Name Type n m Source

fb-Caltech36 Social (friendship) 769 16,656 (Traud et al., 2012)

PGPgiantcompo Social (trust) 10,680 24,316 (Boguña et al. 2014)

CoAuthorsDBLP Coauthorship (science) 299,067 977,676 (Bader et al., 2014)

fb-Texas84 Social (friendship) 36,371 1,590,655 (Traud et al., 2012)

Foursquare Social (friendship) 639,014 3,214,986 (Zafarani and Liu, 2009)

Lastfm Social (friendship) 1,193,699 4,519,020 (Zafarani and Liu, 2009)

wiki-Talk Social 2,394,385 4,659,565 (Leskovec and Krevl, 2014)

Flickr Social (friendship) 639,014 55,899,882 (Zafarani and Liu, 2009)

in-2004 Web 1,382,908 13,591,473 (Boldi et al., 2004)

Actor- Collaboration (film) 382,219 15,038,083 (Kunegis, 2013)

collaboration

eu-2005 Web 862,664 16,138,468 (Boldi et al., 2004)

Flickr-growth-u Social (friendship) 2,302,925 33,140,017 (Kunegis, 2013)

Con-fiber big Brain (connectivity) 591,428 46,374,120 http://openconnecto.me

Twitter Social (followership) 15,395,404 85,331,845 (Zafarani and Liu, 2009)

uk-2002 Web 18,520,486 261,787,258 (Boldi et al., 2004)

uk-2007-05 Web 105,896,555 3,301,876,564 (Boldi et al., 2004)

graph data structure with some analysis capabilities) (Ediger et al., 2012), and

Ligra (Shun and Blelloch, 2013) (a recent shared-memory parallel library). They

offer high performance through native, parallel implementations of certain kernels.

However, to characterize a complex network in practice, we need a substantial set

of analytics which those frameworks currently do not provide.

Among solutions for large-scale graph analytics, distributed computing frame-

works (for instance, GraphLab (Low et al., 2012)) are often prominently named.

However, graphs arising in many data analysis scenarios are not bigger than the

billions of edges that fit into a conventional main memory and can therefore be

processed far more efficiently in a shared-memory parallel model (Shun and Blelloch,

2013), which we confirm experimentally in a recent study (Koch et al., 2015).

8 Performance evaluation

This section presents an experimental evaluation of the performance of NetworKit’s

algorithms. Our platform is a shared-memory server with 256 GB RAM and 2 × 8

Intel(R) Xeon(R) E5-2680 cores (32 threads due to hyperthreading) at 2.7 GHz,

using the GCC 4.8 compiler and the openSUSE 13.1 OS. We use NetworKit 4.0,

igraph 0.7.0, and graph-tool 2.9.

8.1 Benchmark

Figure 10 shows results of a benchmark of the most important analytics kernels in

NetworKit. The algorithms were applied to a diverse set of 15 real-world networks

in the size range from 16 k to 260 M edges, including web graphs, social networks,

connectome data, and internet topology networks (see Table 3 for a description).

Kernels with quadratic running time (like Betweenness) were restricted to the

subset of the four smallest networks. The box plots illustrate the range of processing

rates achieved (dots are outliers). The benchmark illustrates that a set of efficient

linear-time kernels, including ConnectedComponents, the community detectors,

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


524 C. L. Staudt et al.

Fig. 10. Processing rates of NetworKit analytics kernels. (Color online)

PageRank, CoreDecomposition, and ClusteringCoefficient, scales well to networks

in the order of 108 edges. The iFub (Crescenzi et al., 2013) algorithm demonstrates

good performance on complex networks, moving diameter calculation effectively

into the class of linear-time kernels. illustrating that performance is often strongly

dependent on the specific structure of complex networks. Algorithms like BFS and

ConnectedComponents actually scan every edge at a rate of 107 to 108 edges per

second.

8.2 Comparative benchmark

NetworKit, igraph, and graph-tool rely on the same hybrid architecture of C/C++

implementations with a Python interface. igraph uses non-parallel C code while

graph-tool also features parallelism. We benchmarked typical analysis kernels for the

three packages in comparison on the aforementioned parallel platform and present

the measured performance in Figure 11. Where applicable, algorithm parameters

were selected to ensure a fair comparison. graph-tool’s implementation of Brandes’

betweenness algorithm does more work as it also calculates edge betweenness scores

during the run. graph-tool also takes a different approach to community detection,

hence the comparison is between igraph and NetworKit only. We summarize

the benchmark results as follows: In our benchmark, NetworKit was the only

framework that could consistently run the set of kernels (excluding the quadratic-

time betweenness) on the full set of networks in the timeframe of an overnight

run. For some of igraph’s and graph-tool’s implementations, the test set had to be

restricted to a subset of smaller networks to make it possible to run the complete

benchmark overnight. NetworKit has the fastest average processing rate on all of

these typical analytics kernels. Our implementations have a slight edge over the

others for breadth-first search, connected components, clustering coefficients, and

betweenness. Considering that the algorithms are very similar, this is likely due

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


NetworKit 525

Fig. 11. Processing rates of typical analytics tasks: NetworKit in comparison with igraph

and graph-tool. (Color online)

to subtle differences and optimizations in the implementation. For PageRank, core

decomposition and the two community detection algorithms, our parallel methods

lead to a larger speed advantage. The massive difference for the diameter calculation

is due to our choice of the iFub algorithm (Crescenzi et al., 2013), which has better

running time in the typical case (i. e. complex networks with hub structure) and

enables the processing of inputs that are orders of magnitudes larger.

Another scalability factor is the memory footprint of the graph data structure.

NetworKit provides a lean implementation in which the 260 M edges of the uk-2002

web graph occupy only 9 GB, compared with igraph (93 GB) and graph-tool (14

GB). After indexing the edges, e. g. in order to compute edge centrality scores,

NetworKit requires 11 GB for the graph.

A third factor that should not be ignored for real workflows is I/O. Getting a large

graph from hard disk to memory often takes far longer than the actual analysis. For

our benchmark, we chose the GML graph file format for the input files, because

it is supported by all three frameworks. We observed that the NetworKit parser is

significantly faster for these non-attributed graphs (Figure 12).

9 Open-source development and distribution

Through open-source development, we would like to encourage usage and con-

tributions by a diverse community, including data mining users and algorithm

engineers. While the core developer team is located at KIT, NetworKit is conceived

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


526 C. L. Staudt et al.

Fig. 12. I/O rates of reading a graph from a GML file: NetworKit in comparison with
igraph and graph-tool. (Color online)

as a community project with a growing number of external users and contribu-

tors. The code is free software licensed under the permissive MIT License. The

package source, documentation, and additional resources can be obtained from

http://networkit.iti.kit.edu. The package networkit is also installable via

the Python package manager pip.

10 Conclusion

The NetworKit project exists at the intersection of graph algorithm research and

network science. Its contributors develop and collect state-of-the-art algorithms for

network analysis tasks and incorporate them into ready-to-use software. The open-

source package is under continuous development. The result is a tool suite of network

analytics kernels, network generators and utility software to explore and characterize

large network data sets on typical multicore computers. We detailed techniques that

allow NetworKit to scale to large networks, including appropriate algorithm patterns

(parallelism, heuristics, data structures) and implementation patterns (e. g. modular

design). The interface provided by our Python module allows domain experts to

focus on data analysis workflows instead of the intricacies of programming. This

is facilitated by a new frontend that generates comprehensive statistical reports on

structural features of the network. Users familiar with the Python ecosystem of data

analysis tools will appreciate the possibility to seamlessly integrate our toolkit.

Among similar software packages, NetworKit yields the best performance for

common analysis workflows. Our experimental study showed that NetworKit is

capable of quickly processing large-scale networks for a variety of analytics kernels

in a reliable manner. This translates into faster workflows and extended analysis

capabilities in practice. We recommend NetworKit for the comprehensive structural

analysis of large complex networks, as well as processing large batches of smaller

networks. With fast parallel algorithms, scalability is in practice primarily limited

by the size of the shared memory: A standard multicore workstation with 256 GB

RAM can therefore process up to 1010 edge graphs.

Acknowledgments

This work was partially supported by the project Parallel Analysis of Dynamic

Networks—Algorithm Engineering of Efficient Combinatorial and Numerical Meth-

ods, which is funded by the Ministry of Science, Research and the Arts Baden-

Württemberg, and by DFG grant ME-3619/3-1 (FINCA) within the SPP 1736

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


NetworKit 527

Algorithms for Big Data. Aleksejs Sazonovs acknowledges support by the RISE

program of the German Academic Exchange Service (DAAD). We thank Maximilian

Vogel and Michael Hamann for continuous algorithm and software engineering work

on the package. We also thank Lukas Barth, Miriam Beddig, Elisabetta Bergamini,

Stefan Bertsch, Pratistha Bhattarai, Andreas Bilke, Simon Bischof, Guido Brückner,

Mark Erb, Kolja Esders, Patrick Flick, Lukas Hartmann, Daniel Hoske, Gerd

Lindner, Moritz v. Looz, Yassine Marrakchi, Mustafa Özdayi, Marcel Radermacher,

Klara Reichard, Marvin Ritter, Arie Slobbe, Florian Weber, Michael Wegner, and

Jörg Weisbarth for contributing to the project.

References

Aiello, W., Chung, F., & Lu, L. (2000). A random graph model for massive graphs. In
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, Portland, OR,
USA. ACM, pp. 171–180.

Alahakoon, T., Tripathi, R., Kourtellis, N., Simha, R., & Iamnitchi, A. (2011). K-path
centrality: A new centrality measure in social networks. In Proceedings of the 4th Workshop

on Social Network Systems, Salzburg, Austria. ACM, p. 1.

Albert, R., & Barabási, A. (2002). Statistical mechanics of complex networks. Reviews of

Modern Physics, 74(1), 47.

Bader, D. A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., & Wagner, D. (2014).
Benchmarking for graph clustering and partitioning. In Encyclopedia of Social Network

Analysis and Mining (pp. 73–82). Springer.

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for
exploring and manipulating networks. In Proceedings of the Third International Conference

on Weblogs and Social Media, ICWSM 2009, San Diego, CA, USA, May 17–20, 2009.

Batagelj, V., & Brandes, U. (2005). Efficient generation of large random networks. Physical

Review E, 71(3), 036113.

Batagelj, V., & Mrvar, A. (2004). Pajek—analysis and visualization of large networks, Lecture
Notes in Computer Science, vol. 2265 (pp 477–478). Springer.

Batagelj, V., & Zaveršnik, M. (2011). Fast algorithms for determining (generalized) core
groups in social networks. Advances in Data Analysis and Classification, 5(2), 129–145.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011). Cython:
The best of both worlds. Computing in Science & Engineering, 13(2), 31–39.

Bergamini, E., & Meyerhenke, H. (2015). Fully-dynamic approximation of betweenness
centrality. In Proceedings of the Algorithms - ESA 2015 - 23rd Annual European Symposium,
Patras, Greece, September 14–16. Springer, pp. 155–166.

Bergamini, E., Meyerhenke, H., & Staudt, C. (2015). Approximating betweenness centrality in
large evolving networks. In Proceedings of the 17th Workshop on Algorithm Engineering and

Experiments, ALENEX 2015. San Diego, CA, USA, January 5, 2015. SIAM, pp. 133–146.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Experiment,
2008(10), P10008.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks:
Structure and dynamics. Physics Reports, 424(4), 175–308.

Bode, M., Fountoulakis, N., & Müller, T. (2015). On the largest component of a hyperbolic
model of complex networks. Electronic Journal of Combinatorics, 22(3), P3.24.

Boldi, P., Codenotti, B., Santini, M., & Vigna, S. (2004). Ubicrawler: A scalable fully distributed
web crawler. Software: Practice & Experience, 34(8), 711–726.

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


528 C. L. Staudt et al.

Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical

Sociology, 25(2), 163–177.

Brin, S., & Page, L. (2012). Reprint of: The anatomy of a large-scale hypertextual web search
engine. Computer Networks, 56(18), 3825–3833.

CAIDA (2003). Caida skitter router-level topology measurements. Retrieved from
http://www.caida.org/data/router-adjacencies/.

Chakrabarti, D., Zhan, Y., & Faloutsos, C. (2004). R-MAT: A recursive model for graph
mining. In SDM (vol. 4, pp. 442–446). Orlando, FL, USA: SIAM.

Costa, L. d. F., Oliveira Jr, O. N., Travieso, G., Rodrigues, F. A., Villas Boas, P. R., Antiqueira,
L., . . . Correa Rocha, L. E. (2011). Analyzing and modeling real-world phenomena with
complex networks: A survey of applications. Advances in Physics, 60(3), 329–412.

Crescenzi, P., Grossi, R., Habib, M., Lanzi, L., & Marino, A. (2013). On computing the
diameter of real-world undirected graphs. Theoretical Computer Science, 514, 84–95.

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research.
InterJournal, Complex Systems, 1695(5), 1–9.

Dasari, N. S., Ranjan, D., & Zubair, M. (2014). ParK: An efficient algorithm for k-core
decomposition on multicore processors. In J. Lin, J. Pei, X. Hu, W. Chang, R. Nambiar,
C. Aggarwal, N. Cercone, V. Honavar, J. Huan, B. Mobasher, & S. Pyne (Eds.), IEEE

International Conference on Big Data, Big Data 2014 (pp. 9–16). Washington, DC: IEEE,
October 27–30, 2014.

Ediger, D., Jiang, K., Riedy, E. J., & Bader, D. A. (2013). GraphCT: Multithreaded algorithms
for massive graph analysis. IEEE Transactions on Parallel and Distributed Systems, 24(11),
2220–2229.

Ediger, D., McColl, R., Riedy, E. J., & Bader, D. A. (2012). STINGER: High performance
data structure for streaming graphs. In IEEE Conference on High Performance Extreme

Computing HPEC 2012, Waltham, MA, USA, September 10–12, 2012, pp. 1–5.

Eppstein, D., & Wang, J. (2004). Fast approximation of centrality. Journal of Graph Algorithms

Applications, 8, 39–45.

Esders, K. (2015). Link prediction in large-scale complex networks. Master’s thesis, Karlsruhe
Institute of Technology.

Flick, P. (2014). Analysis of human tissue-specific protein-protein interaction networks.
Master’s thesis, Karlsruhe Institute of Technology.

Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks,
1(3), 215–239.

Geisberger, R., Sanders, P., & Schultes, D. (2008). Better approximation of betweenness
centrality. In Proceedings of the Tenth Workshop on Algorithm Engineering and Experiments

(ALENEX), San Francisco, CA, USA. SIAM, pp. 90–100.

Girvan, M., & Newman, M. (2002). Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12), 7821.

Gugelmann, L., Panagiotou, K., & Peter, U. (2012). Random hyperbolic graphs: Degree
sequence and clustering - (extended abstract). In Automata, Languages, and Programming -

39th International Colloquium, ICALP 2012, Proceedings, Part II, pp. 573–585.

Hagberg, A., Swart, P., & S Chult, D. (2008). Exploring network structure, dynamics, and
function using NetworkX. Technical report, Los Alamos National Laboratory (LANL).

Hakimi, S. L. (1962). On realizability of a set of integers as degrees of the vertices of a linear
graph. I. Journal of the Society for Industrial & Applied Mathematics, 10(3), 496–506.

Hamann, M., Lindner, G., Meyerhenke, H., Staudt, C. L., & Wagner, D. (2016). Structure-
preserving sparsification methods for social networks. Social Network Analysis and Mining,
6(1), 22:1–22:22.

Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1),
39–43.

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


NetworKit 529

Kiwi, M. A., & Mitsche, D. (2015). A bound for the diameter of random hyperbolic graphs. In
Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combinatorics, ANALCO

2015, San Diego, CA, USA, January 4, 2015, pp. 26–39.

Koch, J., Staudt, C. L., Vogel, M., & Meyerhenke, H. (2015). Complex network analysis
on distributed systems: An empirical comparison. In Proceedings of the 2015 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining, Paris, France.
ACM, pp. 1169–1176.

Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., & Boguñá, M. (2010). Hyperbolic
geometry of complex networks. Physical Review E, 82, 036106.

Kunegis, J. (2013). KONECT: The koblenz network collection. In 22nd International World

Wide Web Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13–17, 2013, Companion
Volume, pp. 1343–1350.

Lambiotte, R. (2010). Multi-scale modularity in complex networks. In Proceedings of

the Eighth International Symposium on Modeling and Optimization in Mobile, Ad-Hoc and

Wireless Networks (WiOpt 2010), May 31–June 4, 2010, University of Avignon, Avignon,
France, pp. 546–553.

Lancichinetti, A., & Fortunato, S. (2009). Benchmarks for testing community detection
algorithms on directed and weighted graphs with overlapping communities. Physical Review

E, 80(1), 016118.

Leskovec, J., & Krevl, A. (2014). SNAP Datasets: Stanford large network dataset collection.
Retrieved from http://snap.stanford.edu/data.

Leskovec, J., & Sosič, R. (2014). SNAP: A general purpose network analysis and graph mining
library in C++. Retrieved from http://snap.stanford.edu/snap.

Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., & Hellerstein, J. M. (2012).
Distributed graphlab: A framework for machine learning and data mining in the cloud.
Proceedings of the VLDB Endowment, 5(8), 716–727.

Lugowski, A., Alber, D.M., Buluç, A., Gilbert, J. R., Reinhardt, S.P., Teng, Y., & Waranis, A.
(2012). A flexible open-source toolbox for scalable complex graph analysis. In Proceedings

of the Twelfth SIAM International Conference on Data Mining, Anaheim, CA, USA, April
26–28, 2012, pp. 930–941.

Newman, M. (2010). Networks: An introduction. New York, NY, USA: Oxford University
Press.

O’Madadhain, J., Fisher, D., White, S., & Boey, Y. (2003). The JUNG (java universal

network/graph) framework. Irvine, California: University of California.

Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. Publication of the

Mathematical Institute of the Hungarian Academy of Sciences, 5.

Peixoto, T. P. (2006). graph-tool. Retrieved from http://graph-tool.skewed.de.

Perez, F., Granger, B. E., & Obispo, C. (2013). An open source framework for interactive,
collaborative and reproducible scientific computing and education.

Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect
community structures in large-scale networks. Physical Review E, 76(3), 036106.

Riondato, M., & Kornaropoulos, E. M. (2016). Fast approximation of betweenness centrality
through sampling. Data Mining and Knowledge Discovery, 30(2), 438–475.

Schank, T., & Wagner, D. (2005). Approximating clustering coefficient and transitivity. Journal

of Graph Algorithms and Applications, 9(2), 265–275.

Shun, J., & Blelloch, G. E. (2013). Ligra: A lightweight graph processing framework for shared
memory. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’13, Shenzhen, China, February 23–27, 2013. ACM, pp. 135–146.

Sporns, O., & Betzel, R. F. (2016). Modular brain networks. Annual Review of Psychology, 67,
613–640.

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20


530 C. L. Staudt et al.

Staudt, C. L., & Meyerhenke, H. (2016). Engineering parallel algorithms for community
detection in massive networks. IEEE Transactions on Parallel and Distributed Systems,
27(1), 171–184.

Traud, A. L., Mucha, P. J., & Porter, M. A. (2012). Social structure of facebook networks.
Physica A: Statistical Mechanics and its Applications, 391(16), 4165–4180.

von Looz, M., Meyerhenke, H., & Prutkin, R. (2015). Generating random hyperbolic graphs
in subquadratic time. In Proceedings of 26th International Symposium on Algorithms and

Computation (ISAAC 2015), LNCS, Nagoya, Japan. Springer.

Zafarani, R., & Liu, H. (2009). Social computing data repository at ASU. Retrieved from
http://socialcomputing.asu.edu.

https://doi.org/10.1017/nws.2016.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2016.20

