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Abstract:   

 

Cell-to-cell variation in gene expression is a common feature of developmental processes.  Yet, it 

remains unclear whether molecular mediators can generate variation and how this process is 

coordinated across loci to allow the emergence of new cell states.  Using embryonic stem cells (ESCs) as 

a model of development, we found interconverting cell states that resemble developmental expression 

programs and vary in activity at specific enhancers, such as those regulating pluripotency genes Nanog 

and Sox2 but not Pou5f1 (Oct4).  Variable enhancers drive expression of variable genes, including those 

encoding microRNAs (miRNAs).  Notably, variable miRNAs increase cell-to-cell variation by acting on 

neighborhoods of pluripotency genes.  The encoded, variable pluripotency factors bind variable 

enhancers, forming a feedback loop that amplifies variation and allows the emergence of new cell 

states.  These findings suggest gene regulatory networks composed of enhancers, protein-coding genes, 

and miRNAs harness inherent variation into developmental outcomes.  
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Introduction: 

 

 Pluripotent ESCs derived from the inner cell mass of the blastocyst contain the potential to form 

all cells of the adult vertebrate through sequential developmental stages.  While external signals such as 

morphogens coordinate portions of this process, variation inherent to cells also plays a role, with small 

numbers of cells exhibiting spontaneous self-organization in the absence of external signals (Harrison et 

al., 2017; Rivron et al., 2018).  Cell states are the expression of specific gene programs that often lead to 

a certain cell behavior.  Variation in cell states is crucial for morphogenesis, as failure to transition 

between states leads to failures in development (Shahbazi et al., 2017).  A prevailing view of cell-to-cell 

variation in gene expression attributes it to 'stochastic processes' at gene loci (Chang et al., 2008; Deng 

et al., 2014; Eldar and Elowitz, 2010; Kumar et al., 2014; Levine and Tjian, 2003; Raj and van 

Oudenaarden, 2008; Singh et al., 2010).  However, an alternative hypothesis is that variation can be 

driven and coordinated across loci by gene regulatory elements and co-opted by the cell to enable state 

transitions.  To evaluate this idea, we set out to measure heterogeneity in ESC states and define the 

molecular mediators that actively generate and coordinate variation in key pluripotency genes. 

 Pluripotency factors such as Pou5f1 (Oct4), Sox2, and Nanog (together 'OSN') are encoded by 

pluripotency genes and bind their own enhancers.  High density clusters of binding sites have been 

termed super-enhancers (SEs), and OSN are known to bind together at SEs (OSN-SEs), forming a core 

transcriptional regulatory network that maintains ESC identity (Dowen et al., 2014; Hnisz et al., 2013; 

Kagey et al., 2010; Whyte et al., 2013).  This regulatory network also contains microRNAs (miRNAs), 

small RNAs that bind and regulate genes in mammals through the effector protein Argonaute (Ago) 

(Marson et al., 2008).  For example, the highly expressed miRNA cluster miR-290-295 maintains ESC 

identity during embryonic development (Medeiros et al., 2011; Melton et al., 2010).  However, it is 

unknown whether this core regulatory network of enhancers, genes, and microRNAs plays a role in 

establishing the cell-to-cell variation necessary for subsequent development.  

 Here we studied naturally arising variation within ESCs by generating knock-in reporters at 

endogenous pluripotency genes.  We found ESCs exhibit intrinsic heterogeneity through spontaneous 

formation of interconverting cell states that resemble distinct developmental expression programs.  

States vary in activity at particular enhancers that regulate variable, state-specific protein coding genes 

and miRNAs.  Variable miRNAs such as miR-182 bind interaction neighborhoods of variable pluripotency 

genes such as Nanog, Sox2, and Esrrb.  Notably, miRNAs amplify cell-to-cell variation in the expression of 

these genes, in contrast to previously described roles for miRNA in reducing gene expression variation.  

In turn, Nanog, Sox2, and Esrrb bind variable enhancers, suggesting these components act together with 

variable miRNAs in a network that amplifies inherent variation.  In contrast, other well-expressed 

pluripotency genes such as Pou5f1, Smad1, and Tcf3 are not bound by variable miRNAs, do not vary 

across ESC states, and do not show significant binding to variable enhancers.  Together, our findings 

imply that the core transcriptional gene regulatory network of ESCs can be divided into at least two 

circuits, one that maintains ESC cell-type identity and one that coherently amplifies variation to achieve 

transition to a new cell state.   
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Results: 

 

ESC exhibit inherent variation that resembles developmental gene expression programs 

 

 To explore molecular mediators of ESC variation, we generated cells with heterozygous 

insertions of fluorophore tags at the endogenous loci of pluripotency genes Nanog and Sox2, joined by 

post-translational self-cleaving peptide sequences (GFP-P2A-Nanog and Sox2-T2A-mCherry respectively; 

see Fig. S1A).  ESCs cultured in serum with leukemia inhibitory factor (LIF) showed remarkable 

heterogeneity in levels of Nanog and Sox2, clustering into three predominant states (Fig. 1A: State 1 = 

high Nanog and high Sox2, State 2 = low Nanog and high Sox2, State 3 = low Nanog and low Sox2), 

consistent with previous reports describing heterogeneity in Nanog levels across ESC populations 

(Chambers et al., 2007; Kumar et al., 2014; Singer et al., 2014).  When cells from these distinct states 

were isolated by flow cytometric sorting and cultured identically (serum + LIF), each state recapitulated 

the heterogeneity of the parental population (Fig. 1A, bottom). 

 Next, we assessed whether single ESCs also displayed an inherent capacity for heterogeneity by 

introducing a unique molecular barcode into individual ESCs, sorting single cells from a given state, and 

assessing their ability to repopulate the other states.  Over time, single-cell-derived ESCs containing a 

unique barcode switched into other states (Fig. 1B).  Analysis of an unsorted barcoded ESC population 

also indicated single cells were switching between states, as distinct cell barcodes observed only in one 

state on day 0 were observed in multiple states days later (Fig. S1B).  Given these results, it is unlikely 

that sorted states recapitulate parental heterogeneity due to incomplete separation followed by 

differential growth rates.  Rather, barcoding data indicate that state heterogeneity results from single 

cells switching states. 

 To gain insight into the observed ESC states, we characterized their coding and noncoding 

transcriptomes by ribosomal RNA-depleted RNA-sequencing (Ribo- RNA-seq) (data: Supplemental Item 

3).  Protein-coding genes differentially expressed between all three states were highly enriched for 

developmental regulators and pluripotency genes (including Nanog, Sox2, and Esrrb) and depleted for 

housekeeping, cell cycle, and metabolic genes, suggesting variation across states was specific to 

developmental loci (Fig. 1C-1F and Fig. S2A-B).  Notably, states displayed equally high expression of 

certain pluripotency genes such as Pou5f1 (Oct4), Smad1, and Tcf3 (Fig. 1C-1E), signifying that all three 

states are still embryonic stem cells but of differing functional predilection.  In particular, ontology 

analysis of genes highest expressed within each state revealed that State 1 resembles a naïve, cytokine 

responsive population of cells, whereas State 2 displays increased expression of pre-ectodermal makers 

such as Sox18 and Neurod1 and State 3 displays increased expression of pre-endodermal and pre-

mesodermal markers such as Gata3 and Hoxa3 (Table 1, Fig. 1E, Fig. S2C).  To supplement the ontology 

analysis, we compared the highest expressed genes in each state to characterized gene expression 

profiles of the mouse blastocyst at developmental stages ranging from E4.5 to E5.5 (Boroviak et al., 

2015; Shahbazi et al., 2017).  We calculated the distance in gene expression between conditions (see 

Methods).  While States 1-3 were most similar to each other, State 1 was closer in expression to E4.5 

epiblasts than were States 2 and 3 whereas the latter were closer in expression to E5.0 or E5.5 (Fig. 1G 

and Fig. S2D, note increased red shading, meaning lower expression distance, at E4.5.EPI for State 1 

replicates (small dashes) compared to States 2 and 3 replicates (large dashes) and vice versa for 

E5.5.EPI).  Overall, we find that ESCs in culture contain inherent fluctuations observable as transitions 

between states that resemble developmental gene expression programs.   
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A subset of super-enhancers varies between ESC states   

 We set out to determine the molecular nature of the variation between ESC states.  Differences 

between cell types have been attributed to the activity of enhancers, specifically high-density super-

enhancers (Whyte et al., 2013). We reasoned that differences between inter-converting cell states 

within a population may also be due to SE activity.  Active enhancers are transcribed and produce 

transcripts known as enhancer RNAs (eRNAs).  We define variable super-enhancers as those with 

differential activity in eRNA transcript production (da-SEs).  We assessed eRNA production in States 1-3 

across known enhancer regions marked by transcription factor binding and hallmarks of transcriptional 

regulation (Suzuki et al., 2017; Whyte et al., 2013).  A remarkably high fraction of SEs defined by the 

chromatin mark H3K27Ac (H3K27Ac-SE) showed differential activity between ESC states, as did SEs 

defined through clusters of bound Pou5f1, Sox2, and Nanog (OSN-SE) (Fig. 2A).  Moreover, in contrast to 

SEs that varied in activity between states, some strong SEs such as those driving Pou5f1 were more 

consistently active across all three states (Fig. 2B and S3A, compare CV for Nanog & Sox2 SEs to those 

for Pou5f1 SE), indicating SE activity varies between cell states at a subset of core regulatory enhancers.   

 To directly measure the variability in SE activity between states, we inserted a fluorescent 

reporter (Cerulean, or CFP) at SEs and measured both enhancer activity and cell state by flow cytometry, 

similar to a previously reported strategy (Stelzer et al., 2015).  We report SEs where insertion of the 

reporter did not significantly alter cell states.  We found high state-to-state variation of a SE controlling 

the variable pluripotency gene Nanog (Nanog-SE) (Fig. 2C).  In contrast, activity at an SE controlling the 

non-variable pluripotency gene Pou5f1 (Pou5f1-SE) was almost identical between State 1 and State2 

(Fig. 2C), though this enhancer did show some reduced activity in State 3.  Even within a single state, 

Nanog-SE variation was greater than Pou5f1-SE variation (Fig. 2C, note the bimodal peak for Nanog-SE 

activity in State 1 compared to one peak for Pou5f1).  Further, we analyzed variation within state by 

plotting reporter activity within narrow windows (bins) of Nanog expression.  We found Nanog-SE 

activity varied more than Pou5f1-SE activity when compared in this fashion (Fig. 2D, note the taller box 

and whisker plots for Nanog-SE compared to Pou5f1-SE indicating higher variance or 'spread' of the 

data).  Similarly, we inserted reporters separately at the SEs controlling the variable pluripotency gene 

Esrrb and the non-variable pluripotency gene FGF4.  Analogously to the result for Nanog and Pou5f1, we 

found relatively higher variation for Esrrb-SE activity compared to FGF4-SE activity (Fig. S3B).  Together, 

these data demonstrate that enhancers exist in a ‘variation hierarchy’ whereby a subset are inherently 
more prone to variation in activity between and within cell states.    

 

Transmission of enhancer variation to regulated genes 

   

 As enhancers are core regulatory components for gene expression, we reasoned that state-to-

state variation in activity at SEs could in part account for the variability in genes that were differentially 

expressed between states.  To assess this possibility, we first tried deleting or interfering with SEs using 

CRISPR-Cas9 targeting but found this either resulted in ESC differentiation or grossly changed the gene 

expression distributions of States 1-3 (data not shown), complicating assessment of the subtle 

fluctuations between states under consideration in our study.  Instead, we utilized maps defining the 

regulated genes of OSN-SEs (Dowen et al., 2014).  First, we separated OSN-SEs into those differentially 

active between all three states and compared them to all other SEs (da-SEs and other-SEs, respectively, 

note that these OSN-SE categories are used throughout the remainder of the study).  Next, we plotted 

the coefficient of variation (CV) across states for the regulated genes.  We found a significant shift 

towards higher CV for genes regulated by da-SEs compared to other-SEs (Fig. 2E, left).  Importantly, this 

shift was not due to different expression levels for genes regulated by da-SEs (Fig. 2E, right).  Further, 

da-SE were most active in the same state where their regulated genes were most highly expressed (Fig. 
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S3C-D).  This supported the notion that variation between states for differentially expressed genes arose 

in part from enhancers with variable activity between states.   

 In addition to variation between states, we observed variation within state for da-SE such as the 

Nanog-SE (Fig. 2C-D).  Both between-state and within-state heterogeneity require single cells to vary 

from one another.  Additionally, measurements of gene expression across cells in bulk populations can 

obscure effects on single cells missed by taking ensemble averages.  Therefore, we performed single cell 

RNA-sequencing (scRNA-seq) to relate variation at enhancers to gene expression variation across single 

cells.  We identified highly variable genes using a previously developed test statistic () that corrects the 

coefficient of variation for technical sampling noise present in scRNA-seq experiments (Klein et al., 

2015).  We found highly variable genes included da-SE-regulated Nanog, Sox2, and Esrrb (Fig. 2F, top).  

In contrast, Pou5f1 showed a moderate degree of variation and both Smad1 and Tcf3 were less variable 

across single cells (Fig. 2F, top).  Indeed, genes regulated by da-SEs showed significantly higher variation 

across single cells than genes regulated by other-SEs (Fig. 2F, bottom).  Together these results suggest 

that da-SE can drive cell-to-cell variation in their regulated genes. 

 

Feedback of variable pluripotency genes on variable enhancers 

 

 Variation in molecular components of a gene regulatory network could either add together or 

cancel out, similar to constructive or destructive interference of waves.  Given that heterogeneous 

states reform each other when separated (see Fig. 1), we reasoned fluctuations at variable molecular 

components in ESCs may be wired together, allowing them to exhibit constructive properties in subsets 

of cells.  The core transcriptional regulatory network of ESCs is known to contain binding of pluripotency 

factors such as OSN at enhancers; however, whether binding can be functionally subdivided on the basis 

of cell-to-cell variation has not been explored.  Hence, we assessed the binding of variable pluripotency 

factors Nanog, Sox2, and Esrrb and less variable pluripotency factors Pou5f1, Smad1, and Tcf3 at both 

da-SEs and other-SEs.  We found a significant degree of binding of Nanog, Sox2, and Esrrb to da-SE (Fig. 

2G, top), whereas Pou5f1 and Tcf3 did not show a distinct binding peak to da-SE and Smad1 did not bind 

enhancers at all (Fig. 2G, bottom and Fig. S3E).  Variable pluripotency factors and less variable 

pluripotency factors Pou5f1 and Tcf3 showed similar binding to other-SEs (Fig. S3E).  This is consistent 

with a model whereby in a subset of ESCs variable pluripotency factors such as Nanog bind and guide 

modification of variable enhancers, which then feed forward on variable genes, priming this subset of 

cells for transition to a new state.  In the meantime, all pluripotency factors can function together at 

relatively stable SEs to maintain ESC cell type identity.  Thus, within the ESC core regulatory network 

there may be a sub-network of elements forming a circuit capable of amplifying inherent variation. 

 

The variable ESC network contains miRNAs 

 

 In addition to driving the expression of protein-coding genes, enhancers are known to control 

the expression of miRNAs.  miRNAs are intriguing candidate cell state controllers because individual 

miRNAs can regulate hundreds of genes, which could allow cell-to-cell fluctuations in miRNA to generate 

relatively large effects on cell state (Garg and Sharp, 2016).  To examine this possibility, we first 

determined miRNA expression in each state by small RNA-sequencing (data: Supplemental Item 4) and 

noted differentially expressed miRNAs (DE-miRNA) (Fig. 3A-B).  DE-miRNA did not include most 

members of the miR-290-295 family, which were more equally expressed in all three states.  Instead, 

DE-miRNA represented many miRNAs with no previously characterized function in ESC.  We found that 

DE-miRNA were enriched for regulation by da-SE (Fig. 3C), consistent with the idea that this group of 

miRNA is part of a variable genetic circuit. 
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 To gain insight into the function of DE-miRNAs, we analyzed Argonaute-miRNA cross-linking and 

immunoprecipitation (CLIP) to targets (Bosson et al., 2014).  In these cells, FLAG-HA-hAGO2 expression is 

controlled from a doxycycline inducible transgene in an endogenous Ago1-/-/2-/-/3-/-/4-/- knockout 

background (Ago2-inducible ESC), and in the absence of Ago2 induction miRNA activity is lost (Zamudio 

et al., 2014).  This allows high resolution definition of Ago2-miRNA complexes and their bound targets by 

analyzing clusters of Ago2 binding.  We assigned each cluster to a particular miRNA by considering a 

combination of site type affinity and miRNA expression (see Methods).  We found transcripts bound by 

DE-miRNA showed a higher number of Ago2-miRNA binding events per each mRNA target (Fig. S4A).  

Moreover, binding was skewed toward lower affinity '6-mer' miRNA site type matches and away from 

higher affinity '8-mer' sites (Fig. S4A).   Interestingly, we found a high degree of DE-miRNA binding to 

Nanog, Sox2, and Esrrb transcripts (Fig. S4B), pluripotency genes not previously appreciated to be under 

miRNA regulation.  We did not find evidence of significant binding of DE-miRNA to less variable 

pluripotency gene Pou5f1, Smad1, or Tcf3 transcripts.   

 

Variable miRNAs increase variation of target mRNAs 

 

 To assess whether loss of DE-miRNA impacts their mRNA targets, we analyzed ESC where the 

microRNA biogenesis and effector machinery is disrupted.  For example, DGCR8 controls miRNA 

processing from precursor 'pri-miRNA' to 'pre-miRNA' forms (Gregory et al., 2004; Wang et al., 2007).  

We found modestly increased mean mRNA levels ('de-repression') for targets of multiple DE-miRNAs (≥2 
clusters of Ago2 binding) in DGCR8-/- ESC (DGCR8 KO) (Fig. 3D, top).  Next, we analyzed DE-miRNA 

targets in Ago2-inducible ESC after withdrawal of doxycycline.  Consistent with results for DGCR8-/-, DE-

miRNA targets showed modest de-repression in Argonaute deficient ESC (Fig. 3D, bottom), indicating 

DE-miRNA can have a suppressive effect on their targets.  We sought to extend these results to 

individual DE-miRNA.  We generated ESCs deficient in either DE-miRNA miR-182 or DE-miRNA miR-708 

by inducing CRISPR-Cas9 targeted indels in the hairpin loop of the miRNA gene (Mirindel) (Chen et al., 

2015).  We confirmed Mirindel ESCs represented miRNA knockouts using measurement of miRNA levels 

and functional reporter assays (Fig. S4C) (Mukherji et al., 2011).  Surprisingly, there was no difference in 

average expression levels across all cells for miR-182 and miR-708 bound transcripts in Mir182indel and 

Mir708indel ESCs respectively when compared to WT ESC (Fig. S4D).  However, it is possible a regulatory 

effect was masked due to considering average expression across all cells, leaving open the possibility 

these miRNAs were regulating targets in a subset of cells.   

 Intriguingly, we noted DE-miRNA bound genes, including miR-182 bound genes, showed high 

variation across single cells in WT ESC (Fig. 3E).  To determine whether miR-182 impacted variation of its 

targets, we performed scRNA-seq on Mir182indel ESC in parallel to WT ESC.  We compared variation of 

miR-182 bound targets in these two cell types by  score.  Strikingly, loss of miR-182 resulted in a sharp 

reduction in variation of miR-182 bound genes across single cells (Fig. 3E, compare left shift of miR-182 

bound targets in Mir182indel ESC (violet) to miR-182 targets in WT ESC (maroon)) without resulting in 

significant changes in gene expression across single cells (Fig. S4E).  Thus, while miR-182 did not have a 

detectable effect on average target expression across all cells, it appeared to have a significant effect on 

cell-to-cell variation of its targets.  Previous studies have highlighted roles for miRNA in reducing gene 

expression variation of their targets compared to genes without miRNA regulation.  However, cell-to-cell 

variation in the miRNA pool could result in transmission of this variation to bound targets (Garg and 

Sharp, 2016; Schmiedel et al., 2015).  In the context of a gene regulatory network our findings imply 

miR-182 could work in this fashion in ESC, serving to increase cell-to-cell variation at its bound targets in 

a subset of cells. 

 

Some pluripotency gene neighborhoods are highly bound by variable miRNAs 
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 Cell states are defined by coordinated expression of gene groups, meaning that transitions 

between states require coordinated variation of genes.  We sought to gain insight into whether variation 

at highly variable genes was coordinated and related to the observed states.  To this end, we used 

network inference methods to construct gene interaction neighborhoods from our scRNA-seq data.  We 

chose a method based on mutual information, whereby the neighborhood of a chosen 'node' gene 

represents the set of genes most closely correlated with it and with each other, similar to a previous 

analysis in ESC (Klein et al., 2015; Li and Horvath, 2007) (see also Methods).  The emphasis of this 

method on topology helps alleviate artifacts in correlation strength that may arise from the low 

technical sampling of transcripts in scRNA-seq.  The neighborhoods of Nanog, Sox2, and Esrrb are shown 

(Fig. 4A and Fig. S5A).  We confirmed these in silico inferred neighborhoods were meaningful by testing 

the covariation of Nanog with the encoded proteins of neighbors Eif2s2, Esrrb, and Hsp90ab1.  For each 

of these genes, we introduced an additional fluorophore tag at its endogenous locus in Nanog 

fluorophore-tagged cells.  Eif2s2, Esrrb, and Hsp90ab1 all showed covariation with Nanog by this 

method (Fig. S5B).  Further, the neighborhoods of Nanog, Sox2, and Esrrb all contain each other as 

members and have additional mutual neighbors (Fig. S5C), supporting the idea that these genes interact 

and form an interconnected clique.   

 Next, we assessed the Nanog network for miRNA activity.  We found remarkably high binding of 

the Nanog neighborhood by miRNAs (Fig. 4A).  Similarly high miRNA binding was noted for the 

neighborhoods of other variable pluripotency genes, including Sox2 and Esrrb (Fig. S5D).   Further, we 

calculated whether neighborhoods were enriched for binding by particular miRNAs by comparing them 

to matched control neighborhoods.  Control neighborhoods were constructed to contain the same 

number of genes of similar expression distribution and total miRNA binding as the neighborhood under 

interrogation (see Methods).  Several miRNAs were enriched for binding within neighborhoods of 

variable pluripotency genes by this method (Fig. 4B).  This group of miRNAs included many DE-miRNAs, 

including miR-182 and miR-708.  Notably, neighborhoods of less variable pluripotency genes such as 

Pou5f1, Smad1, and Tcf3 did not show high binding by miRNAs and contained fewer mutual neighbors 

than variable pluripotency genes (Fig. S5C, S5E).  Partially distinct sets of miRNAs were enriched for 

binding other ontologically defined groups of interaction neighborhoods, such as cytoskeleton genes 

(Fig. S5F).  The consistent enrichment of particular miRNAs within neighborhood groups defined by 

ontology suggests a role for miRNA in regulating these neighborhoods.  

  

Coordination and propagation of variation across neighborhoods 

 

 Coordinate regulation of gene neighborhoods by miRNAs could provide a mechanism for 

individual miRNAs to impact the variation of many genes.  Namely, miRNAs could impact the variation of 

genes that they do not bind directly by binding and regulating their interacting neighbors.  First, we 

compared the variation across single cells for DE-miRNA-bound genes Nanog, Sox2, and Esrrb in WT vs. 

Mir182indel ESC.  Indeed, DE-miRNA-bound genes had lower  scores in Mir182indel ESC than in WT, even if 

they were not direct targets of miR-182.  By contrast,  scores for non-DE-miRNA-bound genes Pou5f1, 

Smad1, and Tcf3 were unchanged in Mir182indel ESC vs. WT (Fig. 4C).  This suggested that miR-182 

propagates variability through the neighborhoods it binds in addition to promoting variability of its 

direct targets.  To further assess whether variation can be propagated across neighborhoods, we plotted 

 scores of all genes and their neighbors (Fig. 4D).  In the leftmost column, we show the variation of the 

'node' gene.  Next, in each row we plot the  score of each node gene's neighbors decreasing left to 

right, noting that neighborhoods differ in size (see Methods).  We list genes in order of decreasing 

average  score across their neighborhoods.  Remarkably, highly variable genes show a strong tendency 
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to group into the same interaction neighborhoods (Fig. 4D, note that red shading indicating higher  

score is clustered towards the top of the graph in a subset of neighborhoods rather than being evenly 

distributed across all neighborhoods).  Overall, highly variable genes show synchronous co-variation 

when measured across a population of cultured cells.  This indicates that individual genes do not vary 

stochastically with respect to each other.  Rather, variation is organized at the level of neighborhoods.  

The degree and concentration of variation is significantly decreased in Mir182indel ESC (Fig. 4D-E), 

consistent with the idea that miR-182 loss reduces cell-to-cell variation of bound targets, which in turn 

leads to less variation across Mir182indel ESC neighborhoods compared to WT ESC neighborhoods.       

 

Variation in miRNA can drive variation in ESC states 

 

 Fluctuation in DE-miRNA levels causing fluctuations at highly variable genes in key 

neighborhoods could lead to a state transition and therefore an inherent propensity to reform a 

heterogeneous distribution of cells, such as observed in our study (see Fig. 1).  This raised the possibility 

of miRNA regulation of Nanog and Sox2 contributing to the observed distribution of cell states through 

variation of miRNA levels.  First, we explored this possibility by constructing mathematical models 

involving Nanog, Sox2, and miRNA that could generate the observed distribution of cell states.  We 

found that a minimal model in which Nanog and Sox2 were regulated by two distinct miRNA pools could 

recapitulate the observed distribution of cell states solely through addition of cell-to-cell fluctuations in 

miRNA levels (Fig. 5A and Theory Note in Methods).  The model predicted loss of variable miRNAs would 

cause loss of variation in cell states (Fig. 5A). 

 To test this idea, first we inserted fluorophore tags at Nanog and Sox2 (Fig. S1) into our Ago2- 

inducible cells (see Fig. 3D above) and withdrew doxycycline.  With no induction of Ago2 and therefore 

no miRNA activity (doxycycline 0 g/mL), cells exhibited relatively little variation in Nanog/Sox2 cell 

states and consequently relatively little variation in Nanog levels (Fig. 5B), in agreement with our model.  

As Ago2-miRNA levels were increased in these cells (doxycycline 0.5 - 4 g/mL), we observed a titratable 

increase in cell state variation as a higher fraction of cells exited State 1, the dominant state (Fig. 5B), 

and transitioned to States 2-3 or became intermediate between states (Fig. S6A).  These transitions also 

led to a measurable increase in Nanog variation across the population (Fig. 5B).  Next, we tested 

whether loss of individual DE-miRNA could impact cell state variation.  We inserted fluorophore tags at 

Nanog and Sox2 into Mir182indel and Mir708indel ESC and assessed their cell state distributions.  Strikingly, 

loss of individual DE-miRNA reduced cell state variation, with a measured reduction in the variation of 

Nanog (Fig. 5C, note shorter box and whisker plots for Mirindel ESC compared to WT ESC) and reduction in 

cells outside of State 1 (Fig. 5C and Fig. S6B).  This was consistent with the predictions of our model, and 

together these results established that loss of miRNA can reduce cell state variation in ESC. 

 We sought to test whether we could restore variation in Mirindel cells by re-introducing the lost 

DE-miRNA.  First, we constructed an inducible bidirectional expression plasmid expressing miR-182.  

Specifically, the plasmid expresses pri-miR-182 tightly coupled to a cyan fluorescent protein derivative 

(CFP), allowing close approximation of miRNA levels through levels of the fluorophore reporter.  We 

transfected Mir182indel cells containing reporters at Nanog and Sox2 loci with this construct, allowing 

single cell measurement of miR-182, Nanog, and Sox2 levels through their respective fluorophores (CFP, 

GFP, mCherry, respectively).  CFP levels tracked miR-182 expression and the latter was restored to 

approximately wildtype levels (in 'Bin 2') or overexpressed (in 'Bins 3-4', Fig. 5D).  For comparison, we 

measured miR-293 in these bins and found it relatively unchanged.  As an additional control, we 

transfected Mir182indel cells with a CFP-only 'empty' plasmid in parallel to re-expression of miR-182.  

Compared to 'empty' control, Mir182indel cells with miR-182 re-expressed showed an increase in cells 

outside State 1 (Fig. 5E and Fig. S6C), confirming restoration of miR-182 could partially restore cell state 

variation.  Additionally, when comparing across or within bins, Mir182indel cells in which miR-182 was 
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restored showed increased variation in Nanog and Sox2 levels compared to control cells (Fig. 5E, note 

that mean levels of Nanog and Sox2 change across red 'miR-182' bins but stay similar across gray 'empty' 

bins).   

 Notably, this system involved adding variation to miRNAs outside the context of the variable 

genetic circuit.  This is because plasmid transfection and induction efficiency are not uniform across the 

population, leading to differences in restored miR-182 levels between Mir182indel cells transfected with 

pri-miR-182 expression plasmid.  Thus, our results indicate that adding exogenous variation in miRNA 

levels can increase variation in cell states, and in Nanog and Sox2 levels.  To further test the idea that 

miR-182 facilitated cell state transitions, we isolated State 1 ESC from WT and Mir182indel ESC by flow 

cytometric sorting and assessed their ability to repopulate States 2-3 and intermediate states over time.  

In sorted cells, we found a delay in Mir182indel State 1 exit compared to WT (Fig. 5F and S6D).  Together, 

these findings supported the idea that within the variable genetic circuit fluctuations in miR-182 across 

cells led to miR-182 facilitated transition between states for a subset of cells.  This could account for the 

increased variation in Nanog and Sox2 in WT ESC compared to Mir182indel ESC as well as the increased 

variation across single cells for miR-182 targets (Fig. 3E).  As this subset of cells exiting State 1 is a small 

portion of the overall ESC population at any given point in time this might also account for the lack of 

repression observed for direct miR-182 targets in bulk RNA-sequencing (Fig. S4D).  We conclude that 

cell-to-cell fluctuations in DE-miRNA levels can directly contribute to variation in their bound 

pluripotency genes and interacting neighbors.  In the context of a genetic circuit for variation comprising 

enhancers, miRNAs, and pluripotency genes, miRNAs can either transmit upstream variation to 

pluripotency genes or might themselves constitute a source of cell-to-cell variation.  The coordination of 

variation at these elements in a subset of cells could enable transitions to new states and lead to a 

propensity for heterogeneity as a result of the variable gene regulatory network co-opting inherent 

fluctuations.   

 

Nanog and Sox2 capture a large portion of ESC state diversity 

 

 In principle, heterogeneity in ESC states could be defined by many different combinations of 

variably expressed genes.  We defined cell states in ESC through their relative expression of Nanog and 

Sox2.  To determine what proportion of heterogeneity in ESC states was captured by Nanog and Sox2 

reporters, we sought to represent ESC states in a gene unbiased manner by dimensionality reduction of 

our scRNA-seq data and to compare this representation to that given by States 1-3.  We sought a 

method that would represent both local and global data structure in addition to emphasizing 

progression trajectories in ESC state space.  Thus, we utilized PHATE (Potential of Heat diffusion for 

Affinity-based Trajectory Embedding) dimensionality reduction (Moon et al., 2019). We applied PHATE 

to the combined scRNA-seq data from WT and Mir182indel ESCs while adding corrections for batch effects 

and depth of sampling per cell.   

 We plotted the first two PHATE coordinates while pseudocoloring WT and Mir182indel cells by 

their enrichment for State 1-3 expression programs (Fig. 6, note WT cells are plotted white to blue and 

Mir182indel cells plotted white to red by their enrichment for States 1-3, see Methods).  We noted that 

State 1-3 programs, defined by expression levels of Nanog and Sox2, capture the majority of variation 

between cells along the PHATE axes (Fig. 6, note the progression of enrichment for the State 1 program 

at bottom left to the State 3 program at top right).  Qualitatively similar results were obtained for 

dimensionality reduction by principle component analysis and a force directed graph based method (Fig. 

S7A-B, based on (Paul et al., 2015)).  Importantly, we did not find significant clustering of cells when 

plotted by cell cycle, confirming that the observed heterogeneity was not due simply to variations in cell 

cycle (Fig. S7C).  Since PHATE representations are made without choosing any particular gene as a 
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starting point, we infer ESC cell states defined by Nanog and Sox2 capture a significant amount of the 

heterogeneity present. 

 

Discussion 

 

 We find that ESCs exhibit intrinsic heterogeneity by spontaneously forming interconverting cell 

states that resemble developmental expression programs.  States display distinct activity of enhancers 

along with distinct expression of protein-coding genes and miRNAs.  Variable enhancers, pluripotency 

genes, and miRNAs all form an interconnected variable genetic circuit (Fig. 6B), suggesting a mechanism 

by which variation can amplify across a gene regulatory network and result in a new cell state.   

 Together our results provide a framework for how cell states can emerge from the organization 

of inherent fluctuations by a gene regulatory network but leave open the question of where and how 

fluctuations arise in the first place.  Gene expression is known to occur in discrete bursts of 

transcription, and enhancers have been connected to the modulation of bursting for their regulated 

genes (Fukaya et al., 2016; Larsson et al., 2019).  Additionally, enhancers have been proposed to form 

phase condensates (Cho et al., 2018; Chong et al., 2018; Hnisz et al., 2017; Sabari et al., 2018), and these 

may contribute fluctuations.  Future work further defining the structural and regulatory features of 

different enhancer classes that vary in activity between loci will be of great interest.  We found variable 

miRNAs were more likely to bind targets weakly and multiply, a hallmark of interactions more 

susceptible to fluctuation.  Perhaps miRNA variation will also prove a key source of fluctuation for cells 

to co-opt in state transitions.  Future studies focused on the mechanisms by which "microscale 

inhomogeneities" (Chen et al., 2018) can form cell-to-cell will be necessary to fully understand the 

fluctuations within ESC. 

 While the present study focuses on enhancers and miRNAs, many other molecular mediators 

are likely to contribute to cell-to-cell variation.  Of particular interest may be RNA binding proteins or 

splicing factors, as these regulators can also impact the expression of many genes, enabling state 

transitions from fluctuations in a few key mediators.  Our results suggest a subset of the core ESC gene 

regulatory network could amplify variation from any molecular mediator in a characteristic manner once 

the variation is experienced within the variable genetic circuit. 

 The findings here may also contribute to unresolved questions in embryogenesis.  The 

emergence of distinct cell fates from seemingly equivalent blastomeres in the mammalian embryo has 

been conceptualized in two ways (Chen et al., 2018).  In the first, the cells of the early embryo are 

essentially identical blastomeres and cell fate emerges randomly (Kurotaki et al., 2007; Motosugi et al., 

2005; Solter, 2016).  In the second, small differences exist cell-to-cell that make fate predictable for 

individual blastomeres, though cells still retain a high degree of plasticity (Gardner, 2001; Goolam et al., 

2016; Ju et al., 2017; Piotrowska-Nitsche et al., 2005; Torres-Padilla et al., 2007; White et al., 2016).  In 

our view, the findings here point towards a model reconciling these views.  Cells are “identical” in that 
each experiences inherent fluctuations at a specific subset of gene regulatory network elements.  If 

measured precisely enough, this variation is detected because cells are not perfectly synchronized with 

respect to these fluctuations.  It is precisely the systems level organization of variable elements into a 

feedback loop that allows for intrinsic heterogeneity, or plasticity between states.  In other words, 

though states appear to emerge in a random manner from a group of nearly equivalent cells, which 

states emerge is deterministic, dependent on the identity of the enhancers and developmental 

regulators prone to variation and wired together at that point in developmental time.  Therefore, the 

amplification of inherent fluctuations by a gene regulatory network provides a mechanism by which 

stereotyped states can emerge from otherwise equivalent cells in the absence of external information.  

The organization of fluctuations by the gene regulatory network also confers robustness on 

development, as it leads to particular states that can transition into each other such as observed here.  
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The formation of new states through a feedback loop for variation could represent a recurring motif in 

development.  Future studies will be necessary to determine if this view applies more broadly to 

mammalian development.  Nevertheless, the results presented here suggest that naturally arising cell-

to-cell variation, often described as stochastic fluctuation, is in fact coherently organized biology. 
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Figure 1:  ESC fluctuate between cell states that vary in expression of developmental regulators 

A.  ESC labeled by heterozygous insertion of fluorophore tags at the endogenous loci for Nanog and 

Sox2 (GFP-Nanog, Sox2-mCherry) were separated into three distinct cell states by flow cytometric 

sorting and cultured identically.  The population is shown over time. 

B.  A unique barcode was introduced into each ESC (Bhang et al., 2015).  Single ESCs from States 1 and 2, 

respectively, were isolated and cultured.  State distribution and sequencing of the barcode region (red 

highlight) are shown.  

C.  Gene expression changes between ESC states for protein coding genes, shown as average of 

expected counts versus fold change between states (MA plots).  Highlighted in red are genes with 

significantly differential expression between all three states.  Nanog, Sox2, and Pou5f1 (Oct4) are 

indicated. 

D.  Coefficient of variation (CV)-mean plot of protein-coding gene expression across three states.  

Highlighted in red are genes with differential expression between all three states; in peach are genes 

with differential expression between any two states.  Nanog, Sox2, and Pou5f1 (Oct4) are indicated. 

E.  Heatmap of normalized expression across ESC states for selected genes.  Three biological replicates 

(A-C) are shown. 

F. Top gene ontology (GO) analysis terms for genes differentially expressed between all three states.  

FDR-q values for each ontology term are shown.  See also Table 1.  

G.  Heatmap of gene expression distance between ESC States 1-3 compared to expression profiles of 

embryonic development (E4.5 pre-epiblasts, E4.5 epiblasts, and E5.5 epiblasts, from (Boroviak et al., 

2015)).  Highlighted are State 1 vs E4.5 epiblasts (small dashes) and States 2-3 versus E5.5 epiblasts 

(large dashes).  
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Figure 2: A subset of Super-Enhancers (SEs) varies in activity between ESC states  

A.  Proportion of each enhancer type showing differential activity between ESC states. 

B.  CV-mean plot for SE activity across three states for H3K27Ac SEs.  Highlighted in red are enhancers 

with significantly differential activity between all three states.  In peach are SEs with differential activity 

between any two states; in gray are other SEs.  Enhancers associated with Nanog, Sox2 and Pou5f1 are 

labelled. 

C.  Reporters (promoter-CFP-IRES-neo-polyA) were inserted at enhancers controlling Nanog and Pou5f1 

in separate cell lines (which were also labelled at Nanog and Sox2 loci, see Fig. S1A).  Relative reporter 

activity (CFP) in States 1-3 is shown. 

D.  Box-whisker plots for Nanog & Pou5f1 enhancer activity (CFP fluorescence intensity) is plotted within 

the same narrow windows ("bins") of Nanog expression ranging from Nanog-low to Nanog-high cell 

states.  Whiskers extend from 25th to 75th percentile. 

E.  Left: Cumulative Distribution Function (CDF) plot of gene expression variation across states (CV) for 

genes regulated by differentially active OSN-SEs (da-SE) and genes regulated by all other OSN-SEs (other-

SE).  Right:  Average gene expression across three states for da-SE and other-SE regulated genes. 

F.  Top: Distribution of single cell variation test statistic () scores for 7,259 genes across 2,299 well-

sampled cells measured by scRNA-seq.  Nanog, Sox2, and Esrrb are indicated, as are Pou5f1, Smad1, and 

Tcf3.  Bottom: CDF of single cell variation test statistic ( score) for: all genes, da-SE regulated genes, 

and other-SE regulated genes.  Kruskal-Wallis p-values are shown.  See Methods for further details. 

G.  ChIP-seq binding (reads per million mapped per base) at da-SEs.  Each enhancer was extended to a 

minimum of 1 kb, all enhancers were scaled to 1000 bins, and reads normalized to input.  Shown are the 

middle 400 bins of binding for the indicated genes.  Top:  Variable factor binding at da-SE and bottom: 

Less variable (stable) factor binding at da-SE. 
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Figure 3: Variable microRNAs increase cell-to-cell variation of their target genes  

A.  Changes between ESC states for miRNAs, determined by small-RNA sequencing of sorted States 1-3.  

Expected counts versus fold change between states is plotted (MA plot).  Highlighted in red are miRNAs 

with differential expression between all three states (DE-miRNA).  miR-182 and miR-708 are indicated.  

B.  CV-mean plot for miRNA expression across states.  DE-miRNA are marked in red.  miR-182 and miR-

708 are indicated.  

C.  Proportion of miRNA controlled by differentially active vs. other enhancers for both DE-miRNA and all 

other miRNAs.  miRNA from genes not under enhancer control are omitted from analysis.  

Hypergeometric p-value for enrichment is shown. 

D.  Top: CDF for the ratio of gene expression in DGCR8-/- ESC vs WT ESC for all genes or genes targeted by 

≥ 2 DE-miRNAs. Bottom: CDF for the ratio of gene expression in Ago2-inducible ESC competent for 

miRNA activity (1 g/mL doxycyline) versus no miRNA activity (0 g/mL doxycycline for 48 hours). 

Expression for all genes was measured by bulk RNA-seq.  Kolmogorov-Smirnov (K-S) p-value is shown. 

E.  CDF of variation score across single cells ( score) for all genes (gray), genes targeted by ≥2 DE-

miRNAs (peach), genes targeted by miR-182 in WT ESC (red), and genes targeted by miR-182 in 

Mir182indel ESC (violet).  Kruskal-Wallis p-values are shown. 
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Figure 4: Coordination of variation across gene neighborhoods bound by variable miRNAs 

A.  Nanog interaction neighborhood, constructed by analyzing covariation across single cells (see 

Methods).  Thickness of Nanog connection represents number of mutual neighbors between Nanog and 

that gene, red shading indicates degree of Argonaute binding (miRNA activity). 

B.  Number of pluripotency neighborhoods (out of 55) significantly enriched for binding by each miRNA.  

DE-miRNAs are marked in red. 

C.  Variation score across single cells () for variable pluripotency genes Nanog, Sox2, and Esrrb and less 

variable (stable) pluripotency genes Pou5f1, Smad1, and Tcf3 in WT vs. Mir182indel ESCs.   

D.  Variation scores () for all non-empty neighborhoods in WT and Mir182indel ESC.  The variation score 

of the 'node' gene is shown at left, followed by the scores for all neighbors in the final neighborhood 

(arranged from highest variation score at left to lowest at right).  Neighborhoods are plotted top to 

bottom by decreasing average variation of all neighbors for WT and Mir182indel ESC separately.  

E.  Overlaid histogram of variation () scores in WT cells and Mir182indel cells for 6,107 genes well-

sampled in both WT and Mir182indel cells. 
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Figure 5: Variation in microRNA can drive variation in ESC states 

A.  Theoretical cell state distributions predicted by a mathematical model involving Nanog, Sox2, and 

miRNA in which cell-to-cell variation is added only in miRNA levels (see Theory Note). “Shared miRNA” 
refers to a miRNA that regulates both Nanog & Sox2. 

B.  Cell state distributions in Ago2-inducible ESC (see Fig. 3D above) labelled at Nanog and Sox2 loci by 

fluorophores (Fig. S1).  Cells are cultured for 48 hours in the indicated concentrations of doxycycline 

(Ago2-miRNA).  Variation in Nanog and the fraction of cells outside of State 1 are shown.  See also Fig. 

S6A. 

C.  Cell state distributions in WT, Mir182indel and Mir708indel ESC labelled at Nanog and Sox2 loci by 

fluorophores (Fig. S1).  Variation of Nanog and the fraction of cells outside of State 1 are shown.  See 

also Fig. S6B. 

D.  Reintroduction of miR-182 into Mir182indel cells (from Fig. 5C above).  Mir182indel cells were 

transfected with a bi-directional expression plasmid expressing pri-miR-182 tightly coupled to Cerulean 

Fluorescent Protein (CFP) or with a plasmid containing CFP alone ('empty' control).  Cells were isolated 

by flow cytometric sorting in increasing 'bins' of CFP expression and the levels of miR-182 and miR-293 

quantified and plotted relative to WT ESC.   

E.  Box-and-whisker plots for Nanog & Sox2 levels (GFP and mCherry fluorescence) in Mir182indel cells 

plotted by CFP bins (miR-182 levels) as in part D.  Note miR-182 levels do not change in 'empty' 

transfected cells (data not shown).  See also Fig. S6C. 

F.  State 1 WT and Mir182indel ESCs isolated by flow cytometric sorting and cultured.  The fraction of cells 

outside State 1 is shown.  See also Fig. S6D. 
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Figure 6: Nanog and Sox2 capture a large portion of ESC state diversity 

A.  PHATE dimensionality reduction applied to scRNA-seq data from both WT and Mir182indel ESC 

together (see Methods).   Cells are plotted according to their low dimensional representations (PHATE1 

vs PHATE2).  Each cell is colored for relative enrichment by gene expression signatures of States 1-3 for 

WT ESC (blue, top row) and Mir182indel ESC (red, middle row) or both ESC types together (bottom row).  

B.  Model for variation feedback loop in ESC leading to state transitions. 
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State 1 State 2 State 3 

Response to leukemia inhibitory 

factor (p=1.99*10-7) 

Epithelium development 

(p=3.60*10-5) 

Tube morphogenesis 

(p=5.56*10-14) 

Cellular response to cytokine 

stimulus (p=1.55*10-4) 

Ion transport (p=2.10*10-5) Animal organ development 

(p=2.03*10-11) 

Cell adhesion (p=9.24*10-4) Cell fate determination 

(p=5.18*10-4) 

Regulation of vasculature 

development (p=3.64*10-14) 

Cellular developmental process 

(p=2.31*10-4) 

Trans-synaptic signaling by 

neuropeptide (p=9.67*10-4) 

Regulation of angiogenesis 

(p=2.18*10-13) 

Stem cell population 

maintenance (p=9.79*10-4) 

Neuron recognition 

(p=9.98*10-4) 

Regulation of cartilage 

development (p=9.59*10-9) 

Table 1: Selected gene ontology (GO) terms for processes enriched within ESC states 

GO terms are shown for each state along with p values. 
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Methods 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell lines 

Unless otherwise noted, ESC lines used in this study were derived from V6.5 mouse Embryonic Stem 

Cells (R. Jaenisch laboratory, Whitehead Institute MIT) and were cultured feeder free as described 

below.  TTFHAgo2 doxycycline inducible Ago2 ESC were described in (Zamudio et al., 2014).  In brief, 

these cells were generated from AB2.2 ESC where the endogenous copies of Ago1/2/3/4 were deleted 

(described in (Su et al., 2009)) and human Ago2 was re-expressed under tight doxycycline inducible 

control.  DGCR8-/- ESC are derived from V6.5 ESC (described in (Wang et al., 2007)).  Mir182indel and 

Mir708indel ESC were derived from V6.5 ESC (this study) by CRISPR-Cas9 targeting of the hairpin loop for 

these genes (see Method Details below).  All of these cell lines were also labelled at Nanog and Sox2 loci 

(this study, see "Fluorophore tagging of pluripotency genes" in Method Details).  

Cell line maintenance 

Cells were maintained in serum + LIF culture medium on 10cm tissue culture plates pre-coated with 0.2% 

gelatin in phosphate-buffered saline (PBS). Plates were maintained in a humidified 5% CO2 incubator at 

37 degrees C. Culture medium consisted of: 415 mL DMEM, 5 mL 1M HEPES, 5 mL 0.1 mM non-essential 

amino acids, 5 mL 0.1 mM P/S antibiotics, 5 mL 0.1 mM L-glutamine, 4 μL 14.3 M beta-mercaptoethanol, 

82.5 mL HyClone fetal bovine serum (FBS), and 55 L 1000U/mL leukemia inhibitory factor (LIF).  All 

components were passed through a sterile filter prior to addition of serum + LIF, which were added after 

filtration.  Cells were passaged at a minimum of every two days, as follows. First, they were washed with 

HEPES-buffered saline (HBS); 0.5 mL of HBS was used per 1 mL of culture medium. Next, ESC were 

detached from the plate by trypsinization. 0.05-0.1 mL of 0.25% trypsin was used per 1 mL of medium 

used to maintain the cells, and trypsin was inactivated using complete culture medium after 1-2 minutes 

of incubation. Detached cells were spun in a centrifuge at 233 rcf for 5 minutes, and the cell pellet was 

resuspended in culture medium. Cells were then counted using Trypan Blue staining with a 

hemocytometer and re-plated at a density of 25,000-50,000 cells / mL medium or analyzed as described 

below.  
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METHOD DETAILS 

Theory Note – Generation of Model in Fig. 5A 

Our model addresses the role of microRNAs (miRNAs) in regulating the heterogeneity of the cell states 

distinguished by the expression levels of Sox2 and Nanog. We consider a system formed by two targets, 𝑅1 and 𝑅2, and two distinct miRNA pools, denoted respectively by I and J. Pool I only contains miRNA 

species 𝑆𝑖𝐼(i indexing species in pool I, with 𝑖 = 1, . . . , 𝑁) that target 𝑅1specifically, while each miRNA 

species 𝑆𝑗𝐽 from pool J (indexed by 𝑗 = 1, . . . , 𝑀) can bind both 𝑅1and 𝑅2. In such a scheme, 𝑅1and 𝑅2represent respectively Nanog and Sox2. 

 

We assume that target and miRNA abundances vary in time following: 

1) transcription events,  

2) degradation events, and  

3) molecular titration events due to miRNA-target interactions, which after target repression, lead 

to miRNA degradation with probability 𝛼.  

 

Each of these processes is inherently stochastic (meaning subject to inherent fluctuations in time) and 

occurs with a certain probability per unit time (rate). We denote by 𝑘𝑋 (respectively, 𝑔𝑋) the synthesis 

rate (respectively, the degradation rate) of species X, while 𝑔𝑖,1𝐼 , 𝑔𝑗,1𝐽
and 𝑔𝑗,2𝐽

represent the different 

miRNA-target binding rates (for instance, 𝑔𝑖,1𝐼 stands for the binding rate between target 𝑅1 and miRNA 

species i from pool I). In summary, our model includes the following reactions: 

 ⊘ →  𝑅1   (rate 𝑘𝑅1) ;    (1) ⊘ →  𝑅2   (rate 𝑘𝑅2) ;    (2) 𝑅1  → ⊘   (rate 𝑔𝑅1) ;    (3) 𝑅2  → ⊘   (rate 𝑔𝑅2) ;    (4) ⊘ →  𝑆𝑖𝐼   (rate 𝑘𝑆𝑖𝐼  , 𝑖 = 1, . . . , 𝑁)  ;   (5) ⊘ →  𝑆𝑗𝐽   (rate 𝑘𝑆𝑗𝐽  , 𝑗 = 1, . . . , 𝑀)  ;   (6) 𝑆𝑖𝐼  → ⊘   (rate 𝑔𝑆𝑖𝐼 , 𝑖 = 1, . . . , 𝑁)  ;    (7) 𝑆𝑗𝐽  → ⊘   (rate 𝑔𝑆𝑗𝐽  , 𝑗 = 1, . . . , 𝑀) ;   (8) 𝑅1 + 𝑆𝑖𝐼  → ⊘   (rate 𝛼 𝑔𝑖,1𝐼 , 𝑖 = 1, . . . , 𝑁)  ;   (9) 𝑅1 + 𝑆𝑗𝐽  → ⊘   (rate 𝛼 𝑔𝑗,1𝐽 , 𝑗 = 1, . . . , 𝑀) ;   (10) 𝑅2 + 𝑆𝑗𝐽  → ⊘   (rate 𝛼 𝑔𝑗,2 𝐽 , 𝑗 = 1, . . . , 𝑀) ;   (11) 𝑅1 + 𝑆𝑖𝐼  →  𝑆𝑖𝐼   (rate (1 − 𝛼) 𝑔𝑖,1𝐼 , 𝑖 = 1, . . . , 𝑁)  ;  (12) 𝑅1 + 𝑆𝑗𝐽  →  𝑆𝑗𝐽   (rate (1 − 𝛼) 𝑔𝑗,1𝐽 , 𝑗 = 1, . . . , 𝑀) ;  (13) 𝑅2 + 𝑆𝑗𝐽  →  𝑆𝑗𝐽   (rate (1 − 𝛼) 𝑔𝑗,2 𝐽 , 𝑗 = 1, . . . , 𝑀) .  (14) 
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Assuming the system to be well mixed, for any fixed choice of these rates and of the parameter 𝛼, then 

target and miRNA abundances will change over time by fluctuating randomly around mean values 

described by the mass-action kinetic equations: 

 
𝑑𝑑𝑡  [𝑅1] =  𝑘𝑅1 − 𝑔𝑅1[𝑅1]  −  [𝑅1](∑ 𝑔𝑖,1𝐼 [𝑆𝑖𝐼]𝑁𝑖=1  + ∑ 𝑔𝑗,1𝐽 [𝑆𝑗𝐽]𝑀𝑗=1 )   (15) 

 
𝑑𝑑𝑡 [𝑅2] =  𝑘𝑅2 − 𝑔𝑅2  [𝑅2]  −  [𝑅2] ∑ 𝑔𝑗,2𝐽 [𝑆𝑗𝐽]𝑀𝑗=1      (16) 

 
𝑑𝑑𝑡  [𝑆𝑖𝐼] =  𝑘𝑆𝑖𝐼 − 𝑔𝑆𝑖𝐼  [𝑆𝑖𝐼]  − 𝛼 𝑔𝑖,1𝐼  [𝑆𝑖𝐼][𝑅1]       (17) 

 
𝑑𝑑𝑡  [𝑆𝑗𝐽] =  𝑘𝑆𝑗𝐽 − 𝑔𝑆𝑗𝐽  [𝑆𝑗𝐽]  − 𝛼 (𝑔𝑗,1𝐽  [𝑅1] + 𝑔𝑗,2𝐽  [𝑅2]) [𝑆𝑗𝐽]     (18) 

where [𝑋] denotes the abundance of species X. At stationarity, molecular populations will fluctuate 

randomly around the steady state values obtained by setting time derivatives in (15)-(18) to zero and 

solving for [𝑅1], [𝑅2], [𝑆𝑖𝐼] and [𝑆𝑗𝐽]. Such fluctuations can be described as intrinsic variability and arise 

from the inherent randomness of molecular events at given (fixed) rates.  

The above setting describes how molecular levels change over time in a single cellular sample 

characterized by the given kinetic rates. Reaction networks like (1)-(14) can be simulated via the Gillespie 

algorithm (Gillespie, 1976), a broadly used Monte Carlo scheme that exploits the well-mixing assumption 

to conveniently schedule processes and update molecular populations over time. The Gillespie algorithm 

has been already applied for the analysis of miRNA-target interactions (see (Bosia et al., 2013; Martirosyan 

et al., 2016; Noorbakhsh et al., 2013)) and we have utilized it for studying this model in silico. 

Besides the inherent variability due to the probabilistic nature of synthesis, degradation and interaction 

events, molecular levels can fluctuate cell-to-cell due to heterogeneities in kinetic rates. Such fluctuations 

can be termed extrinsic variability. In particular, when one considers a population of cells, the fluctuations 

of target levels at stationarity will generically consist of two components: one due to the intrinsic 

randomness of molecular events within each cells and one due to the extrinsic variability of kinetic 

parameters across cells. The total variance of molecular levels will therefore be given by 𝜎𝑡𝑜𝑡𝑎𝑙2 = 𝜎𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐2 + 𝜎𝑒𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐2  .     (19) 

Extrinsic variability is crucial for modeling ensembles of cells. In practice, this can be achieved by 

simulating a large number of systems of the form (1)-(14), each characterized by different values for the 

kinetic rates.  

To focus specifically on the contribution of miRNAs to the establishment of cell state heterogeneity, we 

have considered only one source of extrinsic variability, namely that affecting miRNA transcription rates. 

In other terms, different cells were assumed to share all kinetic rates except for miRNA transcription rates, 

which were taken to be different across different cells. Because of the threshold-like responses induced 

in targets upon increasing miRNA levels (Mukherji et al., 2011), targets can be extremely sensitive to 

miRNA abundances close to the equimolarity condition. This implies that when miRNA transcription rates 

for different cells are sampled around this threshold due to cell-to-cell heterogeneity, one will typically 

find the target to be expressed in some cells (at different levels) and repressed in others. Such a setup has 

been shown to robustly generate bimodal expression profiles even in presence of weak miRNA-RNA 

interactions (Del Giudice et al., 2018).  
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We have used the Gillespie algorithm to simulate an ensemble of miRNA-target networks described by 

(1)-(14), with 𝑁 = 𝑀 = 2 miRNA species in each pool. For each network, we fixed all kinetic parameters 

to representative values ensuring realistic molecular abundances and weak miRNA-target coupling (see 

Theory Note Table), except for miRNA transcription rates, which were randomly and independently 

generated for every system in the ensemble, thereby providing extrinsic fluctuations. Each network 

constructed in this way corresponds in practice to a cellular sample. We assumed a distribution of miRNA 

transcription rates of the form 

  𝑝(𝑘)  =  𝑊 𝛿(𝑘) + (1 − 𝑊) 𝑇𝐺𝑘≥0(𝑘, 𝜎𝑘2) ,     (20) 

where 𝑊 is a numerical parameter (0 ≤ 𝑊 ≤ 1), 𝛿(𝑘) denotes the Dirac delta distribution, while 𝑇𝐺𝑘≥0(𝑘, 𝜎𝑘) stands for the truncated Gaussian distribution defined for 𝑘 ≥ 0, with mean 𝑘 and standard 

deviation 𝜎𝑘. In other terms, miRNA transcription rates were taken to be nil with probability 𝑊, while 

they were sampled from the truncated Gaussian distribution with probability 1 − 𝑊. Ultimately, the 

values that 𝑊, 𝑘 and 𝜎𝑘 take for different miRNA species define the extrinsic variability. Such values are 

detailed in the Table below, along with those of the remaining parameters. 

We have simulated 10,000 such WT networks (each representing that of a distinct cell), probing for each 

system the expression levels of the targets at a time well into the stationary regime. This yields, for each 

sample, a point in the plane spanned by the values of 𝑅1(Nanog) and 𝑅2 (Sox2). Networks depleted of a 

single microRNA from the shared pool (KO or "indel" network) were simulated by simply silencing the 

kinetic rates of the knockout process (indicated by an asterisk in the Theory Note Table). These simulations 

lead to the results displayed the Theory Note Figure below. 
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Parameter Symbol [units] Value 

Number of miRNA species in pools I 

and J 

N, M 2, 2 

Target transcription rates 𝑘𝑅1 , 𝑘𝑅2 [molecules/sec] 0.3, 1 

Target degradation rates 𝑔𝑅1 , 𝑔𝑅2  [1/sec] 0.0009, 0.003 

miRNA degradation rates 𝑔𝑆𝑖𝐼  , 𝑔𝑆𝑗𝐽  [1/sec] 0.0002 (i = 1, 2), 

0.0002 (j = 1, 2) 

miRNA-target association rates 𝑔𝑖,1𝐼 [1/molecules⋅sec] 0.000001 (i = 1, 2) 

miRNA-target association rates 𝑔1,1𝐽  ,  𝑔1,2𝐽  [1/molecules⋅sec] 0.00001, 

0.000003 

miRNA-target association rates 𝑔2,1𝐽  ,  𝑔2,2𝐽  [1/molecules⋅sec] 0.00005, 

0.00008 

Stoichiometricity ratio 𝛼  (adimensional) 0.5 

Prob(𝑘 = 0)for miRNAs in pool I 𝑊𝑖𝐼 (adimensional) 0.1 (i = 1, 2) 

Prob(𝑘 = 0)for miRNAs in pool J 𝑊𝑗𝐽
 (adimensional) 0.3 (j = 1), 

0.2 (j = 2) 

Truncated Gaussians: means 𝑘𝑆𝑖𝐼, 𝑘𝑆𝑗𝐽  [molecules/sec] -0.1 (i = 1) 

-0.4 (i = 2) 

-0.4 (j = 1) 

0.05 (j = 2) 

Truncated Gaussians: standard 

deviations 

𝜎𝑘𝑆𝑖𝐼 , 𝜎𝑘𝑆𝑗𝐽  [molecules/sec] 0.3 (i = 1) 

0.3 (i = 2) 

0.8 (j = 1) 

0.11 (j = 2) 

Theory Note Table: Values of kinetic parameters used in numerical simulations. The miRNAs that are 

knocked out in the two KO cases shown in Theory Note Figure 1 are denoted as  j = 1 and  j = 2, 

respectively. 
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Theory Note Figure: Joint distributions of the expression levels of the two targets (Nanog and Sox2) 

obtained for the WT network (all miRNAs expressed; leftmost panels), for the two KO cases 

corresponding to loss of miRNAs from pool J , targeting both Nanog and Sox2 (middle panels), and for 

the case in which all miRNAs are knocked out (rightmost panels), via simulations using the Gillespie 

algorithm for an ensemble of 10,000 cells. 

A. Contour plots. 

B.  Corresponding 3d histograms and density plots, z-axis is number of cells. 

C.  Probability density of the expression levels of Nanog. 
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Fluorophore tagging of pluripotency genes 

Cell lines were derived from V6.5 ESCs by inserting fluorophore tags at the endogenous loci of 

pluripotency genes. These cell lines are: Nanog-GFP/Sox2-mCherry, Nanog-GFP/Esrrb-E2-Crimson, 

Nanog-GFP/Eif2s2-mCherry, Nanog-GFP/Hsp90ab1-mCherry.  All tagging was accomplished via CRISPR-

Cas9 induced homology directed repair, using a guide RNA targeting immediately upstream of the start 

codon (Nanog) or downstream of the stop codon (Sox2, Esrrb, Eif2s2, Hsp90ab1) and a repair template 

encoding both the fluorescent marker and drug resistance separated by post-translational cleavage 

sequences P2A or T2A (See Fig. S1) following the method of (Stewart-Ornstein and Lahav, 2016). For 

each targeted gene, the guide RNA sequence (Supplemental Item 2) was cloned into the PX330 plasmid 

(Addgene #42230), which expresses S. pyogenes Cas9 (SpCas9) nuclease using BbsI digestion. The 

modified PX330 plasmid was then introduced into cells by cationic lipid transfection (Lipofectamine 

2000, Invitrogen) along with a homology directed repair construct containing the relevant fluorophore, 

T2A/P2A, and drug resistance (see Fig. S1). Transfected cells were selected by drug resistance; PCR 

primers flanking the ends of the homology directing regions were used to confirm insertion of the repair 

construct at the endogenous locus (Supplemental Item 2). 

Flow cytometry and fluorescence activated cell sorting (FACS) 

ESCs were analyzed on either LSRII or LSRFortessa analyzers (Becton Dickinson) with FACSDiva v8.0 

acquisition software. In general, cells were 50-90% confluent at time of analysis. FCS files were 

exported and analyzed with FlowJo V9.9 software. In brief, samples were gated first based on FSC-A 

vs. SSC-A scatter profiles for live cells and then based on FSC-W vs. FSC-H scatter profiles to eliminate 

aggregates.  Cells singly transfected with transient fluorophore expression constructs or singly 

tagged with either GFP or mCherry were used as fluorescence compensation controls.  Channel ga ins 

were adjusted based on native V6.5 ESC and adjusted as appropriate.  See also “Bidirectional 
reporters for miRNA activity” below for additional details regarding analysis of data depicted in Fig 

S4C. 

Sorting of Nanog-GFP/Sox2-mCherry ESCs into states (as defined by GFP/mCherry protein levels) was 

done using a FACSARIA cell sorter (Becton Dickinson). States were sorted into fresh culture medium in 5 

mL collection tubes, then immediately spun at 1,000 rpm for 5 minutes and resuspended for either 

plating or RNA isolation (See also “ESC culture” and “RNA-sequencing sample preparation").  Single-cell 

sorting was done on the same FACSARIA machine. Single cells were sorted into 200 L fresh culture 

medium in one well of a 96-well flat bottom plate (VWR Catalog #29442-054). 

Molecular Barcoding of ESC 

ESC were barcoded using the ClonTracer library (Addgene #67267) described previously (Bhang et al., 

2015).  In brief, lentivirally encoded barcodes were transduced into ESC fluorophore tagged at the 

Nanog and Sox2 locus (GFP-Nanog, Sox2-mCerulean3) using spinoculation and selected by FACS sorting 

for RFP expression.  Transduced library cells were cultured together in 10 cm plates (Fig S1) or 

separately as single cell clones in 96-well plates (Fig 1B) for the indicated time periods.  Pooled genomic 

DNA was extracted using Sigma GenElute Mammalian Genomic DNA Prep Kit (Catalog #G1N70) and PCR 

amplified according to the protocol provided by (Bhang et al., 2015) on the Addgene website.  

Amplicons were sequenced by Illumina FlowCell for pools or by Sanger sequencing for single cell clones. 
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RNA-sequencing sample preparation 

After separation by flow cytometric sorting, ≥ 100K cells each from States 1/2/3 or the total unseparated 
ESC population passed through the sorter were placed separately into 750 L TRIzol (Thermo, 

15596026) and total RNA isolated according to the manufacturer's protocol.  Samples were treated with 

DNase I (NEB M0303) and RNA isolated by ethanol precipitation.  Total RNA was analyzed by Agilent 

BioAnalyzer and accepted for sample RIN > 7.0.  RNA-sequencing represents three biological replicates 

isolated by flow-sorting on three separate days.  rRNA-depleted RNA-sequencing libraries (~100 ng 

RNA/sample) were prepared using Kapa RNA HyperPrep Kit with RiboErase (HMR) KK8561 using 11 

rounds of PCR amplification after addition of ERCC spike-in controls at the recommended concentration.  

The final libraries were QC checked by fragment electrophoresis and qPCR for colony forming units prior 

to pooling and loading on an Illumina FlowCell (NextSeq 500, 150 bp PE reads).  Each sample library was 

sequenced to depth of 30-45M reads. 

RNA-sequencing analysis pipeline and data plotting 

RNA-sequencing reads were first trimmed for adaptor sequence using Trimmomatic v0.36 using the 

following command:  

java -jar $dir/trimmomatic-0.36.jar PE -phred33 $file1.fastq $file2.fastq $file1$clip.fastq 

$file1$unpaired.fastq $file2$clip.fastq $file2$unpaired.fastq ILLUMINACLIP:$adap/TruSeq3-PE-

2.fa:2:30:10:4:TRUE SLIDINGWINDOW:4:10 MINLEN:16  

where $file1 and $file2 represent the paired-end read fastq files.  Next, RNA-sequencing reads were 

aligned to the mm10 genome using Gencode M15 transcript annotations 

(www.gencodegenes.org/mouse/release_M15.html) using the comprehensive gene annotation file.  

Genome indices were generated for STAR (v2.4.1d) use as the aligner called by RSEM (v1.2.30) using the 

following command: 

rsem-prepare-reference -p 8 --star --gtf $dir/gencode.vM15.primary_assembly.annotation.gtf 

/home/salilg/rsem_mm10/GRCm38_M15 

RSEM counts were obtained using (for example on library 3680): 

rsem-calculate-expression --forward-prob 0 -p 8 --star --paired-end $dir/3680_1_sequence_clip.fastq 

$dir/3680_2_sequence_clip.fastq /home/salilg/rsem_mm10/GRCm38_M15 

$dir/rsem_GencodeM15/rsem_GencodeM15_3680_output_clip_genes.results 

Which were then combined across all 3 replicates of each state and total population sequencing files by 

(where each .results file is noted by brackets): 

rsem-generate-data-matrix [State 3 rep1] [State 3 rep2] [State 3 rep3] [State 2 rep1] [State 2 rep2] 

[State 2 rep3] [State 1 rep 1] [State 1 rep2] [State 1 rep3] > 

Sox2E12_GencodeM15_CombinedRepsinorder_clip.counts.matrix 

and then inputted into EBseq's multi-test function using default parameters by: 

rsem-run-ebseq $dir/Sox2E12_GencodeM15_CombinedRepsinorder_clip.counts.matrix 3,3,3,3 

$dir/Sox2E12_GencodeM15_Combinedreps_clip_EBseq.results 
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Differentially expressed genes between all States were determined as those with posterior probability of 

differential expression (PPDE) ≥ 0.95 and fitting pattern 14 (1,2,3,3) or pattern 15 (1,2,3,4) as given by 

EBseq's multitest function for 4 distinct conditions (State3, State2, State1, All) over three biological 

replicates of sorting.  Differentially expressed genes between any 2 States were determined as PPDE ≥ 
0.95 and best matching patterns 2-13.  For Figure 1C (MA plots), x-axis represents Log10(mean RSEM 

expected counts across all three States) and is displayed starting at a value of 10 (unless otherwise 

noted, all data analyzed in this study were filtered for RSEM expected counts > 10).  For CV-mean plots, 

coefficient of variation (CV) was determined as: ((standard deviation of RSEM expected counts 

(conditional means) across all three states) / mean of RSEM expected counts averaged across all three 

states) and plotted against mean of RSEM expected counts averaged across all three states.  Scatter 

plots were generated using GraphPad Prism v6.07 and cumulative density plots using ggplot2's 

geom_density() function in R.  Heatmap in Fig. 1E is generated using R's ComplexHeatmap package (Gu 

et al., 2016) using RSEM's raw expected counts for each displayed gene in each state and replicate as 

follows:  z-score = (Log10(expected count) - Log10(mean expected counts across all 9 state samples for 

this gene)) / (population standard deviation for all genes in this heatmap).  For distance heatmaps, we 

compared expression of the top300 protein coding genes in each state that were highest expressed in 

that state to the expression of these same genes in mouse blastocyst (Boroviak et al., 2015; Shahbazi et 

al., 2017) using the manhattan distance method in R (ComplexHeatMap).  We then plotted the distance 

matrix between conditions as a heatmap (Fig. 1G and Fig. S2D). 

Gene Ontology Analysis 

Lists of combined PPDE ≥ 0.95 pattern 14 and pattern 15 genes were inputted into GOrilla (http://cbl-

gorilla.cs.technion.ac.il/) on 1-11-18 to determine ontologies highest represented in this group.  Display 

in Fig. 1 corresponds to reduction of redundant terms.  Fig. S2B displays CV-mean plot for selected gene 

ontologies (GO: 0048646 and 0051726) chosen to represent lineage regulators and cell cycle genes 

respectively of similar set size and expression distribution.  To determine ontology representations of 

each state (Fig S2C), we took the top 300 expressed protein coding genes in each state that were highest 

expressed in that state and analyzed by GOrilla.  Fig. S2C represents z-score of FDR q-value for selected 

ontology terms in each state chosen as representatives of the results.  Selected terms from amongst the 

strongest processes for each state are shown in Table 1. 

Enhancer Activity in ESC States 

In order to ensure compatibility with previous annotations of enhancers in ESC (Dowen et al., 2014; 

Suzuki et al., 2017; Whyte et al., 2013), we aligned our rRNA-depleted RNA-sequencing data to the mm9 

genome using STAR (v2.4.1d): 

STAR --runMode alignReads --runThreadN 8 --genomeDir $dir1 --readFilesIn 

$dir2/3680_1_sequence_clip.fastq $dir2/3680_2_sequence_clip.fastq --twopassMode Basic --

sjdbOverhang 149 --outFileNamePrefix $dir2/3680_STARalignment_050817 --outReadsUnmapped Fastx 

--outSAMtype BAM SortedByCoordinate --outFilterMultimapNmax 20 --outFilterMismatchNmax 999 --

outFilterMismatchNoverLmax 0.1 --alignIntronMin 70 --alignIntronMax 500000 --alignMatesGapMax 

500000 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --outFilterType BySJout 

Counts against enhancer features such as OSN-TE & OSN-SE or H3K27Ac-TE & H3K27Ac- were generated 

by taking enhancer feature annotations defined in mm9 genome coordinates in previous studies [OSN-
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TE and OSN-SE were given by (Whyte et al., 2013) and H3K27Ac-SE and H3K27Ac-TE were given by 

(Suzuki et al., 2017)] as browser extensible data (BED) format files using BEDtools v2.20.1: 

bedtools multicov -D -bams [State 3 rep1 bam from above] [State 3 rep2] [State 3 rep3] [State 2 rep1] 

[State 2 rep2] [State 2 rep3] [State 1 rep 1] [State 1 rep2] [State 1 rep3] [Total rep1] [Total rep2] [Total 

rep3] -bed [enhancer annotation] > counted_[enhancer type].bed 

These counts were then prepared into a matrix file appropriate for EBseq and differential enhancer RNA 

production analysis using EBseq multitest: 

rsem-run-ebseq $dir/counted_[enhancer type].bed 3,3,3,3 $dir/[enhancer type]_mm9_results 

Similar to analysis for protein coding genes, enhancers were noted as differentially expressed between 

all three States for PPDE ≥ 0.95 and pattern 14 or pattern 15 assignment and between two States for 
pattern 2-13 assignment by EBseq.  As noted above for protein coding genes, scatter plots and stacked 

bar graphs (Fig. 2A-B) were made using GraphPad Prism and cumulative density plots (Fig. S2B) using R. 

Enhancer-gene regulation pairs were taken from ChIA-PET analysis (Dowen et al., 2014).  For all 

enhancer annotations, a gene was determined to be regulated by that enhancer if both appeared 

completely within a single interval loop, the boundaries of which were defined by cohesin binding. In the 

case of miRNA genes (Fig. 3C), each was mapped to the nearest super enhancer (H3K27Ac) based on 

distance (1 Mb window) due to the paucity of SE-miRNA gene captured intervals in current ChIA-PET 

datasets. 

Enhancer Reporters 

Reporters of enhancer activity were constructed by cloning mCerulean3 (Addgene #54730) into the 

multiple cloning site of Open Biosystems vector PB533A-2.  This vector contains an internal ribosomal 

entry site (IRES) followed by neomycin resistance followed by SV40 polyA, and this entire fragment 

including the preceding EF-1 promoter was amplified by PCR (Forward 5'-GGGCAGAGCGCACATCG-3' 

and Reverse Primer 5'-CAGACATGATAAGATACATTGATGAGTTTGG-3')  The linear PCR product was then 

gel purified and inserted into enhancers for Nanog, Pou5f1, Esrrb, and Fgf4 using non-homologous end 

joining (NHEJ repair) induced by CRISPR-Cas9 targeting adjacent to the enhancer (see Supplemental Item 

2 for Cas9 guide sequences).  Cells were selected in G418 300 g/mL for 5 days, single cell cloned by 

sorting, and grown for ~10 days.  These clones were then genotyped for proper insertion of the reporter 

by PCR using primers 50-100 bp upstream and downstream from the CRISPR-Cas9 cutsite (Supplemental 

Item 2) and sequencing PCR bands.  We selected clones containing >50 bp residual genomic sequence 

along with full insert sequences (EF-1 promoter-Cerulean-IRES-neo-polyA) at the band consistent with 

insertion size.  Additionally, we chose clones with relatively unperturbed distributions of Nanog vs Sox2 

to indicate cell state.  At several additional enhancer sites aside from those indicated by the sgRNA 

sequences given (Supplemental Item 2), no clones were identified with intact cell state distributions or 

with insertions containing intact sequences and these were not included in our study (data not shown).  

Reporter activity along with cell state distributions was then measured by flow cytometry for Cerulean, 

GFP (Nanog), and mCherry (Sox2) using singly labelled cells as compensation controls on a Beckton-

Dickinson LSR Fortessa instrument using 405, 488, and 561 laser lines.  For analysis, using FlowJo v9.9, 

cells were gated on live singlets by FSC-A/SSC-A/FSC-W/FSC-H, and were either further gated on States 
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(GFP vs mCherry, Fig. 2C) or the data for all 3 fluorophores exported as tables and plotted using plot.ly 

for Python (Fig. 2D).   

Metagene Plots 

Metagene binding plots (Fig. 2G) were generated by analyzing ChIP-seq binding profiles of Nanog, Sox2, 

Esrrb, Pou5f1, Smad1, and Tcf3 in embryonic stem cells and comparing them to input.  Files utilized 

were as follows: SRR713342 (Nanog), SRR713341 (Sox2), SRR001992 (Esrrb), SRR713340 (Pou5f1) 

normalized to input SRR713343 and SRR002020 (Smad1), SRR015155 (Tcf3) normalized to input 

SRR058997.  These data derive from (Hnisz et al., 2013; Whyte et al., 2013) and were downloaded from 

the Gene Expression Omnibus and mapped to the mm9 genome using bowtie as described (Suzuki et al., 

2017).  ".bam" files were loaded into the R package metagene (Beauparlant CJ, 2019) and tested against 

OSN-SE regions given by (Dowen et al., 2014) using the command metagene$new(regions = regionOSN, 

bam_files = bam_file_vector, padding_size = 500) which extends each enhancer region 500 bp on either 

side.  Binding in these regions was then given in 1000 bins by using $produce_table(design=design, 

normalization = 'RPM', bin_count=1000) and the middle 400 bins plotted as shown. 

Single cell RNA-sequencing and gene neighborhood construction 

Single cell RNA-sequencing (scRNA-seq) was performed by the Koch Institute Nanowell Cytometry Core 

using SeqWell (Gierahn et al., 2017) technology.  In brief, single cell suspensions of fluorophore tagged 

V6.5 ESC (cultured in serum + LIF) were made by trypsinization followed by serial passage through 50 

micron cell strainer meshes.  Approximately 10,000 cells were loaded onto a SeqWell array, lysed, and 

prepared as single cell cDNA libraries as described (Gierahn et al., 2017).  Libraries were sequenced 

using a NextSeq 500 and aligned to the mm10 genome using the SeqWell analysis pipeline generated by 

the C. Love Lab at MIT.  The entire process was repeated using a second preparation of ESC on a 

different day (and different array/sequencing run) to generate two data tables representing reads per 

cell across mm10 annotated transcripts (Gencode M15).  These two tables were merged together and 

analyzed.  To ensure robust inferred neighborhoods based on correlation, cells with fewer than 5,000 

uniquely captured transcripts were discarded from analysis yielding 2,299 cells remaining.  We then 

restricted our analysis to the best sampled genes, keeping those with a total of >500 counts across all 

remaining cells OR with >4 counts in any one cell to account for rare cells with high expression of an 

individual transcript.  Additionally, analysis comparing WT ESC and Mir182indel ESC are restricted to 6,107 

genes captured by these criteria in both cell types.  Data tables were then processed by total count 

normalization (Klein et al., 2015) prior to neighborhood analysis.  Raw fastq files, count tables and 

merged count tables, and normalized tables are provided. 

To construct interaction neighborhoods, we utilized a topology based method similar to (Klein et al., 

2015) reasoning similarly to these authors that such a method was most likely to minimize artifacts from 

technical sampling noise in scRNA-seq.  This method is based originally on the work of (Li and Horvath, 

2007).  In brief, a node gene of interest is selected (G0 gene).  The 50 most correlated (Pearson r 

correlation coefficient) genes with this node are then selected (G1 set), and then the 50 most correlated 

with each of these G1 genes is selected (50 G2 sets for every G1 set).  Thus an initial network is created 

with 2550 directed edges (G0->G1 or G1- >G2), many of which represent mutual relationships between 

genes (e.g. two distinct G1 genes can be in each other’s G2 sets).  We then iteratively trim the network by 

removing any genes with < 10 incoming edges (from G0 or G1 genes) including removing any outgoing 

edges for removed G1 genes until we are left with a final network that must include G0 and in which all 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2019. ; https://doi.org/10.1101/668145doi: bioRxiv preprint 

https://doi.org/10.1101/668145
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

genes have ≥ 10 incoming edges.  We found relatively little difference in final networks when choosing 

30-75 for the initial number of correlated genes in each G1/G2 set or network trimming requiring 5-12 

incoming edges. 

Single Cell Variation () Score Calculation 

We calculated a “variability” score to describe the variation in the expression of a gene across a 

population of cells, based on a test statistic described in (Klein et al., 2015). For any given mean 

expression level, this test statistic weights genes whose coefficient of variation is significantly larger than 

a Poisson random variable with the same mean. The test statistic, , is:  

 

𝑣 =  𝐶𝑉�̂�2(1 + 𝐶𝑉𝑀2) (1 + 𝐶𝑉1𝑁2)𝐸[�̂�] + 𝐶𝑉1𝑁2
 

where �̂� is normalized read counts (total count normalization), M is total number of reads and N is total 

mRNA content. The additive constant noise 𝐶𝑉1𝑁2 weights against genes whose variation in expression is 

largely due to variation in differences in cell size.   In this study, we use 𝐶𝑉1𝑁2of 0.25. 

Single Cell State Analysis (PHATE mapping, PCA, Force Directed Graphs) 

Single Cell state representations were made primarily using the PHATE (Moon et al., 2019) and ScanPy 

(Wolf et al., 2018)  packages installed in Python 3.7.  A full script with detailed commands used to 

produce plots in Fig. 6 and S7 is given at: https://bit.ly/2qfUSLQ in /scripts/Seurat_Python2.py.  In brief, 

the combined (WT and Mir182indel), mapped single cell expression tables were normalized and then 

analyzed in PHATE using default parameters to power the PHATE operator.  Cells were pruned by 

removing those with the top 5% of mitochondrial reads, transformed by square root, and the total 

number of counts and percent of mitochondrial reads regressed out using ScanPy prior to applying the 

PHATE operator.  PCA and force directed graphs were generated using built-in ScanPy functions using 

default parameters in analogy to the methods shown in (Paul et al., 2015).  Cells were colored according 

to their Z-score for State 1-3 genes in the following way.  First, the top300 genes uniquely most highly 

expressed in each state (see GO analysis or Heatmap analysis) are defined.  Then, for each gene, a Z-

score for its expression across cells is calculated for each cell.  Next, the Z-scores for all 300 State 1 

genes are summed together for each cell, as are the Z-scores for all 300 State 2 genes and State 3 genes.  

These summed Z-scores are then re-scaled across all cells to the range 0,1 for each state.  Thus, the cell 

with the 'most State 1 character' is given a State1Z-score of 1.0 and that with the least such character is 

given a score of 0.  These scores were then used for red/blue coloration in Figures 6 and S7. 

MiRNA-sequencing and data analysis pipeline 

Total RNA samples were prepared from ESC states identically to RNA-sequencing above for two 

biological replicates isolated by flow cytometric sorting.  Small RNA libraries were then prepared using 

the NEB small RNA-sequencing kit (E7300S) according to the manufacturer's instructions using 13 cycles 

of PCR amplification.  QC assessment was done by electrophoresis and colony forming units prior to 
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loading pooled samples onto an Illumina FlowCell (HiSeq2000, 1 lane for 8 samples, 40 bp SE reads) with 

10-15M reads/sample.  In order to map miRNA reads in the background of the transcriptome and avoid 

issues with forced mapping to an artificial genome, we inserted mature miRNA annotations (miRbase 

v21, www.mirBase.org) into the Gencode M15 main annotation gtf file.  Mature miRNA seeds were 

inserted as distinct transcripts (with supporting exon annotations) with appropriate parent miRNA 

genes, allowing alignment and single step counting of gene and mature miRNA levels.  This combined gtf 

annotation file is available at: https://bit.ly/2qfUSLQ. 

To map small RNA-sequencing, we first generated STAR mapping of small RNA-seq to the transcriptome 

in the background of the mm10 genome using parameters derived from the ENCODE small RNA-seq 

pipeline (for sample 4284 shown as an example): 

STAR --runMode alignReads --runThreadN 8 --genomeDir $genomedir --readFilesIn 

$dir/4284_sequence_clip.fastq --outFileNamePrefix $dir/4284_5_STAR_mm10_042918 --

outReadsUnmapped Fastx --outSAMtype BAM SortedByCoordinate --outFilterMismatchNoverLmax 0.05 

--outFilterMatchNmin 16 --outFilterScoreMinOverLread 0 --outFilterMatchNminOverLread 0 --

alignIntronMax 1 --sjdbGTFfile $genomedir/gencode.vM15.miRBase.gtf --sjdbOverhang 74 --quantMode 

TranscriptomeSAM 

Next, we prepared RSEM reference indexes using our custom gtf file and generated counts using (shown 

for file 4284 for example): 

rsem-calculate-expression --bam --forward-prob 0.5 -p 4 --no-bam-output -calc-pme -seed-length 16 

$dir/4284_5_STAR_mm10_042918Aligned.toTranscriptome.out.bam 

$genomedir/GRCm38_GencodeM15_miRBase $outputdir/4284_5 

In the case of gene level miRNA plots and analysis (Fig. 3A-B), we used EBseq gene level analysis to 

determine differentially expressed miRNA (DE-miRNA) using rsem-run-ebseq similar to protein coding 

genes and enhancer activity above and considering DE-miRNA between all 3 states to be miRNA genes 

with PPDE ≥ 0.95 and consistent with pattern 14 or pattern 15.  In the case of mature miRNAs 
(processed 5p or 3p arms), we utilized our gtf to perform isoform level mapping which specified counts 

for 5p/3p each using: 

rsem-run-ebseq --ngvector $genomedir/GRCm38_GencodeM15_miRBase.ngvec 

$[dir]Sox2E12_sRNAseq_GencodeM15miRBase_isoforms_CombinedRepsinorder.counts.matrix 2,2,2,2 

$[dir]Sox2E12_sRNAseq_GencodeM15miRBase_isoforms_EBseq.results 

Mature miRNAs with the same seed sequence were combined into seed families similar to previous 

analyses (Bosson et al., 2014), and the pooled seed family was called differentially expressed between 

states if ≥ 30% of the total seed pool originated from a differentially expressed mature miRNA 'isoform.'  
These pooled seed miRNA families were used for analyses shown in Figs. 3D-E, 4, S4, S5.  

miRNA target analysis 

Genomic targets of miRNAs were determined primarily based on crosslinking and immunoprecipitation 

(iCLIP) experiments previously described (Bosson et al., 2014).  In brief, this analysis identified 6,816 high 

confidence “clusters” of Argonaute 2 binding through comparison of miRNA bound to TTFHAgo2 cells to 

‘miRNA’ bound to TTAgo2 cells immunoprecipitated with anti-HA antibody.  The list of these clusters 
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with genomic locations and nucleotide sequences is given at https://bit.ly/2qfUSLQ (“miRNA targets” → 

“Ago2clusters.txt”). Note that in the iCLIP technique, stacked 5P sequencing ends indicate the site of 

crosslinking and putative exact location of miRNA binding within each cluster (Bosson et al., 2014). In 

“Ago2clusters.txt,” the notation in the “Stacked 5P end” column is as follows: -_1 indicates no observed 

stacked 5P end; otherwise, position of the stacked 5P end, with respect to the cluster “start” location, is 
given, followed by an underscore and the number of reads at that position. Multiple putative stacked 5P 

ends are separated by semicolons prior to the underscore.  

We assumed that each distinct Ago2 cluster resulted from the binding of one particular miRNA. To 

determine which miRNA gave rise to each cluster, we first made two assumptions: 1) if the cluster had 

stacked 5P end reads, it most likely arose from the activity of a miRNA with the highest affinity target 

site (seed match) immediately upstream of the stacked 5P end location (Bosson et al., 2014) and 2) if the 

cluster did not have a stacked 5P end, it arose from the activity of the highest expressed miRNA with a 

predicted seed match to a target site anywhere in the cluster.  In brief, higher affinity '8-mer' matches 

between mRNA target and miRNA were prioritized over lower affinity '6/7-mer' matches, and higher 

expression miRNAs were prioritized over lower expression miRNAs when no evidence for strong affinity-

based interaction was present.  miRNAs with identical '7-mer' seed region sequence were grouped for 

all analyses.   Commented code for generating miRNA-mRNA assignments is available at 

https://bit.ly/2qfUSLQ (“Code for making biochemical miRNA-target map.py”) as is the resulting miRNA-

target map (“Biochemical miRNA-target map.txt”). Note that the map only predicts targets for the first 

250 miRNAs in “Information about miRNA families.txt.” These are the top 250 expressed miRNAs in the 
Nanog-GFP/Sox2-mCherry ESCs used in this study.  For the analysis in Fig. S4A, we used “TargetScan 
miRNA-target map.txt.” This map was generated by using three tables of data (“Predicted Conserved 
Targets,” “Conserved Family Info,” and “Nonconserved Family Info”) from the TargetScanMouse 
database (v7.1 – http://www.targetscan.org/cgi-bin/targetscan/data_download.cgi?db=mmu_71), and 

also only predicts targets for the top 250 expressed miRNAs in the Nanog-GFP/Sox2-mCherry ESCs.    

MiRNA enrichment in neighborhoods 

Once we had determined an appropriate map of miRNA-mRNA interactions we utilized this for the 

analysis in Figs. 4, S5.  To determine miRNA enrichment within a given gene network neighborhood 

(Network N0), we first listed the total number of binding events for each of the top 250 miRNA seed 

families within all neighbors.  Next, we constructed 10,000 control neighborhoods (N1 set), each of 

which had an equal number of genes to N0, with each N1 control neighborhood also chosen to contain: 

roughly the same average gene expression of the same expression distribution as N0 (choosing the same 

number of genes from the lowest and highest expression quartiles as N0, ensuring the final control 

neighborhood has mean expression within 0.8 * neighborhood mean expression of N0 * 1.2), the same 

number of highly Ago2 bound genes as N0 (genes with >5 clusters of bound Ago2-miRNA), and roughly 

the same number of total miRNA binding events as N0 (within 0.9 * number of Ago2 clusters * 1.2).  

These simulated, control neighborhoods (N1) thus represented a closely matched group to the original 

gene network neighborhood under interrogation.  For each of the top 250 miRNA seed families, we then 

empirically determined the total number of binding events in each N1 control neighborhood. A miRNA 

seed family was enriched in a N0 gene network neighborhood if 500 out of 10,000 N1 control 

neighborhoods or fewer (empirical p-value 0.05) contained a total number of miRNA binding sites ≥ the 
total number observed in the N0 gene network neighborhood.  Given the relative rarity of genes bound 

by > 5 miRNAs and the stringency of these parameters, many N1 control neighborhoods shared 
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considerable overlap with the N0 gene network neighborhood under interrogation, giving us a 

conservative list of enriched miRNAs for each N0.  Next, we defined groups of genes such as pluripotency 

(taken from reference (Klein et al., 2015), 57 total expressed in our scRNA-seq data with non-zero Ago2 

binding in their network), cytoskeleton (GO: 0007010, 192 expressed), or highly variable genes (defined 

by  test-statistic > 3.0 in our scRNA-seq data, 109 genes).  For each of the top 250 miRNA seed families, 

we totaled the number of times it was enriched in these sets of N0 neighborhoods and plotted (Figs. 4B, 

S5E) or analyzed for overlaps in enrichment between sets of N0 neighborhoods (Fig. S5F). 

Bidirectional reporters for miRNA activity 

Activity of individual miRNAs in ESCs was determined using a bidirectional reporter system similar to 

previously reported (Mukherji et al., 2011) (Fig. S4C). In brief, reporters were derived from the Takara 

pTRE-Tight-BI plasmid in which two fluorophores are expressed under tight co-transcriptional control 

under regulation by TET-on promoter system.  The reporters used in this study are derived from (Bosson 

et al., 2014) and contain mCherry fluorescence as a readout of miRNA activity, but are modified to 

contain mCerulean3 (CFP) substituted for YFP due to an observed "tighter" correlation between 

mCerulean3 and mCherry than between YFP or ZsGreen and mCherry (see Fig. S4C).  Additionally, the 

mCherry UTR contains a small insertion to introduce a SpeI restriction site for cloning. MiRNA activity is 

detected via insertion of target sites for the relevant miRNA into the 3’ UTR of mCherry using 

mCerulean3 as a normalization control. We chose to insert three perfect matches to each miRNA, 

separated by spacer sequences (cloned using ClaI and SpeI).  Spacer sequences: Upstream of each 

miRNA site – CTGGGCACCAACTCAACTTC, Downstream of each miRNA site – ACAACTTGGTGTGTTAGTGT.   

Activity of a given miRNA is determined by comparing mCherry expression in cells transiently 

transfected (Lipofectamine, see above) with a control plasmid (i.e., one with no miRNA sites in the 

mCherry 3’ UTR) to mCherry expression in cells transiently transfected with a plasmid with miRNA 3X 

sites in the 3’ UTR (additionally, cells are cotransfected with rtTA plasmid to engage the Tet system).  
This comparison generates the “percent silencing” for a miRNA compared to a no-sites control as 

follows: Percent silencing in a window of CFP expression = 100% * (1 - (mean mCherry fluorescence in 

cells transfected with control plasmid) / (mean mCherry fluorescence in cells transfected with plasmid 

with miRNA 3X sites)).   

Generation of Mirindel ESCs 

MiRNA-deficient cell lines (termed Mirindel) were derived from the Nanog-GFP/Sox2-mCherry ESCs 

generated by fluorophore tagging of V6.5 ESCs (see “Fluorophore tagging of pluripotency genes,” 
above). Specifically, to achieve deficiency for a particular miRNA, CRISPR-Cas9 expressing a guide 

sequence targeted near the hairpin stem-loop was used to introduce an indel in the relevant miRNA 

gene. PX330 plasmid containing the relevant guides was transiently transfected into cells and single cell 

transfectants were isolated by Fluorescence-activated cell sorting (FACS) into individual wells of a 96-

well flat-bottom plate. Guide RNA sequences with overhangs to facilitate BbsI cloning into pX330 are 

listed in Supplemental Item 2; forward and reverse sequences were annealed prior to cloning. PCR 

primers flanking the endogenous miRNA gene locus (Supplemental Item 2) were used to confirm the 

presence of an indel. Reduction in mature miRNA production was confirmed using RNA extraction by 

TriZOL® and RT-qPCR using the Mir-X miRNA First-Strand Synthesis Kit (Catalog number 638315). Mir-X 

primers used for this purpose: 
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miR-182: TTTGGCAATGGTAGAACTCACACCG 

miR-708: CAACTAGACTGTGAGCTTCTAG 

 

Reintroduction of miRNAs into deficient ESCs 

MiRNA re-expression in Mirindel cells was performed as follows.  First, bidirectional reporter constructs 

were generated in which mCherry was replaced with the pri-miRNA sequence.  Primers used to amplify 

pri-miRNA for cloning into pTRE-BI-Tight were AATCGGATCCTCACTGCCTAATGCCCCTAC and 

GCAAAAGCTTAGCCATCTGTCTCTCCCTCA for miR-182 using HindIII and KpnI restriction sites (to replace 

mCherry) and AATCGGATCCTGAATAGCCAATGAAAATGACTTG and 

ATTGAAGCTTCAAGCCCAGGAGTTGAAGAG for miR-708 using HindIII and BamHI restriction sites (also 

replacing mCherry) for cloning into pTRE-Tight-BI.  The use of the bi-directional expression plasmid 

allowed detection of pri-miRNA expression by CFP fluorophore expression.  These vectors were then 

separately transfected into Mirindel cells along with rtTA plasmid and the distribution of cells into States 

was determined by flow cytometry as described above.  RNA extraction by TriZOL® and RT-qPCR using 

the Mir-X miRNA First-Strand Synthesis Kit (Catalog number 638315) was used to confirm restoration of 

the relevant miRNA to at or above WT levels. The relevant miRNA sequence, with U replaced by T, was 

used as the forward primer for Mir-X (sequences above, same as primer used for indel confirmation).  

QUANTIFICATION AND STATISTICAL ANALYSIS 

For all analyses with p values, significance was determined at p <= 0.05. P values are shown on the figure 

wherever they are used. 

The one-sided Kolmogorov-Smirnov (K-S) test statistic was used to assess whether paired cumulative 

distribution functions (CDFs) were significantly different (Figs. 3D, S4A, S4D, and S4E). The one-sided test 

was used because in all cases, a sample distribution was being compared to a reference distribution. The 

Kruskal-Wallis test statistic was used to assess differences between 3+ CDFs (Figs. 2F and 3E). Both the 

K-S and Kruskal-Wallis test statistics were calculated in GraphPad Prism. 

The cumulative hypergeometric statistical test for enrichment was used in Figs. 3C, S3D, and S4A (right). 

This test detects enrichment for a property in a population sample, compared to what would have been 

expected based on the prevalence of that property in the whole population. Four numbers are required: 

population size (N), number of population successes (n), sample size (K), and number of sample 

successes (k). We calculated the test statistic in Python, taking advantage of scipy.stats.hypergeom.pmf 

and summing from k to min(n,K) to calculate the cumulative value. 

Values for N, n, K and k are as follows: 

3C – 315, 62, 32, 11 

S3E – 724, 345, 168, 103 

S4A (right) – 6721, 4403, 926, 653  

Box-whisker plots were generated using plot.ly for Python (Figs. 2D and 5E) or matplotlib (Figs. 5B and 

5C). All box-whisker plots use the middle 50% of the data, so the whiskers extend from the 25th to the 
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75th percentile, the middle line is drawn at the 50th percentile, and the lines of the boxes are drawn at 

the 37.5th and 62.5th percentiles.  

DATA AND SOFTWARE AVAILABILITY 

RNA-sequencing and small-RNA sequencing data are in the process of submission to the Gene 

Expression Omnibus.  All data and scripts used in this study are publicly available at 

https://bit.ly/2qfUSLQ.  We are committed to providing ready access to all materials and data 

used in this study. 
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Supplemental Items  

1. (PDF) Supplemental Figures and Legends 

2. (Excel Table) Primers for CRISPR-Cas9 targeting and genotyping; related to Figures 1, 2, 5, S3, 

and S5 

3. (Excel Table) Gene expression in states; related to Figure 1 

4. (Excel Table) miRNA expression in states; related to Figure 3 
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