
Chapter 4
Networks and Models with Heterogeneous
Population Structure in Epidemiology

R.R. Kao

Abstract Heterogeneous population structure can have a profound effect on infec-
tious disease dynamics, and is particularly important when investigating “tactical”
disease control questions. At times, the nature of the network involved in the trans-
mission of the pathogen (bacteria, virus, macro-parasite, etc.) appears to be clear;
however, the nature of the network involved is dependent on the scale (e.g. within-
host, between-host, or between-population), the nature of the contact, which ranges
from the highly specific (e.g. sexual acts or needle sharing at the person-to-person
level) to almost completely non-specific (e.g. aerosol transmission, often over long
distances as can occur with the highly infectious livestock pathogen foot-and-mouth
disease virus—FMDv—at the farm-to-farm level, e.g. Schley et al. in J. R. Soc. In-
terface 6:455–462, 2008), and the timescale of interest (e.g. at the scale of the in-
dividual, the typical infectious period of the host). Theoretical approaches to exam-
ining the implications of particular network structures on disease transmission have
provided critical insight; however, a greater challenge is the integration of network
approaches with data on real population structures. In this chapter, some concepts in
disease modelling will be introduced, the relevance of selected network phenomena
discussed, and then results from real data and their relationship to network analyses
summarised. These include examinations of the patterns of air traffic and its relation
to the spread of SARS in 2003 (Colizza et al. in BMC Med., 2007; Hufnagel et al. in
Proc. Natl. Acad. Sci. USA 101:15124–15129, 2004), the use of the extensively doc-
umented Great Britain livestock movements network (Green et al. in J. Theor. Biol.
239:289–297, 2008; Robinson et al. in J. R. Soc. Interface 4:669–674, 2007; Vernon
and Keeling in Proc. R. Soc. Lond. B, Biol. Sci. 276:469–476, 2009) and the grow-
ing interest in combining contact structure data with phylogenetics to identify real
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contact patterns as they directly relate to diseases of interest (Cottam et al. in PLoS
Pathogens 4:1000050, 2007; Hughes et al. in PLoS Pathogens 5:1000590, 2009).

4.1 Simple Mathematical Models

The susceptible/infected/resistant (SIR) ordinary differential equation (ODE) model
lies at the foundation of modern quantitative epidemiology. Though the original
work [46] considered infectious states in greater generality, the most common ver-
sion of this model makes the simplification of assuming a single exponentially dis-
tributed infectious stage, with all infected individuals being equally infectious. With
this assumption, the system takes the form of a “compartmental model”. Here there
are a set of three ordinary differential equations to be integrated over time:

dS

dt
= −βIS,

dI

dt
= βIS − γ I,

dR

dt
= γ I,

S + I + R = N.

(4.1)

In the system of equations (4.1), the compartments are: S the number of suscepti-
ble individuals, I the number of infected, and R the number of removed (usually
considered to be recovered and immune, though other interpretations of this state
are possible). The total population size N is fixed. The parameter β is the rate per
infected individual at which infections occur, while γ is the rate at which infected
individuals are removed. Important principles that have guided mathematical epi-
demiology over the last century are apparent in this simple formulation. First, inter-
est in the field has concentrated on the nonlinear interactions over time between a
host population and a pathogen that exploits it. Second, individuals are treated as in-
distinguishable except for their disease state. Third, the nonlinear terms incorporate
the “mean-field” assumption, where interactions between members of the popula-
tion are considered to occur at random, with equal probability that any member
will interact with any other element of the system. Finally, the model operates in
continuous time and population-space.

In contrast, under the network paradigm of disease spread, a population is a net-
work (or “graph”) of nodes (“vertices”) representing epidemiological units at a rel-
evant scale (e.g. individuals, towns, cities, farms or wildlife communities). Each
node i is connected to other nodes by a number ki links (“edges”), this defining the
degree of the node. The links usually represent potentially infectious contacts. For
example, for sexually transmitted infections, or STIs, links may be sexual acts or
sexual partners [32], while for diseases transmitting within a hospital links may rep-
resent contacts occurring through room- and ward-sharing [53]. Multiple, simulta-
neous exposures to a pathogen are usually assumed to act independently; therefore,
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if a node is connected to two infected nodes each of which can infect with proba-
bility p̄, the probability of becoming infected is (1 − (1 − p̄)2), where in this case,
all links have the same weight. In directed networks (e.g. where one individual can
infect another but not necessarily vice versa), links are distinguished as being in-
or out-links, with nodes having in- and out-degrees. For infectious diseases, this is
more likely to be appropriate for larger scale models, for example, where transmis-
sion may be related to the migration of individuals who do not return to their origin.
In most epidemiologically relevant examples where network structure is important,
〈k〉 � N , where 〈k〉 is the average node degree, and N the population size. Bor-
rowing the concept from the simple ODE models, nodes typically possess one of a
limited number of states (e.g. susceptible, infected or removed as in (4.1)). “Mean-
field” models such as described by (4.1) are similar to maximally connected network
models—i.e. where every individual in the population is connected to any other in-
dividual and 〈k〉 = ki = N − 1 for all nodes i. Network models can in this sense be
considered a generalisation of mean-field models. Both network models and ODE
models differ from detailed simulations studies, by being abstractions for gaining
insight into how heterogeneity in the contacts amongst individuals can contribute
to disease spread and its control. However, mean-field and network models differ
in terms of the philosophy behind their representations. Mean-field models often
do have population structure, but this structure is imposed on the population, rather
than being generated from individual properties. In the network perspective, each
node only has information about a limited subset of neighbours. Links are generated
from this “local neighbourhood” that defines the social network. Thus the network
model displays corresponding “emergent behaviour” in a way that the Kermack–
McKendrick model does not. An important question is the extent to which the
pattern, or the population structure, and process, or temporally-dependent changes
as highlighted in mean-field models, are important in determining how epidemics
spread. That most work has previously concentrated on the dynamics amongst sim-
plified compartments is at least partially because observational data on overall dis-
ease incidence, and detailed data describing the time course of individual infec-
tion states have historically been more available than meaningful population contact
structure data, particularly for humans. One of the most detailed and successful
models of disease transmission on structured human populations is the description
of measles outbreaks in post-WWII Britain (e.g. [7, 28]) which includes compre-
hensive measles incidence reports, but where location is only specified to the level
of city or town. Contact structure is therefore highly abstract (though more recent
work in this field has used gravity models to described the underlying demographic
contacts between cities [72]). The development of the field has also benefited from
the rich literature of dynamical systems, and the development of analogous models
in chemical kinetics, reflected in the early appellation of “mass-action” dynamics
when referring to what is now commonly known as “density dependent” contact.1

Nevertheless, many of the ideas explored in social network analyses have been pre-

1Noting that there has been some confusion on this—see [13].
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viously explored using other approaches, though the social network paradigm has
often proved to be more natural, and provided new insights.

4.1.1 Introducing R0

For compartmental models of disease spread, the stability of the disease-free steady
state is determined by the basic reproduction number, R0, which is the central quan-
tity of modern theoretical epidemiology (e.g. [2]). The “simple”, commonly ac-
cepted biological definition of R0 is generally stated as “the number of new infec-
tions generated by a single infected individual introduced into a wholly susceptible,
homogeneously mixed population at equilibrium”. For the system of equations (4.1),
the definition is equivalent to

R0 = βN

γ
. (4.2)

For simple systems, if R0 < 1, then the disease-free state is globally asymptotically
stable (but see the section below). Each infected person will typically infect fewer
than one person before dying or recovering, so the outbreak itself will die out (i.e.
dI
dt

∣
∣
t=0+ < 0). When R0 > 1, each person who becomes infected will infect on av-

erage more than one person, so the epidemic will spread (i.e. dI
dt

∣
∣
t=0+ > 0). While

this definition is intuitive, conceptual problems immediately arise. For example, can
one define a “typical” infected individual? At what stage of the infection process
is the infected individual introduced? What if there are distinct subpopulations or
population structures? Is R0 then a meaningful concept? Considerable attention has
been devoted to these questions (e.g. [31, 60, 66]), in particular due to the general-
isation to more complex population and infection structures via the next generation
matrix formalism [15]. However, these definitions are meaningful only if meaning-
ful sub-populations can be defined, allowing for an exponential growth phase in an
epidemic. Thus most network models with their complex structure do not lend them-
selves to such simple definitions, and the relationship between R0 and the network
representation is further discussed below.

4.1.2 Density vs. Frequency Dependent Contact

A connection from (4.1) to network models can be established by a closer exam-
ination of the contact structure implicit in the nonlinear term βSI , which can be
understood if this expression is replaced with a term

τC(N)I
S

N

(see, for example, [59]). Here, each individual has C(N) potential infectious con-
tacts (infectious with probability τ ), and this is dependent on the total popula-
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tion N .2 The region in the parameter space where R0 < 1 then defines a globally
stable disease-free state if dC/dN ≥ 0 (usually, d2C/dN2 ≤ 0 but this is not re-
quired), and none of C(N), β or γ are functions of I . In particular, if dC/dI > 0,
dβ/dI > 0, or dγ /dI > 0, global stability is lost. This can occur if, for example,
removal of infected individuals requires the availability of limited resources, so that
dγ /dI > 0 (e.g. foot-and-mouth disease in the UK in 2001, see [30]) or one may
have dC/dI > 0 if, for example, contacts are increased by otherwise sedentary in-
dividuals attempting to flee an epidemic, as may have occurred during the Black
Death in the fourteenth century Europe. Each infected individual has a probability
S/N per contact of interacting with a susceptible individual. For density dependent
contact, C(N) = N and the form of system (4.1) is obtained. For “frequency de-
pendent” contact, C(N) = κ , a constant. In this case, the rate that new infections
appear is τSIκ/N , and R0 = τκ/γ . A critical difference between the two cases is
that, with density dependence, thinning of the total population reduces N and there-
fore the value of R0, while with frequency dependence the reduction in population
density or size has no effect on R0.

In frequency dependent models, the number of contacts (links) is independent
of population size. However, they differ from network models in that the contact is
made with a random individual in the population. Thus the two are only equivalent
in the case of a dynamic network with links that switch to new partners at an infinite
rate [57]. An important consequence of this is that any infected individual still has
κ outward potentially infectious contacts in a frequency dependent model, while
in static network models with bi-directional links, at least one of them is “used up”
because the node was infected along one of its existing links (see, for example, [14]).

As previously noted, in network models individuals can no longer be assumed to
be in potentially infectious contact with all members of the population. If the degree
distribution p(k) gives the probability that a randomly selected node has exactly k

links, then the average number of connections per node is given by 〈k〉 = ∑

l lp(l).
Epidemiologically, the degree of a node gives the maximum number of nodes that a
node could infect. Of course, as 〈k〉 � N , only a few nodes are likely to be directly
infected by any given node. In a Poisson random network (originally studied by
Erdős and Rényi [19]), nodes are connected by links, these chosen randomly from
the N(N − 1)/2 possible links. A Poisson network can be constructed via a bino-
mial model where, rather than fixing the number of links and choosing partners at
random, every possible pair out of the nodes is connected with probability p̃. The
average number of connections per node is 〈k〉 = p̃(N − 1) and the degree distribu-
tion is given by

P(k) =
(

N − 1
k

)

p̃k
(

1 − p̃
)(N−1)−k ∼= 〈k〉ke−〈k〉

k! . (4.3)

Here, exact equivalence is achieved when N → ∞. When p̃ is sufficiently large,
random networks tend to have relatively small diameters (maximum shortest path

2We note that this it is sometimes more important to consider population density rather than total
population; however, throughout will consider dynamics that depend on the population size.
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length considering all possible node pairs). The number of nodes at a distance l from
a given node is well approximated by 〈k〉l for the Poisson network [20]. When the
whole network is captured starting from a given node, 〈k〉l ∼= N , and l approaches
the network diameter d . Hence, d depends only logarithmically on the number of
nodes, and the average path length is also expected to scale only slowly with increas-
ing population size, i.e. 〈lrand〉 ∝ ln(N)/ ln(〈k〉), with correspondingly small diam-
eter. In this case, there is a direct relationship to the “simple” SIR model, as R0 =
τ 〈k〉. For more complex network structures, the correspondence to R0 is less clear.

4.2 Networks with Localisation of Contacts: Small Worlds,
Clustering, Pairwise Approximations and Moment Closure

4.2.1 Small Worlds

A contact network with a small diameter such as found in Poisson networks sup-
ports epidemics that can spread broadly throughout the network in a few genera-
tions. Thus even for a disease with low probability of transmission and where the
disease has been identified within a few generations of infection after its introduc-
tion, it would be difficult to identify and isolate subgroups of individuals who are
at higher risk of becoming infected. Localisation is exemplified by spatial spread,
such as found in lattice models, where nodes are positioned on a regular grid of lo-
cations, and neighbouring individuals are connected. Such lattice models/networks
exhibit homogeneous contact but have much longer average path lengths and diam-
eters than Poisson networks. Empirical measurements confirm that many real-world
networks are characterised by greater localisation of connections—i.e. the tendency
for links to occur with greater probability than average amongst subgroups of nodes,
but have small average path lengths very similar to that of Poisson random net-
works. Motivated by social structures where most individuals belong to localised
communities composed of work colleagues, neighbours or people sharing similar
interests, but some individuals also have connections with individuals that belong to
other localised communities (e.g. relatives living considerable distances away and
thus likely to belong to distant social communities as well) and old acquaintances,
Watts and Strogatz [71] proposed the famous “small-world network” (SWN) model,
which uses a one-parameter model to interpolate between a regular lattice model
and a Poisson network. Their model starts with a ring lattice with N nodes where
each node is connected to an arbitrary fixed number K of its closest neighbours.
Two types of SWNs have commonly been studied. In the original version, a ran-
dom rewiring of all links is carried out with probability q . A variant with similar
properties does not rewire, but adds long range links randomly, with probability q

to generate the same number of long range links as in the original model (Fig. 4.1).
Both approaches produce on average qKN/2 “long-range” links (or more cor-

rectly, they connect nodes at random). As the latter approach simplifies some calcu-
lations but has the same key properties as the original model, it will be referred to
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Fig. 4.1 An example
small-world network, with
each node connected locally
to its four nearest neighbours

later in the chapter. For a broad range of q , the SWN generates average path lengths
approaching those observed in Poisson random graphs, yet with much greater lo-
calisation. The smaller average path length driven by the limited number of long-
range connections (shortcuts) makes the network more connected, with fewer edges
needed to connect any two nodes. A smaller average path length also means a
smaller number of infectious generations with a shorter epidemic time scale, and
a lower threshold for a large epidemic. The critical idea put forward by this model
is that a relatively few “long-distance” connections are important for the transmis-
sion and persistence of disease. This has long been established, for example, within
the metapopulation paradigm developed in the 1960s [50] where occasional migra-
tion between habitat patches was invoked to explain the persistence of species that
would otherwise go extinct—in the case of epidemiology, the metapopulation is the
pathogen operating on the host (or communities of hosts), which represent the habi-
tat patches, such as the cities and towns in the previously mentioned measles models
[7, 28]. Where the model of Watts and Strogatz’ differed, however, was showing in
an elegantly simple model, and in a quantifiable way, how simple couplings defined
only as a property of individuals could be weak, yet produce dramatic effects in
communities.

4.2.2 Clustering on Networks and Moment Closure

The SWN model is a very specific, illustrative example of a highly clustered net-
work. More generally, there are often subgroups or communities of individuals that
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Fig. 4.2 Transmission on unclustered and spatially clustered networks. Transmission on unclus-
tered networks fills the picture (above percolation threshold) while on clustered networks, the
epidemic is self-limiting (below the percolation threshold). Figure courtesy of Dr. D.M. Green,
Stirling University

are more likely to be associated with each other, and there is an extensive litera-
ture devoted to identifying network-based measures of community (for a review,
see [12]). One measure of localisation is the clustering coefficient which can be
quantified as c = 3·triangles

triples , where a triangle is defined by a set of three nodes X,
Y and Z in a triplet, where X is connected to Y which is connected to Z, and X is
also connected to Z. Clustering can be viewed as expressing the probability of two
friends of any one individual being themselves friends of each other, and this is il-
lustrated in the classic signature of the small world effect, which is the rapid decline
in the average path length between nodes, when the clustering coefficient remains
high [71]. This definition is not unique; for example, clustering can also be com-
puted by averaging the clustering coefficients of individual nodes ci = Ei

ki (ki−1)/2 ,
which represents the ratio between the number of links Ei present amongst the
neighbours of node and the possible maximum number of such links. For any mean-
ingful definition, in networks approximating the structure of Poisson random net-
works have small inherent clustering, and in the limit of infinite populations, zero.
Clustered networks can be generated by randomly distributing individuals/nodes in
a given n-dimensional space (e.g. a specified two-dimensional surface) and assum-
ing that the probability of a connection between two individuals is a function of
their distance. By choosing an appropriate function, the average degree and cluster-
ing can be varied. Of course, clustering alone does not uniquely define a network;
for example, an infinite number of networks can be generated with zero clustering.

While the definition of clustering and its extensions to higher order loops in-
cluding four or more nodes allows for the description of heterogeneous structures
in networks, it does not create an analytical tool for describing the effect on dis-
ease transmission (Fig. 4.2). One approach to this is “moment closure” [42, 44].
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A population can be described in terms of the frequency of clusters of individuals
of various types (e.g. S, I , and R) and of various sizes (singlets, doublets, triplets
and so on; i.e. the ‘moments’ of the distribution). By including the frequency of mo-
ments of increasingly higher order, the population can be described with increasing
accuracy, but at the cost of increasing complexity. Disease transmission is depen-
dent on whether one of the pairs is connected to an infectious individual, i.e. if
[SS] is the number of S + S pairs, and [SSI ] the number of S + S + I triplets
then d[SS]

dt
∝ [SSI ]. Similarly, d[SSS]

dt
∝ [SSSI ], etc. For the simple SIR model, the

number of [SI ] pairs is determined by the equation

d[SI ]
dt

= τ [SSI ] − τ [SI ] − τ [ISI ] − g[SI ],

where τ [SSI ] denotes the creation of an SI pair through the infection of S in the
central position of the triple. In a similar fashion, the number of triplets requires
knowledge about the number of quadruplets, and so on, and the system soon be-
comes completely intractable. Analytical tractability is achieved by “closing” the
system at the level of pairs and approximating triplets as a function of pairs and in-
dividual classes [44]. In clustered networks there will be some heterogeneity in the
probability of association between two nodes (in social networks, for example, the
probability that two people will be friends will increase if they have a friend in com-
mon, or for spatially clustered populations, that the Voronoi tessellation for three
nodes produces a common boundary point [45]). To account for the correlation be-
tween the node in state X and node in state Z, a closure relation is considered [42],
where if N is the total population size, and Φ the expected proportion of triplets
that are triangles, then

[XYZ] ≈ 〈k〉 − 1

〈k〉
[XY ][YZ]

[Y ]
(

(1 − Φ) + ΦN

〈k〉
[XZ]
[X][Z]

)

.

This approach has the attractive feature that is transparent, easy to parame-
terise and builds on understanding global properties of the system based on lo-
cal/neighbourhood interactions. The closure at the triplet level (i.e. ignoring loops
incorporating four or more nodes) is a compromise between incorporating contact
heterogeneity and retaining analytical tractability, and it has been successful in ac-
counting for correlations that form due to diseases spreading amongst clusters of
connected individuals. An important feature of even moderate levels of clustering is
the rapid decrease in the average number of new infections produced by each infec-
tious individual. Largely due to the depletion of the susceptible neighbourhood; past
the first generation, infected nodes often have at least one neighbour that is already
infected. In networks clustered in two dimensions, there is a corresponding spatial
localisation of epidemics (Fig. 4.2). While moment closure can provide a good ap-
proximation to the time course of stochastic simulations on clustered networks [42],
as always such good agreement depends on the underlying model being considered.
Based on a model using Poisson-random networks with contact tracing and a delay
before infectiousness [47], Fig. 4.2 shows how, even with no “forced” clustering
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(i.e. clustering only occurs due to population size effects), there is poor agreement
between simulations and the analytic approximation, and this difference quickly be-
comes pronounced as clustering increases. While the sources of the discrepancy are
not entirely clear, the delay in the onset of infectiousness and the addition of contact
tracing add considerably to the complexity of the system being studied, highlighting
the need for further research into analytical models of this type of contact hetero-
geneity.

Despite these difficulties, as a strategic tool, moment closure equations allow us
to explore the relationship between clustering and epidemic spread [42], showing
how clustering can lead to a dramatic reduction in the value of R0 if generations of
infection overlap with equivalent effects on the probability of successful disease in-
vasion. Using additional equations incorporating links between nodes along which
tracing takes place, the moment closure approach can also be used to explore the
effect of network dependent disease control, such as contact tracing, i.e. identifying
potentially infectious connections from infected individuals (e.g. [17, 34, 47]). On
a practical level, moment closure approaches have been used to explore the conse-
quences of exploiting spatial proximity in the case of the Great Britain 2001 foot-
and-mouth disease epidemic [21].

4.3 Heterogeneity in Contacts per Individual

4.3.1 Models for Sexually Transmitted Diseases and HIV

While moment closure approaches can be used in systems with both clustering and
heterogeneity in contact frequency [18], it is not a natural tool for exploring het-
erogeneity in the number of contacts. For models where contact heterogeneity is
important, such as is found for sexually transmitted infections, or STIs, the start-
ing assumption is often that the population is homogeneously mixed. For STIs, the
nature of the potentially infectious contact is well-defined, and it has long been
understood that modelling their transmission and control must account for hetero-
geneities in sexual activity [2, 32]. Assume that the probability of transmission of an
STI to an individual depends only on the number of potentially infectious contacts
per individual and the probability of transmission per contact. Then the population
can be divided into distinct groups, with each group defined solely by the number of
contacts. The number of individuals with k contacts is Nk (k = 1, . . . , n). For sim-
plicity, only the case of an SIR model in an infinite closed population is considered.
Following [2], (4.1) can then be extended to

dSk

dt
= −βkSk(t)

∑

l

p(l|k)
Il(t)

Nl

,

dIk

dt
= βkSk(t)

∑

l

p(l|k)
Il(t)

Nl

− γ Ik(t),

k = 1, . . . , n. (4.4)
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Here Sk and Ik represent the number of susceptible and infectious individuals with
k contacts, and (frequency dependent) per contact transmission rate β between an
infected and a susceptible individual. The rate at which new infections are produced
is proportional to β , the degree k of the susceptible nodes being considered, the
number of susceptible nodes with k connections, and the probability that any given
neighbour of a susceptible node with k connections is infectious. When proportion-
ate random mixing is assumed, the probability that a node with k contacts is con-
nected to a node with l contacts is given by P(l|k) = lp(l)/〈k〉, where p(l) = Nl/N ,
and 〈k〉 = ∑

l lp(l) is the average number of connections in the population.
The basic reproduction number R0 can be calculated for this system, which has

no higher order structure, using the more general definition

R0 = lim
N,n→∞

(

n

√
√
√
√

n
∏

m=1

Im+1

Im

)

, (4.5)

where N is the population size, n is the generation number, and Im is the number
of infected individuals in all classes in generation m [15]. In this abstract model,
heterosexual transmission, which requires cycles of length two, is not considered.
This reduces (4.5) to R0 = limN,n→∞(In+1/In). A simple approach to calculating
R0 in this latter case follows [40]. Consider the introduction of infection into an
arbitrary node in a network. This node will be of degree k with probability p(k).
Then for a given probability of transmission per link p̄, the number of infected
elements of an arbitrary degree l following the first generation of transmission is

Il,1 = p̄
∑

k

P (l|k)kp(k)

= p̄lp(l)
∑

k kp(k)

〈k〉
= p̄lp(l) (4.6)

since 〈k〉 = 〈l〉. In the following generation,

Im,2 = p̄
∑

l

P (m|l)Il,1. (4.7)

It is easy to show using (4.6) and (4.7) and summing over all node degrees, that
I2/I1 = In+1/In for all subsequent successive generations n and n+1, and therefore

R0 = p̄
〈k2〉
〈k〉 , (4.8)

i.e. R0 is proportional to the variance-to-mean ratio of the contact degree distribu-
tion in the population, where 〈k2〉 = ∑

l l
2p(l) is the second moment of the contact

distribution. In a directed network, with unbalanced in- and out-degrees, this can
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easily be generalised to

R0 = p̄
〈kinkout〉

〈√kinkout〉 . (4.9)

Equations (4.8) and (4.9) illustrate the disproportionate role played by highly
connected individuals or ‘super-spreaders’. Such models can be further extended
to account for additional properties of the population contact structure or disease
characteristics, though at the cost of losing analytical tractability and model gener-
ality.

4.3.2 Disease Transmission on Scale-Free Networks

These investigations have been mirrored by equivalent investigations of social net-
works with high variance in the degree distribution. Although random graphs have
been extensively used as models of real-world networks, particularly in epidemiol-
ogy, they can have serious shortcomings when compared to empirical data charac-
terising social structures such as networks of friendship within various communities,
as well as structures in physical and biological systems, including food webs, neural
networks and metabolic pathways. With surprising frequency, the empirically mea-
sured degree distribution has significantly higher variance-to-mean ratio compared
to a Poisson distribution. Examples include the World Wide Web, the Internet, eco-
logical food webs, protein–protein interactions at the cellular level (e.g. [25]), and
most relevant for this discussion, human sexual networks, all with degree distribu-
tions reasonably approximated as scale-free, i.e. p(k) ≈ k−γ with 2 < γ ≤ 3, over
several orders of magnitude (but see also [38]). As noted above, to account for the
fact that each infected node past the first generation must have at least one link that
ends in another infected node, the value of R0 differs slightly from (4.8):

R0 = p̄〈k〉
( 〈k2〉

〈k〉2
− 1

〈k〉
)

. (4.10)

The translation in terms of the epidemiological parameters β and γ is slightly more
difficult as the depletion of links from an infected node means that the transmission
rate must be increased to maintain the same R0 [43] and this, in turn, changes the
infection rate [26]. While the empirically determined distribution of sexual contacts
is more precisely fit with a truncated scale-free distribution [38], in the limiting
approximation of a scale-free infinite population with no truncation, R0 → ∞ since
〈k2〉/〈k〉 → ∞ even though 〈k〉 is finite. It follows that even an arbitrarily small
transmission rate β can sustain an epidemic [58]. As implied by the name “scale-
free”, random removal of nodes does not reduce the variance. Therefore, no amount
of randomly applied, incomplete control (i.e. vaccination, quarantine) can prevent
an epidemic. However, this is not the case for finite populations where the threshold
behaviour is recovered [52], and targeting the small pool of highly connected nodes
is sufficient to prevent an epidemic, so long as these individuals can be identified
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Fig. 4.3 Average degree of new infectious nodes for random (+) and truncated scale-free net-
works (p(k) = Ck−γ e−k/L with γ = 2.5, L = 100 and k ≥ 3) (o). Both networks with N = 2000,
〈k〉 = 6. The model includes four classes (susceptible—S, exposed—E, infectious—I , results in
tracing—T , and removed—R) with rate of susceptible becoming infected (S → E) 0.15d−1, and,
tracing occurring at rate 0.5d−1 (for all of S → R, E → R, I → R), latent period 10d , infectious
period 3.5d , nodes trigger tracing for 2.0d . Figure courtesy of Dr. I.Z. Kiss, University of Sussex

and treated or removed. Further, even in the absence of control, the supply of highly
connected nodes is quickly depleted, resulting in rapid disease extinction.

Barthélemy et al. [6] showed that a further consequence of high variance distri-
butions is the non-uniform spread of the epidemic. The higher probability that any
node will be connected to a highly connected node means that disease spread fol-
lows a hierarchical order, with the highly connected nodes becoming infected first,
and the epidemic thereafter cascading towards groups of nodes with smaller degree
(Fig. 4.3 and [48]).

The initial exponential growth in the time-scale of epidemics is inversely pro-
portional to the network degree fluctuations, 〈k2〉/〈k〉. Thus the high variance in
heterogeneous networks also implies an extremely small time-scale for the outbreak
and a very rapid spread of the epidemic, implying that in populations with these
characteristics there is a window of opportunity, in which diseases can be controlled
with relatively little impact on the majority of individuals (Fig. 4.4 and [48]), though
this window becomes small with increasing degree fluctuations.

May and Lloyd [52] defined ρ0 = β〈k〉/γ to be the transmission potential, equal
to R0 in homogeneously mixing (i.e. random) networks. For ρ0 < 1, R0 < 1 on
a random network, but for networks with higher variance-to-mean ratio, we can
have R0 > 1. For ρ0 > 1, because scale-free networks lose high-degree nodes more
rapidly than low-degree nodes, the variance in the degree of the remaining sus-
ceptible nodes is quickly reduced, and thus the low-degree nodes are effectively
protected. Thus for sufficiently high ρ0, epidemics on random networks last longer,
and also are able to reach more nodes. Above a value ρcrit, the final epidemic size
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Fig. 4.4 Time evolution of
the proportion of infectious
nodes for random (solid line)
and truncated scale-free
(p(k) = Ck−γ e−k/L with
γ = 2.5, L = 100 and k ≥ 3)
(dashed line) networks,
N = 2000, 〈k〉 = 6, for
epidemics with infection rates
per link β = 0.067, 0.0735,
0.08. Latent period is 3.5d ,
infectious period 3.5d . Figure
courtesy of Dr. I.Z. Kiss,
University of Sussex

Fig. 4.5 Final epidemic size R(∞) as a function of the transmission potential ρ0 computed an-
alytically for the mean-field SIR model (solid line) and semi-analytically for Barabasi–Albert or
BA networks (dashed line). For the BA networks R∞ increases from close to zero; however, for
the mean-field case it only increases from ρ0 = 1. The value of R(∞) for the scale-free network
increases more slowly, however, due to the depletion of highly connected nodes. Figure courtesy
of Dr. I.Z. Kiss, University of Sussex

on random networks is larger [49, 52] and as ρ0 → ∞, approaches its asymptote
(the total population size) more rapidly than for scale-free networks (Fig. 4.5).

4.3.3 Link Dynamics and STI Partnership Models

In the simplest network models, the connections of the population are fixed with
no switching of links; in contrast, models of the Kermack–McKendrick type can
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be viewed as populations where the links switch at an infinitely rapid rate [57].
Of interest is the interaction between the two extremes, i.e. when do the dynam-
ics of the network change the dynamics of disease? The concurrency of links is
well-studied [16, 18, 23, 55, 70] in the modelling of STIs, where the nature of the
partnerships between individuals is emphasised, rather than the individuals them-
selves. This dyad-based approach often assumes that epidemic dynamics are driven
by serially monogamous relationships [16, 55]. Despite this abstraction, they are
of interest because of the emphasis on the dynamics of the network itself—in the
simplest case, no epidemic can occur if all partnerships are sufficiently long. The
networks generated from partnership models illustrate the importance of both “tra-
ditional” static network properties, for example, number of partners and the network
structures such as the centrality of an individual in a network, as well as dynamic
properties such as the concurrency of partnerships.

The effect of link dynamics are seen in a simple SWN example [62]. In this vari-
ant of the SWN, all local links are fixed (for all nodes, klocal = n, where n is an even
constant) but a fixed number of random links are “lifted” and “dropped” randomly
on the network at a fixed rate σ , so that, if all nodes are labelled 0, . . . , npop − 1,
then nodes are joined by random links where the nodes are more than n/2 loca-
tions apart (i.e. all random links are longer than local links). It has previously been
suggested that if link dynamics evolve ergodically, then an appropriate static repre-
sentation of the network will have the same characteristics as the original, dynamic
network [41]. An example of an ergodic, dynamic network is one where the network
evolution is a Markov chain, and all states are accessible from the initial state. This
is considerably less restrictive than other explorations of network dynamics, where
the number of links for each node is assumed fixed (e.g. [57, 68]). Here, the static
network is generated by assigning to each node an infectious period drawn from an
exponential distribution with mean period τinc. Then a number νrand of random links
are generated and placed on the SWN with the restriction that the distance between
the two connected nodes is greater than n/2.

Identification of the static network immediately identifies one consequence of
link dynamics. Because the removal and replacement of a link “frees” up the link
from already connecting two infected nodes, epidemic dynamics would be expected
to be different on the static and dynamic networks (Fig. 4.6). Early on, it is more
likely that a “used” up link will be replaced by a “free” link, whereas the opposite
would become true later in the epidemic, as more nodes are infected. Here, link dy-
namics are represented by a switching rate that defines an effective infectious period
over a given link. Construction of a transmission network where every node has the
same infectious period distribution is equivalent to a bond percolation model [65].
The static representation allows us to quantify these differences, by considering
the effective infectious period of a node, with respect to a dynamic random link.
Assuming SIR infection dynamics with exponentially distributed periods, the aver-
age infectious period is τinc = 1/rinc and for transmission over the random links,
the average effective infectious period must be modified by the switching rate, and
therefore τeff = 1/(rinc + rswitch). The relative probability of infection over random
links is given by e−βτeff/e−βτfixed . To correct an effective transmission rate τeff must
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Fig. 4.6 Comparison of final epidemic size for different switching rates σ , showing the equiva-
lence between the dynamic networks and a static representation. Epidemic simulations are run on a
dynamic small world network (size n = 2000), with switching rate to infectivity removal rate ratio
σ/γ = 0.1 (left) and σ/γ = 10.0 (right), and transmission rate per link τ = 1.0. Simulations run
using the Gillespie algorithm

be defined by

1 − exp(−βeffτeff)

1 − exp(−βτfixed)
= τeff

τinc
, (4.11)

that is,

βeff = − ln

(
τeff

τinc
exp(−βτfixed)

)/

τeff

= − ln

(

1 − τe

τf

(

1 − exp(−βf τf )
)
)/

τe. (4.12)

The mean probability of transmission per link is therefore given by

pdyn =
∫ ∞

0
p(t)P (t) dt

=
∫ ∞

0

(

1 − exp(−βt)
)

(γ + σ) exp
(−(γ + σ)t

)

dt

= β(γ + σ)

(β + γ + σ)
, (4.13)

similar to the link saturation result relating static networks to mean-field models
[43]. An immediate consequence of this is that epidemics are made larger by link
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Fig. 4.7 Comparison of adjusted networks, γ /σ = 0.1 and γ /σ = 1.0, showing correction for
link switching using (4.14). Simulations and parameters otherwise as in Fig. 4.6

switching. To conserve the total epidemic size, this requires that the overall proba-
bility of transmission be the same, i.e. p2

p1
= τ2

τ1
, which results in a corrected value

of β:

βdyn = (βstatγ + σ)βstatγ

βstatσ + γ (γ + σ)
. (4.14)

This correction in (4.14) results in final epidemics that have the same distribution
under stochastic simulation for different switching rates, and both for static and
dynamic representations (Fig. 4.7). Of course, while the epidemic size is the same,
the adjustment in β results in substantially different epidemic dynamics [26].

4.3.4 Integrating Networks and Epidemiology: Transmission
Networks

Thus far, only the properties of the social network of potentially infectious contacts,
i.e. which nodes could a node infect, if it were infectious, have been considered.
This is often the only logical approach if, for instance, no disease data are available,
or if the properties of the underlying social network are being exploited for disease
control. For example, for the purposes of analysing the efficacy of tracing of po-
tentially infectious contacts for disease control, understanding the social network is
vital [17, 34, 47]. However, in the absence of control, or when control is not based
on exploiting social network structure, given a contact network and the character-
istics of a disease that can spread on the network, one can thin links to generate
the network of truly infectious links (as disease will not necessarily spread across
all available links), referred to as the “transmission” network. Such a network is



68 R.R. Kao

inherently directed (since one must consider separately the probability of infection
in each direction) even when the social network is undirected; however, the thinned
network is usually significantly more sparse. Further, while the social network may
have weights attached to links and nodes, the transmission network is unweighted
so long as the infectious state of any node is not dependent on any network param-
eters (e.g. one cannot have a node that is more infectious if it has been infected by
exposure to multiple infected neighbours).

It is also often the case that networks generated with different disease assump-
tions will have different properties to the underlying social network. For example,
following Trapman [65], consider two systems in which both have a constant in-
fectiousness per link per unit time τ(t), but with either fixed infectious periods θA

(system A), or bimodal infectious periods, with a proportion 1 − X with a zero in-
fectious period, and proportion X with an infectious period of length θB (system B),
such that

p̄av =
∫ θA

0
τ(t) dt = X

∫ θB

0
τ(t) dt, (4.15)

i.e. for the two systems the average probability of infection per link p̄av is the same.
This latter system B can be thought of as a population where only some individuals
are susceptible to disease. In system A, there is a fixed probability of transmission
per link—in this case, the epidemic threshold R0 = 1 corresponds to the “bond per-
colation” threshold (i.e. all sites occupied, but links present only with the probabil-
ity p̄av). In system B , consider the limit where θB → ∞. Then the individuals in the
proportion X are able to transmit with 100% probability, while the remainder never
do. As p̄av increases, X increases and R0 = 1 corresponds to the “site percolation”
threshold. Similarly, perfect vaccination could be viewed as having an effect on
the site percolation of the “original” transmission network, removing whole nodes
from the network, and thus the most relevant question is the coverage required, i.e.
how many individuals must be vaccinated? Imperfect vaccination, however, is more
closely related to bond percolation, if it is assumed that there is perfect coverage but
imperfect protection.

4.3.5 The Basic Reproduction Number on Transmission Networks
and Network Percolation Thresholds

In a transmission network, any disease starting in a strong component or at a source
node will infect all elements of the strong component, and will infect all sink nodes
as well, but not necessarily all sources. Thus, the largest or giant strongly connected
component (GSCC), in the absence of any interventions or control measures, is an
estimate of the lower bound of the maximum epidemic size, while the giant weakly
connected component is an estimate of its upper bound (e.g. [41]). The transmis-
sion network construction allows us to establish a connection between the network
percolation threshold and R0. In a randomly mixed transmission network, R0 is
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the network percolation threshold [64], loosely defined as the point at which the
final epidemic size is expected to scale with the size of the population (discussed
in [41]).

The result of (4.8) can be easily extended to consider weighted, directed links
and with variable susceptibility of nodes. In this case, it can be shown that

R0 = p̄
〈τkoutσkinw〉

〈√τkoutσkinw〉 , (4.16)

where τ and σ are the weights of the out- and in-links, w the weight associated
with each node, kin is the number of inward links, and kout the number of outward
links [41, 64], and the form of the denominator is to account for the fact that in-
and out-links may not balance. Note that in (4.10), the node at the end of one of
the links after the initial generation is already infected, while in (4.16), because the
in-links and out-links are distinct, this does not occur. In this case, the equation for
R0 reduces to R0 = 〈linlout〉

〈lout〉 in the transmission network generated from a directed
network where nodes have uncorrelated in- and out-links or a network with dynamic

links, or R0 = 〈linlout〉
〈lout〉 − p̄2

〈lout〉 when generated from static networks, where lin and
lout are the number of inward and outward “truly infectious” links per node and
p̄2 arises as the probability that an undirected potentially infectious link generates
transmission links in both directions.

While this approach is only valid for randomly connected networks, it can be
more broadly useful, provided a network can be transformed into a randomly-
connected structure. This is illustrated in the case of the small-world network for
which both the bond and site percolation threshold problems have been solved [54].
In the absence of long range connections, increases in the transmission probabil-
ity per link will result in the growth of local clusters in the transmission network
that would correspond to the local epidemic size, should an element in that clus-
ter become infected. In the simplest case of a one-dimensional small-world lattice
(i.e. with all nodes having local connections to exactly two neighbours), the prob-
ability p̂C that a local cluster of infected individuals will be of size C depends
in a straightforward fashion on the probability p̄ that a given link is infectious,
if one assumes that, during the initial spread of the disease, the probability of a
long range link returning to an already infected cluster is small. Then in this case,
p̂C = (1 − p̄)2p̄C−1, since the two end links must be non-infectious and all others
C − 1 links in the cluster must be infectious. Moore and Newman [54] use the ex-
pression for the local cluster size to determine the percolation threshold via a direct
calculation based on the number and size of clusters connected together by long
range shortcuts. Another, related approach is to construct a directed transmission
network and contract all nodes in connected components joined by only local links
into a single “supernode”. The probability that there will be a supernode of size C in
the (now directed) transmission network is pC = C(1 − p̄)2p̄C−1; e.g. for a cluster
of size C = 3, with three consecutive nodes X, Y and Z, one could have a cluster of
size C with X → Y → Z, X ← Y → Z or X ← Y ← Z. Each supernode will have
an average of p̄qC infectious long range connections if the probability of a node
having a long range connection in the original network was q . For a sufficiently
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large population, with all clusters contracted into supernodes, the resultant network
of supernodes is randomly connected, and so (4.16), while not equal to R0, is the
epidemic percolation threshold of the network, and therefore what one might call
RSN

0 (i.e. for the system of supernodes) reduces to

RSN
0 = p̄q

∞
∑

C=1

CpC

= (1 − p̄)2q

∞
∑

C=1

C2p̄C

= qp̄
(1 + p̄)

(1 − p̄)
. (4.17)

The expression for the distribution of local cluster sizes becomes significantly more
complicated for higher-dimensional small world networks; however, the principle
remains the same. The interpretation of local clusters linked by long range connec-
tions is closely related to a household model of disease transmission [4], in which
the distribution of epidemic sizes within households is used to generate the value of
the between-household value of R0. Multi-scale percolation as described here has
also been analysed in several real networks [39, 41].

4.4 Use of Social Networks with Real Epidemic Data

The previous section was largely concerned with the identification of phenom-
ena that can influence the transmission of disease over a heterogeneous network.
Whether or not such phenomena have a bearing on the transmission of real diseases
over real networks is dependent on the interaction between the disease transmis-
sion characteristics and the underlying pattern of contact. A rule of thumb for the
appropriateness of social network approaches is through a comparison of the rela-
tive timescale and distance of the activity of the host, compared to the transmission
range and duration of infectiousness of the pathogen, which defines the scale over
which social network-based approaches are useful. In the case of sexually trans-
mitted diseases, transmission occurs over a very short range, specific action. In the
case of SARS, at the worldwide scale, the airline transport network occurs over a
much greater range than person-to-person disease transmission—equivalently, the
action of the person has longer range than the action of the virus, and this is a sim-
ilar case to the spread of pandemic influenza. In the case of livestock infectious
diseases, the long range movement of livestock is greater than the local airborne
spread of the pathogen. Here, examples related to all three of these cases are exam-
ined.
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4.4.1 The Global Airline Network and SARS

Severe Acute Respiratory Syndrome or SARS is a respiratory disease caused by the
SARS coronavirus. The index case was identified in Hong Kong in 2002, and over
the course of the epidemic there were 8,096 known infected human cases, including
774 deaths worldwide, as listed by the World Health Organisation. While the SARS
virus may persist in a wildlife host reservoir, it has been fully eradicated in the
human population, with the last infected human case seen in June 2003 (disregarding
a laboratory induced infection case in 2004). While the local spread is difficult to
typify in terms of contact heterogeneity, the situation at the global level is much
clearer. Within a matter of weeks in early 2003, SARS spread from the index case,
believed to have been in Guangdong province of China, to rapidly infect individuals
in some 37 countries around the world, mainly via the airline network. The airline
interaction network in SARS has been extensively studied [9, 35] and some key
elements are described here.

The model formulation is similar to that of the measles metapopulation mod-
els [7]; however, the SARS/airline network models are able to utilise the extensive
data regarding the potentially infectious social contacts, rather than inferring them
from the disease reporting numbers. The populations are reported as V = 3,880
vertices (major airports) joined by E = 18,810 weighted edges. These data are sup-
plemented by the urban population data associated with these nodes (the human
populations serviced by them) and, in the case of the later paper, the full disease
outbreak data by reporting location. This does not consider the country of origin
of the cases. In this example, “multi-scale” modelling abstracts the dynamics at the
metropolitan level to stochastic homogeneous mixing models—no attempt is made
to integrate more complex dynamics at this level, as is found in other studies.

Hufnagel et al. [35] considered the effect of stochasticity at the local level on
global disease dynamics. Here, the more recent results of Colizza et al. [8] are dis-
cussed, which extend this using a Langevin equation formulation (originally to de-
scribe Brownian motion), based on stochastic SIR models with density dependence,
discretized for numerical simulation. The approach results in a system of almost
10,000 differential equations where there are variables associated with 3,100 major
centres with large airports, and three differential equations per centre. Demographic
parameters are well-described by the airline network data, allowing for an analysis
of the effects of well-described demographic stochasticity on epidemic occurrence.
Of interest is the issue of repeatability—how often is a single set of events repli-
cated, given an initial starting point for disease introduction? This has several im-
plications: first, it impinges upon the usefulness of modelling exercises to predict,
at a tactical level, how to target epidemic control. Second, comparison of simulation
repeatability to a single simulation output (where the model structure is identical
to that of the data) to repeatability in replicating a real epidemic is an indicator
that, even if a model is a “poor” fit, it may, nevertheless, be a “good” model from
the model selection point-of-view. Colizza et al. identify the “Hellinger” affinity

sim(−→π I,−→π II) = ∑

j

√

π I
jπ

II
j measure of repeatability, where −→π l(t) is the vector
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whose j th component represents the probability that an active individual (i.e. car-
rying infection) is in city j at time t . As the measure is scale invariant, it is only a
measure of the epidemic pattern; therefore, a comparison of the overall prevalence
between any two iterations I and II must also be included as an additional term,

sim(
−→
a I,

−→
a II) = ∑

j

√

aI
j (1 − aI

j ), resulting in an overall measure

Θ(t) = sim
(−→

a I(t),
−→
a II(t)

) · sim
(−→π I(t),−→π II(t)

)

, (4.18)

which takes a value from zero to one, zero indicating no cities with infected individ-
uals in both realisations, and one indicating identical realisations. The measure does
not apportion the relative contribution of overall prevalence and pattern; however,
this is easily extracted from the individual terms in (4.18).

However, there remain questions regarding the relative importance of the stochas-
tic mechanisms identified here and other unexplored factors. Within-region mod-
elling is defined by a compartmental model with homogenised mixing and density
dependent contact, implemented with discrete probabilities of transition between
states, and discrete time steps. An underlying assumption is that the pattern of air
travel reflects the mean characteristics of the population—whether or not some in-
dividuals are more likely to travel than others, and whether or not that is correlated
with within-region behaviour, susceptibility or transmissibility, is not considered.
Compartments are also treated generically, with the same structure and parameters
for all regions despite the likelihood of epidemiologically important differences in
the way people behave around the world. Thus the within-centre model remains
highly abstract, and there is no consideration of the balance in detail accorded the
disease model and the network model complexity. Is the detail of the transport net-
work necessary for understanding the level of stochasticity and outputs generated?
These simplifications imply that direct interpretation of model parameters must be
treated with caution; scientifically this relatively parsimonious approach is appropri-
ate if the intention is to concentrate on the relationship between air transport contact
heterogeneity and disease transmission. The availability of epidemiological data is
critical for getting this balance right. Optimisation is relatively unsophisticated, us-
ing a least squares approach to optimise the Hong Kong data (in the paper, they do
not seek to optimise the Hellinger measure of (4.18)). Despite these issues, the inte-
gration of more explicit disease dynamics at a lower population scale, with the ex-
plicit demographic interaction is a welcome consideration, and the approaches used
in this analysis have the potential to be broadly applicable across other disease sys-
tems, and would provide useful insights. Here, the critical result of the model is that
it is a good predictor of regions that did have meaningful numbers of cases, with the
majority of these being directly related to the activity originating from Hong Kong.
The most telling indicator of the role of network heterogeneity and the interaction
between the network model and within-node dynamics is the risk to Spain, which is
mainly due to secondary connections from other European countries (UK, France,
and Germany) rather than direct links from Hong Kong.



74 R.R. Kao

4.4.2 Bovine Tuberculosis and the Network of Livestock
Movements in GB

The movement of livestock in Great Britain is exceptionally well recorded, with de-
tailed informing concerning the movement of large livestock between agricultural
premises in Great Britain. Such data, recorded on a day-to-day basis, is an excep-
tional record of a dynamic disease-relevant network for which there exists disease
data on which to test our concepts of social networks in epidemiology. These live-
stock networks have been extensively analysed, and have been shown to exhibit
both small world and scale-free properties [41, 48]. Particularly well described is
the movement of cattle, as individual animal movements are recorded, largely due to
concerns over the spread of bovine spongiform encephalopathy in the 1990s. Bovine
Tuberculosis (BTB) is a zoonotic disease of cattle caused by Mycobacterium bovis,
a member of the tuberculosis clonal complex and an important cause of tuberculosis
in humans, though less importantly in developed countries due to milk pasteurisa-
tion. It has been an endemic disease in British cattle for centuries which, however,
was largely eliminated from most herds with the introduction of a widespread test-
and-slaughter programme in the first half of the twentieth century. However, BTB
incidence in cattle has been steadily on the rise for the last four decades, with the
estimated cost of control reaching £90 million in 2005 and including £35 million in
compensation to farmers. Disease spread at the national level is likely due to both
cattle movements [24] and other factors, most controversially transmission from in-
fected badgers in high-risk areas. As BTB in cattle is a notifiable disease, all cattle
testing positive for BTB are recorded centrally, with regular tests of all herds occur-
ring every one, two, three or four years, depending on the perceived risk of transmis-
sion to cattle. This combination of long term disease plus demographic data allows
for an exceptional opportunity to identify the role of detailed network structure in
the transmission of disease.

In Green et al. [27], a livestock network is constructed probabilistically so that
each premises i maintains a probability of infection through the simulation, Pi , up-
dated using one-day time-steps. Each potential infection event causes infection with
probability p. This causes an increase in Pi , conditional on the probability of i

already being infected, such that Pi �→ Pi +ΔP , where ΔP = (1−Pi)p. The sum-
mation of ΔP across all infection events gives the expectation of the total number
of infections produced during the simulation, I , and it may be partitioned into the
causes of infection listed below: total infections due to livestock movements (M),
infections within high-risk areas (G) and background rate, countrywide (B). The
expected prevalence at a given time is given by

∑

i Pi , according to the following
criteria:

• Livestock movement: A livestock movement from premises j to premises i is
considered potentially infectious where j has a high probability of infection and
where the number of animals moved is large:

p = (

1 − (1 − μ)c
)

Pj , (4.19)
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where c is the batch size and μ is a model parameter denoting probability of
infection of a single animal moved off infected premises. Risk of infection is
therefore positively correlated with numbers of cattle moved onto a premises, but
is not affected by herd size.

• High risk area: Each premises has a variable �i , set at 0 for premises not con-
sidered in ‘high-risk’ areas, and 1 for those that are. There are thus n = ∑

i �i

premises in high-risk areas. A fixed probability of infection per day χ is applied
to premises in high-risk areas, which is normalised according to the number of
premises n in these areas; χ/n is thus the mean daily rate of production of in-
fected premises through this mechanism in a susceptible population. High-risk
areas were defined as either (a) all premises in one- or two-year testing areas, or
(b) all premises within a radius r of an index case, defined here as a breakdown in
a previous, fixed period. No higher risk was assigned to premises in overlapping
radii.

• Background rate: Each premises is exposed to infection on a daily basis with a
fixed probability ω, independently of location or movement; the model considers
an infection event p = ω once per day for each premises. This simulates infection
due to unknown causes such as unknown long-distance animal movements or
fomite transmission.

Model predictions for 2004 were tested against the data. The variable Yi repre-
sented an estimate from the breakdowns data of the premises status, assigned in a
manner analogous to P . Yi was set as Yi = 1 between times t − w and t , where
t is the time of a breakdown occurring in 2004–2005, and Yi = 0 otherwise. Ad-
ditionally for these events, P was set to 0 on day t + 1 to account for culling and
movement restriction. With Y being the set of all premises not assigned as index
cases on any day in 2004, model likelihood was calculated as

L =
∏

i∈Y
P

Yi

i (1 − Pi)
(1−Yi). (4.20)

The goodness of fit of the model was expressed in terms of log-likelihood, and
the best model selected using the Akaike Information Criterion (AIC) [1]: AIC =
2k − 2 lnL, where k is the number of parameters fitted—this is equivalent to a like-
lihood ratio test (and thus statistical significance can be attached to differences in
AIC score) where models are nested, as is the case when comparing models with-
out background-rate spread to those with background-rate spread, and models with
low cattle-to-cattle transmission (where only cattle with a life history that include
residence in high risk areas are considered a risk of onward infection) nested within
those with high cattle-to-cattle transmission (where all cattle are potentially a risk).
Maximum likelihood estimates were initially determined using the Nelder–Mead
algorithm [56], and the Metropolis–Hastings algorithm [29] was then used to ex-
plore parameter space around the best-fit parameters through a Markov chain Monte
Carlo simulation (MCMC). The model showed that the outbreak data are best ex-
plained by a model attributing roughly 16% of observed breakdowns to recorded
cattle movements, and with only low levels of cattle-to-cattle transmission. High
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Fig. 4.9 Observed (left) and predicted (right) distribution of cattle herd breakdowns due to Bovine
Tuberculosis in 2004. The best fit model attributes roughly 16% of spread to the movement of
cattle, 9% of spread to unknown causes, and 75% of BTB spread to being present in high risk
areas, where these areas are defined as 6 km radial disks surrounding breakdowns in the previous
year. The movement of cattle that have previously passed through high risk areas is a better pre-
dictor than the full network of movements (i.e. allowing for secondary infection outside of high
risk areas), indicating that networks must be carefully chosen. From Green et al., Proc. Biol. Sci.
275:1001–1005 (2008), doi:10.1098/rspb.2007.1601

risk areas by circles surrounding BTB breakdowns were found to be better predic-
tors of future risk of BTB breakdowns than officially designated high risk parishes,
with predictions based on these unidentified high-risk herds being also responsible
for an estimated 47 breakdowns through movements of infected cattle. The results
also suggest that eliminating transmission associated with high-risk areas would re-
duce the number of BTB breakdowns by 75% in the first year alone. Of particular
relevance here is the identification of cattle life histories as a better indicator of
the role of network spread, than simply the connections between premises, empha-
sising the importance of accurate definition of the appropriate network structure.
Here, because BTB appears to be of relatively low infectiousness via cattle-to-cattle
transmission, transient residence of cattle on premises is insufficient to seed infec-
tion in many cases, and thus outward links from premises only exposed to BTB via
cattle movements are unlikely to be a risk themselves. This result is similar to a
more detailed comparison between static and dynamic representations of the cattle
network [67].

http://dx.doi.org/10.1098/rspb.2007.1601
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4.5 Integrating Networks and Epidemiology—Phylodynamics
and the Identification of Transmission Networks

The ability to rapidly and inexpensively sequence large proportions of the genetic
code of pathogens has resulted in the development of approaches to incorporate phy-
logenetic information in the reconstruction of transmission pathways. This provides
a direct insight into the likely underlying network of transmission contacts. If the
pathogen mutation rate per replication per base pair analysed is sufficiently high,
then the genetic sequences from samples taken from infected individuals provides a
signature indicating how closely related the virus population from different individ-
uals are. Bayesian MCMC approaches are used to obtain the best fit transmission
tree, using a measure such as the Hamming distance from information theory to
identify the relatedness between individuals (i.e. how many genetic substitutions
must be made to create identical sequences?). Standard phylogenetic fitting models
assume that the rate of replication is not affected by density dependence consider-
ations; however, the integration of epidemiological models can be used to correct
this. While most current approaches are bespoke and require generalisation to be
broadly applicable, theoretical foundations are being built to support the general
development of these “phylodynamic” models [69]. Two excellent examples of the
use of phylogenetics as tracers of the transmission network are the documentation of
the clusters within the HIV/AIDS epidemic, and the transmission of foot-and-mouth
disease in GB in 2001. In both cases, a connection to network models is shown, and
these data represent an exciting opportunity to validate the importance of putative
social network connections for the transmission of infectious diseases, and an op-
portunity for social network analyses to inform our understanding of phylogenetic
models.

4.5.1 Models of HIV Infection

Acquired immune deficiency syndrome (AIDS) is a (primarily) sexually transmit-
ted disease caused by the human immunodeficiency virus (HIV). AIDS progres-
sively compromises the immune system and leaves individuals vulnerable to op-
portunistic infections and tumors. Despite the development of increasingly effective
drug therapies, in 2007, it was estimated that 33.2 million people lived with the
disease worldwide, with AIDS and AIDS-related complications having killed an es-
timated 2.1 million people, including 330,000 children. Over three-quarters of all
these deaths occurred in sub-Saharan Africa.

The high rate of HIV evolution, combined with the availability of a very high
density sample of viral sequences from routine clinical care in GB creates a sys-
tem highly amenable to using phylodynamic approaches. Hughes et al. [36] stud-
ied extensive viral sequences from 11,071 heterosexual patients infected with HIV.
Of these, 2774 were closely linked to at least one other sequence by nucleotide
distance. Including the closest sequences, 296 individuals were identified to be in
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Fig. 4.10 Log–log plot of numbers of individuals with k contacts (N(k)) vs. the number of con-
tacts (k), based on an analysis of sequence data. Individuals are assumed to be in contact within the
clusters only if the time to the most recent common ancestor of their virus sequences is less than
or equal to five years. The best fit to a power law (straight line in log–log space) has R2 = 0.95
(95% CI: 0.84–0.99), p < 10−6, and shape parameter (negative gradient) = 2.1. From Hughes
et al., PLoS Pathog 5(9):e1000590 (2009), doi:10.1371/journal.ppat.1000590. Figure reproduced
with permission of the corresponding author, Prof. A. Leigh-Brown, University of Edinburgh

groups of three or more individuals in the UK. The analysis revealed that heterosex-
ual HIV transmission in the UK is clustered, but compared to transmission amongst
MSM (men who have sex with men) groups, are on average in smaller groups and
with slower transmission dynamics. Despite the reduced clustering compared to
MSM, highly heterogeneous contact rates were indicated, consistent with heavy-
tailed distributions indicated in previous studies [37, 51]. Using molecular clock
estimates, temporal patterns could also be analysed, rather than just social ones,
which is crucial when relationship concurrency (i.e. network dynamics) is impor-
tant [70]. The analysis of these data revealed extremely long intergenerational pe-
riods (27 months), almost twice as long as for MSM. This long generational time
makes contact tracing (and thus direct identification of the social contact network)
difficult. However, the relationship between the identified clusters and the known
heavy-tailed distributions from epidemiological studies (Fig. 4.10) would suggest
that, while a snapshot of the direct contact network would not identify truly at risk
individuals, the overall pattern is consistent with the dynamic, evolving network
over which HIV is transmitted.

One problem with such data is that sampling is always only partial, both in terms
of its reflection of pathogen genetic diversity, and in its sampling of the population.
Random sampling is unlikely to identify directly critical links if these are few in
number. However, if the sample is random at the population level, differences in
the relatedness between individuals measured directly by epidemiological contact
tracing, and via genetic relatedness should show the existence of these missing links.
However, this does not allow for direct inference into the nature of such missing
links. Indeed, such approaches on their own, cannot distinguish between sequential

http://dx.doi.org/10.1371/journal.ppat.1000590
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events that occur at different scales. For example, if a sequence AAA is taken from
individual X, a sequence ABA from individual Y and ABC from individual Z, this
implies that X and Y are more closely related by the Hamming distance measure,
but it is not known, for example, if all the mutations occurred in X and therefore
whether or not Z is a descendant of Y, or they are “siblings”. For better estimates
of this, more detailed demographic data is required, which are not usually available
for human sexual contacts.

4.5.2 Foot-and-Mouth Disease in Great Britain

FMD is the most infectious disease of livestock in the world, with implications
for animal health and productivity, and is particularly harmful to young livestock.
Endemic in large parts of Africa, South America and Asia, both Western Europe
and North America are FMD free, and derive considerable economic benefit from
this status. FMD was introduced into GB in 2001, and the resulting epidemic cost
well over £5 billion to control, with the loss of over 3 million livestock [30]. In
2007, FMD was again introduced into GB, this time via an escaped strain derived
from virus held either the World Reference Laboratory in Pirbright, or the adjacent
Meriel vaccine production facility; while considerably less extensive, nevertheless,
the epidemic caused widespread disruption of the livestock industry at the national
level, and cost almost £100 million to control [11]. Both the 2001 and 2007 foot-
and-mouth disease epidemics are exceptionally well described, with detailed demo-
graphic and epidemiological information, including virus samples from across the
entire epidemic. It is therefore an exceptional model system for understanding and
developing phylodynamic principles [33]. FMD virus is an RNA virus with an ex-
ceptionally high mutation rate, sufficient so that discrimination of mutations down
to the individual-to-individual level is possible. Preliminary studies into the phy-
lodynamics of the 2001 epidemic have used a combined likelihood function that
incorporates both Hamming distance measures and the spatio-temporal dynamics
models used in previous studies. In this case, the likelihood function is fixed by epi-
demiological parameters. The most likely date of infection for each farm was esti-
mated to be the date on which disease was reported on the farm, minus the age of the
oldest lesion on the farm as estimated by veterinary investigation, less five days for
the maximum within-host incubation period. There is uncertainty around the most
likely date of infection, due to errors in the lesion dating, and possible variation
in the incubation period by Ii(t), and the possibility of missed, infected livestock.
Given the estimated most likely date of infection of farm i, the most likely infection
date of the first on-farm infection, and the examination date of the farm, allowing
for a two day incubation period, determined the very latest possible infection time.
The probability that a farm i was infectious at time Fi(t) is then given in terms of
Ii(t) and the incubation period distribution L(k) (where k is the incubation period
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Fig. 4.11 The spatial relationship of 15 agricultural premises where infection was confirmed by
laboratory testing (filled circles) and 12 infected premises (determined by clinical observations)
that were subsequently found to be negative for virus by laboratory testing (open circles). A–P in-
dicate the infected premises from which virus has been sequenced. The direction of most likely
transmission events as determined by Cottam et al. is shown by the grey arrows. Figure from Cot-
tam et al., Proc. B. 275:887–895 (2008). Figure reproduced with permission of the corresponding
author, Prof. D.T. Haydon, University of Glasgow

in days) as

Fi(t) =
{∑t

τ=0

(

Ii(τ ) · (∑t−τ
k=1 L(k)

))

, if t ≤ Ci,

0, if t > Ci.
(4.21)

If one then considers the probability λij that each infected premises i infects sus-
ceptible premises j then

λij =
∑min(Ci ,Cj )

t=0 (Ii(τ ) · Fj (t))
∑

k �=i

(∑min(Cj ,Ck)

t=0 (Ii(τ ) · Fk(t))
) , (4.22)

where n is the number of infected premises in the population. Summed over all pos-
sible pairs, this represents the likelihood function for a particular epidemiological
transmission tree. It is implicitly assumed that each premises is infected by only
one other, and that all infected premises are known. A direct comparison to the
set of transmission trees to the phylogenetic trees allows for the identification of
the joint most-likely trees, which are significantly different from those identified by
epidemiological considerations alone, and shows marked asymmetry in the infec-
tion direction, even when considering the underlying distribution of the susceptible
population (Fig. 4.11).

This analysis shows the striking role that molecular sequencing can play in pro-
viding deeper insight into the underlying contact processes that drive observed epi-
demics. In this analysis, in (4.21) and (4.22) only the infected premises are consid-
ered, and not the underlying uninfected population, though detailed models of the
epidemiology exist [21, 45].
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4.5.3 Conclusions

There is a rich interplay between two recent, but now mature, subject areas: disease
dynamics and social network analysis. While the history of mathematical epidemi-
ology contains many of the ideas that have since been replicated in social network
theory, nevertheless, the study of social networks has generated both new ideas
and new impetus to understanding the role that contact heterogeneity can play in
the spread, persistence and control of infectious diseases. This interplay offers new
ideas that are applicable to many other fields where heterogeneous structure is im-
portant. Apologies are offered to the authors of many valuable and interesting papers
originating from both traditions that have been omitted. Of particular note amongst
the omissions are the numerous recent epidemiological analyses that consider com-
plex population structure and its impact on the H1N1 influenza pandemic starting in
2009 (e.g. [3, 10, 22]). While many of these analyses are of epidemiological inter-
est, the models are fundamentally similar to those discussed here in the context of
SARS. In general, rather than presenting an exhaustive study of the results from ei-
ther, illustrations have been presented of how it is only by considering a combination
of both pattern and process can disease dynamics be properly understood. Critical
to this is the interplay of individuals from both traditions, who will bring together
the analytical strengths and insights they both have to offer (e.g. [5]). Of growing
interest is the increasing use of molecular epidemiology as a tracing tool, which
brings both new opportunities and new challenges, as a coherent, rigorous frame-
work for dealing with phylogenetics, disease dynamics, high dimensional statistical
inference and network structure is yet to be established. This will undoubtedly be a
major subject of interest over the next decade, and this is the central problem in the
growing field of phylodynamics [33].
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