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In the current work, we study the propagation of perturbations through networks of springs
which are spatially distributed on a plane. We show that the topological properties of the network
are related to the dissipation of energy within the system. By varying the rewiring parameter
of the graph, and thus going from a regular to a random structure, we obtain a lower energy
output, due to the fact that the initial (linear) perturbation is transformed into oscillations
around each node. The results obtained are related to the transmission of information through
a complex structure with potential applications to the design of more efficient damping systems.
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1. Introduction

The field of complex networks has attracted the
attention of many researchers over the last years,
due to the ease of applying concepts coming from
complex networks theory to different real-world
problems. In particular, many interesting results
have been obtained in social networks, communi-
cation and traffic control, or system security and
failure analysis [Boccaletti et al., 2006; Newman,
2003]. Most of the real networks that have been ana-
lyzed are based on dimensionless graphs, where the
spatial distribution of nodes is disregarded, either
because it is not necessary or because it does not
affect the structure or dynamics of the network.

Nevertheless, the position of nodes may have a rel-
evant role in different processes occurring in many
networks, such as disease or rumor transmission,
information flow or transport phenomena. In gen-
eral, the study of spatial (complex) networks has
not evolved as much as their adimensional coun-
terparts, and few works have dealt with the struc-
tural topology of different spatial networks [Barrat
et al., 2005] such as the railway or subway network
[Latora & Marchiori, 2002; Sen et al., 2003], the net-
work of streets inside a city [Cardillo et al., 2006;
Youn et al., 2008] or the network of connections
between airports [Zanin et al., 2008]. In this work,
we focus on the study of a particular spatial network
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with potential applications in engineering: a two-
dimensional network of springs. We depart from
a regular topology consisting of a set of springs
connected to their first neighbors and we apply a
rewiring probability p to the connections. Under
these conditions, we study how energy (coming from
an external perturbation) is transmitted through
the network and, particularly, how certain rewiring
ranges reduce the response of the system, or in other
words, damp the effect of external perturbations.

2. The Physical System

Figure 1 shows a qualitative representation of
the kind of network under study. Nodes represent
masses (of unitary weight), which are connected to
each other through classical springs that follow the
differential equation:

− kili − β
dli
dt

= m
d2li
dt2

(1)

where li is the displacement of the spring i from
its natural length, ki is the force constant, m is the
mass of the nodes and β is a certain damping coef-
ficient. All parameters are equal for the N nodes of
the network (see caption of Fig. 1 for details). All
nodes are distributed over the XY plane, as well
as the external perturbations, which restrict any
movement to the horizontal plane (two-dimensional
motion). Specifically, the external input consists of
a displacement of the nodes of the bottom row of the
network in a direction parallel to the Y axis. Finally,
masses at the left and right boundaries are fixed.
Under these conditions, different perturbations are
applied at the base of the network (see arrows in

Fig. 1. 3D graphical representation of a two-dimensional
8× 8 springs network. Lateral nodes are fixed and perturba-
tions (blue arrows) are applied to the first row of the network
(y = 0). The parameters used in the simulations are: κi =
κ = 1 N/m, mi = m = 1 kg and βi = β = 1Ns/m.

Fig. 1), and we consider the uppermost row as the
output of the system. In this way, we treat the
spring network as a “black box”, which responds
with a certain output when an input perturbation
is applied.

When links between nodes are arranged in
a regular structure (i.e. each node is connected
with its four nearest neighbors) the system behaves
as a classical spring, i.e. propagates a damped
wave with a well defined frequency. Nevertheless,
when a rewiring probability p is introduced in
the node connections (note certain rewirings in
Fig. 1), and an external perturbation is applied
to the bottom row, the propagation of energy
towards the upper row suffers important nonlin-
ear effects. The internal rewiring breaks the sym-
metry of the system and nodes oscillate around
its equilibrium point in a nonperiodic motion. As
a result, part of the energy propagates in the X
direction, leading to a reduction of the amplitude
of the oscillations in the last row (output) of the
network. In the following section, we describe the
effect of the rewiring probability on the energy
propagation.

3. Numerical Results

One of the aims of this work is to find network
structures that reduce the output oscillations of
the system when a perturbation is applied, even
if damping is not considered. In this way, we
would have increased the efficiency of a damp-
ing system using only passive (non-dissipative)
constructions.

Figure 2 (left) shows the maximum displace-
ment at the output (uppermost row of the
two-dimensional network) when a (fixed) vertical
perturbation is applied to the bottom row, as func-
tion of the rewiring probability p. Numerical sim-
ulations are repeated 500 times for each rewiring
p in order to have enough statistics. We can observe
how the output amplitude decreases rapidly, even
for low rewiring probabilities, thus leading to a net-
work that better absorbs the external perturbation.
The rewiring effectively reduces the output energy
due to the fact that each node transforms the lin-
ear (initial) perturbation into oscillations around
their steady point. This point can be observed in
Fig. 2 (right), where we plot the averaged proba-
bility distribution function of the displacement of
all nodes from their steady state, for a rewiring
of p = 0.5.
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Fig. 2. (Left) Maximum output amplitude as a function of the rewiring parameter p. Thanks to the rewiring, the output
amplitude is reduced. This is due to the appearance of oscillations around the equilibrium position of the nodes. (Right)
Probability distribution (averaged over 10.000 repetitions) of the position of all nodes with respect to their equilibrium
position (0, 0) for p = 0.5.

The effect of the rewiring can be regarded as
the sum of two different contributions:

(1) Since links (i.e. springs) can oscillate in any
direction over the XY plane, and not only in
the X or Y axis, the initial down-up movement
is deflected and rotated in any direction, with
a new X component that reduces the original
displacement in the Y direction.

(2) Rewiring introduces long-range connections
that break the symmetry and the synchronized
motion of the system. In this way, when the
main front of the wave is moving in the bottom-
up direction, it can encounter other waves gen-
erated by long-range connections which travel
in the opposite direction, thus creating destruc-
tive interferences.

In order to check the importance of the last
point, i.e. the effect of long-range connections, we
are going to study the influence of the mean link
length in the output amplitude. With this aim, we
construct a set of networks for each rewiring prob-
ability, ranging from p = 0.1 to p = 1.0. Next,
we measure the mean link length for each network.
Note that different networks with the same rewiring
probability may have different mean lengths due to
the stochastic nature of the rewiring. Finally, we
measure the projection of the mean length in the Y
axis, L, since it is the direction of the initial pertur-
bation. In this way, we are analyzing how the long

range connections along the direction of the per-
turbation influence the propagation. In Fig. 3 (left)
we plot the mean output displacement as a func-
tion of L, for different rewiring probabilities. We
observe that for high enough rewirings, there exists
an optimum mean length, or in other words, for a
given rewiring p, the networks that have the opti-
mum mean length have the lowest amplitude at
their output. For example, if we create a set of net-
works with probability p = 0.5, those networks with
a mean length close to L = 2.25 (see the minimum
at Fig. 3) will damp the external perturbation more
efficiently than others with the same p and different
mean length. In Fig. 3 (right) the optimum value of
L is plotted against the rewiring probability, along
with the corresponding output amplitude.

3.1. Periodic perturbations

Spring-based systems have been widely studied in
the past as a paradigmatic example of harmonic sys-
tems where phenomena such as resonance appear.
The collapse of the old Tacoma Narrows bridge in
Seattle is a well-known example of how a complex
system responds to periodic perturbations [Tacoma
Narrows Bridge, 1940] and how it can enter into
a resonance regime with dramatic consequences to
the system. With the aim of checking the oscilla-
tory properties of the previous networks (regular
and rewired), we change the external perturbation
to a cosine force F (t) = F0 cos(ωt) which is applied
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Fig. 3. (Left) Mean output amplitude as a function of L, the projection of the mean length of the links in the direction of
the perturbation. (Right) Minimum output amplitude (left vertical scale) and optimum L (right vertical scale) as a function
of the rewiring probability p. Each rewiring probability p is repeated 2000 times with different initial conditions in order to
have enough statistics.

to the lowest row of the network in the same direc-
tion as in the previous section. We also introduce
a damping force (β = 0.1), allowing energy dissipa-
tion, in order to prevent the system from resonating
to infinity.

Under these conditions we plot the maximum
output displacement for different rewiring proba-
bilities p (see Fig. 4). Interestingly, we observe the
appearance of a resonance in the system, as indi-
cated by the maximum in the displacement dis-
tribution. These results point out two interesting
points. First, the higher the rewiring probability is,

Fig. 4. Maximum output amplitude as a function of the fre-
quency of the sinusoidal perturbation applied to the system,
for different rewiring probabilities p.

the lower the maximum output oscillation is. At
the same time, higher rewiring probabilities lead
to thicker bell-shaped distributions with smoother
maxima. These results can be explained as a con-
sequence of the long-range connections, that break
the regular structure of the system and make the
resonance more diffuse. Second, the resonant fre-
quency is not a function of the rewiring probability.
Rather the opposite, there exists a range of frequen-
cies at which all networks resonate, no matter what
the rewiring probability is.

4. A Practical Application:
A Vehicle Damping System

From the numerical results exposed above, it is
clear that the presence of a certain rewiring in the
system can improve the performance of a regular
damping mechanism. In mechanical engineering,
for example, vehicle suspension design represents
an important problem (see [Williams, 1997] for an
exhaustive review of the field). The main aim of
a suspension system is to isolate the vehicle from
roadway irregularities and, at the same time, to
reduce the roll movements while cornering, accel-
erating or braking. Nevertheless, in standard pas-
sive suspensions (i.e. not controlled electronically),
the only parameter which can be easily tuned is
the damping rate, and this requires the search
of a difficult equilibrium: on one side, low damp-
ing reduces the discomfort experienced by occu-
pants when the road presents discrete events, like
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Fig. 5. Schematic representation of a damping system
based on the application of a rewiring process to a regular
springs/dampers (solid/dotted lines) structure.

steps or pot holes. This is because the step move-
ment is filtered and smoothed by the damping sys-
tem. For the same case, high damping would pass
most of the acceleration to the vehicle, reducing
the comfort of the car. On the other hand, each
manoeuvre (like cornering, accelerating or braking)
creates static loads on the tire and rolling move-
ments that, in turn, produce interactions between
the vertical and lateral dynamics of the vehicle. In
this case, a high damping rate is preferable, as it
reduces such oscillations and improves the overall
dynamics.

The solution adopted by car industry is
the inclusion of active or semi-active dampers,
that change their characteristics according to the
ride conditions. Nevertheless, those systems are

expensive and include many components that
increase the risk of failure.

What we propose is a passive system, built by
several springs and dampers as displayed in Fig. 5.
The configuration is created from a regular struc-
ture by rewiring some connections in order to break
the symmetry.

In Fig. 6, we show an example of the efficiency
of these kind of systems. On the vertical axis, we
plot the Y component of the acceleration (of the
uppermost node of the network) as a function of
time for the rewired structure of Fig. 5 and an
equivalent passive damping system. On the left plot,
we consider a cornering manoeuvre, which is repre-
sented as a constant force acting on several time
intervals. On the right plot, we apply a step input,
i.e. a strong force acting during few time steps. In
both cases, the overall acceleration is reduced in the
rewired network and, at the same time, the rolling
movement, i.e. the transient time before arriving to
the steady state, is also shortened. From a practi-
cal point of view, such a system will have a better
comfort level than low damping suspensions, but
with the ride characteristics and response of higher
damping systems.

Although these results are quite interesting
for a real application, it is worth noting that
the proposed system may raise different mechani-
cal problems (such as dimension, weight, presence
of horizontal forces, etc.) that cause difficulty for
the implementation in a vehicle and that should
be studied in detail from an engineering point
of view.

Fig. 6. Resulting Y (vertical) acceleration of the vehicle in a regular damping system and a (equivalent) rewired one, for a
steering input (left) and a step input (right).
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5. Conclusions

Despite complex networks being used as a tool
for studying many real systems, less attention has
been paid to spatial mechanical constructions. In
this work, we have studied a two-dimensional net-
work of springs, with special attention to the con-
sequences of rewiring the network. We have shown
that the symmetry breaking and the long range
effects introduced by the rewiring of the internal
connections lead to a reduction of the output ampli-
tude of the system when external perturbations are
applied. Furthermore, when periodic perturbations
are considered, we observe the appearance of a reso-
nance region, which does not depend on the rewiring
parameter p. Finally, we have discussed the possible
applications of this kind of systems to the design of
efficient damping mechanisms, showing that they
are an alternative to classical (passive) damping
systems.
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