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Abstract

We introduce an end-to-end deep-learning framework

for 3D medical image registration. In contrast to ex-

isting approaches, our framework combines two regis-

tration methods: an affine registration and a vector

momentum-parameterized stationary velocity field (vSVF)

model. Specifically, it consists of three stages. In the first

stage, a multi-step affine network predicts affine transform

parameters. In the second stage, we use a U-Net-like net-

work to generate a momentum, from which a velocity field

can be computed via smoothing. Finally, in the third stage,

we employ a self-iterable map-based vSVF component to

provide a non-parametric refinement based on the current

estimate of the transformation map. Once the model is

trained, a registration is completed in one forward pass. To

evaluate the performance, we conducted longitudinal and

cross-subject experiments on 3D magnetic resonance im-

ages (MRI) of the knee of the Osteoarthritis Initiative (OAI)

dataset. Results show that our framework achieves compa-

rable performance to state-of-the-art medical image regis-

tration approaches, but it is much faster, with a better con-

trol of transformation regularity including the ability to pro-

duce approximately symmetric transformations, and com-

bining affine as well as non-parametric registration.

1. Introduction

Registration is a fundamental task in medical image anal-

ysis to establish spatial correspondences between different

images. To allow, for example, localized spatial analyses of

cartilage changes over time or across subject populations,

images are first registered to a common anatomical space.

Traditional image registration algorithms, such as elas-

tic [3, 25], fluid [5, 12, 29, 8, 31] or B-spline models [24],

are based on the iterative numerical solution of an optimiza-

tion problem. The objective of the optimization is to mini-

mize image mismatch and transformation irregularity. The

sought-for solution is then a spatial transformation which

aligns a source image well to a target image while assur-

ing that the transformation is sufficiently regular. To this

end, a variety of different similarity measures to assess im-

age mismatch have been proposed. For image pairs with a

similar intensity distribution, Mean Square Error (MSE) on

intensity differences is widely used. For multi-modal regis-

tration, however, Normalized Cross Correlation (NCC) and

Mutual Information (MI) usually perform better. Besides,

smooth transformation maps are typically desirable. Meth-

ods encouraging or enforcing smoothness use, for exam-

ple, rigidity penalties [26] or penalties that encourage vol-

ume preservation [27, 22] to avoid folds in the transforma-

tion. Diffeomorphic transformations can also be achieved

by optimizing over sufficiently smooth velocity fields from

which the spatial transformation can be recovered via inte-

gration. Such methods include Large Displacement Diffeo-

morphic Metric Mapping (LDDMM) [5, 12] and Diffeo-

morphic Demons [29]. As optimizations are typically over

very high-dimensional parameter spaces, they are computa-

tionally expensive.

Recently, taking advantage of deep learning, research

has focused on replacing costly numerical optimization

with a learned deep regression model. These methods

are extremely fast as only the evaluation of the regression

model is required at test time. They imitate the behavior

of conventional, numerical optimization-based registration

algorithms as they predict the same types of registration pa-

rameters: displacement fields, velocity fields or momen-

tum fields. Depending on the predicted parameters, theo-

retical properties of the original registration model can be

retained. For example, in Quicksilver [33], a network is

learned to predict the initial momentum of LDDMM, which

can then be used to find a diffeomorphic spatial transfor-

mation via LDDMM’s shooting equations. While earlier

work has focused on training models based on previously

obtained registration parameters via costly numerical opti-

mization [6, 32], recent work has shifted to end-to-end for-

mulations1 [10, 14, 4, 9]. These end-to-end approaches inte-

grate image resampling into their network and were inspired

1For these end-to-end approaches, the sought-for registration param-

eterization is either the final output of the network (for the prediction of

displacement fields) or an intermediate output (for the prediction of veloc-

ity fields) from which the transformation map can be recovered. The rest

of the formulation stays the same.

4224



by the spatial-transformer work of Jaderberg et al. [13].

Non end-to-end approaches require the sought-for registra-

tion parameters at training time. To obtain such data via

numerical optimization for large numbers of image pairs

can be computationally expensive, whereas end-to-end ap-

proaches effectively combine the training of the network

with the implicit optimization over the registration parame-

ters (as part of the network architecture).

Existing deep learning approaches to image registration

exhibit multiple limitations. First, they assume that images

have already been pre-aligned, e.g., by rigid or affine reg-

istration. These pre-alignment steps can either be done via

a specifically trained network [7] or via standard numeri-

cal optimization. In the former case the overall registration

approach is no longer end-to-end, while in the latter the pre-

registration becomes the computational bottleneck. Second,

many approaches are limited by computational memory and

hence either only work in 2D or resort to small patches

in 3D. Though some work explores end-to-end formula-

tions for entire 3D volumes [4, 9], these approaches per-

form computations based on the full resolution transforma-

tion map, in which case a very simple network can easily

exhaust the memory and thus limit extensions of the model.

Third, they do not explore iterative refinement.

Our proposed approach addresses these shortcomings.

Specifically, our contributions are:

• A novel vector momentum-parameterized stationary

velocity field registration model (vSVF). The vec-

tor momentum field allows decoupling transformation

smoothness and the prediction of the transformation

parameters. Hence, sufficient smoothness of the re-

sulting velocity field can be guaranteed and diffeomor-

phisms can be obtained even for large displacements.

• An end-to-end registration method, merging affine and

vSVF registration into a single framework. This frame-

work achieves comparable performance to the corre-

sponding optimization-based method and state-of-the-

art registration approaches while dramatically reduc-

ing the computational cost.

• A multi-step approach for the affine and the vSVF reg-

istration components in our model, which allows refin-

ing registration results.

• An entire registration model via map compositions to

avoid unnecessary image interpolations.

• An inverse consistency loss both for the affine and the

vSVF registration components thereby encouraging the

regression model to learn a mapping which is less de-

pendent on image ordering. I.e., registering image A

to B will result in similar spatial correspondences as

registering B to A.

Our approach facilitates image registration including

affine pre-registration within one unified regression model.

Figure 1. Our framework consists of affine (left) and vSVF (right)

registration components. The affine part outputs the affine map

and the affinely warped source image. The affine map initializes

the map of the vSVF registration. The affinely warped image and

the target image are input into the momentum generation network

to predict the momentum of the vSVF registration model. The

outputs of the vSVF component are the composed transformation

map and the warped source image, which can be either taken as

the final registration result or fed back (indicated by the dashed

line) into the vSVF component to refine the registration solution.

In what follows, we refer to our approach as AVSM (Affine-

vSVF-Mapping). Fig. 1 shows an overview of the AVSM

framework illustrating the combination of the affine and the

vSVF registration components. The affine and the vSVF

components are designed independently, but easy to com-

bine. In the affine stage, a multi-step affine network predicts

affine parameters for an image pair. In the vSVF stage, a

U-Net-like network generates a momentum, from which a

velocity field can be computed via smoothing. The initial

map and the momentum are then fed into the vSVF compo-

nent to output the sought-for transformation map. A spec-

ified number of iterations can also be used to refine the re-

sults. The entire registration framework operates on maps

and uses map compositions. In this way, the source image

is only interpolated once thereby avoiding image blurring.

Furthermore, as the transformation map is assumed to be

smooth, interpolations to up-sample the map are accurate.

Therefore, we can obtain good registration results by pre-

dicting a down-sampled transformation. However, the simi-

larity measure is evaluated at full resolution during training.

Computing at low resolution greatly reduces the computa-

tional cost and allows us to compute on larger image vol-

umes given a particular memory budget. E.g., a map with

1/2 the size only requires 1/8 of the computations and 1/8

of the memory in 3D.

We compare AVSM to publicly available optimization-

based methods [20, 17, 24, 19, 2] on longitudinal and cross-

subject registrations of 3D image pairs of the OAI dataset.

The manuscript is organized as follows: Sec. 2 describes

our ASVM approach; Sec. 3 shows experimental results;

Sec. 4 presents conclusions and avenues for future work.
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Figure 2. Multi-step affine network structure. As in a recurrent

network, the parameters of the affine network are shared by all

steps. At each step, the network outputs the parameters to refine

the previously predicted affine transformation. I.e., the current es-

timate is obtained by composition (indicated by dashed line). The

overall affine transformation is obtained at the last step.

2. Methods

This section explains our overall approach. It is di-

vided into two parts. The first part explains the affine reg-

istration component which makes use of a multi-step net-

work to refine predictions of the affine transformation pa-

rameters. The second part explains the vector momentum-

parameterized stationary velocity field (vSVF) which ac-

counts for local deformations. Here, a momentum gener-

ation network first predicts the momentum parameterizing

the vSVF model and therefore the transformation map. The

vSVF component can also be applied in a multi-step way

thereby further improving registration results.

2.1. Multistep Affine Network

Most existing non-parametric registration approaches

are not invariant to affine transformations as they are penal-

ized by the regularizers. Hence, non-parametric registration

approaches typically start from pre-registered image pairs,

most typically based on affine registration, to account for

large, global displacements or rotations. Therefore, in the

first part of our framework, we use a multi-step affine net-

work directly predicting the affine registration parameters

and the corresponding transformation map.

The network needs to be flexible enough to adapt to both

small and large affine deformations. Although deep convo-

lutional networks can have large receptive fields, our exper-

iments show that training a single affine network does not

perform well in practice. Instead, we compose the affine

transformation from several steps. This strategy results in

significant improvements in accuracy and stability.

Network: Our multi-step affine network is a recurrent net-

work, which progressively refines the predicted affine trans-

formation. Fig. 2 shows the network architecture. To avoid

numerical instabilities and numerical dissipation due to suc-

cessive trilinear interpolations, we directly update the affine

registration parameters rather than resampling images in in-

termediate steps. Specifically, at each step we take the target

image and the warped source image (obtained via interpola-

tion from the source image using the previous affine param-

eters) as inputs and then output the new affine parameters

for the transformation refinement. Let the affine parameters

be Γ =
(

A b
)

, where A ∈ R
d×d represents the linear

transformation matrix; b ∈ R
d denotes the translation and d

is the image dimension. The update rule is as follows:

A(t) = Ã(t)A(t−1), b(t) = Ã(t)b(t−1) + b̃(t),

s.t. A(0) = I, b(0) = 0.
(1)

Here, Ã(t), A(t) represent the linear transformation matrix

output and the composition result at the t-th step, respec-

tively. Similarly, b̃(t) denotes the affine translation param-

eter output at the t-th step and b(t) the composition result.

Finally, if we consider the registration from the source im-

age to the target image in the space of the target image, the

affine map is obtained by Φ−1
a (x,Γ) = A(tlast)x+ b(tlast).

Loss: The loss of the multi-step affine network consists of

three parts: an image similarity loss La-sim, a regularization

loss La-reg and a loss encouraging transformation symme-

try La-sym. Let us denote I0 as the source image and I1 as

the target image. The superscripts st and ts denote registra-

tions from I0 to I1 and I1 to I0, respectively2.

The image similarity loss La-sim(I0, I1,Φ
−1
a ) can be

any standard similarity measure, e.g., Normalized Cross

Correlation (NCC), Localized NCC (LNCC), or Mean

Square Error (MSE). Here we generalize LNCC to a multi-

kernel LNCC formulation (mk-LNCC). Standard LNCC is

computed by averaging NCC scores of overlapping sliding

windows centered at sampled voxels. Let V be the vol-

ume of the image; xi, yi refer to the ith (i ∈ {1, .., |V |})

voxel in the warped source and target volumes, respectively.

Ns refers to the number of sliding windows with cubic size

s×s×s. Let ζsj refer to the window centered at the jth voxel

and x̄j , ȳj to the average image intensity values over ζsj in

the warped source and target image, respectively. LNCC

with window size s, denoted as κs, is defined by

κs(x, y) =
1

Ns

∑

j

∑

i∈ζs
j

(xi − x̄j)(yi − ȳj)

√

∑

i∈ζs
j

(xi − x̄j)2
∑

i∈ζs
j

(yi − ȳj)2
.

(2)

We define mk-LNCC as a weighted sum of LNCCs with dif-

ferent window sizes. For computational efficiency LNCC

can be evaluated over windows centered over a subset of

2To simplify the notation, we omit st (source to target registration) in

what follows and only emphasize ts (target to source registration).
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voxels of V . The image similarity loss is then

La-sim(I0, I1,Γ) =
∑

i

ωiκsi(I0 ◦ Φ
−1
a , I1),

s.t. Φ−1
a (x,Γ) = Ax+ b and

∑

i

ωi = 1, wi ≥ 0.
(3)

The regularization loss La-reg(Γ) penalizes deviations

of the composed affine transform from the identity:

La-reg(Γ) = λar(||A− I||2F + ||b||22), (4)

where ‖ · ‖F denotes the Frobenius norm and λar ≥ 0 is

an epoch-dependent weight factor designed to be large at

the beginning of the training to constrain large deformations

and then gradually decaying to zero. See Eq. 13 for details.

The symmetry loss La-sym(Γ,Γts) encourages the reg-

istration to be inverse consistent. I.e., we want to encourage

that the transformation computed from source to target im-

age is the inverse of the transformation computed from the

target to the source image (i.e., Ats(Ax+ b) + bts = x):

La-sym(Γ,Γts) = λas(||A
tsA−I||2F+||Atsb+bts||22), (5)

where λas ≥ 0 is a chosen constant.

The complete loss La(I0, I1,Γ,Γ
ts) is then:

La(I0, I1,Γ,Γ
ts) =ℓa(I0, I1,Γ) + ℓa(I1, I0,Γ

ts)

+ La-sym(Γ,Γts),
(6)

where ℓa(I0, I1,Γ) = La-sim(I0, I1,Γ) + La-reg(Γ).

2.2. Vector Momentumparameterized SVF

This section presents the momentum based stationary ve-

locity field method followed by the network to predict the

momentum. For simplicity, we describe the one step vSVF

here, which forms the basis of the multi-step approach.

vSVF Method: To capture large deformations and to

guarantee diffeomorphic transformations, registration algo-

rithms motivated by fluid mechanics are frequently em-

ployed. Here, the transformation map Φ 3 in source im-

age space is obtained via time-integration of a velocity field

v(x, t), which needs to be estimated. The governing dif-

ferential equation is: Φt(x, t) = v(Φ(x, t), t), Φ(x, 0) =
Φ(0)(x), where Φ(0) is the initial map. For a sufficiently

smooth velocity field v one obtains a diffeomorphic trans-

formation. Sufficient smoothness is achieved by penalizing

non-smoothness of v. Specifically, the optimization prob-

lem is

v∗ = argmin
v

λvr

∫ 1

0

‖v‖2L dt+ Sim[I0 ◦ Φ
−1(1), I1],

s.t. Φ−1
t +DΦ−1v = 0 and Φ−1(0) = Φ−1

(0) ,
(7)

where D denotes the Jacobian and ‖v‖2L = 〈L†Lv, v〉 is

a spatial norm defined by specifying the differential opera-

tor L and its adjoint L†. As the vector-valued momentum

m is equivalent to m = L†Lv, one can express the norm

3The subscript v of Φv is omitted, where v refers to vSVF method.

Figure 3. vSVF registration framework illustration (one step), in-

cluding the momentum generation network and the vSVF registra-

tion. The network outputs a low-resolution momentum. The mo-

mentum and the down-sampled initial map are input to the vSVF

unit outputting a low-resolution transformation map, which is then

up-sampled to full resolution before warping the source image.

as ‖v‖2L = 〈m, v〉. In the LDDMM approach [5], time-

dependent vector fields v(x, t) are estimated. A slightly

simpler approach is to use a stationary velocity field (SVF)

v(x) [18]. The rest of the formulation remains the same.

While the SVF registration algorithms optimize directly

over the velocity field v, we propose a vector momentum

SVF (vSVF) formulation which is computed as

m∗ = argmin
m0

λvr〈m0, v0〉+ Sim[I0 ◦ Φ
−1(1), I1], s.t.

Φ−1
t +DΦ−1v = 0,Φ−1(0) = Φ−1

(0), v0 = (L†L)−1m0,
(8)

where m0 denotes the vector momentum and λvr > 0 is

a constant. This formulation can be considered a simpli-

fied version of the vector momentum-parameterized LD-

DMM formulation [30]. The benefit of such a formulation

is that it allows us to explicitly control spatial smoothness

as the deep network predicts the momentum which gets sub-

sequently smoothed to obtain the velocity field, instead of

predicting the velocity field v directly which would then re-

quire the network to learn to predict a smooth vector field.

Fig. 3 illustrates the framework of the vector momentum-

parameterized stationary velocity field (vSVF) registration.

We compute using a low-resolution velocity field, which

greatly reduces memory consumption. The framework con-

sists of two parts: 1) a momentum generation network tak-

ing as the input the warped source image, together with the

target image, outputting the low-resolution momentum; 2)

the vSVF registration part. Specifically, the predicted mo-

mentum and the down-sampled initial map are input into

the vSVF unit, the output of which is finally up-sampled

to obtain the full resolution transformation map. Inside the

vSVF unit, a velocity field is obtained by smoothing the

momentum and then used to solve the advection equation,

Φ−1
(τ)t + DΦ−1

(τ)v = 0, for unit time (using several discrete

time points). This then results in the sought-for transfor-

mation map. The initial map mentioned here can be the

affine map or the map obtained from a previous vSVF step,
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namely for the τ -th step, set Φ−1
(τ)(x, 0) = Φ−1

(τ−1)(x, 1).

Momentum Generation Network: We implement a deep

neural network to generate the vector momentum. As our

work does not focus on the network architecture, we simply

implement a four-level U-Net with residual links [23, 16].

During training, the gradient is first backpropagated through

the integrator for the advection equation followed by the

momentum generation network. This can require a lot of

memory. We use a fourth order Runge-Kutta method for

time-integration and discretize all spatial derivatives with

central differences. Therefore, to reduce memory require-

ments, the network outputs a low-resolution momentum. In

practice, we remove the last decoder level of the U-Net. In

this case, the remaining vSVF component also operates on

the low-resolution map.

Loss: Similar to the loss in the affine network, the loss for

the vSVF part of the network also consists of three terms:

a similarity loss Lv-sim, a regularization loss Lv-reg and a

symmetry loss Lv-sym.

The similarity loss Lv-sim(I0, I1,Φ
−1) is the same as

for the affine network. I.e., we also use mk-LNCC.

The regularization loss Lv-reg(m0) penalizes the veloc-

ity field. Thus, we have

Lv-reg(m0) = λvr‖v‖
2
L = λvr〈m0, v0〉, (9)

where v0 = (L†L)−1m0. We implement (L†L)−1 as a

convolution with a multi-Gaussian kernel [21].

The symmetric loss is defined as

Lv-sym(Φ−1, (Φts)−1) = λvs‖Φ
−1◦(Φts)−1−id‖22, (10)

where id denotes the identity map, λvs ≥ 0 refers to the

symmetry weight factor, (Φts)−1 denotes the map obtained

from registering the target to the source image in the space

of the source image and Φ−1 denotes the map obtained from

registering the source image to the target image in the space

of the target image. Consequentially, the composition also

lives in the target image space.

The complete loss Lv(I0, I1,Φ
−1, (Φts)−1,m0,m

ts
0 )

for vSVF registration with one step is as follows:

Lv(I0, I1,Φ
−1, (Φts)−1,m0,m

ts
0 ) = ℓv(I0, I1,Φ

−1,m0)

+ ℓv(I1, I0, (Φ
ts)−1,mts

0 )

+ Lv-sym(Φ−1, (Φts)−1), (11)

where:

ℓv(I0, I1,Φ
−1,m0) = Lv-sim(I0, I1,Φ

−1) + Lv-reg(m0).

For the vSVF model with T steps, the complete loss is:

T
∑

τ=1

Lv(I0, I1,Φ
−1
(τ),Φ

ts
(τ)

−1
,m0(τ),m

ts
0(τ)) s.t.

Φ−1
(τ)(x, 0) = Φ−1

(τ−1)(x, 1),

(Φts
(τ))

−1(x, 0) = (Φts
(τ−1))

−1(x, 1).

(12)

3. Experiments and Results

Dataset: The Osteoarthritis Initiative (OAI) dataset con-

sists of 176 manually labeled magnetic resonance (MR) im-

ages from 88 patients (2 longitudinal scans per patient) and

22,950 unlabeled MR images from 2,444 patients. Labels

are available for femoral and tibial cartilage. All images

are of size 384 × 384 × 160, where each voxel is of size

0.36 × 0.36 × 0.7mm3. We normalize the intensities of

each image such that the 0.1th percentile and the 99.9th per-

centile are mapped to 0, 1 and clamp values that are smaller

to 0 and larger to 1 to avoid outliers. All images are down-

sampled to size 192× 192× 80.

Evaluation: We evaluate on both longitudinal and cross-

subject registrations. We divide the unlabeled patients into

a training and a validation group, with a ratio of 7:3. For

the longitudinal registrations, 4,200 pairs from the training

group (obtained by swapping the source and the target from

2,100 pairs of images) are randomly selected for training,

and 50 pairs selected from the validation group are used for

validation. All 176 longitudinal pairs with labels are used

as our test set. For the cross-subject registrations, we ran-

domly pick 2,800 (from 1,400 pairs) cross-subject training

pairs and 50 validation pairs; 300 pairs (from 150 pairs) are

randomly selected as the test set. We use the average Dice

score [11] over all testing pairs as the evaluation metric.

Training details: The training stage includes two parts:

1) Training multi-step affine net: It is difficult to train the

multi-step affine network from scratch. Instead, we train a

single-step network first and use its parameters to initialize

the multi-step network. For longitudinal registration, we

train with a three-step affine network, but use a seven-step

network during testing. This results in better testing per-

formance than a three-step network. Similarly, for cross-

subject registration we train with a five-step network and

test with a seven-step one. The affine symmetry factor λas

is set to 10.

2) Training momentum generation network: During

training, the affine part is fixed. For vSVF, we use 10

time-steps and a multi-Gaussian kernel with standard devia-

tions {0.05, 0.1, 0.15, 0.2, 0.25} and corresponding weights

{0.067, 0.133, 0.2, 0.267, 0.333} (spacing is scaled so that

the image is in [0, 1]3). We train with two steps for both lon-

gitudinal and cross-subject registrations. The vSVF regular-

ization factor λvr is set to 10 and the symmetry factor λvs

is set to 1e-4. For both parts, we use the same training strat-

egy: 1 pair per batch, 400 batches per epoch, 200 epochs

per experiment; we set a learning rate of 5e-4 with a decay

factor of 0.5 after every 60 epochs. We use mk-LNCC as the

similarity measure with (ω, s) = {(0.3, S/4), (0.7, S/2)},

where S refers to the smallest image dimension. Besides, in

our implementation of mk-LNCC, we set the sliding win-

dow stride to S/4 and kernel dilation to 2.
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Additionally, the affine regularization factor λar is

epoch-dependent during training and defined as:

λar:=
CarKar

Kar + en/Kar
, (13)

where Car is a constant, Kar controls the decay rate, and

n is the epoch count. In both longitudinal and cross-subject

experiments, Kar is set to 4 and Car is set to 10.

Figure 4. Illustration of registration results achieved by AVSM,

each column refers to an example. The first five rows refer to

source, target, warped image by AVSM, warped image with defor-

mation grid (visualizing Φ−1), warped image by multi-step affine

respectively, followed by source label, target label and warped la-

bel by AVSM separately. There is high similarity between the

warped and the target labels and the deformations are smooth.

Baseline methods: We implement the corresponding nu-

merically optimized versions (e.g., directly optimizing the

momentum) of affine (affine-opt) and vSVF (vSVF-opt)

registrations. We compare with three widely-used public

registration methods: SyN [2, 1], Demons [29, 28] and

NiftyReg [20, 17, 24, 19]. We also compare to the most

recent VoxelMorph variant [9]. We report the performance

of these methods after an in-depth search for good param-

eters. For Demons, SyN and NiftyReg, we use isotropic

voxel spacing 1 × 1 × 1 mm3 as this gives improved re-

sults compared to using physical spacing. This implies

anisotropic regularization in physical space. For our ap-

proaches, isotropic or anisotropic regularization in physical

space gives similar results. Hence, we choose the more nat-

ural isotropic regularization in physical space.

Optimization-based multi-scale affine registration: In-

stead of optimizing for the affine parameters on a single

image scale, we use a multi-scale strategy. Specifically,

we start at a low image-resolution, where affine parameters

are roughly estimated, and then use them as the initializa-

tion for the next higher scale. Stochastic gradient descent

is used with a learning rate of 1e-4. Three image scales

{0.25, 0.5, 1.0} are used, each with {200, 200, 50} itera-

tions. We use mk-LNCC as the similarity measure. At each

scale k, let image size (smallest length among image dimen-

sions) be Sk, here k ∈ {0.25, 0.5, 1.0}. At scale 1.0, param-

eters are set to (ω, s) = {(0.3, Sk/4), (0.7, Sk/2)}, i.e., the

same parameters as for the network version; at scales 0.5

and 0.25, (ω, s) = {(1.0, Sk/2)}.

Optimization-based multi-scale vSVF registration: We

take the affine map (resulting from the optimization-based

multi-scale affine registration) as the initial map and then

numerically optimize the vSVF model. The same multi-

scale strategy as for the affine registration is used. The

momentum is up-sampled between scales. We use L-

BGFS [15] for optimization. In our experiments, we

use three scales {0.25, 0.5, 1.0} with 60 iterations per

scale. The same mk-LNCC similarity measure as for the

optimization-based multi-scale affine registration is used.

The number of time steps for the integration of the advec-

tion equation and the settings for the multi-Gaussian kernel

are the same as for the proposed deep network model.

NiftyReg: We run two registration phases: affine fol-

lowed by B-spline registration. Three scales are used in

each phase and the interval of the B-spline control points is

set to 10 voxels. In addition, we find that using LNCC as the

similarity measure, with a standard deviation of 40 for the

Gaussian kernel, performs better than the default Normal-

ized Mutual Information, but introduces folds in the trans-

formation. In LNCC experiments, we therefore use a log of

the Jacobi determinant penalty of 0.01 to reduce folds.

Demons: We take the affine map obtained from NiftyReg

as the initial map and use the Fast Symmetric Forces

Demons Algorithm [29] via SimpleITK. The Gaussian

smoothing standard deviation for the displacement field is

set to 1.2. We use MSE as the similarity measure.

SyN: We compare with Symmetric Normalization (SyN),

a widely used registration method implemented in the

ANTs software package [1]. We take Mattes as the met-

ric for affine registration, and take CC with sampling radius

set to 4 for SyN registration. We use multi-resolution op-

timization with four scales with {2100, 1200, 1200, 20}
iterations; the standard deviation for Gaussian smoothing at

each level is set to {3, 2, 1, 0}. The flow standard deviation

to smooth the gradient field is set to 3.

VoxelMorph: We compare with the most recent Voxel-
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Method
Longitudinal Cross-subject

Dice Folds Dice Folds Time (s)

affine-NiftyReg 75.07 (6.21) 0 30.43 (12.11) 0 45

affine-opt 78.61 (4.48) 0 34.49 (18.07) 0 8

affine-net (7-step) 77.75 (4.77) 0 44.58 (7.74) 0 0.20

————–

Demons 83.43 (2.64) 10.7 [0.56] 63.47 (9.52) 19.0 [0.56] 114

SyN 83.13 (2.67) 0 65.71 (15.01) 0 1330

NiftyReg-NMI 83.17 ( 2.76) 0 59.65 (7.62) 0 143

NiftyReg-LNCC 83.35 (2.70) 0 67.92 (5.24) 203.3 [35.19] 270

vSVF-opt 82.99 (2.68) 0 67.35 (9.73) 0 79

VoxelMorph(w/o aff) 71.25 (9.54) 2.72 [1.57] 46.06 (14.94) 83.0 [18.13] 0.12

VoxelMorph(with aff) 82.54 (2.78) 5.85 [0.59] 66.08 (5.13) 39.0 [3.31] 0.31

AVSM (2-step) 82.60 (2.73) 0 67.59 (4.47) 5.5 [0.39] 0.62

AVSM (3-step) 82.67 (2.74) 3.4 [0.12] 68.40 (4.35) 14.3 [1.07] 0.83

Table 1. Dice scores (standard deviation) of different registra-

tion methods for longitudinal and cross-subject registrations on the

OAI dataset. Affine-opt and vSVF-opt refer to optimization-based

multi-scale affine and vSVF registrations. AVSM (n-step) refers

to a seven-step affine network and an n-step vSVF model. Folds

(|{x : Jφ(x) < 0}|) refers to the average number of folds and cor-

responding absolute Jacobi determinant value in square brackets;

Time refers to the average time per image registration.

Morph variant [9], which is also based on deep-learning.

VoxelMorph assumes that images are pre-aligned. For a

fair comparison, we therefore used our proposed multi-step

affine network for initial alignment. Best parameters are

determined via grid search.

NiftyReg, Demons and SyN are run on a server with i9-

7900X (10 cores @ 3.30GHz) , while all other methods run

on a single NVIDIA GTX 1080Ti.

Figure 5. Box-plots of the performance of the different reg-

istration methods for longitudinal registration (green) and cross-

subject registration (orange). Both AVSM and NiftyReg (LNCC)

show high performance and small variance.

Tab.1 compares the performance of our framework with

its corresponding optimization version and public regis-

tration tools. Overall, our AVSM framework performs

best in cross-subject registration and achieves slightly bet-

ter performance than optimization-based methods, both for

affine and non-parametric registrations. NiftyReg with

LNCC shows similar performance. For longitudinal regis-

tration, AVSM shows good performance, but slightly lower

than the optimization-based methods, including vSVF-opt

which AVSM is based on. A possible explanation is that

for longitudinal registrations deformations are subtle and

source/target image pairs are very similar in appearance.

Hence, numerical optimization can very accurately align

such image-pairs at convergence. VoxelMorph runs fastest

among all the methods. Without initial affine registration,

it unsurprisingly performs poorly. Once the input pair is

well pre-aligend, VoxelMorph shows competitive results for

longitudinal registrations, but is outperformed by our ap-

proach for the more challenging cross-subject registrations.

To evaluate the smoothness of the transformation map, we

compute the determinant of the Jacobian of the estimated

map, Jφ(x) := |Dφ−1(x)|, and count folds defined by

|{x : Jφ(x) < 0}| in each image (192× 192× 80 voxels in

total). We also report the absolute value of the determinant

of the Jacobian in these cases indicating the severity of the

fold. Even though the regularization is used, numerical op-

timization (vSVF-opt) always results in diffeomorphisms,

but very few folds remain in AVSM for cross-subject reg-

istration. This may be caused by numerical discretization

artifacts, by very large predicted momenta, or by inaccu-

racies of the predictions with respect to the numerical opti-

mization results. Fig. 5 shows the corresponding boxplot re-

sults. AVSM achieves small variance and high performance

in both registration tasks and exhibits less registration fail-

ures (outliers). As AVSM only requires one forward pass

to complete both the affine and the vSVF registration, it is

much faster than using iterative numerical optimization.

Tab. 2 shows results for an ablation study on AVSM. For

the affine part, it is difficult to train the single-step affine

network without the regularization term. Hence, registra-

tions fail. Introducing multi-step and inverse consistency

boosts the affine performance. Compared with using NCC

as similarity measure, our implementation of mk-LNCC im-

proves results greatly. In the following vSVF part, we ob-

serve a large difference between methods IV and VI, illus-

trating that vSVF registration results in large improvements.

Adding mk-LNCC and multi-step training in methods VII

and VIII further improves performance. The exception is

the vSVF symmetry loss which slightly worsens the perfor-

mance for both longitudinal and cross-subject registration,

but results in good symmetry measures (see Fig. 6).

We still retain the symmetric loss as it helps the network

to converge to solutions with smoother maps as shown in

Fig. 6. Instead of using larger Gaussian kernels, which can

remove local displacements, penalizing asymmetry helps

regularize the deformation without smoothing the map too

much and without sacrificing too much performance. To nu-

merically evaluate the symmetry, we compute ln( 1
|V |‖Φ

−1◦

(Φts)−1−id‖22) for all registration methods, where V refers

to the volume size and Φ the map obtained via composition

of the affine and the deformable transforms. Since differ-
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Method Af-Reg Af-Multi Af-Sym Af-MK vSVF vSVF-MK vSVF-Multi vSVF-Sym Longitudinal Better? Cross-subject Better?

I - -

II ✓ 55.41 ✓ 28.68 ✓

III ✓ ✓ 64.78 ✓ 36.31 ✓

IV ✓ ✓ ✓ 68.87 ✓ 37.54 ✓

V ✓ ✓ ✓ ✓ 77.75 ✓ 44.58 ✓

VI ✓ ✓ ✓ ✓ 80.71 ✓ 59.21 ✓

VII ✓ ✓ ✓ ✓ ✓ ✓ 81.64 ✓ 64.56 ✓

VIII ✓ ✓ ✓ ✓ ✓ ✓ ✓ 82.81 ✓ 69.08 ✓

IV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 82.67 ✗ 68.40 ✗

Table 2. Ablation study of AVSM using different combinations of methods. Af- and vSVF- separately refer to the affine and to the vSVF

related methods; Reg refers to adding epoch-dependent regularization; Multi refers to multi-step training and testing; Sym refers to adding

the symmetric loss; MK refers to using mk-LNCC as similarity measure (default NCC). Except for the last approach which uses vSVF-Sym

(last row) and encourages symmetric vSVF solutions, all other approaches result in performance improvements.

Figure 6. Illustration of symmetric loss for AVSM. The left col-

umn shows the source and target images. The right column shows

the warped image from a network trained with and without sym-

metric loss. The deformation with symmetric loss is smoother.

ent methods treat boundaries differently, we only evaluate

this measure in the interior of the image volume (10 voxels

away from the boundary). Fig. 7 shows the results. AVSM

obtains low values for both registration tasks, confirming

its good symmetry properties. Both Demons and SyN also

encourage symmetry, but only AVSM shows a nice compro-

mise between accuracy and symmetry.

Fig. 8 shows the average Dice sores over the number of

test iteration steps of vSVF. The model is trained using a

two-step vSVF. It can be observed that iterating the model

for more than two steps can increase performance as these

iterations result in registration refinements. However, the

average number of folds also increases, mostly at boundary

regions and in regions of anatomical inconsistencies. Ex-

amples are shown in the supplementary material.

4. Conclusions and Future Work

We introduced an end-to-end 3D image registration ap-

proach (AVSM) consisting of a multi-step affine network

and a deformable registration network using a momentum-

based SVF algorithm. AVSM outputs a transformation map

which includes an affine pre-registration and a vSVF non-

parametric deformation in a single forward pass. Our re-

sults on cross-subject and longitudinal registration of knee

MR images show that our method achieves comparable and

sometimes better performance to popular registration tools

Figure 7. Box-plots of the symmetry evaluation (the lower the

better) of different registration methods for longitudinal registra-

tion (green) and cross-subject registration (orange). AVSM (tested

with two-step vSVF) shows good results.

Figure 8. Multi-step vSVF registration results for two-step vSVF

training. Performance increases with steps (left), but the number

of folds also increases (right).

with a dramatically reduced computation time and with ex-

cellent deformation regularity and symmetry. Future work

will focus on also learning regularizers and evaluations on

other registration tasks, e.g. in the brain and the lung.

Acknowledgements: Research reported in this publication

was supported by the National Institutes of Health (NIH)

and the National Science Foundation (NSF) under award

numbers NSF EECS1711776 and NIH 1R01AR072013.

The content is solely the responsibility of the authors and

does not necessarily represent the official views of the NIH

or the NSF.

4231



References

[1] Brian B Avants, Charles L Epstein, Murray Grossman, and

James C Gee. Symmetric diffeomorphic image registration

with cross-correlation: evaluating automated labeling of el-

derly and neurodegenerative brain. Medical image analysis,

12(1):26–41, 2008.

[2] Brian B Avants, Nick Tustison, and Gang Song. Advanced

normalization tools (ANTS). Insight j, 2:1–35, 2009.

[3] Ruzena Bajcsy and Stane Kovačič. Multiresolution elastic
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