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1. Introduction 
 
 Social networking web sites such as Facebook, MySpace and LinkedIn have made 
social networks more prominent than ever.   Even though these and the many other forms 
of networked communications that have emerged with increased computerization  
provide a wealth of rich data for analysis, social networks are not new to economic 
interaction, nor are they new to researchers.   These prominent examples simply make 
more broadly evident the importance of research on networked interactions and the 
opportunities for such scientific inquiry.   
  
To some extent, the increased attention to social structure by economists parallels the 
growth of behavioral economics.    Some of the interest in behavioral economics stems  
from the realization that psychological factors and context can be important determinants 
of decision making and ultimately of economic behavior.  Similarly, the interest in social 
networks and the interaction patterns underlying economic activity stems from the 
realization that social context is an important determinant of economic behavior.    The 
realization that social factors are critical to understanding a great deal of economic 
behavior is not new.   The social embeddedness of economic activity was evident in 
sociological analyses of a wide variety of economic behavior even before Granovetter’s 
important (1985) article popularized the concept of the embeddedness of economic 
activity.   For instance, social structure is central in the study of the role of word of mouth 
communication in purchasing decisions by Katz and Lazarsfeld (1955), as well as in 
Myers and Schultz’s (1951) study of the role of networks in the spread of job 
information, and in the study of exchange networks by Cook and Emerson (1978), and 
also in a string of analyses of social capital emerging with writings of Bourdieu (1972), 
Loury (1977), and Coleman (1988), among others.     The recent growth of attention to 
the social context of economic activity comes in part from the maturing of the 
neoclassical models to the point where it is clear that they beg for additional context in 
order to explain a variety of observed phenomena, such as some patterns of wages and 
employment discussed below.  It also comes in part from the development of the toolbox 
of researchers in economics to include a variety of methods that are well-suited to 
analyzing social interaction.   
 
In line with this perspective, my discussion here focuses on (1) how examining the social 
context in which economic activity is embedded can enhance our understanding of 
economic behavior, both empirically and theoretically, and (2) which methods have been 
used in network analysis, how economic perspectives complement other perspectives, 
and what some of the basic hurdles are in conducting network analyses.  In keeping with 
the format of the Annual Review, I do not attempt to survey the vast and growing 
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literature on social and economic networks, but rather I provide a critical view of the state 
of the literature with an eye towards issues just mentioned.   Given the space limitation, I 
will also keep the discussion at a non-technical level and so readers wanting a broader 
view or a more detailed look at specific subjects are referred to Jackson (2008).1    
 
 
2.  Empirical Analysis of the Impact of Networks on Economic 
Activity 
 
 As alluded to above, from an economist’s perspective, there are two primary reasons for 
analyzing social networks.2   One reason is that the methodology that has evolved in 
economic research is also very useful in modeling and analyzing social interactions.  For 
example, new insights are obtained from bringing game theoretic reasoning to study 
network formation as well as the interactions between networked agents, as discussed in 
more detail below.   A second reason that an economist should be interested in network 
analysis is that many economic interactions are embedded in networks of relationships 
and the structure of the network plays an important role in governing the outcome.  For 
instance, many labor markets are decentralized with substantial flows of information 
about jobs being communicated via personal connections.   This affects patterns of wages 
and employment as well as education decisions and social mobility.   Understanding the 
impact of the network in determining information flows is essential to understanding 
some aspects of labor markets.    These two reasons sit on different footings.  The first is 
a reason why some economists should dedicate time to the study of social networks.  The 
second is a reason why all economists should pay attention to the analysis of social 
networks.   While social network analysis by researchers trained in economics and related 
fields will undoubtedly continue for the first reason alone, the continued growth of 
network analysis within the field of economics will ultimately rest on the showing that 
incorporating social context significantly enhances our understanding of an array of 
economic activities.   There are already a number of important examples of economic 
applications where it is clear that social networks play a central role, as I now discuss. 
 
 
 

                                                           
1 Jackson (2008) synthesizes the analyses of networks from sociology, economics, statistical physics, 
mathematics, and computer science.   There are also various texts that focus on specific literatures.  
Wasserman & Faust (1992) present the tools of social network analysis stemming from the sociology 
literature.   Bollobas (2001) surveys random graph theory.  Vega-Redondo (2007) focuses on the analysis 
of complex networks based on some of the random graph techniques from mathematics, statistical physics 
and computer science.  Goyal (2008) provides a look at some of the recent analyses of networks from the 
economics literature. There are also many helpful collected volumes that include some analyses of 
networks, such as Dutta & Jackson (2003), Demange & Wooders (2005), Newman, Barabasi & Watts 
(2006), Rauch (2007), and The Handbook of Social Economics (forthcoming).   There are some popular 
texts such as Watts (2003) and Barabasi (2004), as well as a history of thought of the sociology literature 
by Freeman (2006) .   
2 Clearly, social scientists should be interested in social networks beyond the draw on an economist’s 
toolbox and beyond network implications in economic applications, as there is also an interest in the pure 
science of social interactions. 
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 2.1 The Relevance and Economic Implications of Networks 
 
Despite the fact that we idealize markets as centralized and effectively anonymous 
institutions, many, if not most, markets function in a decentralized fashion, involving 
networks of bilateral interactions.   Many markets involve networks, not only in terms of 
who transacts with whom, but also in the transmission of information about potential 
transactions.  For example, one of the most extensively studied interfaces between social 
structure and markets is that of labor markets because of the large role that social 
networks play in disseminating information about both job openings and candidates.   For 
example, Myers and Shultz (1951) interviewed textile workers in a New England mill 
town and asked how they had heard about their jobs.  Myers and Shultz found that 62 
percent had found out about and applied to their first job through a social contact, in 
contrast with only 23 percent who applied by direct application, and the remaining 15 
percent who found their job through an agency, ads, or other means.  There have been 
many studies since then that have examined the role of networks in communicating job 
information in different professions  (e.g., Rees and Shultz (1970)), geographic areas and 
countries (e.g., Pellizzari (2004)), as well as comparatively across ethnicities, gender, and 
other dimensions (e.g., Corcoran, Datcher, and Duncan (1980)).3    An influential study 
by Granovetter (1973), based on interviews in Amherst Massachusetts, noted not only the 
importance of social networks in obtaining information about jobs, but also demonstrated 
an important role for what he termed ``weak ties.''  That is, distinguishing social 
relationships that are ``strong'' in terms of frequency or intensity of interaction from those 
that are more casual or infrequent and deemed ``weak,''  Granovetter found that a 
significant percentage (more than one fourth) of the job information obtained through 
social channels was obtained through weak ties.4  
 
The fact that social networks are important in transmitting information about job 
openings and about potential employees will not come as a surprise, especially to anyone 
who has been on either side of a job market (even an academic job market).    The impact 
of this fact ultimately depends on how it affects the functioning of job markets, and such 
questions have also been examined, for instance by analyzing how wage and employment 
patterns relate to social structure.    For example,  Bayer, Ross and Topa  (2005) make 
use of census data to demonstrate higher correlation in employment among people living 
in the same block compared to correlations among those living on different blocks but 
still relatively nearby and with similar characteristics.  They also find evidence 
suggesting that referrals can significantly influence wages and employment.    
                                                           
3 See Ioannides and Datcher-Loury (2004) for more background. 
4 In quantifying the tie strength in the data, Granovetter defined tie strength based on the 
frequency of interaction  between two individuals in the previous year.  ``Strong'' 
indicates interaction at least two interactions per week on average, ``medium'' indicates 
less than two interactions per week but more than one per year, and ``weak'' indicates on 
interaction per year or less.  He analysis is based on a sample of 54 interviewees who  
found their most recent job through a social contact; finding that 16.7 percent  
had found their job through a strong tie, 55.7 percent through a medium tie, and  
27.6 percent through a weak tie.  
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A challenge in such studies is that the social context is endogenous and so it can be 
difficult to be sure that the social context is responsible for the effect.   In order to deal 
with this, beyond carefully controlling for all discernable characteristic of individuals  as 
in the above study, another approach is to look for some mechanism that exogenously 
and randomly affects social interaction patterns and then seeing how that variation 
translates into variation in labor market outcomes.  For instance, Laschever (2007) 
examines the random grouping of troops into military units in the United States World 
War I draft and finds that a ten percent increase in the average employment rate of a 
veteran's unit increases the veteran’s employment rate by around three percent in 
expectation after correcting for other observables.  Other examples of such techniques are 
Munshi (2003), who finds significant impacts from exogenous immigration patterns due 
to weather events, and Beaman (2007) who examines the random relocation of political 
refugees and sees significant differences in labor market outcomes based on the social 
setting that the refugees encounter. 
 
These studies provide important evidence that social context influences wage and 
employment outcomes, and also provide some insight into the direction and magnitude of 
such effects.   Beyond these empirical studies, there are also some applied theoretical 
analyses that bring job contact networks into models of employment and wages and show 
that this incorporation can provide new insight into a number of well-documented 
patterns in wages and employment.  In particular, Calvó-Armengol and Jackson (2004, 
2007, 2009) examine how the explicit transfer of job information through a social 
network impacts employment and wage patterns.   Their model is such that if a worker is 
unemployed, then he or she can either receive information about a job opening either 
directly or via one of his or her employed friends.   Increasing the number of employed 
friends that a worker has leads to increased employment prospects the worker.  This also 
extends to wages, as hearing about more jobs (whether a worker is already employed or 
unemployed) leads to better matches and to more offers of employment and leads to 
higher wages.   Thus, a worker’s employment prospects and expected wages increase 
with the employment status of his or her acquaintances, and so such a network-based 
model of job information exhibits positive correlation in the employment and wages of 
connected workers.  It also exhibits positive correlation of indirectly connected agents’ 
employment and wages, and is such that the correlation between workers’ status decays 
with their social distance.5   Beyond such correlations, the model also exhibits duration 
dependence:  the longer a worker is unemployed, the lower the probability that the 
worker will become employed in the next period.  This is due to the fact that the longer a 
worker is unemployed the more likely it is that a worker’s friends are also unemployed, 
which leads to a lower expectation that the worker will find a job in the future.   These 
sorts of correlation patterns and time series can also translate into sustained differences in 
wages across different groups, such as by ethnicity, gender, or age, to the extent that 
                                                           
5 Although this is intuitive on one level, there is a confounding effect that a friend of a friend is a potential 
competitor for information about a given job.  That is suppose i and k are both linked to j and j hears about 
a job.   Conditional on k changing from being unemployed to being employed, there is a lower probability 
that i makes the same change, as they are competitors for the job information from j.   This short-term 
effect is of a second order compared to the fact that k helps keep j employed over time, which in turn helps 
keep i employed. 
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friendships are based on such factors.  As the portion of workers of a given ethnicity who 
are unemployed is increased, the prospects for their acquaintances to hear about job 
information declines.   So, if workers tend to have a disproportionate share of their social 
ties within their own group based on race, age, gender, or other attribute,  then we will 
see employment and wage outcomes be correlated within groups even after adjusting for 
any other relevant characteristics of the workers.  This, in turn, has implications for 
agents’ decisions to become educated or to make any investments that affect their 
employability.  If an agent expects that his or her friends are unlikely to become 
educated, then this lowers the agent’s future job prospects and can lead the agent to 
under-invest in education and other sorts of human capital.   Thus, as we consider the 
passing of job information explicitly through a social network, we can find network-
based poverty traps and also decreased social mobility.   
 
Another setting where social networks have been shown to influence economic decisions 
is in criminal behavior.  For example,  Reiss (1988) found that two thirds of criminals 
commit crimes with other criminals.  Since such studies face problems of endogeneity, it 
can also be helpful to look at a model in estimating the effects.  In this direction, Glaeser, 
Sacerdote and Scheinkman (1996) estimated a simple model of social influence, where 
criminal activity increases with neighbors' criminal activity, and found that petty crime 
and the tendency of youths to participate in crime were significantly influenced by their 
peers.    Recently, richer models have been developed that allow for more complex 
network structures than the simple lattices in the Glaeser, Sacerdote, and Scheinkman 
model.   Ballester, Calvó-Armengol, and Zenou (2006) develop such a model, where 
there are local complementarities in activities and global substitution effects.  That is, the 
benefits from engaging in criminal activity increases with the criminal activity of one’s 
friends, due to learning effects as well as production synergies from committing crimes 
together, but benefits decrease with overall competition from economy-wide criminal 
activity.     Using a linear-quadratic payoff specification of how the payoff from criminal 
(or other) activity depends on the activity of one’s neighbors, Ballester, Calvó-Armengol, 
and Zenou show an elegant and intuitive connection between the level of activity of a 
given agent and how central that agent is in the network (as defined via an eigenvector-
based definition of network centrality due to Bonacich (1972, 1987)).   The intuition is 
that a central agent is connected to other agents who are well-connected and so forth.  
Better connections lead to higher complementarities with neighbors and so higher 
marginal incentives to engage in crime, and this feeds back through the network in a way 
that is proportional to the centrality of the agents.   This also allows Ballester, Calvó-
Armengol, and Zenou to identify the ``key player’’, that is the agent who if removed 
would lead to the largest change in the criminal activity.    Although highly stylized, such 
a model allows tractable comparative statics to be derived that relate economic behavior 
directly and intuitively to network structure.   
 
The examples of labor markets and criminal activity are two settings where there is 
empirical work relating social networks to behavior, and also where models are emerging 
that help provide additional predictions relating network structure to economic decisions 
and outcomes.   There are many other such settings, that I will not detail here, but just to 
mention a few, they include studies of risk-sharing among networks of individuals (e.g., 
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Fafchamps and Lund (2004), De Weerdt (2004), De Weerdt and Dercon (2006),  Bloch, 
Genicot and Ray (2005), and Bramoullé and Kranton (2005) );  networks of research and 
development, patent, and other  joint ventures among firms (see the survey by Bloch  
(2004)); as well as more every-day activities such as how smoking and obesity are 
affected by friends’ behaviors (e.g., Christakis and Fowler (2007, 2008)).      
 
The applications above are ones where we see social networks influencing economic 
behavior.  There are also empirical observations about social networks that economic 
models can help illuminate.   An example is ``homophily,’’ which is the tendency of 
nodes to be attached to other nodes that have similar characteristics.   The background on 
this subject is rich beginning with Katz and Lazarsfeld (1954), and including important 
work by Blau (1977) and Marsden (1987, 1988), among others (see McPherson Smith-
Lovin and Cook (2001) for a survey), and strong tendencies of individuals to associate 
with others with similar attributes have been widely documented, whether across age, 
race, gender, profession, religion or other dimensions.   To get some impression of this, 
consider the following networks which are networks of friendships from the ``Add 
Health’’ data set.6  The network below consists of 624 nodes, which are the students in a 
US high school.  A link indicates that at least one of the two students claimed the other as 
a friend in an interview.   The figures are drawn using an algorithm that places linked 
nodes as close together as possible, while maintaining some overall average distance 
between nodes.  Thus, groups of nodes with higher densities of connections are grouped 
together.    Figure 1 is coded by the (self-reported) race of the students.  
 
 
Figure 1 here 
 
 
Figure 1 exhibits homophily in that we can see that nodes tend to be grouped by race.  To 
see the phenomenon more closely, consider Table 1 below.  We see that whites comprise 
55 percent of the student body and yet 75 percent of their friendships (as an average per 
capita) are with other whites.   If there was no homophily this percentage should be closer 
to 55.  The difference in the percentage of own-race friendships from the expected 
number with no homophily is statistically significant (with a p-value near 0).  Similarly, 
the Asian students also exhibit significantly higher percentages of friendships with other 
Asians than would be expected with no homophily: they comprise only 32 percent of the 
population but have 65 percent of their friendships with other Asians.   Hispanics and 
Blacks comprise much smaller portions of the population of this high school and their 
percentages of own-type friendship do not exhibit homophily. 
 
 
                                                           
6 Add Health is a program project designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan 
Harris, and funded by a grant P01-HD31921 from the National Institute of Child Health and Human 
Development, with cooperative funding from 17 other agencies. Persons interested in obtaining data files 
from Add Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel 
Hill, NC 27516-2524 (addhealth@unc.edu).  I thank James Moody for making available the data organized 
in Pajek files from which I derived these figures. 
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Table 1: Friendships by race in an Add Health high school 
Race % of the Population % of friendships with own race 
White 55 75 
Asian 32 65 
Hispanic 6 5 
Black 1 1 
Other/Unknown 6 - 
 
 
We can also examine the same high school with respect to grade (i.e., year in school) 
rather than race.  There we see even stronger patterns of inbreeding, as pictured in Figure 
2. 
 
Figure 2 here 
 
The strong homophily patterns by grade are not so surprising, given that students will 
interact much more frequently with other students in the same grade.   
 
This is an example of a setting where modeling network formation explicitly can help 
shed light on the sources and patterns of homophily.  Currarini, Jackson and Pin (2009, 
2010) document two empirical observations in the Add Health data related to homophily.  
First, they note that if a given ethnic group comprises a larger fraction of a high school’s 
population, then the agents in that group tend to form more friendships on average: a 
group that comprises nearly 100 percent of a school forms over 8 friendships per capita, 
while a groups that comprises close to 0 percent of a school forms less than 5 friendships 
per capita.   Second, Currarini, Jackson and Pin show that the extent to which a group 
inbreeds is nonlinear in the group’s size (as a fraction of their school).   Groups that 
comprise a middle-sized fraction of a school exhibit the highest level of inbreeding, even 
when normalizing by their relative size.  With these observations about homophily in 
hand, Currarini, Jackson and Pin then examine a economic-style model of network 
formation, where there are two main influences on an individual’s mixture of friends.  
Individuals meet potential friends via a random matching process and the decisions 
affecting which friendships are formed are based on an agent’s preferences for various 
possible combinations of types of friends.   Within that model, a bias in the meeting 
process, so that one is more likely to meet own types, leads to the pattern where middle-
sized groups end up the most biased towards their own type in their friendships; but such 
a meeting bias does not lead to differences in numbers of friendships formed.  In contrast, 
a same-type bias in preferences leads to an increase in the number of friendships formed 
as a group’s size grows, but a preference bias does not lead to the right inbreeding 
patterns as a function of group size.  Thus, within the model each of the two biases is 
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needed to explain one of the empirical observations and neither can explain both of the 
empirical observations.    This is certainly not the first (or last) word on what might lead 
to homophily patterns (again, see McPherson, Smith-Lovin and Cook (2001) for more 
background) and the full explanation probably involves a combination and can also differ 
across applications.  Nevertheless such an analysis shows how an economic approach 
based on a simple matching model and choices by agents can help provide a new angle 
on a network phenomenon.  
 
2.2 The Challenges of Endogeneity and Correlated Unobservables 
 
Before moving on to discuss some of the theoretical modeling of networked behavior and 
network formation, let me discuss a few of the challenges that make empirical work on 
networked interactions difficult.   As an example, suppose that we wish to determine 
whether a person’s decision to buy a certain product or adopt a new technology is 
influenced by his or her friends and acquaintances.  Even with detailed data on the 
network of social interactions and also on the behavior in question, this can be difficult to 
sort out.  The difficulty is related to the homophily mentioned above.  People associate 
with others who have similar characteristics.  Some of those characteristics might not be 
observed by the researcher.  If we see that individuals are more likely to adopt a 
technology conditional on their neighbors adopting it after conditioning on all of the 
factors that we have observed, we cannot be certain of whether there really is a social 
interaction which affects the decision to adopt the technology, or whether there is still 
some hidden characteristic which is correlated across the friendships and is responsible 
for the adoption decision.   As a simple illustration, suppose that we are considering 
adoption of a new textbook among university professors.  Suppose also that the publisher 
has advertized the text via mailings to some professional associations but not to others.   
If links among professors occur with a higher frequency between those in the same 
professional association than between professors who do not have professional 
associations in common (a form of homophily), we might mistakenly attribute a 
correlation of decisions among linked professors to be due to the social link rather than to 
the unobserved advertizing patterns.  In this example, this effect could be detected by 
keeping track of professors’ professional association affiliations.   Even if the social 
interaction is a primary driver of behavior, convincingly establishing this involves ruling 
out other drivers of behavior, many of which we might not observe or directly control for.   
 
An example of a study that is confronted with this issue is Uzzi’s (1996) influential 
research on the garment industry in New York City in 1991.   One of the things that Uzzi 
examines is how the rate of bankruptcy differs across firms, and in particular how it 
relates to the interaction patterns of firms.   Uzzi keeps track of the extent to which a firm 
does repeat business with other firms or to which it interacts with many different firms in 
more one-time transactions.   He develops an index which looks like a sort of Hirfindahl 
index for each firm:  the squared fraction of the business that a firm does with each 
potential partner is summed across potential partners.  A firm that does all of its business 
with one other firm has a score of 1, while a firm that spreads its business evenly among 
four different firms will have a score of 4/16=1/4.   Uzzi then regresses whether or not a 
firm survived the year (125 out of the 496 firms went bankrupt during the year) on this 
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measure, and some other variables.  He finds that an increase in a firm’s concentration 
index leads to a significant increase in its expected survival rate.   Uzzi argues that this is 
reflective of how more solid social connections can enhance business and that longer-
term, repeated, and embedded relationships can help overcome some frictions in 
contracting and can thus lead to increased profitability.  He also bolsters this with data 
from interviews with various people in the industry.  While these arguments are quite 
reasonable and provide insight into how strong social relationships can overcome an 
inability to write or enforce complete contracts; it is still hard to draw causal conclusions 
from the empirical data.  There are many hypotheses for why firms might differ in their 
patterns of repeat business with other firms, such as (even slight) differences in 
specialization, and some of these could be related to bankruptcy probabilities.    
 
This problem of unobserved correlated characteristics is clearly not special to the 
empirical analysis of social effects, as it is a challenge in analyses of many economic 
variables.   Nonetheless, it is particularly acute in social settings because of the strong 
homophily patterns.  This makes it very difficult to prove the obvious.  That is, even in 
settings where we might very reasonably expect social interaction to be a primary driver 
of behavior, it can be difficult to convincingly establish this.   There are various 
approaches to dealing with such things, such as having appropriate exogenously 
generated variation in the independent variables, such as in the studies by Munshi (2003), 
Beaman (2007), and Laschever (2007) mentioned above.  One can also use instrumental 
variables approaches, or else take advantage of timing.  A nice example of using timing is 
a study by Conley and Udry (2004) who conduct a careful analysis of the timing of 
changes in the use of fertilizer among pineapple growers and their neighbors in a social 
network to show how pineapple growers’ fertilizer use is significantly driven by their 
observations of their neighbors’ experiences.   
 
A second issue that is particularly acute in network analysis is endogeneity.   Do people 
adjust their behavior in response to that of their friends, or do they choose their friends 
based on behavior?   Observing a correlation between social proximity and behavior does 
not imply any causation.   Just as an illustration of endogeneity issues, note that another 
possible explanation for the Uzzi (1996) data discussed above is that it could be that 
firms can sense when another firm is weak and near bankruptcy.   If firms are then 
unwilling to invest in repeated relationships with such weak firms, we would see firms 
near bankruptcy endogenously forced to have low indices and lots of smaller one-time 
transactions.   Even though this might not be the right explanation for the data, the fact 
that patterns of relationships are chosen and possibly affected by factors that lead to 
bankruptcy makes interpreting the correlation difficult.    This is true in many, if not 
most, applications where one tries to estimate how social structure impacts some 
outcome.  Social structure is generally endogenous and could be influenced by the 
dependent variable or by some of the other factors that drive the dependent variable.  
Sorting out causation in such settings requires careful attention to timing, or else some 
powerful instruments or other clever approaches.   Indeed, studies that have looked at 
time series of the co-evolution of behavior and social network structure, such as that by 
Kandel (1977), find that people adjust their friendships based on the behavior of their 
friends, and also adjust their behavior in response to that of their friends.   
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Beyond these twin challenges of unobserved correlates and endogeneity in working with 
social structure as an explanatory variable, there are also challenges dealing with 
specification and identification.  For example, Manski (1993) points out identification 
problems that arise with quite natural specifications of peer influence (e.g., where an 
individual’s behavior is influenced by the mean of his or her peers’ behaviors in a linear 
fashion).    Such issues can partly be overcome with more complete observation of the 
friendship patterns in a society, so that a given individual’s peers can be directly observed 
and need not be inferred from the individual’s own characteristics (what Manski refers to 
as the ``reflection problem’’).  But identification adds another layer of difficulty in 
empirical analysis of social interactions.   All in all, analysis of social effects present a 
healthy set of challenges that provide a rich agenda both in further empirical studies and 
in developing new methods of analysis. 
 
 
3.  The Theory of Networks 
 
Much of the advance made by economists in the study of networks has come in 
developing theory about how networks form as well as how networks influence behavior.   
These theoretical advances make use of economic modeling techniques and help provide 
new insight into the structure and implications of social networks.  Let me discuss each of 
these in turn.   
 
3.1  Network Formation 
 
The welfare implications of any interaction are central to an economic analysis, but not 
always so central to other disciplines.   In part, this stems from the utility 
maximization/revealed preference perspective that is a foundation of the modern 
economic paradigm.   Although this paradigm is sometimes constraining, it also provides 
for a powerful welfare analysis and a deep understanding of externalities.    The link 
between economic insight and studying network formation comes from the fact that 
externalities play a prominent role in many network settings.   For example, how well my 
friends are connected is important in determining what job information I have access to, 
what I learn from them, and more generally how I benefit from all sorts of interaction 
with them. As maintaining relationships involves some discretion, bringing a strategic 
perspective to network formation has provided several insights.   
 
A useful illustration of these points is a simple model that presents a template of network 
formation by self-interested individuals and includes explicit benefits from maintaining 
links to well-connected individuals.  This is the ``connections model’’ introduced by 
Jackson and Wolinsky (1996).   In that model the payoff to agent i in a network g is  
 

ui(g) = ∑j∫i δl(ij) – di c,  
 
where l(ij) is the number of links in the shortest path between i and j in g (setting l (ij)=∞ 
if there is no path between i and j), di is i’s degree (the number of links that i maintains in 
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g), and c is a parameter representing the cost of a link.   So, individuals get benefits from 
having links both through the direct connections that links provide as well as the indirect 
connections links provide.  Having a friend is worth δ, each friend of a friend is worth δ2 
, and a friend of a friend of a friend is worth δ3, and so forth, while each direct friend also 
costs some amount c.   
 
The strategic formation of a network is modeled via a simple stability/equilibrium 
concept that incorporates the idea that mutual consent is needed to form a relationship,7 
but an individual can unilaterally sever a relationship.  A network is pairwise stable if8 

• whenever a link between two individuals is absent from the network then it 
cannot be that both individuals would benefit from adding the link (with at least 
one benefiting strictly), and 

• whenever a link between two individuals is present in the network then it cannot 
be that either individual would strictly benefit from deleting that link. 

The connections model is fairly easy to analyze with this tool in hand.  With low enough 
costs, so that the cost of adding a link is less than the marginal gain from converting a 
friend of a friend into a friend, then all links will form and only the complete network 
will be pairwise stable.   If costs are prohibitively high, then no links will form.   In an 
intermediate range of costs there are a variety of network structures that are pairwise 
stable, depending on the particulars of the number of agents, the linking cost c and the 
decay parameter  δ.   The interesting aspect is to contrast these pairwise stable networks 
with the network that maximizes the total societal welfare.   If costs are extremely low or 
high, then the total utility maximizing network is the unique pairwise stable network.   
When costs are intermediate, then the pairwise stable networks might not include any of 
the total utility maximizing networks, or might include other networks.   A key to 
understanding this is that the unique total utility maximizing network architecture for 
intermediate cost ranges is a star:  a network where one agent is linked to all others, and 
the others are only linked to this center agent.   This network involves the minimum 
number of possible links and connects all agents at a distance of at most two from each 
other.   In fact, this is the total utility maximizing network in a much wider variety of 
models (see Jackson (2008) for more discussion).   However, it is easy to see that stars 
will often not be pairwise stable, even when they maximize total utility.    The key is that 
the peripheral agents in the star benefit from all of the indirect connections that the center 
agent provides them, and yet the center agent bears most of the cost.   For some cost 
ranges (e.g., when c exceeds δ) the only pairwise stable networks will be such that all 
non-isolated agents have at least two links as otherwise no agent would be willing to 
maintain a link with them.    
 
                                                           
7 There are some applications where links can be formed unilaterally, such as when one author cites 
another.  Directed networks provide some variations on the above results (e.g., see Bala and Goyal (2000) 
and Dutta and Jackson (2000)).   More generally, there are many issues regarding how to model strategic 
network formation.   For more discussion, see Jackson (2004, 2008).  
8 More formally, let g+ij denote the network formed when the link ij is added to the network g and g-ij 
denote the network formed when the link ij is deleted from the network g, where a network is represented 
as a list of all the pairs of nodes that are linked.  A network g is pairwise stable if:  (i) if there is an i and ij 
not in g such that ui(g+ij)>ui(g) then uj(g+ij)< uj(g); and (ii) for all ij in g and i  ui(g)≥ui(g-ij).  For more 
detailed and formal definitions, see Jackson (2008). 
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The above analysis of the network formation is a starting point, and there are many other 
considerations that are also important to include.   For example, it could be that the agents 
can offer payments to each other as a function of the network that forms (e.g., see 
Currarini and Morelli (2000), Bloch and Jackson (2006)) or it could be that there is some 
general bargaining procedure that determines how the total benefits of the network are 
divided (e.g., see Myerson (1977), Jackson and Wolinsky (1996), Slikker and van den 
Nouweland (2001) and Jackson (2005)).   Interestingly, even with complete information 
and a very wide class of possible ways in which the total utility in a network can be 
reallocated, it can still be that no total utility maximizing network is pairwise stable, as 
shown by Jackson and Wolinsky (1996).   In most economic settings inefficiencies 
arising from externalities can be rectified, in the absence of any frictions, through proper 
transfers; an idea which is known as the Coase (1960) Theorem.   The multilateral and 
combinatorial nature of the externalities in the network case can sometimes preclude such 
efficiency, even without other bargaining frictions. 
 
 
While game theoretic models of network formation provide novel insight into the patterns 
that might emerge and into the tension between individual incentives to maintain 
relationships and overall welfare, there are challenges in using game theory in working 
with data.  Two such challenges are that there can be multiple equilibria even in relatively 
simple settings, and that such models can be difficult to solve when introducing natural 
sorts of heterogeneity among players.   Nonetheless, such models can still be pushed 
quite far in these directions.   For example, Carayol, Roux, and Yildizoglu (2006, 2008) 
use genetic algorithms and Monte Carlo simulations to solve large versions of the 
connections model where linking costs are based on a geographic distance and agents are 
located at different locations.   This introduces some heterogeneity into the model that 
allows it to begin to exhibit the variation in connectedness and some of the spatial 
patterns that are observed in applications.   
 
Beyond strategic network formation models there are also a variety of random network 
formation models that have been very useful in providing some basic insights regarding 
network structure and well as in statistical analysis.   I briefly discuss some of these to 
give a feeling for the differences between the approaches and how they complement each 
other.     The seminal papers in this strand of the literature are from the random-graphs 
literature in mathematics, including classics by Erdos and Renyi (1959, 1960, 1961).    
The canonical model that Erdos and Renyi studied (among others) is one where a 
network is formed by having each link form independently with a probability p.   There 
are many things that are known about such networks, beginning with important early 
theorems proven by Erdos and Renyi.   For instance, when looking at large networks 
(theorems are often about asymptotic properties as the number of nodes n grows),  if the 
average degree, p(n-1) below one, then the network will generally consist of many small 
and separate components.  Once the average degree exceeds one, then the network starts 
to coalesce and a ``giant component’’ starts to emerge.  Once the average degree exceeds 
log(n) then the network almost surely consists of just one component that includes all of 
the nodes.    
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Although this basic random graph model is too simple to match reality, some of its 
features are quite robust and offer some insight into observed network patterns.  For 
example, in this random network model if we hold the average degree d does not grow 
too quickly as the number of nodes increase, but is above one, then as the number of 
nodes grows the average distance between the nodes in the giant component is 
proportional to log(n)/log(d).   This offers some insight into Milgram’s (1967) classic 
experimental study of the ``small worlds’’ phenomenon, and its many follow ups.9  This 
relatively short social distance between nodes in a uniformly random network is 
relatively easily understood, as with a constant degree, the network effectively looks like 
a tree.   Just as a thought experiment, if we think about a tree network where every node 
has degree d, if we start at some node and follow all paths out t links, then we will have 
reached d+d(d-1) + … + d(d-1)t-1 nodes, which is on the order of dt nodes.  To reach all 
nodes, or to have dt be on the order of n, we need t to be roughly log(n)/log(d).   So, a 
node can reach any other node in its component via a path that is of an order of no more 
than log(n) links.    Thus, the average distance in a randomly generated network is much 
smaller than the number of nodes in the network, just as empirically observed.   
 
When we push a bit further, we find characteristics of networks that are not well matched 
by this basic model of uniformly random link formation.   For example, such a model 
exhibits vanishing ``clustering’’ unless the density of links becomes extremely high.10  In 
contrast, many observed social networks exhibit substantial clustering.  For instance, 
various networks of co-authorships among scientists show clustering on the order of 
hundreds or thousands of times what would arise if links were formed uniformly at 
random.    Watts and Strogatz (1998) show a model that has some features of a regular 
lattice, and other features of  random link formation can exhibit the characteristics of 
both.  In particular, they show that beginning with a lattice structure among nodes, so that 
the starting network has high clustering, one needs only randomly change a small fraction 
of the links in order to dramatically reduce the average and maximum distance between 
nodes.   Thus, starting with a highly structured network, adding a small amount of 
randomness can lead to a network that exhibits two common features of observed social 
networks:  high clustering and low average path lengths between pairs of nodes. 
 
Strategic models of network formation lead to very complementary explanations of these 
same phenomena of short average path length and high clustering.   Specifically, versions 
of the connections model with geographic costs can also lead to small-world network 

                                                           
9 Milgram’s (1967) experiment involved picking some subjects in Kansas and Nebraska 
and asking them to direct letters to other people in Massachusetts, who were unknown to 
the people in Kansas and Nebraska other than in terms of a name and profession.  The 
key was that the subjects could not send the letters to someone whom they did not know, 
but instead had to send the letter to someone they knew and ask that person to pass the 
letter along.  Thus the letters had to follow the paths of social network.   A surprising 
fraction (almost a quarter) of the letters reached their destination and did it in a median of 
5 relays.       
10 Clustering refers to the tendency of linking to be a transitive relationship.  That is, a measure of the 
clustering at a given node is to examine what fraction of pairs of that node's neighbors are connected to 
each other.   
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characteristics.  That is, suppose that people have low costs of forming relationships to 
people who are close to them spatially, and higher costs of forming relationships to 
people who are far away from them.    ``Close spatially’’ could refer to being nearby 
geographically, or it could also mean having similar characteristics like age, profession, 
education, or other attributes.   Having low costs of forming nearby links leads to dense 
networks on a local level, with substantial clustering: local friendships are likely to be 
transitive so that my friends are likely to be linked to each other.   High costs of forming 
distant links means that there will be fewer such links.   However, if there were no links 
between people who are spatially distant from each other, then such links would become 
extremely valuable.  Long-distance links shorten path length to many indirect 
connections  and so can be very valuable.   Thus, as long as there are not too many long-
distance links they can be very attractive and so the network will have many local links 
and high clustering among nodes that are close to each other, and then some longer 
distance links that ensure that average path lengths do not grow to be too large.  Various 
forms of the spatial connections models are examined by Johnson and Gilles (2000), 
Carayol and Roux (2003), and Jackson and Rogers (2005).   
 
Price (1965) and Albert, Jeong, and Barabasi (2000) note other interesting features of 
some networks that differ from a network where links are formed uniformly at random.  
They examine the frequency distribution of degrees across nodes, known as the degree 
distribution.   If links are formed uniformly at random, then for large networks this 
distribution is roughly a Poisson distribution.  However, some observed degree 
distributions have ``fat tails,’’ in that they have a relatively high frequency of nodes with 
very high and very low degrees, and a relatively lower frequency of nodes with 
intermediate degrees.   In particular, the observed degree distributions in the Price (1965) 
and Albert, Jeong, and Barabasi (2000) studies are closer to that of a power distribution 
where relative frequency of nodes of degree d is proportional to d-g for some g.   Price 
(1976) and Barabasi and Albert (2001) offer random network formation models that yield 
such fat tailed distributions.  The basic idea is that nodes are born over time and form 
new links as they come into the system.  In particular, the probability with which they 
attach to a given node is proportional to the number of links that the node already has.  
This is termed ``preferential attachment’’ by Barabasi and Albert, and leads nodes with 
more links to accumulate even more new links than nodes with fewer links, a sort of 
``rich get richer’’ phenomenon.   This leads to a power degree distribution.   
 
There are also models of random network formation that are hybrids, combining some 
uniformly random attachment with some other sorts of attachment, and that result in 
degree distributions that lie somewhere between that of uniformly randomly generated 
links and the fully fat tails of the preferential attachment process.   These models are 
useful, especially in empirical analyses, since many observed degree distributions do not 
lie at either extreme, and so one can then estimate to what extent links are formed 
uniformly at random and to what extent the formation process is driven by the existing 
network structure.   Such models can also exhibit the significant clustering and low 
average path lengths discussed above, as well as other features of observed networks 
(e.g., see Pennock et al (2002)  and Jackson and Rogers (2005)). 
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There are far too many other aspects of network formation modeling to discuss in the 
limited space here.11  But the above discussions and models provide a feeling for some of 
the approaches and issues that have been examined.    One of the important remaining 
gaps in the literature is in somehow bridging between the process-based random graph 
formation models that are good at answering ``how’’, and the strategic-based formation 
models that are good at answering ``why’’.12  These modeling techniques are quite 
complementary and developing models that combine some random opportunities for link 
formation coupled with some discretion in which relationships are actually chosen, could 
be quite useful resulting in models with the heterogeneity that is needed to fit data but 
also understanding some of the forces shaping network formation and allowing for a 
welfare analysis.   The Currarini, Jackson and Pin (2009, 2010) model discussed above is 
one example that combines discretion with random meetings, but a richer paradigmatic 
approach is still missing.   
 
 
3.2  Networks and Behavior 
 
Another growing area of the modeling of networked interaction examines how network 
structures impact behavior.   This embodies a series of questions about both how overall 
average behavior of a society is affected by the structure of its social network, as well as 
how individual behavior is affected by position in the network.   Theoretical work on this 
topic is essential to the goal of understanding how network structure impacts economic 
outcomes. 
 
In thinking about how network structure impacts behavior, it is useful to roughly partition 
settings into two categories.   In one situation, communication, contagion or learning 
occurs through the network.  Here network structure is primarily involved in transmission 
and determining flows of some information or behavior.   One example of an application 
that falls into this category is learning about the value of  some consumer product via 
word of mouth, and another is the contagion of a computer virus that is carried in email 
attachments.    In a second situation, agents are making choices and their payoffs from 
those choices depend on the choices of their neighbors.   Here, the network structure 
again is important, but it is not because of the flow or transmission of some information, 
but instead because it affects the patterns of interactions and thus the patterns of 
externalities that impact decisions.   An example of this is deciding on which of several 
technologies to adopt, such as choosing a software package when compatibility of the 
software with acquaintances' software matters.     Of course, there are situations that 
involve some aspects of both pure transmission and of local external effects in decisions.  
In the job contact networks discussed above both roles of networks were present at once:  

                                                           
11 For instance, there is a whole other class of models that come out of the statistics and sociology 
literatures that were developed to work directly with data.  A prominent class, known as p* models, is 
discussed by Wasserman and Faust (1998).   These can allow for rich interactions in the probabilities that 
different combinations of links form.   There are also classes of models that emerge from the random 
graphs literature that are useful in deriving large graph properties while incorporating varied degree 
sequences.  Again, see Jackson (2008) for an overview. 
12 See Jackson (2005) for more discussion of this point. 
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information about jobs flowed through the network and also the benefits from investing 
in education by individuals depended on their neighbors’ decisions.   
 
The difference between these two roles of networks in affecting behavior is important 
because the tools needed to analyze one are different from the other.    The transmission, 
diffusion, and contagion sort of role of networks is to some extent mechanical:  it is 
process based and much of the mathematics of various dynamic systems (e.g., Markov 
chains, percolation theory, …) can be brought to bear on the analysis.  The situation 
where individual decisions have external effects and the choices of neighbors are 
complements or substitutes requires some form of either equilibrium or agent-based 
modeling techniques to handle the strategic interactions.   Such settings can still involve 
dynamic systems, but the external effects of decisions require some sort of analysis aimed 
at strategic interaction.    
 
Both types of analysis face the hurdle that incorporating complex social networks can 
present roadblocks to tractability and so there is a delicate balance in keeping a model 
rich enough to study interesting interactions and dynamics, and yet simple enough to 
work with in the face of the daunting combinatorics that emerge in networked settings.  
Let me discuss a few of the areas that are active areas of research with regards to how 
social structure impacts behavior and some of the hurdles they face. 
 
A starting point for understanding contagion and diffusion through networks is to 
examine the transmission of disease through a social network.   In the simplest cases, this 
just involves understanding the network structure directly.  For example, if a disease were 
completely virulent so that anyone linked to an infected individual were to become 
infected, then one could trace the course of a disease simply by examining the structure 
of the components of the network.  If a network were path-connected then the result of 
such a disease would be catastrophic.   Of course, most transmission is not so virulent.  
Nonetheless, starting from this simple case, one can build up a model to allow 
transmission to be probabilistic across links, for instance if people only have some chance 
of interacting or of transmitting a disease conditional on being linked.   One can also add 
random times for which nodes are infected.  In some contexts, like a common cold,  
individuals recover from being infected but then can later be  re-infected, while in other 
contexts an infected individual recovers and cannot be re-infected and can no longer 
infect others.   Some of the analysis of such models can be conducted using random 
graph models, where the extent of the infection is studied simply by altering the random 
graph model to adjust the probability that links and/or nodes are present.   Models of such 
contagion are relatively tractable and provide results regarding how network structure 
affects both whether or not an infection can gain a toe hold as well as the extent to which 
it eventually spreads (e.g., see Pastor-Satorras and Vespignani (2000, 2001), Jackson and 
Rogers (2007), and Lopez-Pintado (2008)).   There are some simple but important 
intuitions that emerge from these analyses, mainly regarding how the distribution of the 
degrees of nodes in a network affects contagion and eventual epidemic size:  Very highly 
connected nodes are more susceptible to infection, holding all else constant, than less 
connected nodes, simply because they have more interactions and are more likely to meet 
infected nodes.   This leads networks with fatter-tailed degree distributions to be more 
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susceptible to the initial spreading of a disease.  That is, if we hold the total number of 
links in a network constant, but rearrange them so that some nodes are more highly 
connected and others are less connected, effectively instituting a mean-preserving spread 
in the degree distribution, then we end up with a network that looks increasingly ``hub 
and spoke'' like.   The highly connected agents, or hubs, serve as conduits for infection 
and help infections to spread more easily.  These agents are easily infected and also 
contact many other agents.     On the other hand, the extent to which an infection 
eventually spreads can actually be lower in a network with fatter tails.   The presence of 
hub agents makes it easier to get past the initial infection threshold, but there are also 
more agents with very low degrees, and such agents are relatively more difficult to infect.   
 
Models of diffusion of a disease are nice examples of situations where one can fairly 
cleanly make predictions about outcomes working from some simple characteristics of 
network structure, at least in stylized random network models that capture some of the 
basic features of actual social networks.   Note that such models also embody the spread 
of some sorts of information, rumors, or adoption of some technologies.   To the extent 
that such behaviors are simply dependent on contact with other ``infected’’ (i.e., 
informed agents), much of the analysis extends directly.   The main departure from the 
above modeling comes once we enhance it to cover learning, when learning involves 
processing diverse information from multiple sources.    
 
Modeling learning in networked settings has employed two basic approaches.  One is a 
Bayesian approach, where agents update their beliefs based either on communication or 
observation of other agents’ actions over time.   This approach provides a nice 
benchmark for what happens with ``full rationality.’’  Another approach is more 
mechanical where agents repeatedly process the information from their neighbors 
according to fixed rules.      
 
To get some impression of the Bayesian approach, consider an example where each day 
agents are faced with a choice of two different actions say A and B, which have 
stochastic payoffs and the actions lead to similar average payoffs to the different agents, 
but such that which action has the higher payoff is initially unknown.   For instance, 
suppose that the agents are fisherman and the A and B represent two different types of 
baits that can be used to try to catch fish in a certain area.    The agents learn about which 
action is better through their own experience and also from observing what actions other 
fishermen take and how much fish the other fishermen bring home each day.   Let who 
observes whom be described by a network.   So each day a fisherman chooses either bait 
A or B and then goes out and fishes.  When he or she comes home, she knows how many 
fish she caught, and also sees what bait her neighbors used as well as how many fish they 
caught.     The Bayesian inference problem becomes complicated very quickly.  If I see 
other fishermen change  baits, it could in part be due to their experience, but it could also 
be due to what they have seen happen to their neighbors, or even because they have seen 
their neighbors change actions, and so forth.  Even if I know the structure of the entire 
network,  the updating problem quickly becomes intractable.13   Nonetheless, there are 
                                                           
13 See Gale and Kariv (2003) and Choi, Gale, and Kariv (2005, 2007) for more discussion and some 
experimental investigations of the extent to which agents are fully rational learners in networked settings. 
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still some important things that can be deduced.   One is that agents in the same 
components of the network will, almost surely, converge to eventually getting the same 
long run payoff.  If not, then there would be two neighboring agents somewhere in the 
network who would be getting different long-run payoffs.  The agent getting the lower 
payoff should eventually realize this and change behaviors.   This result is pointed out by 
Bala and Goyal (1998).   Note that this does not mean that all agents eventually learn 
which is the long-run expected payoff maximizing action, but instead that they will all 
settle down to getting the same payoff.  Additional conditions are needed in terms of 
diversity of initial beliefs, the observation patterns, and/or the network structure in order 
to get convergence to the correct action (e.g., see Bala and Goyal (2001) as well as 
Acemoglu, Dahleh, Lobel, and Ozdaglar  (2008)). 
 
The other different extreme in terms of modeling approach is well represented by a model 
by DeGroot (1974).   It that model agents repeatedly communicate with each other, and 
repeatedly update by taking a weighted average of the opinions of themselves and their 
neighbors.   The repetition of communication allows information to diffuse throughout 
the network.    The process is not Bayesian in that the weights the agents use to average 
the signals that they get in a given period are not optimally adjusted over time, and as 
such this provides a boundedly rational benchmark.   One advantage of the model is that 
the repeated weighted averaging of signals very tractable as it involves repeatedly 
multiplying an initial vector of beliefs by a weighted updating matrix.   This is a simple 
linear algebra problem, and the long run beliefs, convergence properties, the relative 
influence of the agents, and a host of other things can be explicitly calculated for any 
given network (e.g., see DeMarzo, Vayanos and Zwiebel (2003), and Golub and Jackson 
(2008, 2010, 2011)).   One can even examine things like how homophily influences the 
speed of learning.   It is also not clear which of these extreme sorts of models of updating 
better matches reality.  The Bayesian updating becomes too intractable for agents to 
undertake, and yet at the other extreme repeated myopic updating is perhaps too 
simplistic.  But combined, the models complement each other well. 
  
As mentioned above, one needs different techniques when examining networked 
interactions where agents are making decisions and their decisions are influenced by 
other agents.  This is another important area of research because of the large number of 
applications.  Many choices that we make on a daily basis, such as which phone plan to 
use, whether or not to smoke, whether to take up a sport, how much education to pursue, 
and so forth, are dependent on the actions of our friends, family, and other acquaintances.   
Modeling this coherently presents some substantial challenges because of the 
combinatorial nature of the problem.   To get a feeling for this, consider a simple but 
natural variation of a network-based game considered by Bramoullé and Kranton (2007).  
Suppose that each of individual in a network decides whether or not to buy a tool.   If 
agent i does not have the tool but one of i's neighbors does, then i can borrow the tool.  
Agent i cannot borrow the tool from the friend of a friend.  If none of i's friends has the 
tool then it is worthwhile for i to buy it.  If at least one of i's friends has the tool then  it is 
strictly better not to buy the tool but simply borrow it instead (and there are no congestion 
problems with respect to borrowing tools).    There are many equilibrium configurations 
to this game and they depend on the network structure.   Pure strategy equilibria are 
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configurations such that at least one person in each agent's neighborhood buys a tool, and 
no two linked agents both buy tools.   There are generally many such configurations for 
any network.  Moreover, slight changes in the network structure can lead to dramatic 
changes in the equilibrium configurations.   Even so, there are still some properties of the 
equilibria of such games that can be established, and some comparative statics can be 
obtained in terms of how the equilibrium structure changes as the game changes.    
Interestingly, in some cases, if agents have to make their choices before they are sure of 
who their neighbors will be, then the problem can actually simplify dramatically and a 
variety of equilibrium properties and comparative statics can be more directly obtained 
(e.g., see Galeotti et al (2010)).   
 
Again, the above discussion only scratches the surface of some of the things that have 
been investigated.   Just to name a few applications, there is a growing literature on 
bilateral trade between buyers and sellers in networked markets and how terms of trade 
are influenced by, and influence, network structure.   There are also analyses of risk-
sharing, favor trading, advertising in networks, and also some modeling of the co-
evolution of network structure and behavior.    
 
3. Concluding Remarks 
 
As should be clear by now, the literature on networks is rapidly growing.    It is an 
exciting area because of its multi-disciplinary nature, and it is difficult to think of other 
areas of research that so naturally draw from, and apply to, as many disciplines.   As 
should also be clear, there are many challenges that still lie ahead and a lot of wide open 
problems.   Most notably, whether or not networks become an essential part of the 
economic paradigm will depend on the extent to which there are multiple settings where 
the network structure is a primary driver of economic behavior.  There is a growing body 
of empirical research which suggests that social effects are substantial and that 
incorporating social context into economic studies will become increasingly necessary.   
We have also seen that both the empirical research and theoretical research face their own 
challenges in the area, related to issues of endogeneity and to the inherently complex and 
combinatorial nature of networked settings.   These challenges, and the myriad of 
interesting network applications to explore, should keep researchers busy for some time.   
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Figure 1:   A network of friendships in a high school from the Add Health data set.  
Nodes are students and links indicate friendships.  The color of the node indicates the 
student’s race: Asian=green, Black=blue, Hispanic=red, White=yellow, Other=pink, 
Unknown=clear 
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Figure 2:   A network of friendships in a high school from the Add Health data set.  
Nodes are students and links indicate friendships.  The color of the node indicates the 
student’s grade: 9th grade = blue, 10th grade=green, 11th grade=pink, 12th grade = grey, 
unknown=clear 


