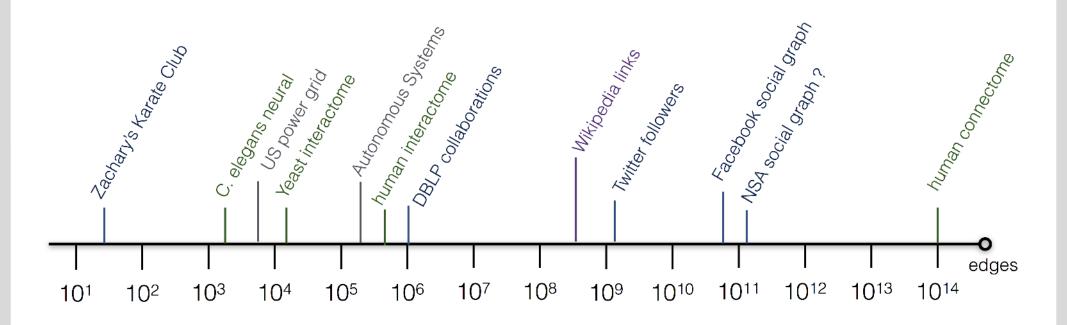
NetworKit: An Interactive Tool Suite for High-Performance Network Analysis

Christian L. Staudt, Aleksejs Sazonovs and Henning Meyerhenke · April 25, 2014

Institute of Theoretical Informatics · Parallel Computing Group

Introduction | Complex Networks

- non-trivial topological features that do not occur in simple networks (lattices, random graphs) but often occur in reality
 - social networks
 - web graphs
 - internet topology
 - protein interaction networks
 - neural networks



Introduction | Network Science

"statistics of relational data"

often

- exploratory in nature
- requires data preprocessing to extract graph
- creates large datasets easily
- requires domain-specific postprocessing for interpretation

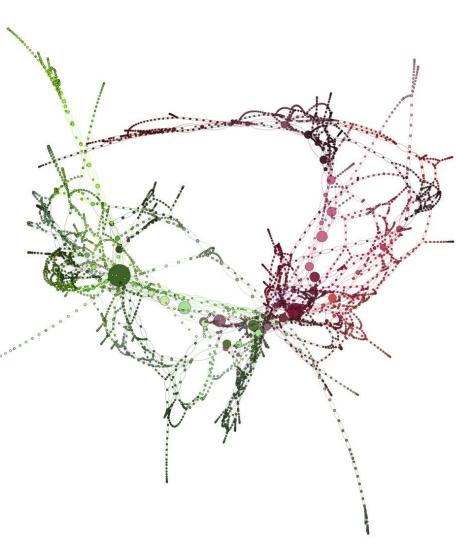


image: sayasaya2011.wordpress.com/

Introduction | Design Goals

Performance

implementation with efficiency and parallelism in mind

Interface

lacktriangle exploratory workflows ightarrow freely combinable functions and interactive interface

Integration

 seamless integration with Python ecosystem for scientific computing and data analysis

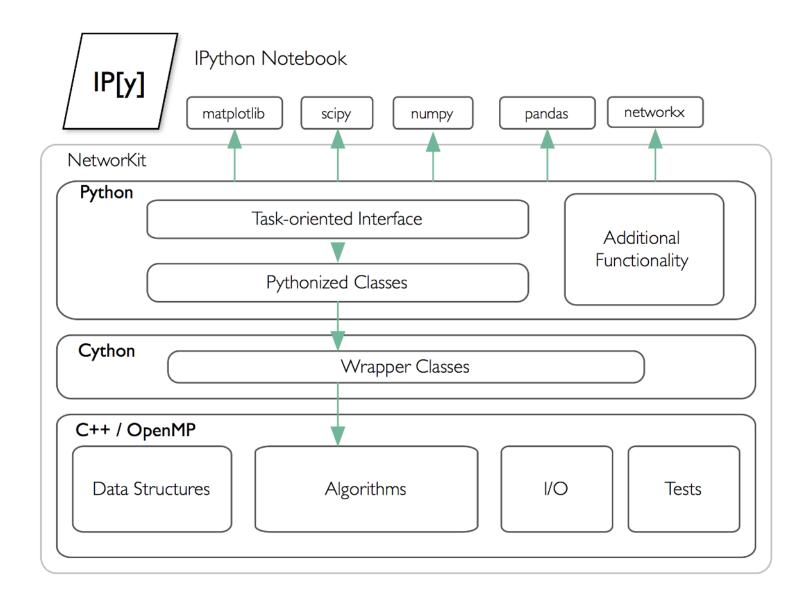
Target Platforms

- shared-memory parallel computers
- multicore PCs, workstations, compute servers . . .

Introduction | Overview

	NetworKit
language	C++, Python
interface	object-oriented, functional
platform	cross-platform
parallelism	shared memory (OpenMP)
license	MIT
first release	1.0 (Mar 2013)
latest release	3.1 (Apr 2014)
web	http:// parco.iti.kit.edu/ software/ networkit.shtml

Introduction | Architecture

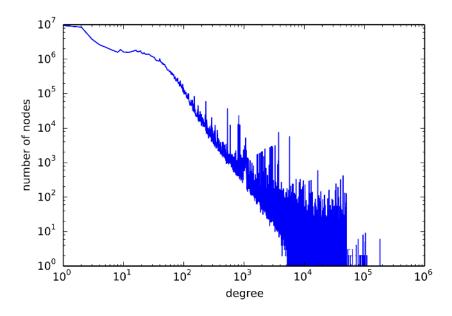




Analytics | Degree Distribution

Concept

- distribution of node degrees
- typically heavy-tailed (especially power law $p(k) \sim k^{-\gamma}$)



Algorithm

powerlaw Python module determines whether distribution fits power law and estimates exponent γ

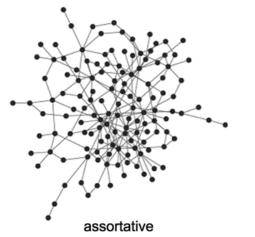
[Alstott et al.2014: powerlaw: a python package for analysis of heavy-tailed distributions.]

[Clauset et al.2009: Power-law distributions in empirical data]

Analytics | Degree Assortativity

Concept

- prevalence of connections between nodes with similar degree
- expressed as correlation coefficient



Algorithm

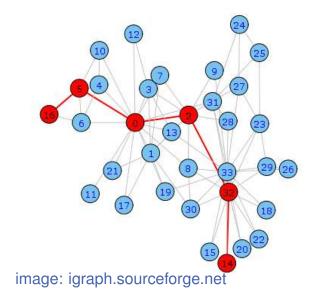
linear (O(m)) time and constant memory

[Newman 2002: Assortative mixing in networks.]

Analytics | Diameter

Concept

longest shortest path between any two nodes



Exact Algorithm

all pairs shortest path using BFS or Dijkstra

Approximation

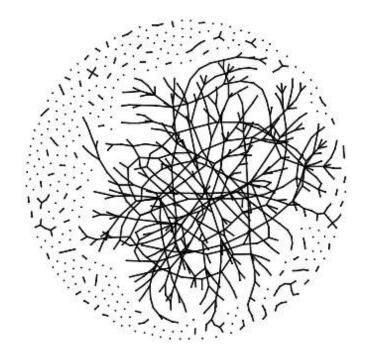
lacktriangle lower and upper bound within an error ϵ

[Magnien et al.2009: Fast computation of empirically tight bounds for the diameter of massive graphs]

Analytics | Components

Concept

maximal subgraphs in which all nodes are reachable from eachother



Algorithm

parallel label propagation, accelerated by multi-level technique

Analytics | Cores

Concept

 iteratively peeling away nodes of degree k reveals the k-cores

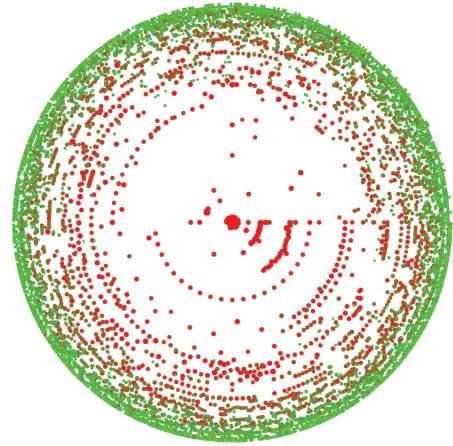


image: Hébert-Dufresne et al.2013

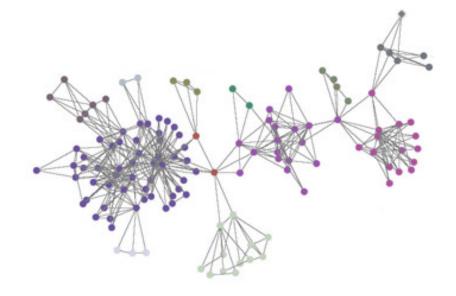
Algorithm

lacktriangle sequential, O(m) time

Analytics | Clustering Coefficients

Concept

ratio of closed triangles



Exact Algorithm

parallel node iterator: $O(nd_{max}^2)$ time

Approximation

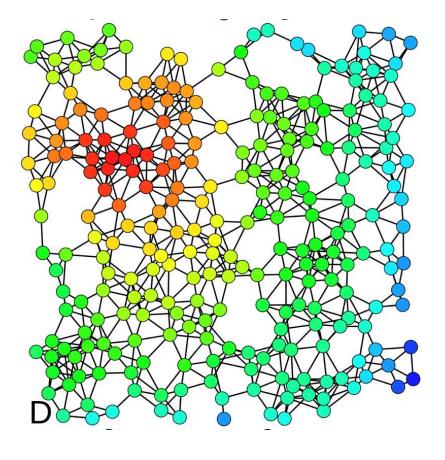
wedge sampling: linear to constant time approximation with bounded error

[Schank, Wagner 2005: Approximating clustering coefficient and transitivity]

Analytics | Eigenvector Centrality / PageRank

Concept

- a node's centrality is proportional to the centrality of its neighbors
- PageRank theory: probability of a random web surfer arriving at a page



Algorithm

parallel power iteration

[Page et al.1999: The PageRank citation ranking]

Analytics | Betweenness Centrality

Concept

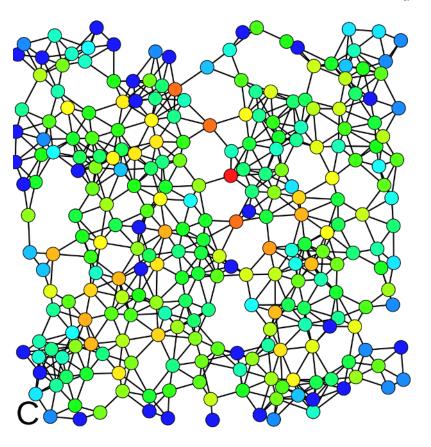
a central nodes lies on many shortest paths

Exact Algorithm

Brandes' algorithm: O(nm + n² log n) time

Approximation

 parallel path sampling with probabilistic error guarantee (additive constant)



[Brandes 2001: A faster algorithm for betweenness centrality]

[Riondato, Kornaropoulos 2013: Fast approximation of betweenness centrality through sampling]

Analytics | Community Detection

Community Detection

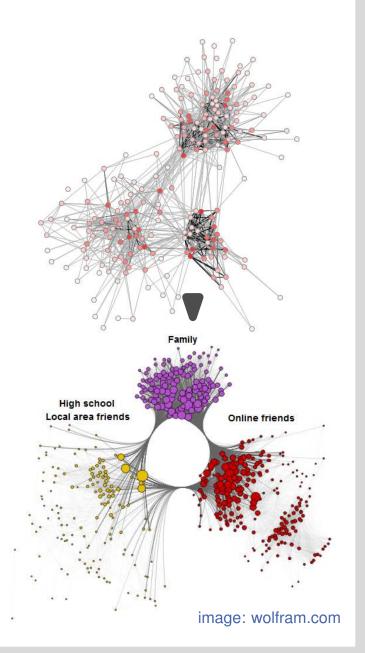
- find internally dense, externally sparse subgraphs
- goals: uncover community structure, prepartition network

[survey: Schaeffer 07, Fortunato 10]

Modularity

 fraction of intra-community edges minus expected value

[Girvan, Newman 2002: Community structure in social and biological networks]



Analytics | Community Detection

PLP

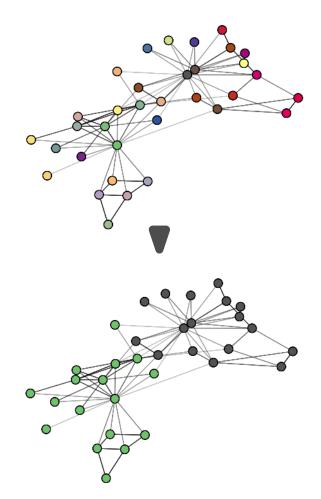
- parallel label propagation
- very fast, scalable, low modularity

PLM

- parallel Louvain method
- fast, high modularity

PLMR

- PLM with multi-level refinement
- slightly slower and better than PLM



[Staudt, Meyerhenke 2013: Engineering High-Performance Community Detection Heuristics for Massive Graphs]

etc | Generators

Erdös-Renyi

random graph, efficient generator

Barabasi-Albert

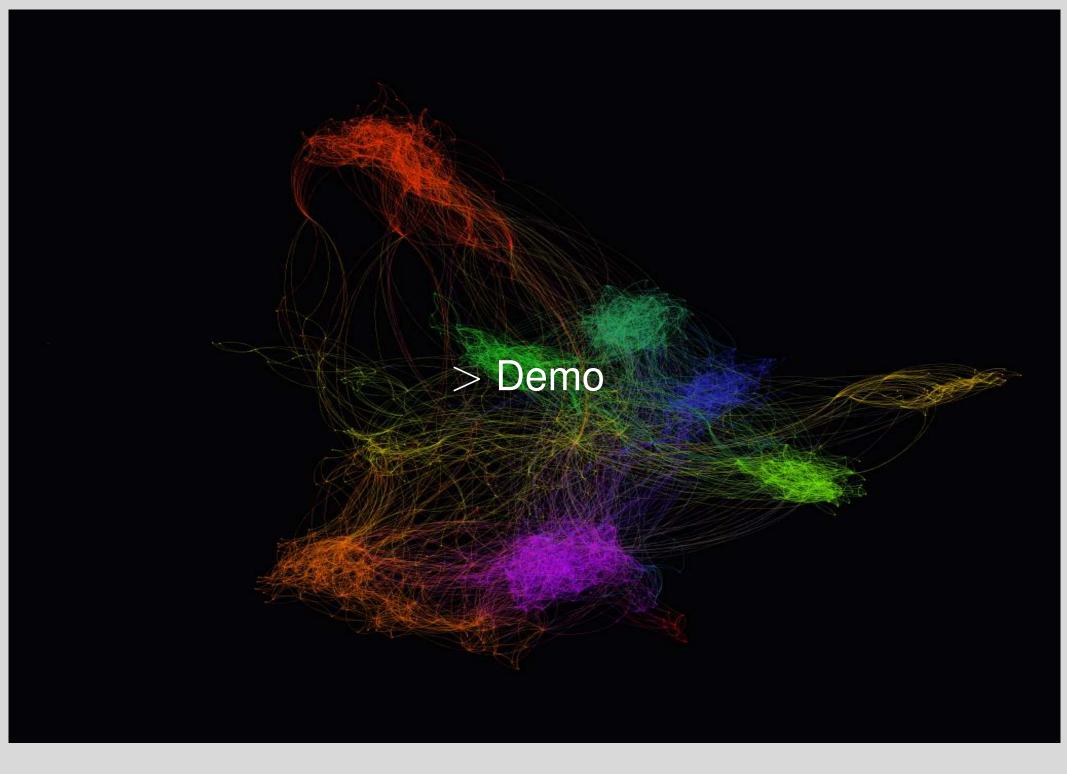
power law degree distribution

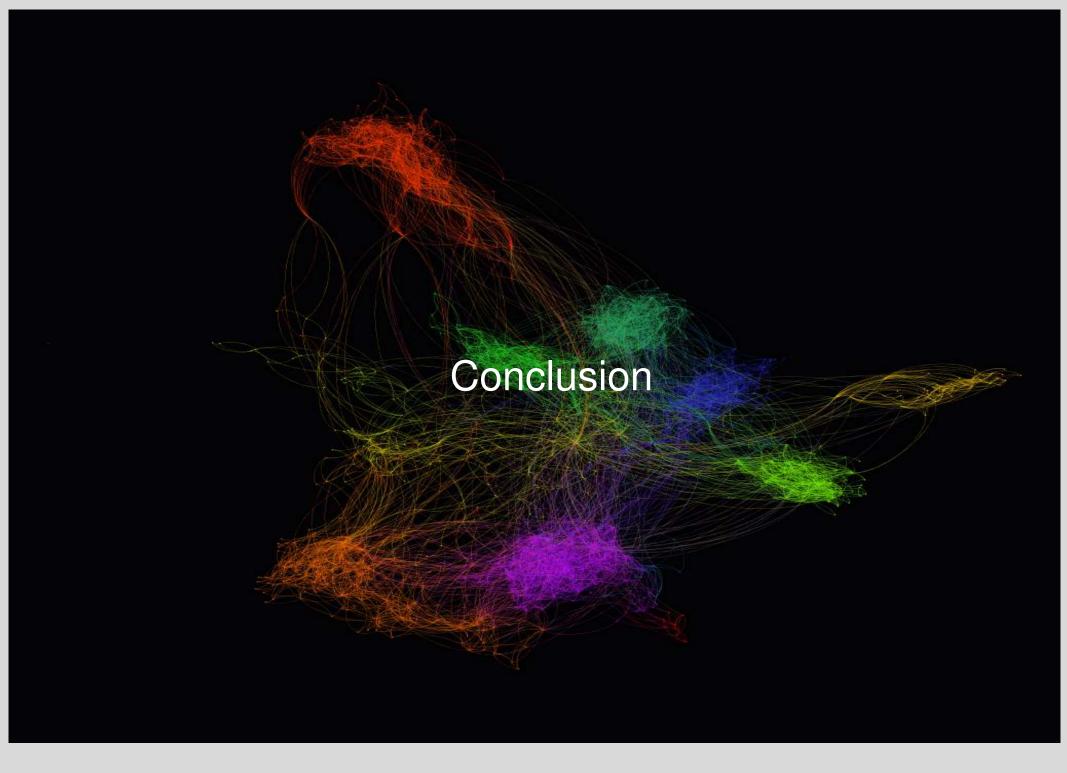
Chung-Lu & Havel-Hakimi

replicate input degree distributions

R-MAT

power law degree distribution, small world-ness, self-similarity





Conclusion | Call for Participation

Case studies?

apply NetworKit to study large complex networks

Working with networks?

use NetworKit to characterize data sets structurally

Wheel reinvention planned?

integrate implementations into NetworKit

Teaching graph algorithms?

use NetworKit as a hands-on teaching tool

Conclusion | Info & Support

Sources

- technical report: arxiv.org/abs/1403.3005
- package documentation
 - Readme
 - User Guide (IPython Notebook)
 - docstrings, Doxygen comments
- e-mail list: networkit@ira.uni-karlsruhe.de
 - ask us anything (related to NetworKit)
 - stay up to date

Conclusion | Credits

Responsible Developers

- Christian L. Staudt christian.staudt @ kit.edu
- Henning Meyerhenke meyerhenke @ kit.edu

Co-Maintainer

Maximilian Vogel - maximilian.vogel @ student.kit.edu

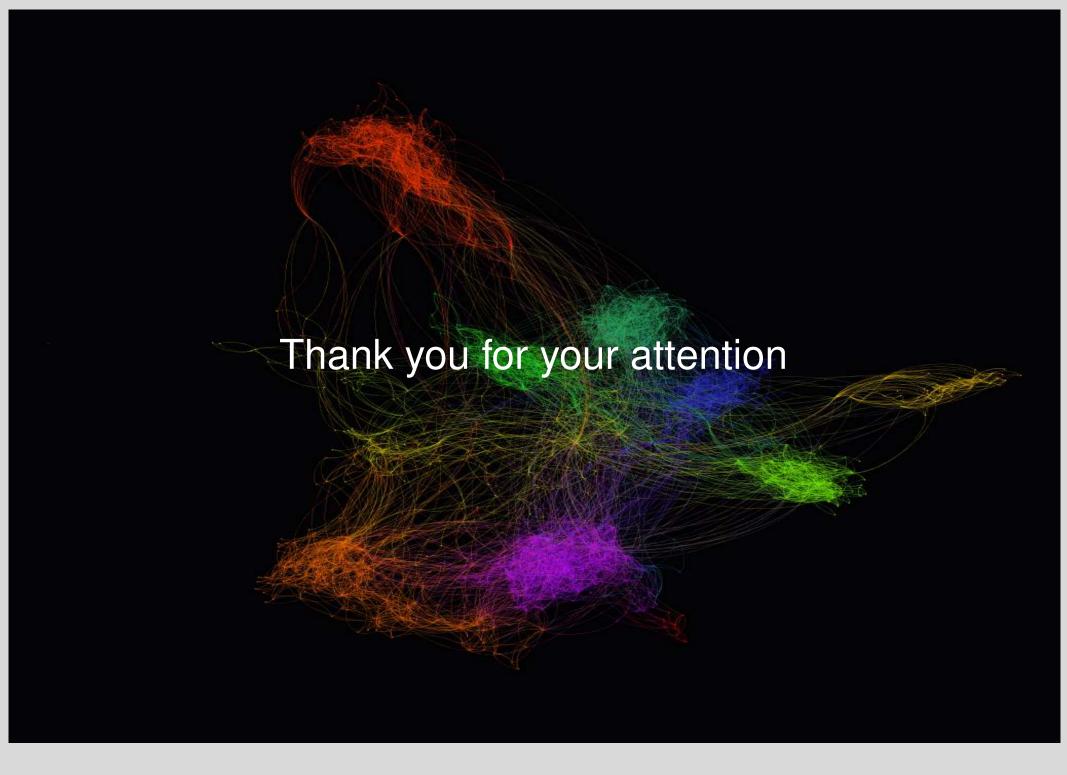
Contributors

- Miriam Beddig
- Stefan Bertsch
- Andreas Bilke
- Guido Brückner
- Patrick Flick
- Lukas Hartmann

- Daniel Hoske
- Yassine Marrakchi
- Aleksejs Sazonovs
- Florian Weber
- Jörg Weisbarth
- Michael Wegner

Acknowledgements

This work was partially funded through the project *Parallel Analysis of Dynamic Networks - Algorithm Engineering of Efficient Combinatorial and Numerical Methods* by the *Ministry of Science, Research and Arts Baden-Württemberg*. A. S. acknowledges support by the RISE program of the German Academic Exchange Service (DAAD).



Introduction | Architecture


```
template<typename L> inline void NetworKit::Graph::parallelForNodes(L handle) {
  #pragma omp parallel for
           for (node v = 0; v < z; ++v) {
3
                    if (exists[v]) {
                              handle(v);
                                                                                              Bag objects
           }
                   graph implementation
                                                                                           representations
                                                                                           of the same edge
                   graph API
1 std::vector<node> tempMap(G.upperNodeIdBound());
  G.parallelForNodes([&](node v){
           tempMap[v] = v; // initialize to identity
                                                                         Adjacency-lists representation (undirected graph)
3
                                                                              image: algs4.cs.princeton.edu
4 });
```