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Networks are sets of nodes connected by links in various ways 
(Box 1). Although the properties of random networks have 
already been systematically investigated in the 1960s, a growing 
body of literature is now using networks in a range of ecological 
applications, including the study and management of human, 
animal, and plant diseases (29,49,58,80,131) (Fig. 1). Given the 
generality and flexibility of the approach, network representations 
can be used at a variety of levels in plant pathology, from gene 
expression during host–pathogen interactions, to the development 
of plant epidemics among fields, farms, and landscapes and to 
trade movement of plants infected by pathogens or infested by 
insects among regions and countries. 

Network structure has profound effects on the dynamics of an 
epidemic within a population (51,61,127). In today’s globally 
connected world, social and transportation networks play a crucial 
role in the spread of human infectious diseases (21,53,83). A net-
work approach provides insights into the transmission of infec-
tious diseases also in animals more generally (40,45,78,137). 
Although there is an increasing interdisciplinary application of 
networks in epidemiology, relatively little attention has been paid 
to these analytical approaches in plant sciences. Hence the need 
for this review, which aims to summarize recent progress in this 
rapidly developing field and to highlight research challenges 
specific to plant pathology. 

In today’s plant pathology, as in other fields, there is a need for 
integrating investigations at the molecular, mycelium, plant, re-
gional and international scale (9,48,102,111,118,120,132). Net-
works can provide such a unifying framework. They can be (i) 
perceived at an abstract level (e.g., fungal species occurring on 
the same plant species host), (ii) materialized by a physical 
structure (e.g., the root system of plant individuals connected by 
mycorrhiza, or vice versa), and (iii) underlying flows of energy, 
matter or information (e.g., the exchanges of knowledge, equip-
ment and money among farmers, plant health consultants, 
researchers and phytopharmaceutical companies). 
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ABSTRACT 

Moslonka-Lefebvre, M., Finley, A., Dorigatti, I., Dehnen-Schmutz, 
K., Harwood, T., Jeger, M. J., Xu, X., Holdenrieder, O., and 
Pautasso, M. 2011. Networks in plant epidemiology: From genes to 
landscapes, countries, and continents. Phytopathology 101:392-403. 

There is increasing use of networks in ecology and epidemiology, 
but still relatively little application in phytopathology. Networks are 
sets of elements (nodes) connected in various ways by links (edges). 
Network analysis aims to understand system dynamics and outcomes 
in relation to network characteristics. Many existing natural, social, 
and technological networks have been shown to have small-world 
(local connectivity with short-cuts) and scale-free (presence of super-
connected nodes) properties. In this review, we discuss how network 
concepts can be applied in plant pathology from the molecular to the 
landscape and global level. Wherever disease spread occurs not just 
because of passive/natural dispersion but also due to artificial 
movements, it makes sense to superimpose realistic models of the 
trade in plants on spatially explicit models of epidemic development. 
We provide an example of an emerging pathosystem (Phytophthora 
ramorum) where a theoretical network approach has proven 
particularly fruitful in analyzing the spread of disease in the UK plant 
trade. These studies can help in assessing the future threat posed by 
similar emerging pathogens. Networks have much potential in plant 
epidemiology and should become part of the standard curriculum. 

Additional keywords: biodiversity, complexity and stability, model-
ing host–pathogen interactions, network theory, sudden oak death, 
systems biology. 
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A key point in network theory is that physical distance among 
nodes may only matter to a limited extent (22,60,110,125). This is 
increasingly recognized in plant pathology, due to the many 
examples of long-distance movement of pathogens. However, 
there is a growing consensus among researchers that the number 
of connections (and its variability among nodes) plays a funda-
mental role in how networks function and in how epidemic spread 
in networks can be controlled. This insight may be very helpful 
for plant health authorities worldwide, wherever these are 
struggling to cope with ever-increasing volumes in trade of po-
tentially infected plants. By targeting super-connected traders and 
major pathways, control can be made more efficient and effective. 

NETWORKS IN MOLECULAR PLANT PATHOLOGY 

There is much potential in the use of networks at a molecular 
level (1). Molecular plant pathology is particularly amenable to 
network-thinking given the possibilities to use networks as a 
model of the interactions among genes, proteins, enzymes, and 
other cellular constituents contributing to host resistance or patho-
gen infection (86,128). An example is given by the network built 
from the gene-for-gene relationships between rice and various 
avirulence genes of the pathogen Xanthomonas oryzae (Fig. 2A). 
In Figure 2A, nodes are isogenic lines of rice that are connected if 
they share genes with high resistance (with respect to avirulence 
genes). It is possible to build a similar network with the same 
data, but using genes as nodes, and connecting them if they share 
isogenic lines of rice with a certain parameter. 

This kind of visualizations can help in identifying particularly 
promising genes for developing, e.g., host resistance to patho-
gens. Other types of presentations (e.g., matrices, genetic maps, 

verbal descriptions, frequency distributions) are equally valuable, 
but network diagrams are an intuitive way to provide an overview 
of gene-for-gene relationships in a host–pathogen system (Fig. 
2B). Such networks are increasingly used in systems biology 
(25,43,46,101), where they are for example instrumental in un-
raveling the role of specific genes in particular cellular functions. 
Similarly, networks have been frequently used in phylogeographic 
studies of plant pathogens based on molecular markers, from 
nested haplotype networks to minimum spanning networks (18, 
39,144). Networks are of course important in the reconstruction 
of the tree of life (32,94) and in the study of lateral transfer in 
prokaryote genome evolution (23). However, there is certainly the 
opportunity for more frequent use of networks in molecular plant 
pathology. This not just to improve understanding, but also to 
help in better managing disease in the field (20,76). 

Recent advances in genome sequencing technology are about to 
further increase the availability of genetic data, both at the intra-
specific and community level (109). Metagenomic data from 454 
sequencing can be presented in a variety of ways, but may be 
fruitfully employed also to build networks. For example, when 
data are available for a certain plant pathogen from multiple 
locations/hosts, a network can be built based on the similarity 
among the pathogen strains. Figure 3 shows an example of such 
network visualization at the interspecific level. This is still based 
on pathogen presence only, rather than genetic similarity of 
pathogen strains, but may be helpful in identifying host taxa 
playing a pivotal role in spreading a certain disease in the semi-
natural environment, in crop plants, and plants in the trade. Pilot 
use of 454 sequencing in the study of fungal diversity reminds us 
of our still limited understanding of the biodiversity of fungi in 
soils and the phyllosphere (14,59,75,93). It is likely that our 

BOX 1

Key topological parameters of networks. The definitions in the boxes are adapted from the following references: (2,8,26,37,140). Boccaletti 
et al. (8) provide an exhaustive review on network structure and dynamics. 

Network/graph A graph is composed of a set of nodes and a set of links between pairs of nodes. A network is a graph where 
nodes and/or links are associated to weights. Such weights, e.g., represent number of plants hosted within a 
nursery per time unit (weighted node) or the number of plants transported between two nurseries per time 
unit (weighted link). Most authors tend to ignore the distinction between graphs and networks as we do. 
Mathematically, an unweighted network is represented by a binary adjacency matrix A, where A(i,j) = 1 when 
node i is connected to j and where A(i,j) = 0 otherwise. 

Nodes/vertices/points  Nodes (or vertices or points) are the individual units n1, …, nx composing the network. Depending on the 
context, nodes, e.g., represent proteins, cells, plants, nurseries, fields or countries. 

Links/edges/arrows  Links (or edges) are the connections (i,j) between nodes i and j. When a network is directed, edges are 
sometimes called arrows. 

Directed versus 
undirected 

A network A is undirected when A(i,j) = A(j,i) for every node i and j. When A(i,j) is not equal to A(j,i), that 
network A is directed. 

Degree For any node i, the degree ki of i is the total number of edges from node i to all other nodes. For directed 
graphs, the total number of links going to (or out of) i is the in-degree of i (the out-degree of i, respectively). 
The sum of the in- and out-degree is the total-degree of node i. 

Neighborhood and 
clustering coefficient 

The neighborhood Γi of a node i is the graph that consists solely of the set VΓi of nodes connected to i (not 
including i itself) and of the set EΓi of all edges connecting such nodes. The clustering coefficient Ci of a node i 
characterizes the extent to which nodes adjacent (connected) to any node i are adjacent to each other. The 
average clustering C of a graph is the average of the clustering of each node of the graph. 

Shortest path length The shortest path length L(i,j) from node i to node j is the minimum number of links that must be crossed to 
reach j from i. The shortest path length L of a network is the average of the shortest path lengths from all 
nodes to all nodes. 
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current knowledge of the biodiversity of plant pathogens in 
seminatural and cultivated ecosystems may be just as narrow. 

NETWORKS AND  
THE COMPLEXITY-STABILITY DEBATE 

Coupling the new sequencing technologies with network theory 
in plant pathology would enable us to better understand the role 
of the diversity of both plant hosts and associated microorganisms 
in shaping plant epidemics. Networks may provide a tool to test 
mechanisms linking plant diversity and ecosystem susceptibility 
to plant pathogens: (i) insurance hypothesis: the presence of some 
nodes (species) insures against the disappearance of others; (ii) 
redundancy hypothesis: some nodes can be removed without 
damage to the system; (iii) idiosyncratic hypothesis: the response 
of the network to the removal of nodes is not simply predictable; 
(iv) rivet hypothesis: some nodes have a more important role than 
others in providing stability; and (v) null hypothesis: network 
functionality is independent of the number of nodes (97). There is 
increasing observational, experimental, and theoretical evidence 
that higher intra- and interspecific diversity of plant hosts is 
associated with lower impact of plant pathogens and pests (36, 
57,62,71,91,116), but we are still far from understanding the 
regulating or synergistic effects of the co-occurrence of different 
plant pathogens and pests in the same ecosystem or over large 
regions (19,126,133). 

In many managed ecosystems, human activities can result in 
the inadvertent or intended removal of species. For example, 

disease management may temporarily reduce the abundance of a 
plant pathogen and of other associated species. Despite the coun-
terintuitive results of some previous complexity-stability models 
(which implied that more complexity resulted in less stability 
[80]), recent advances in food web theory (a special application of 
networks) have made it clearer that biodiversity loss can often be 
followed by a decrease in ecosystem stability (38). In order to 
improve the sustainability of agriculture, there is a need for more 
awareness of the long-term ecological consequences of large-
scale pesticide application. Studying the complexity/simplicity of 
food webs in fields/regions cultivated with varying degrees of 
pesticide use can inform us about the future prospects of such 
widespread practices. If generalized pesticide use results in 
simpler food webs, and if simpler food webs are less resilient to 
system perturbations (e.g., introduced plant pathogens), then 
long-term pesticide use is a short-sighted practice. There are of 
course also the issues of pesticide resistance, environmental 
pollution, and toxic residues in food to consider. 

LANDSCAPE EPIDEMIOLOGY AND NETWORKS 

There is an increasing relevance of plant disease outbreaks at 
the landscape level (102). This may be the consequence of the 
growing homogeneity of cultivated landscapes, due in turn to 
larger field sizes, similar choice of crops, and artificial movement 
of pathogens among different regions. At the same time, plant 
pathologists are approaching such regional outbreaks with the 
quantitative tools of landscape ecology (50). Expanding the key 

FIGURE 1 

Epidemiology is just one of the many applications of network theory. Given that (i) diseases are natural phenomena, (ii) technology helps in
spreading them (but also in preventing them and managing their effects), and (iii) people are often involved, epidemiology works at the interface of 
natural, technological, and social networks. The representations of network examples are reprinted from Newman (90), courtesy of H. Burch, B.
Cheswick, J. Potterat, and R. Williams. 
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role of the classic disease triangle (host–pathogen–environment) 
over a region of interest, landscape epidemiology studies the 
regional variation in host presence and susceptibility, pathogen 
diversity and disease severity, and the extent to which the biotic 
and abiotic environments are conducive to plant epidemics. 

When plant pathological studies were restricted to single geo-
graphical locations, there was limited opportunity to think about 
the connections between stands or fields in different regions. 
Enlarging the view to a whole landscape and considering different 
survey plots in the region of interest prompts the question of 
whether or not pathogens are moving from one sampled area to 
others. This is a research question that new genetic tools can help 
investigate and which can be conveniently framed in terms of 
network theory (6). Given the pervasive presence and activities of 
human beings, plant diseases are not the sole outcome of the 
interactions between host, pathogen, and environment (112). The 
importance of people in moving plant pathogens and in influenc-
ing host–pathogen interactions, as well as their environment, is 
particularly strong at the landscape level (77). Where pathogen 
dispersal does not occur continuously within a landscape because 
of trade networks, long-distance connections can be effective 
shortcuts for plant diseases (54,82,138). 

An example of such a situation is provided by the emerging 
regional outbreaks of Phytophthora ramorum, the causal agent of 
sudden oak death in the West Coast of the United States, of 
sudden larch death in Japanese larch plantations in the UK, and 
Ireland and of leaf blight and twig dieback on a range of 
ornamental species in the United States and various European 
countries (42,141). For P. ramorum, the epidemics in the horti-
cultural trade and those in the seminatural landscape can be 
viewed as only partly independent systems (as shown for England 
and Wales [143]). In the West Coast of the United States, two 

predominant pathways (forest versus horticulture) of P. ramorum 
migration have been identified combining genetic network analy-
sis and data on trace forward and trace back data on movement of 
plants in the nursery trade (39). However, it is clear that the 
pathogen was introduced from nurseries into the wild, given that 
P. ramorum populations in nurseries are genetically ancestral to 
all Californian forest populations (39). A realistic integration of 
the horticultural movement of potentially infected plants in 
spatially explicit models of disease development has been shown 
to be necessary for a proper simulation of the epidemiological 
system for P. ramorum and other similar plant pathogens also in 
England and Wales (47). There is much scope for an integration 
of genetic investigations reconstructing the spread of P. ramorum 
in the plant trade (39,79,104) with network modeling scenarios 
developed to predict future developments of the epidemic and to 
make policy and management more effective. 

For example, key recommendations for policy and management 
have been obtained from a susceptible-exposed-infectious-suscep-
tible model of P. ramorum epidemic development in the UK in-
cluding information on the spatial distribution of potential hosts, 
as well as a realistic super-imposed network of commercial plant 
movements (47). The current policy relative to P. ramorum in 
plant traders of the UK and other European countries comprises 
both surveys of national plant health authorities and mandatory 
reporting of the pathogen by nursery growers (143). A series of 
simulation experiments were run, with variation in the epidemic 
pressure and in the connection between seminatural vegetation 
and horticultural trade, with or without disease spread in com-
mercial trade, and with or without inspections-with-eradication. 
The results of the simulations suggest that the current inspection 
policy is likely to control most epidemics (epidemic final size was 
reduced by inspections by about 90%) and to avoid escape of the 

FIGURE 2

A, Network of gene-for-gene relationships between rice and 
diverse avrBs3/pthA avirulence genes in Xanthomonas oryzae 

pv. oryzae (based on coexistence of high resistance in the same 
gene for different isogenic lines of rice; the strength of the lines 

reflects the number of connections, i.e., the number of genes 
with high resistance in the two isogenic lines of rice so 

connected). Data obtained from Wu et al. (142). B, Scaled 
illustration of the distribution of virulence differences between 

isolates of wheat stem rust from the eastern and central United 
States that originated asexually. Each sphere represents a 

cluster of genetically similar isolates, and its diameter is 
proportional to the maximum number of loci at which isolates of 

the cluster differ in virulence. Distances between spheres are 
proportional to the mean number of virulence differences 

between clusters (reprinted from Roelfs and Groth [107]), with 
kind permission of The American Phytopathological Society).
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FIGURE 3

Web of genera susceptible to Phytophthora ramorum in 
A, the seminatural environment (woodland, historic 

gardens) and B, the horticultural trade (plant nurseries and 
retail centers). Two genera are connected if P. ramorum 

was detected on individual plants of these genera at the 
same location (2003 to 2005, England and Wales, data 

provided by DEFRA, UK). The connection strength reflects 
the number of locations with co-occurrence of the infected 

plant genera. Modified from Pautasso et al. (96).

 
BOX 2

Key quantities for epidemiological dynamics in network. 

Epidemic threshold λ Let pt be the probability of transmission and pp the one of persistence. (1 – pp) is the probability of recovery. At 
the epidemic threshold pt*/(1 – pp*) = λ, the epidemic neither grows nor dies out (equilibrium conditions). 
When pt/(1 – pp) > λ, the epidemic develops. When pt/(1 – pp) < λ, the epidemic dies out. 

Epidemic final size S 

 

For networks where nodes are either infected or not, S can be defined as the number of infected nodes at the 
epidemic threshold λ. For networks where nodes are infected along a continuum of infectious states (e.g., plant 
nurseries where a fraction of the total number of plants is infected), S can be assessed at the epidemic 
threshold either as the sum of infectious status of all nodes or as the number of nodes with an infectious status 
higher than an arbitrary value. 

In- and out-degree Number of links into and from a node, respectively. In directed networks, epidemic final size is generally 
positively correlated to the out-degree of the initially infected node (99). 

Correlation between  
in- and out-degree 

Correlation coefficient between incoming and outgoing links of a node across all nodes of a network. Other 
things being equal, and unless networks are sparsely connected, the correlation between in- and out-degree is 
negatively associated with the epidemic threshold (87). 

Connectance The connectance C (C = Links/Nodes2) is the fraction of links realized within a network. A network can only 
have as many links as its squared number of nodes (including self-loops and considering a link from node z to w 
separately from a link from w to z). For a given network structure and correlation between in- and out-degree, 
the higher the connectance, the lower the epidemic threshold (87). 
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pathogen into the seminatural environment from the horticultural 
trade. However, in some simulations, escape did occur, thus 
emphasizing the importance of stochasticity and initial conditions 
in plant epidemic development in networks (47). 

THE HORTICULTURAL TRADE  
AS A COMPLEX NETWORK 

There are many examples of unintended introductions of exotic 
plant pathogens which have resulted in considerable economic 
losses to the horticultural, agricultural and food industries (44, 
106,139). Emerging plant epidemics are in many cases a threat 
not only to global and regional food security (3) but also to the 
health of seminatural and pristine ecosystems (11,65,66). The rapid 
structural development in the regional and international connec-
tivity due to affordable long-distance transport and outsourcing of 
manufacturing, as well as labor-intensive production (including 
horticulture [24]), is confronted from a biosecurity perspective by 
different countries in various ways (28,64,73,74). For many coun-
tries, the growing security risk posed by plant pathogens is likely 
to be exacerbated by climate changes (41,115). Together with 
increased trade and network connectivity, climate change may 
facilitate the spread of new plant pathogens because it is likely to 
increase the potential climatic suitability to such pathogens of 
regions which previously could not be colonized (95,108,134). 
Although there is evidence that the structure of contact networks 
(Fig. 4) can have a key influence on the epidemic threshold of 
diseases spreading in such networks, little is known about the 
structure of regional and international horticultural trade networks. 

Moreover, most research in network epidemiology has relied  
so far on models of disease development in large-size net- 

works (thousands of nodes or more) and there have been rela-
tively few theoretical investigations on whether results obtained 
for large-size and infinite networks also apply to small-size 
networks (hundreds of nodes or less). Small-size networks are 
relevant not only for regional horticultural trade systems, but  
also at an international level when considering countries as 
individual nodes. Similarly, much attention has been paid to 
epidemics in undirected networks. Undirected networks have 
symmetric links (i.e., the connection from producer x to whole-
saler z implies the link from z to x) (Boxes 1 and 2). However,  
the probability that a plant grower will be linked to a retail  
center will tend to be different from the reverse connection. This 
makes it necessary to use asymmetric adjacency matrices (tables 
of links among nodes which do not necessarily have reverse 
connections) in order to study plant epidemics in realistic trade 
networks. 

Figure 5A shows an example of epidemic development (suscep-
tible-infected-susceptible model) in a directed network. The 
epidemic is started at a single node. Nodes with a connection 
from the starting node will be infected at the next time step with a 
certain probability of transmission. In turn, already infected nodes 
will be infected at the next time step depending on their infection 
status and on a certain probability of persistence. For simplicity’s 
sake, the probability of infection transmission is the same for all 
connections in a given network replicate. Similarly, the prob-
ability of infection persistence is the same for all nodes in a cer-
tain network replicate. For each network structure, the two prob-
abilities of persistence and transmission define an epidemic 
threshold, which is independent of the starting node of the epi-
demic (98) (Fig. 5B). This epidemiological model does not result 
in either susceptible or infected nodes, as nodes will have an 

FIGURE 4

Four main types of networks (119,140): A, local 
(connections are only present between neighbor nodes), 

B, random (nodes are connected randomly according to a 
uniform probability distribution), C, small-world (local 

networks with some nodes rewired randomly, thus 
generating shortcuts [long-distance connections]), and D, 

scale-free (new nodes are preferentially connected to 
already highly connected nodes [4]).
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FIGURE 5 

A, Conceptual model of the analyses (87,98,99). A simple model of disease spread in a directed network based on two parameters (probability of 
infection persistence in an infected node and probability of infection transmission between connected nodes). Node color conveys infection status
(from red to white: shift from maximal to minimal infection). Steps are time steps. B, Epidemic threshold of small-size directed networks as a 
function of the probability of infection persistence and the probability of infection transmission (based on the model in panel A, and modified from 
98). Outer lines are confidence intervals (standard deviation) for 100 replicate networks with a given structure. Local, random, and small-world 
threshold and confidence interval lines overlap with each other. Two-way: correlation between links in and out of nodes >0.2 (super-connected 
nodes have many incoming and outgoing links). One-way: correlation between links in and out of nodes <–0.2 (super-connected nodes have either 
many incoming links and a few outgoing links or many outgoing links and a few incoming links). 
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infection status along a continuum. This better captures the reality 
of the nursery trade, as plant growers, wholesalers and retailers 
are typically not completely infected, but will tend to have a 
certain proportion of infected plants at a given point in time. 

In this epidemiological model along a continuum of node infec-
tion in a directed, small-size network, heterogeneity in the contact 
structure (a few nodes with many links but most nodes with a few 
links, i.e., a scale-free structure) can markedly lower invasion 
thresholds (the boundary between no epidemic and an epidemic) 
compared with local, small-world, and random structures (Fig. 4; 
58,100). Epidemic thresholds are lower for small-size, directed 
networks with the presence of super-connected individuals, pro-
vided there is a correlation between the number of outgoing and 
incoming links among nodes (Fig. 5B; Box 2). This result implies 
that in small-size horticultural networks, targeted control toward 
commercial players with a high number of connections (both in 
and out of them) is likely to make disease control more effective 
than random or even systematic phytosanitary approaches. 

The importance of the correlation between incoming and out-
going links across nodes of the network is confirmed at different 
levels of connectance, irrespective of the network structure (local, 
random, small-world, and scale-free) and despite variation in the 
clustering coefficient (87). Targeted control can thus be successful 
in the presence of heterogeneities in the degree (number of links; 
Box 2 for further definitions) of nodes, even when there is un-

certainty in the contact structure of a trade network (as is the case 
for many exchange systems of plants and their associated 
organisms). Figure 5B shows that it is possible to bring an 
epidemic under control by changing the structure of the network, 
without having to decrease the probability of infection persistence 
and/or of transmission. In the presence of super-connected nodes, 
the most effective way to achieve such epidemic control is to 
move from a two-way to a one-way network, i.e., from a network 
with positive correlation among links in and out of nodes, to a 
network with a negative correlation of in- and out-links. 

Depending on the characteristic of the pathogen, the putative 
structure of the network, the estimated probabilities of persistence 
and of transmission, and the budget constraints at a given point in 
time, control strategies may have to focus on reducing transmission 
and/or persistence without changing the links in the system, but it is 
possible that influencing the network structure may be more cost-
effective than the traditional inspection and quarantine policies. 
Similar considerations apply to influencing hierarchical categories 
in networks of various structure and connectance level, i.e., the 
proportions of producers, wholesalers and retailers in a trade net-
work. Other things being equal, for non-scale-free network 
structures adding wholesalers to a network is associated with an 
increase in the correlation among links in and out of nodes, and 
thus with a reduction in the epidemic threshold (100). The opposite 
result is obtained for the proportion of producers and retailers. 

 

FIGURE 6 

Frequency distribution for a realistic reconstruction of the horticultural trade in the UK of A, number of incoming links, B, number of outgoing links, 
and C, link distances. D, Correlation between number of incoming and outgoing links. Data from spatially explicit simulations of the spread of 
Phytophthora ramorum in the UK (46). Frequency distribution of number of affected P. ramorum E, plants and F, records per site in England and 
Wales (2003 to 2006), data from Defra, UK. 
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A result which appears to be present regardless of network type 
and level of connectance is the strong correlation at the threshold 
conditions between epidemic final size (the number of nodes with 
infection above an arbitrary value at equilibrium, or the sum of 
the infection status of all nodes at equilibrium) and the number of 
out-going connections of the starting node of the epidemic (99). 
In terms of P. ramorum, these epidemic final sizes (although no 
equilibrium may ever be reached in the real world) would be, for 
example, the number of nurseries/retail centers with more than a 
certain proportion of plants infected, or the overall number of 
infected plants in all nurseries/retail centers. The implication is 
again that heterogeneity in the contact structure of horticultural 
trade networks is likely to increase the risk of major epidemics 
occurring, if by chance a major producer with a high number of 
out-links is infected. 

Worryingly, little is known not only about the current contact 
structure of horticultural networks within and among nations, but 
also about how this is changing. Simulations of the spread of P. 
ramorum in the UK incorporating realistic assumptions about the 
horticultural trade (47) result in heterogeneity in the number of 
incoming and outgoing links, as well as the presence of small-
world properties (long-distance connections), and a weak corre-
lation among number of incoming and outgoing links (Fig. 6). 
The heterogeneity in the network structure could be at least in 
part responsible for the observed heterogeneity in the number of 
P. ramorum affected plants and records per site: most sites where 
P. ramorum was detected have only one or a few plants infected, 
whereas a few sites have hundreds or thousands of individual 
plants infected (Fig. 6). 

Links among horticultural traders are realized by plant ship-
ments, which may or may not involve plants susceptible to P. 
ramorum, which in turn may or may not be infected by the 
pathogen (and may or may not show symptoms of the disease, 
thus making it not straightforward for infected shipments to be 
detected before departure, en route or on arrival). The presence of 
a link between plant traders is thus distinct from the probability of 
transmitting the disease along that link. What is necessary in 
order to establish the network type underlying the spread of P. 
ramorum are data on the number of links of traders of the major 
ornamental plants susceptible to P. ramorum (e.g., Calluna, 
Camellia, Erica, Hamamelis, Magnolia, Pieris, Rhododendron, 
Syringa, Vaccinium, and Viburnum). 

An increase in the connectivity among nations and continents 
due to higher volume in trade of crops, plants, and flowers (Fig. 
7) may have consequences not only for the likelihood of intro-

duction of new pathogens and other organisms associated with 
plants (27,113,135), but also for gene flow and thus for the 
evolutionary potential of plant pathogens (70,81). Results from 
the modeling of disease spread in small-size networks call 
therefore for the long-term collection of data on the number and 
degree distribution of plant producers, wholesalers, and retailers 
in different nations (100). There is the need for comparable long-
term data on the trade volumes in ornamental, horticultural, and 
agricultural crops among countries, regions, and individual firms. 

FUTURE CHALLENGES  
IN PLANT NETWORK EPIDEMIOLOGY 

We believe networks are likely to provide a useful tool in 
understanding and managing plant epidemics in a changing world. 
In addition to asymmetry (directed links), models of disease 
spread in the plant trade need to add dynamic (8) and weighted 
(5) features to the networks investigated. Real-world plant trade 
networks are neither static in their structure nor uniform in the 
strength of the connections. The relatively rare use of network 
epidemiology in botanical science compared with what has 
happened in human and animal pathology (13,58,89) may be due 
to lack of suitable data for plant diseases, but could well change 
in the future with the adoption of the latest genetic technologies 
also in plant sciences. Examples of future challenges for a 
successful use of network theory in plant disease epidemiology 
include the following. 
• Integrating network approaches with recent advances in 

probabilistic modeling of phytosanitary inspection policies 
(121–124) and with existing methodologies such as cluster, 
path, and principal component analysis. 

• Merging models of plant disease spread and control in 
networks with economic assumptions on the availability of 
resources and the behavior of human agents to obtain more 
realistic epidemic management scenarios (31,35,52,63,69). 

• Moving from descriptive studies of patterns in network struc-
ture to testing hypotheses explaining underlying processes (88). 

• Learning from related developments in using network theory in 
(plant) genetics, ecology, and evolution (7,15,16,22,33,103,
129). 

• Adding network theory to the traditional plant epidemiology 
and botanical curriculum (17,34,72,130). 

• Adapting available software to visualize genetic, social, and 
ecological networks for plant epidemiology data (37,67,68, 
105,114). 

FIGURE 7 

Network of main fresh cut flowers movements 
among European countries (import and export, 2003, 

data from literature citation 56). Connection thickness 
is proportional to trade volume. For the strongest 

links, the dominant directionality is shown. Albania, 
Andorra, Iceland, Kosovo, Liechtenstein, Macedonia, 

and San Marino not shown for lack of data. 
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• Using insights from network theory to facilitate dissemination 
of plant health knowledge among plant pathologists, farmers 
and consumers (85). 

• Adopting network concepts in philosophical discussions about, 
e.g., causation in epidemiology and the nature of health/disease 
(12,30,117). 

• Investigating the combined effect of the forecasted expansion 
of agricultural trade networks and changes in climate for better 
mapping the likely severity of future plant epidemics (10,55, 
84,92,136). 
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