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Abstract

Identification of catalytic residues (CR) is essential for the characterization of enzyme function. CR are, in general, conserved
and located in the functional site of a protein in order to attain their function. However, many non-catalytic residues are
highly conserved and not all CR are conserved throughout a given protein family making identification of CR a challenging
task. Here, we put forward the hypothesis that CR carry a particular signature defined by networks of close proximity
residues with high mutual information (MI), and that this signature can be applied to distinguish functional from other non-
functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA) database, we
tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The
Kullback-Leibler (KL) conservation measurement was shown to significantly outperform both the Shannon entropy and
maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A
structural proximity MI average score (termed pMI) was demonstrated to be a strong predictor for CR, thus confirming the
proposed hypothesis. A structural proximity conservation average score (termed pC) was also calculated and demonstrated
to carry distinct information from pMI. A catalytic likeliness score (Cls), combining the KL, pC and pMI measures, was shown
to lead to significantly improved prediction accuracy. At a specificity of 0.90, the Cls method was found to have a sensitivity
of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and
propose that such a signature should be present in other classes of functional residues where the requirement to maintain a
particular function places limitations on the diversification of the structural environment along the course of evolution.
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Introduction

Catalytic residues play a fundamental role in enzymes and are

generally expected to be conserved and located in the functional

site of proteins. Even though characterization of catalytic residues

(CR) is critical for the understanding of enzyme function, their

identification remains a daunting task. To guide the identification

of CR, several computational approaches have been developed

based on different principles. To cite some examples: catalytic site

features, amino acid physicochemical character [1], conserved

functional groups density [2], sequence analysis (conservation,

patterns, conserved blocks along the sequence, evolution, entropy,

among others) [3,4,5,6,7,8], sequence and structure properties

[9,10,11], evolution and 3D structure information [12,13,14,15],

neural networks [16], 3D structure combined with ionization

properties of a residue and its vicinity in the structure [17] and

combinations of several of the above mentioned [18]. Conserva-

tion is the natural and intuitive way to predict functional residues

in proteins. However, many non-catalytic residues are highly

conserved and conversely, not all CR are fully conserved

throughout a given protein family. On the other hand, residues

involved in coevolving networks have been postulated to be

functionally important [19,20,21] and several studies have

provided evidence that they are important for specificity or

allosteric regulation [22,23,24].

The structural environment of an active site must be highly

conserved in order for the protein to maintain its function during

the course of evolution. This places strict limitations on the amino

acid diversity in the proximity of an active site, and it therefore

seems plausible to hypothesise that catalytic residues would carry a

particular signature defined by a network of close proximity of

residues with high mutual information.

Although earlier published methods have suggested a linkage

between functionally important sites and neighbouring coevolving

residue [21,25,26] at present, to the best of our knowledge, no

method explicitly show how the presence of such coevolving

residues can provide quantitative information useful for catalytic

sites identification beyond what is captured by conservation.

Several methods have been proposed for identifying specificity

defining positions (SDP) aiming at locating positions that are
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specific for a given subfamily and hence potentially could define its

specificity [25,26]. These residues are suggested to be located in

the proximity of the active residues in order to carry out their role

of defining the substrate specificity. The signal from such

evolutional signatures could at first resemble co-evolution, and

the overlap between the methods predicting SDPs and the method

proposed here could seem substantial. However, the subfamily

specific positions may not be coevolving, in fact they might be fully

conserved within each subfamily, and Gouveia-Oliveira and

Pedersen have described in details that such subfamily defining

residues do not carry signatures of co-evolution but rather a

phylogenetic signal that mimics coevolution [27]. The methods

put forward by Gouveia-Oliveira et al, [27], Dunn et al. [28], and

Buslje et al. [29] all attempt to reduce this phylogenetic bias in the

signal for MI calculation aiming at identifying truly coevolving

residue-pairs. Moreover, the method proposed here is hypothesis-

free, and can be applied without any prior functional cluster

classification of the input multiple alignment.

Here, we perform a large-scale benchmark analysis aiming at

testing the hypothesis that catalytic residues carry a signature

defined by networks of close proximity of residues with high

mutual information. An investigation on the relationship between

conservation, coevolution networks and catalytic residues is

carried out on a dataset of 434 families of enzymes. We introduce

a new concept, Mutual Information Proximity (pMI) that

characterizes the mutual information network in the proximity

of a given residue and analyse whether this measurement can

complement the conventional conservation score for the detection

of catalytic residues. The goal of this work is two-fold. First, we

aim to validate the hypothesis stated above and demonstrate that

proximity residue networks of high mutual information charac-

terize functional residues. In doing this, we also aim at addressing

the issue on the correlation between residues defined as SDP and

residues carrying high signals of being part of the mutual

information network. Secondly, we seek to integrate this mutual

information signature to create a method able to identify catalytic

residues useful for guiding the identification of functional sites in

proteins.

Note, that in this work, we do not suggest that the proposed

method should be more accurate than the other methods

developed earlier for prediction of functional residues. We merely

seek to demonstrate the existence of a mutual information network

signature in the proximity of functional residues, and show that

this signature is complementary to the conventional sequence

conservation measurement, hence most likely would benefit any

functional residue prediction method.

Results

The main focus of this work was to investigate if mutual

information could contribute beyond sequence conservation to the

identification of catalytic residues. The result section naturally falls

in three parts. First, we investigated how different measurements

of sequence conservation could be used for the identification of

catalytic residues. Next, a similar analysis was performed using

different measurements of mutual information, and finally the

analysis was carried out using a combined measurement of

conservation and mutual information. Performance details of all

methods included in the analysis are shown in supplementary table

S2.

Sequence conservation
As catalytic residues are highly conserved, a natural measure

used to detect them is the conservation score in a MSA. Here, we

investigated three conservation measurements in four different

conditions leading to twelve different conservation scores (for

details see material and methods). The conservation measurements

are all per-residue measurements, and their predictive perfor-

mance for a given protein sequence is readily measured in terms of

the AUC value. The results of this analysis on the 434 CSA Pfam

families are shown in table 1.

The conservation measurement with the highest predictive

performance in terms of AUC was the raw KL score with an

average AUC value of 0.892 and an AUC01 value of 0.485. In

terms of AUC, the raw calculation excluding both sequence

weighting and pseudo count correction did perform best for all

three conservation measurements. In terms of AUC01, the

inclusion of sequence weighting in all cases did improve the

predictive performance. The Max-Freq measurement performed

significantly worse than both information-based measurements

(p,0.0001, binomial test excluding ties). Although the perfor-

mance is very similar between the raw Shannon and raw KL

scores, the difference is highly significant (p,0.005, binomial test

excluding ties). The difference between the raw and sequence

weighted (c) KL score is borderline significant with a p-value of

0.05 in favour of the raw KL score for AUC and in favour of KL

including sequence weighting when using AUC01. In order to

make the subsequent analyses as simple as possible, for the

remaining part of the work we used the raw KL score as a

conservation measurement.

We analysed to what degree the predictive performance of the

raw KL measurement depended on the number of sequences in

the multiple sequence alignment (MSA) used as the source to

estimate the conservation score (see figure 1). This figure clearly

demonstrates that at least 10 sequences are required in order to

make any meaningful predictions using the KL conservation

measurement (similar results were observed for the other two

conservation measurements). Note, that the variation in perfor-

mance for each bar in the histogram is large and error-bars are not

included (the raw data included in the figure are available in

Supplementary table S2). The difference in predictive perfor-

mance between the families with less than or more than 10

Author Summary

Enzymes are responsible for several critical cellular
functions. The so-called catalytic residues are fundamental
to attain the enzyme function. Those residues are often
highly conserved within protein families sharing similar
structure and function. Characterization of catalytic
residues is essential for the understanding of enzyme
function. However, this is a difficult task because
conservation is a poor discriminator of catalytic residues
due to the fact that many non-catalytic residues are highly
conserved in a given protein family. We anticipate that
variations in the structural environment of a catalytic site
should be highly restrained in order for the protein to
maintain its function along the course of evolution, and
hypothesise that catalytic residues, due to these restrains,
must carry a particular signature defined by networks of
proximity sharing high mutual information (MI). We
validated this hypothesis on a large data set of protein
sequences with known catalytic residues, and demonstrat-
ed that catalytic sites are indeed surrounded by networks
of coevolved residues. Such networks should also be
present in other classes of proteins and we suggest that MI
networks could be a novel feature of general importance
beneficial for the prediction of functional residues.

MI Networks Define Catalytic Sites
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sequence members is however statistically highly significant

(p,0.001, t-test).

Mutual information
We next turned to mutual information and analysed the

environment of a catalytic residue by means of the mutual

information carried by the surrounding residues. We introduced a

cumulative Mutual Information concept (cMI) that measures the

degree of shared mutual information of a given residue (above a

certain significance threshold as measured in terms of the MI Z-

score, see material and methods). We noticed that residues in close

proximity with CR tend to have high cMI scores (see figure 2b).

Furthermore, when measuring the proximity Mutual Information

(pMI), which tells about the networks of mutual information in the

proximity of a residue (within a certain distance threshold), the

catalytic residues were observed to have higher pMI than other

conserved residues (see figure 2c for an example).

We exploited this observation on the complete Pfam benchmark

dataset, and calculated the performance of the pMI measurement

as a predictor of catalytic residues. Using a distance cut-off of

7.5 Å to define the structural proximity, and a Z-score threshold of

6.0 to define reliable mutual information interactions (see [29]),

the average predictive performance of the pMI measurement in

terms of the average AUC and AUC01 values on the 434 Pfam

entries was 0.843 and 0.342, respectively which in both cases is

significantly different from random (p,0.0001, binomial test

excluding ties). As the number of proximity interactions is used to

normalize the pMI measurement, this predictive performance

does not stem from any implicit bias in the data imposed by

catalytic residues being in a particular state of solvent exposure.

Comparison between SDPs and cMI
To investigate how the mutual information measure (cMI)

proposed in this work correlates to earlier proposed measures for

SDP, we compared in terms of the Spearmans rank correlation the

SDR Z-score values given in the SDR database (http://paradox.

harvard.edu/sdr/) [30] to the cMI values. In doing this, we

obtained a mean correlation value over the 158 Pfam families

covered by both methods of 0.29+/20.20 (for details see materials

and methods). Even though this correlation is significantly different

from random (p,0.01, binomial test excluding ties), it is far from

perfect. This highly suggests that the cMI and SDR measures carry

Table 1. Average performance in terms of the AUC and AUC01 values of the three methods: Max-Freq, Shannon, and Kullback-
Leibler described to measure conservation.

Conservation measure Max-Freq Shannon Kullback-Leibler

AUC AUC01 AUC AUC01 AUC AUC01

Raw 0.874 0.458 0.880 0.464 0.892 0.485

C 0.870 0.461 0.876 0.465 0.890 0.502

L 0.857 0.380 0.852 0.371 0.877 0.437

Cl 0.847 0.353 0.837 0.335 0.868 0.411

Each measurement is applied under four conditions defined by sequence weighting using clustering (c); pseudo count correction using low counts (l), the combination
of the two (cl), and no correction (raw). In bold is highlighted the method with the highest performance for each performance measure.
doi:10.1371/journal.pcbi.1000978.t001

Figure 1. Histogram over predictive performance of the raw KL scores as a function of the number of sequences in the MSA. The
number of Pfam entries in each sequence bin is 9, 9, 36, 66, and 314, respectively.
doi:10.1371/journal.pcbi.1000978.g001

MI Networks Define Catalytic Sites
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distinct information. We next calculated the correlation between the

two measures and the KL (Kullback-Leibler) conservation score.

Here, we obtained an average Spearmans rank correlation values of

0.6460.21, and 20.0460.17 for the SDR Z-score and cMI

measure respectively. These results further demonstrate that the

SDP and cMI measures are different in nature, and that SDR Z-

score is highly related to sequence conservation whereas the cMI

score is independent of the latter. This strongly suggests that the

cMI measure is more information rich compared to SDP when

combined with sequence conservation.

Conservation of the residue proximity
As the active site in most cases is defined in terms of multiple

catalytic residues in close proximity, it is natural to suggest that a

Figure 2. Identification of catalytic residues using four different prediction scores. Plotted is the Ca representation of the PDB entry 1D4C
representing the Pfam PF00890 entry. Catalytic residues are encircled in green. The four different prediction scores are shown A) KL Conservation, B)
Proximity conservation (pC), C) proximity MI (pMI) and D) Catalytic likeliness score (Cls). Highlighted with black circles are the predicted false positive
residues: 47, 39, 15 and 4 respectively. The prediction scores are represented in blue to red scale (blue: lowest; red: highest). Molecular graphics image
was produce with UCSF Chimera package. (University of California, San Francisco).
doi:10.1371/journal.pcbi.1000978.g002

MI Networks Define Catalytic Sites
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proximity score based on sequence conservation would be a strong

catalytic residue predictor. Using the same distance cut-off as for

the mutual information proximity score, we find that the proximity

conservation score, pC, achieves an average predictive perfor-

mance of 0.854 and 0.379 in terms of AUC and AUC01,

respectively. These values are greater than what was obtained

using the pMI score, but for both AUC and AUC01, the difference

between the two methods is not statistically significant (p,0.05,

binomial test excluding ties).

Combined catalytic likeliness score
We finally applied the combined catalytic likeliness score (Cls) to

identify catalytic residues. The Cls is calculated as a weighted sum of

the KL conservation the pMI mutual information and the pC

scores. The optimal parameters defining the score were identified

using 5-fold cross validation as described in Materials and Methods.

The parameters Zthr, DMI, DC, WMI and WC were found to have

the following optimal values Zthr = 5.560.2, DMI = 8.060.1,

DC = 5.660.5, wMI = 0.660.0, and wC = 0.260.0. The low stan-

dard deviation value on each parameter-estimate indicates that

the parameter optimization is robust across the different cross-

validation data sets. The average performance in terms of the

AUC and AUC01 of the Cls score to detect catalytic residues was

0.927, and 0.594, respectively. This performance is significantly

higher than the KL conservation, the pMI and the pC individual

scoring functions (p,0.001 in all cases using binomial test

excluding ties).

To investigate the individual contribution to the performance of

the Cls score of the pMI and pC measures, we next searched for

optimal parameters for a combined score including only one of the

two proximity measures in combination with the KL conservation

score. Estimating the optimal parameters using 5 fold cross-

validation as described above, we find the following results (see

table 2).

The AUC values for both of these methods are significantly

lower that what was obtained using the Cls score combining the

conservation score with both proximity measures (p,0.01 in both

cases, binomial test excluding ties) demonstrating that the two

proximity measures contribute distinct information to the

combined Cls score. The difference between the two scores

including only one proximity measure is not statistically significant

when looking at the complete data set of 434 PF families.

However, when looking at the subset of 172 PFam families that are

covered by more than 400 unique sequences/clusters (correspond-

ing to the number of clusters needed to provide reliable estimates

of MI as shown by Buslje et al. [29]), the combined method

including proximity mutual information, pMI, achieves a

performance of AUC = 0.920, and AUC01 = 0.597. These values

significantly outperform the performance values AUC = 0.889 and

AUC01 = 0.559 of the combined method including proximity

conservation, pC (p,0.05, binomial test excluding ties). This

further underlines the observation that the pMI measure

contributes information not included in the conservation scores.

To further illustrate that the two proximity measures contribute

different information to the combined Cls-score, we in figure 2

display the role of the four prediction measurements, KL, pMI, pC

and Cls for the identification of the catalytic residues in the Pfam

entry PF00890 represented by fumarate reductase of Shewanella

putrefaciens MR-1 (PDB entry 1D4C). This family was chosen

from the subset of 172 Pfams entries mentioned above covered by

more than 400 unique sequences/clusters (similar results are

obtained for most other families in this set). The function of

fumarate reductase is carried out by the active cite residues

His364, Arg401, His503 and Arg544 [31]. It can be seen that the

KL conservation score of the catalytic residues is relatively low

(figure 2a) while both the pC, and pMI scores are high in the

catalytic residue proximity (figure 2b, and 2c). Comparing the

figures 2b and 2c, it is evident that the two proximity measures

contribute different information to the combined, Cls, prediction

score. Finally, the combined catalytic likeliness score (Cls) is

depicted in figure 2d. The AUC values for the four prediction

measurements shown in figure 2 are 0.92, 0.94, 0.98 and 0.99 (KL,

pC, pMI and Cls respectively). These values translate into a

number of false positive predictions at 100% sensitivity (corre-

sponding to the number of non-catalytic residues with a prediction

score higher than the lowest score obtained by a CR) of 47

(figure 2a), 39 (figure 2b), 15 (figure 2c), and 4 (figure 2d), again

underlining the strong predictive power of the Cls measurements

in identifying catalytic residues and eliminating false positive

predictions.

The gain in predictive performance for detecting catalytic

residues is consistent for families independently on the level of

conservation of the catalytic residue, however the most dramatic

gain in performance when including pMI is observed for families

where the conservation of the catalytic residues is poor. If we for

instance take the 217 Pfam families with the lowest predictive

performance when using the KL conservation score and ask how

many of these families gain in performance when including the

pMI score, we find that this number is significantly higher

compared to the corresponding number of families in the group of

217 Pfam families with the highest predictive performance using

the KL conservation score (p,0.001, binomial test excluding ties).

This difference in performance gain between the two subsets of

Pfam families is not imposed by a difference in data size between

the two sets as the average family size in the two set is comparable

(p.0.1, t-test). The catalytic environment of an active site needs to

be conserved in order for a protein family to maintain its function,

and one might speculate that when the conservation of a catalytic

residue is weak, the catalytic environment is maintained in great

measure by coevolution.

We next determined the sensitivities of the different methods at

different specificity thresholds. This analysis is summarized in

table 3. The analysis clearly confirms the strong improvement

across the entire benchmark data set of the predictability of

catalytic residues imposed by the inclusion of the pMI score in the

combined catalytic likeliness score. At all specificity thresholds, the

Table 2. Optimal parameters and average predictive
performance in terms of AUC and AUC01 for the two
combined prediction methods including only one proximity
measure.

Method KL+pMI KL+pC

Parameters wMI = 0.860.0 wC = 0.660.0

DMI = 7.960.2 DC = 8.060.0

Zthr = 5.560.32

AUC 0.922 0.910

AUC01 0.574 0.562

KL+pMI is the method combining KL conservation with the pMI mutual
information measure. KL+pC is the method combining KL conservation with the
pC conservation measure. wMI is the relative weight on pMI, DMI is the proximity
distance threshold for the pMI measure, Zthr is the MI Z-score threshold, wC is
the relative weight on pC, and DC is the proximity distance threshold for the pC
measure. Parameters and standard deviations were identified using five-fold
cross validation as described in Materials and Methods.
doi:10.1371/journal.pcbi.1000978.t002
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Cls method did achieve the highest sensitivity. The difference in

sensitivity between the Cls and the other methods is statistically

significant (p,0.05, binomial test excluding ties) for all compar-

isons. The Cls score threshold corresponding to a specificity of

0.90 for the 434 CSA families is 1.4460.26. This low standard

deviation of the threshold score indicates that the Cls approach is

stable across the different CSA families and suggests that the

method can be applied universally to any enzyme protein family

independently of diversities in structure, composition and size of

the MSA, as long as the number of sequences is greater than 10

(see figure 1).

Discussion

Catalytic residues are in general expected to be conserved and

located in the functional site of a protein in order to attain their

function. However, many non-catalytic residues are highly

conserved as well and conversely, not all catalytic residues are

conserved throughout a given protein family, making identification

of catalytic residues a big challenge. The requirement to maintain

a given catalytic function during the course of evolution places

great limitations on the diversity of the structural environment of

an active site. Therefore, here we put forward the hypothesis that

catalytic residues carry a particular signature defined by networks

of close spatial proximity residues sharing high mutual informa-

tion, so that this signature could be applied to differentiate

functional from other non-functional conserved residues.

We tested this hypothesis using a data set of 434 Pfam families

each characterized by a PDB structure and one or more catalytic

residues assigned from the CSA database, and investigated

whether mutual information could complement conventional

amino acid conservation scores and improve the ability to detect

catalytic residues. Three methods to calculate sequence conserva-

tion were considered and the KL relative entropy (KL) was shown

to significantly outperform both the Shannon entropy and

maximal frequency measurements. We observed that sequence-

weighting and low count correction do not improve the predictive

performance for any of the methods. Additionally, in order to

achieve reliable predictions the number of sequences required in

the MSA was found to be relatively small. Only 10 sequences in

the MSA were needed to reach AUC values of 0.89.

We observed that in the proximity of a catalytic site, residues are

rich in shared mutual information (calculated as the cumulative

mutual information, cMI): therefore, we defined a residue specific

score characterizing this fact in terms of a structural proximity

average (termed pMI) score. The pMI score was demonstrated to

be a strong predictor for catalytic residues, suggesting that catalytic

residues indeed carry a particular signature imposed by networks

of mutual information. We compared the predictive performance

of the pMI measure to that of a proximity measure based on

sequence conservation and demonstrated that the two measures

achieved comparable predictive performance but more impor-

tantly that they carried distinct information suitable as predictor of

catalytic residues. Finally, we demonstrated that the conventional

KL relative entropy sequence conservation, the pC and pMI

measurements are complementary and that a combined catalytic

likeliness score (Cls) of the three leads to significantly improved

prediction accuracy. For instance, we found that, at a specificity

threshold of 0.90, the KL, pMI, pC and Cls methods have a

sensitivity of 0.716, 0.560, 0.604 and 0.816, respectively.

This work thus demonstrates in direct quantitative terms (gain

in predictive performance) the contribution of the coevolution

signal in determining catalytic residues, and hence goes beyond

earlier published papers in the field [20,21,25,26] and not only

describe the observation that such signals might be present near

functionally important residues but in details demonstrate how

such information can be applied to guide their identification.

We also analyzed to what extent the score characterizing

specificity defining positions (SDPs) and the mutual information

derived score defined in this work carry distinct information on the

functional neighbor of catalytic residues. We used data from the

Paradox database to carry out the comparison, and compared

SDP and cMI scores for a set of 158 families covered by both

methods. The obtained results clearly demonstrated that the SDP

and cMI measures are different in nature, and that SDR Z-score is

highly related to sequence conservation whereas the cMI score is

independent of the latter. This observation strongly suggests that

the cMI measure is more information rich for the identification of

functional residues compared to SDP when combined with

sequence conservation.

In summary, we have demonstrated that mutual information

provides a distinct proximity signature that can be applied to

determine catalytic residues. The approach outlined is general,

and we suggest that the method should be applicable to the

identification of other classes of functional residues where the

requirement to maintain a particular function places limitations on

the diversity of the structural environment along the course of

evolution.

Materials and Methods

Dataset
The dataset was constructed based on the CSA database

(version 2.2.11, released August 2009) [32]. CSA provides

catalytic site annotation for enzymes in the PDB. Catalytic

residues were defined as those residues thought to be directly

involved in some aspect of the reaction catalysed by an enzyme

(for a detailed description of the classification see [1]). The

database consists of two types of annotated sites: an original,

hand annotated set and an additional homologous set, containing

annotations inferred by Psi-Blast and sequence alignment to one

of the original entries. CSA contains 968 original literature

entries, which belong to 455 Pfam families [33]. Due to some

inconsistency between CSA and PDB, a few families were

eliminated, so that we ended up with a dataset of 434 protein

families (each of one containing at least one PDB entry), which in

turn include a total of 1212 CSA, annotated catalytic residues.

For 9 of the 434 families the selected PDB representative was an

NMR structure. For these PDB entries the first model was

Table 3. Sensitivity of the catalytic residue identification
methods at different specificity thresholds.

Sensitivity

Specificity KL pMI pC KL+pMI KL+pC Cls

0.99 0.222 0.122 0.159 0.300 0.282 0.315

0.95 0.544 0.375 0.423 0.646 0.637 0.667

0.90 0.716 0.560 0.604 0.802 0.774 0.816

0.85 0.798 0.666 0.703 0.861 0.835 0.862

KL is the Kullback-Leibler conservation score, pMI is the proximity averaged
mutual information score. pC is the proximity averaged conservation score,
KL+pMI is the combined score of KL and pMI, KL+pC is the combined score of
KL and pC, and Cls is the Catalytic likeliness score, The sensitivity is determined
as an average over the 434 CSA families at the different specificity thresholds. In
bold is highlighted the best performing method at each specificity level.
doi:10.1371/journal.pcbi.1000978.t003

MI Networks Define Catalytic Sites
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selected to represent the structure. The 434 Pfam families

included in the benchmark data set cover 8 SCOP classes, 199

folds, 249 super families and 389 families.

When more than one PDB entry with catalytic site annotation

was available for a given family, one reference PDB entry was

selected following the criteria: highest sequence coverage of the

Pfam MSA, the year of structure determination (preferably later

than 2000) and resolution (Supplementary table S1 provides the

Pfam family and reference PDB). In all cases, MSAs were gap

trimmed to remove positions with gaps in the reference sequence.

In addition, all positions with .50% gaps, as well as sequences

covering ,50% of the reference sequence length were removed, as

described in [29]. Supplementary figure S1 shows the distribution

of the number of sequences and sequence clusters in the dataset.

Conservation
Conservation of each position in the MSA’s was calculated with

three different measurements: Shannon entropy [34], KL relative

entropy [35] calculated using an amino acids background

frequency distribution obtained from the Uniprot database [36]

and the maximal frequency (the frequency of the most represented

amino acid). Each of these measurements were calculated from the

raw MSA, from the MSA corrected for sequence redundancy

using sequence weighting by 62% identity clustering (c), from the

MSA including pseudo-counts to correct for low counts (l) [37,38]

and from the MSA applying both clustering and pseudo-count

correction (cl). The total number of conservation measurements

investigated was hence twelve.

Mutual information
Mutual information (MI) was calculated as described in [29].

In short, the MI is calculated between pairs of columns in the

MSA. The frequency for each amino acid pair is calculated using

techniques of sequences weighting and low count corrections and

is compared to the expected pair-frequency assuming that the

amino acids are non-correlated. Next, the MI is calculated as a

weighted sum of the log-ratios between the observed and

expected amino acids pair frequencies. The APC method of

Dunn et al. [28] was applied to reduce the background mutual

information signal for each pair of positions and the MI scores

were finally translated into MI Z-scores by comparing the MI

values for each pair of position to a large set of MI values

calculated from permutated MSA. MI gives a value for each pair

of residues in a MSA. We sought a mutual information score per

residue that characterizes the extent of mutual information

‘‘interactions’’ in its physical neighbourhood. This score was

defined in two steps. First, we calculated a cumulative mutual

information score (cMI) for each residue as the sum of MI values

above a certain threshold for every amino acid pair where the

particular residue appears. This value defines to what degree a

given amino acid takes part in a mutual information network.

Next, we defined a proximity average for each residue as the

average of cMI of all the residues within a certain physical

distance to the given amino acid. Finally, we normalized the

proximity average values for a given MSA to fall in the range [0–

1] to obtain the proximity MI (pMI) score. The distance between

each pair of residues in the structure was calculated as the

shortest distance between any two atoms different from H

belonging to each of the two residues.

Combined catalytic likeliness score
We define a combined catalytic likeliness score (Cls) as a

weighted sum of the conservation (defined in terms of the KL

relative entropy), the proximity mutual information (pMI) and the

proximity conservation (pC) scores.

Cls~(1{wMI{wC):KLzwMI
:pMIzwC

:pC

Here, pC is the average conservation score of residues within a

given proximity distance, and wC, and wMI are adjustable relative

weights.

Parameter optimization
The calculation of the combined catalytic likeliness score

depends on three parameters; Zthr (Z-score threshold for including

an amino acids pair in the cMI score), DMI (distance threshold to

include an amino acid in the pMI average score), DC (distance

threshold to include an amino acid in the pC average score), and

the relative weights, wMI and wC, on pMI and pC, respectively.

These parameters were estimated using five-fold cross validation,

where optimal values were obtained using brute force grid-

sampling on 4/5 of the data set to optimize the average AUC

value and the remaining 1/5 of the data was evaluated next using

this set of optimal parameters. This procedure was repeated five

times leading to five sets of optimal parameters and evaluation

performance values for each MSA in the data set.

Measurement of predictive performance
The predictive performance in detecting catalytic residues, by

way of conservation, pMI and Cls, was evaluated in terms of the

area under the ROC curve (AUC) [39] per family. The AUC

measure might not be optimal if the benchmark data set has a high

ratio on negative data, and a high specificity in actual number

could translate into a large number of false positive. In such

situations, it might be beneficial to use only the high specificity

part of the ROC curve to calculate the predictive performance.

Here, we hence complement the AUC measure with AUC01

calculated including only the specificity range for 1 to 0.9 when

calculating the AUC. For both measures will a value of 1 indicate

a perfect prediction while a value of 0.5 indicates a random

prediction. Annotated catalytic residues in the CSA were taken as

the positive set, and all other residues with annotated PDB-

ATOM coordinates were assigned as negative. The final

performance was determined as the average AUC over the 434

CSA Pfam families.

Comparison between SDPs and cMI scores
We downloaded the entire Paradox SDR database (specificity-

determining residues in protein families database; http://paradox.

harvard.edu/sdr/), and identified the subset of families present in

our benchmark dataset where the reference sequence from the

CSA database was also member of the paradox multiple sequence

alignment (MSA). This gave us a set of 158 families. The Paradox

database provides SDR Z-scores only for a subset of the positions

in the MSA [30]. Residues with undefined SDR Z-score were

assigned a Z-score of 0 to allow for complete sequence coverage.

Next, we compare for each family the SDR Z-score value to our

cMI (cumulative mutual information) value of each position in the

alignment in terms of the Spearmans rank correlation. We also

calculate the Spearmans rank correlation between KL and both

SDR Z-score and cMI values of each position for each family in

the dataset.

Supporting Information

Figure S1 Histogram of the number of families in the Pfam

benchmark data set. A) number of sequences B)number of clusters.

The insets show a zoom from 0 to 1,000 sequences/clusters.
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Found at: doi:10.1371/journal.pcbi.1000978.s001 (0.02 MB PDF)

Table S1 Pfam PDB correlation. Pfam accession, PDB taken as

reference for that family, and pdb region included in the analysis.

Found at: doi:10.1371/journal.pcbi.1000978.s002 (0.03 MB PDF)

Table S2 Performance details of all methods included in the

analysis. Cons and C means conservation; pMI: proximity MI; pC:

proximity conservation, Cls: catalytic likeliness score; Nseq:

number of sequences; Ncluster:number of clusters; pdb: pdb taken

as reference.

Found at: doi:10.1371/journal.pcbi.1000978.s003 (0.16 MB XLS)
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