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Abstract Neuronal circuits can learn and replay firing pat-

terns evoked by sequences of sensory stimuli. After training,

a brief cue can trigger a spatiotemporal pattern of neu-

ral activity similar to that evoked by a learned stimulus

sequence. Network models show that such sequence learn-

ing can occur through the shaping of feedforward excita-

tory connectivity via long term plasticity. Previous models

describe how event order can be learned, but they typi-

cally do not explain how precise timing can be recalled.
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� Krešimir Josić
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We propose a mechanism for learning both the order and

precise timing of event sequences. In our recurrent network

model, long term plasticity leads to the learning of the

sequence, while short term facilitation enables temporally

precise replay of events. Learned synaptic weights between

populations determine the time necessary for one popula-

tion to activate another. Long term plasticity adjusts these

weights so that the trained event times are matched dur-

ing playback. While we chose short term facilitation as a

time-tracking process, we also demonstrate that other mech-

anisms, such as spike rate adaptation, can fulfill this role.

We also analyze the impact of trial-to-trial variability, show-

ing how observational errors as well as neuronal noise result

in variability in learned event times. The dynamics of the

playback process determines how stochasticity is inherited

in learned sequence timings. Future experiments that char-

acterize such variability can therefore shed light on the

neural mechanisms of sequence learning.

Keywords Serial recall · Short term facilitation ·
Long term plasticity

1 Introduction

Networks of the brain are capable of precisely learning and

replaying sequences, accurately representing the timing and

order of the constituent events (Conway and Christiansen

2001; Buhusi and Meck 2005). Recordings in awake mon-

keys and rats reveal neural mechanisms that underlie such

sequence representation. After a training period consisting

of the repeated presentation of a cue followed by a fixed

sequence of stimuli, the cue alone can trigger a pattern of

neural activity correlated with the activity pattern evoked by

the stimulus sequence (Eagleman and Dragoi 2012; Xu et al.
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2012). Importantly, the temporal patterns of the stimulus-

driven and cue-evoked activity are closely matched (Shuler

and Bear 2006; Gavornik and Bear 2014).

Sequence learning and replay has been identified in a

number of different brain areas. Recent electrophysiolog-

ical recordings have located patterned neural activity in

V1 (Xu et al. 2012; Gavornik and Bear 2014) and V4

(Eagleman and Dragoi 2012), corresponding to learned

visual sequences. Experiments on motor sequence learning

found the underlying activity was coordinated by a com-

bination of prefrontal, associative, and motor cortical areas

(Jenkins et al. 1994; Sakai et al. 1998). Training net-

works of the brain to replay motor sequences is impor-

tant since it allows quick motor skill execution, faster

than deliberate muscle control allows (Hikosaka et al.

2002). In addition, learning visual sequences can aid in

experience-based prediction, so animals can react quickly

to an unexpected chain of events (Meyer and Olson 2011;

Kok et al. 2012). Learning serial order is also an essential

component of language and speech production in humans

(Burgess and Hitch 1999). In a similar way, music per-

ception and production requires that humans learn to rec-

ognize and generate auditory-motor sequences (Zatorre

et al. 2007). In total, sequence learning plays a large

role in the daily cognitive tasks of a wide variety of

animals.

Various neural mechanisms have been proposed for

learning the duration of a single event (Buonomano 2000;

Rao and Sejnowski 2001; Durstewitz 2003; Reutimann et al.

2004; Karmarkar and Buonomano 2007; Gavornik et al.

2009), as well as the order of events in a sequence (Amari

1972; Kleinfeld 1986; Wang and Arbib 1990; Abbott and

Blum 1996; Jun and Jin 2007; Fiete et al. 2010; Brea et al.

2013). However, mechanisms for learning the precise timing

of multiple events in a sequence remain largely unexplored.

The activity of single neurons evolves on the timescale of

tens of milliseconds. It is therefore likely that sequences

on the timescale of seconds are represented in the activ-

ity of populations of cells. Recurrent network architecture

could determine activity patterns that arise in the absence

of input, but how this architecture can be reshaped by

training to support precisely timed sequence replay is not

understood.

Long term potentiation (LTP) and long term depres-

sion (LTD) are fundamental neural mechanisms that change

the weight of connections between neurons (Kandel 2001).

Learning in a wide variety of species, neuron types, and

parts of the nervous system has been shown to occur through

LTP and LTD (Alberini 2009; Takeuchi et al. 2014; Nabavi

et al. 2014). It is therefore natural to ask whether LTP and

LTD can play a role in the learning of sequence timing

(Karmarkar and Buonomano 2007; Ivry and Schlerf 2008;

Bueti and Buonomano 2014), in addition to their proposed

role in learning sequence order (Abbott and Blum 1996;

Fiete et al. 2010).

We introduce a neural network model capable of learn-

ing the timing of events in a sequence. The connectivity

and dynamics in the network are shaped by two mech-

anisms: long term plasticity and short term facilitation.

Long term synaptic plasticity allows the network to encode

sequence and timing information in the synaptic weights,

while slowly evolving short term facilitation can mark time

during event playback. These ideas are quite general, and

we show that they do not depend on the particulars of the

time-tracking mechanisms we implemented. The impact of

stimulus variability and neural noise is largely determined

by the trajectory of the time-tracking process. Thus, we pre-

dict that errors in event sequence recall may be indicative of

the mechanism that encodes them.

2 Methods

2.1 Population rate model with short term facilitation

Pyramidal cells in cortex form highly connected clus-

ters (Song et al. 2005; Perin et al. 2011), which can cor-

respond to neurons with similar stimulus tuning (Ko et al.

2011). We therefore considered a rate model describing

the activity of N excitatory populations (clusters) uj (j =
1, . . . , N), and a single inhibitory population v. The excita-

tory and inhibitory populations were coupled via long range

connections. Each population j received an external input

Ij (t). Our model took the form:

τ
duj

dt
= −uj + ϕ

(

Ij (t) + Ij,syn − θ
)

,

τf

dpj

dt
= 1 − pj + (pmax − 1)uj ,

τ
dv

dt
= −v + ϕ

(

N
∑

k=1

Zkuk − θv

)

, (1)

where synaptic inputs to the j th population are given by

Ij,syn = wjjuj +
N

∑

k �=j

wjkpkuk − Lv.

A complete description of the model functions and param-

eters is given in Table 1. Population firing rates ranged

between a small positive value (the background firing rate),

and a maximal value (the rate of a driven population), nor-

malized to be 0 and 1, respectively. The baseline weight

of the connection from population k to j was denoted by

wjk . Connections within a population were denoted wjj ,

and these were not subject to short-term facilitation. Fur-

thermore, the global inhibitory population, modeled by v,

was typically active for very short epochs, so the effects of
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Table 1 Variables and

parameters with their default

values

Symbol Description

Variables

Ij External stimulus for excitatory population j

uj Non-dimensional firing rate of excitatory population j (maximum uj = 1)

v Non-dimensional firing rate of global inhibitory population (maximum v = 1)

pj Level of facilitation of synapses from population j (baseline pj = 1)

wjk, w Strength of excitation from population k to excitatory population j

Tj , T Duration of stimulus

Time parameters (default values in parenthesis)

τ Timescale of neuronal firing (10 ms6)

τf Timescale of short term facilitation (1 s4)

τw Timescale of learning rule (150 s1)

τa Time scale of adaptation (400 ms5)

τs Time scale of synaptic inputs from other populations (50 ms6)

Tcue Duration of stimulus to trigger replay (50 ms2,3)

D Delay in presynaptic firing affecting connections between populations (30 ms 1)

D′ Delay in presynaptic firing affecting connections within populations (20 ms 1)

Other parameters (default values in parenthesis)

ϕ Firing rate response function (Heaviside step function)

θ Threshold for activation of excitatory population (0.5)

θv Threshold for activation of inhibitory population (0.5)

pmax Maximum level of short term facilitation (2)

Zk Strength of excitation from population k to inhibitory population (0.3)

L Weight of global inhibition (0.6)

b Strength of adaptation (1)

M Learning rule threshold (1)

wmax Maximum synaptic weight between populations (0.4852)

w′
max Maximum synaptic weight within populations (4.1312)

wmin Minimum synaptic weight within populations (1.3488)

γd Strength of LTD between populations (150 1)

γp Strength of LTP between populations (3614.5 1)

γ ′
d Strength of LTD within populations (7500)

γ ′
p Strength of LTP within populations (267.86 1)

The default values were used in all simulations, unless otherwise noted. References indicate work where

similar parameter values were used or estimated: 1Graupner and Brunel (2012), 2Xu et al. (2012), 3Gavornik

and Bear (2014), 4Markram and Tsodyks (1996), 5Lundstrom (2015); 6Häusser and Roth (1997)

short term plasticity were not considered. These assump-

tions did not change our results, but made the analysis more

transparent.

Synapses between populations were subject to short term

facilitation, and the facilitated connection had “effective

synaptic strength” wjkpk (Tsodyks et al. 1998). Without

loss of generality we assumed that short term facilitation

varied between 1 and 2 so that the effective synaptic strength

varied from wjk to 2wjk . Note that rescaling the maximal

level of short term facilitation simply rescales the relation-

ship we derive between the baseline synaptic weight and

activation time of single populations. We assumed τf ≫
τ , in keeping with the observation that synaptic facili-

tation dynamics are much slower than changes in firing

rates (Markram et al. 1998).

In the absence of external stimuli or input from other

populations, the dynamics of each population is described

by τ
duj

dt
= −uj + ϕ(wjjuj − θ), and the stationary fir-

ing rate is given by the solutions of ϕ(wjjuj − θ) = uj .

We typically took ϕ to be a Heaviside step function. Thus,

if wjj > θ , there are two equilibrium firing rates: uj = 0

(inactive population) and uj = 1 (active population). This
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assumption simplified the analysis, but was not necessary

for our approach to work as shown in Section 4.2.

2.2 Rate-based long term plasticity

Connectivity between the populations in the network was

subject to long term potentiation (LTP) and long term

depression (LTD). Following experimental evidence (Bliss

and Lømo 1973; Dudek and Bear 1992; Markram and

Tsodyks 1996; Sjöström et al. 2001), connections were

modulated using a rule based on pre- and post-synaptic

activity with ‘soft’ bounds (Gerstner and Kistler 2002).

We made three main assumptions about the long term

evolution of synaptic weight, w = wpre→post: (a) If the

presynaptic population activity was low (upre ≈ 0), the

change in synaptic weight was negligible (ẇ(t) = 0); (b) If

the presynaptic population was highly active (upre ≈ 1) and

the postsynaptic population responded weakly (upost ≈ 0),

then the synaptic weight decayed toward zero (ẇ(t) ∝
−w); and (c) If both populations had a high level of activ-

ity (upost ≈ 1 and upre ≈ 1), then the synaptic weight

increased towards an upper bound (ẇ(t) ∝ wmax − w).

Similar assumptions have been used in previous rate-

based models of LTP/LTD (von der Malsburg 1973; Bienen-

stock et al. 1982; Oja 1982; Miller 1994), and it has been

shown that calcium-based (Graupner and Brunel 2012)

and spike-time dependent (Clopath et al. 2010; Gjorgjieva

et al. 2011) plasticity rules can be reduced to such rate-

based rules (Pfister and Gerstner 2006). Furthermore, the

fact that pre-synaptic activity is necessary to initiate either

LTP or LTD is supported by experimental observations

that plasticity depends on calcium influx through NMDA

receptors (Malenka and Bear 2004). A simple differential

equation that implements these assumptions is

τw

dw

dt
= −γd w upre(t − D)(M − upost (t))

+γp (wmax − w)upre(t − D)upost (t), (2)

where τw is the time scale, γd (γp) represents the strength

of LTD (LTP), D is a delay accounting for the time it

takes for the presynaptic firing rate to trigger plasticity pro-

cesses, and M is a parameter that determines the threshold

and magnitude of LTD. We note that we initially model

only the molecular processes that detect correlations in fir-

ing rates, and thus set τw = 150s. We will later extend

this model to account for the longer timescales of synaptic

weight changes (Section 4.4).

Equation (2) describes a Hebbian rate-based plasticity

rule with soft bounds involving only linear and quadratic

dependences of the pre- and post-synaptic rates (Gerstner

and Kistler 2002). Temporal asymmetry that accounts for

the causal link between pre- and post-synaptic activity is

incorporated with a small delay in the dependence of pre-

synaptic activity upre(t − D) (Gütig et al. 2003). This

learning rule is a firing-rate version of the calcium-based

plasticity model proposed by (Graupner and Brunel 2012).

2.3 Encoding timing of event sequences

Our training protocol was based on several recent exper-

iments that explored cortical learning in response to

sequences of visual stimuli (Xu et al. 2012; Eagleman and

Dragoi 2012; Gavornik and Bear 2014). During a training

trial, an external stimulus Ij (t) activated one population at a

time. Each individual stimulus could have a different dura-

tion (Fig. 1b). We stimulated n populations, and enumerated

them by order of stimulation; that is, population 1 was stim-

ulated first, then population 2, and so on. This numbering is

arbitrary, and the initial recurrent connections have no rela-

tion to this order. We denote the duration of input j by Tj .

All inputs stop at Ttot = T1 + T2 + . . . + Tn. A sequence

was presented m times.

Repeated training of the network described by Eq. (1)

with a fixed sequence drove the synaptic weights wij

to equilibrium values. We assumed that during sequence

presentation, the amplitude of external stimuli Ij (t) was

sufficiently strong to dominate the dynamics of the popula-

tion rates, uj . Then, the activity of the populations during

training evolved according to:

τ
duj

dt
= −uj + ϕ

(

Ij (t) − θ
)

, j = 1, . . . , n,

τw

dwjk

dt
= −γdwjkuk(t − D)(M − uj (t))

+γp(wmax − wjk)uk(t − D)uj (t), j �= k. (3)

Thus, the timing of population activations mimicked the

timing of the input sequence, i.e. the training stimulus.

2.3.1 Synaptic weights for consecutive activations

For simplicity, we begin by describing the case of two

populations, N = 2, and we consider the threshold that

determines the level of LTD equal to 1, M = 1, so that

LTD is absent when the postsynaptic population is active

(upost = 1). Suppose that I1(t) = IS on [0, T1] and

I2(t) = −IH , and I2(t) = IS on [T1, T1 + T2] and I1(t) =
−IH , where IS and IH are large enough so that Eq. (3) is

valid. The positive inputs with weight IS model feedforward

excitation to cells tuned to the cue from upstream visual

processing regions in thalamus. Negative inputs with weight

−IH model strong effective feedforward inhibition to cor-

tical cells that are not tuned to the present cue (Wang et al.

2007; Haider et al. 2013). Representing the effect of feed-

forward inhibition as static inputs simplified the model, and

did not affect our results.
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Fig. 1 The precise timing of training sequences is learned via long

term plasticity. Each stimulus in the sequence is represented by a dif-

ferent shade. a. Before training, network connectivity is random, and a

cue does not trigger a sequential pattern of activity. b. During training,

a sequence of events is presented repeatedly. Each event activates a cor-

responding neural population for some amount of time, which is fixed

across presentations. Long term plasticity reshapes network architec-

ture to encode the duration and order of these activations. c. After

sufficient training, a cue triggers the pattern of activity evoked dur-

ing the training period. Learned synaptic connectivity along with short

term facilitation steer activity along the path carved by the training

sequence (arrow width and contrast correspond to synaptic weight)

We assumed that Ti > D, Ti ≫ τ , and τw ≫ τ , so

that the stimulus was longer than the plasticity delay, and

plasticity slower than the firing rate dynamics. Separation

of timescales in Eq. (3) implies that uj ≈ ϕ(Ij (t) − θ), so

the firing rate of populations 1 and 2 is approximated by

u1(t) ≈ 1 on [0, T1] and zero elsewhere, and u2(t) ≈ 1 on

[T1, T1 + T2] and zero elsewhere (Fig. 2a). Hence, during

a training trial on a time interval [0, Ttot ], we obtain from

Eq. (3) the following piecewise equation for the synaptic

weight, w21, in terms of the duration of the first stimulus,

T1,

dw21

dt
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, t �∈ [D, T1 + D],
−

γd

τw

w21, t ∈ [D, T1],
γp(wmax − w21)

τw

, t ∈ [T1, T1 + D].
(4)

Note that we assumed that u1(t) = 0 for t < 0.

Equation (4) allows the network to encode T1 using the

weight w21. Namely, solving Eq. (4) we obtain

w21(Ttot ) = w21(0)e−T1γd/τwe−(γp−γd )D/τw

+(1 − e−Dγp/τw )wmax,

which relates the synaptic weight at the end of a presenta-

tion, w21(Ttot ), to the synaptic weight at the beginning of

the presentation, w21(0) (Fig. 2a). Thus, there is a recursive

relation that relates the weight w21 at the end of the i + 1st

stimulus to the weight at the end of the ith stimulus:

wi+1
21 = wi

21e
−T1γd/τwe−(γp−γd )D/τw (5)

+(1 − e−Dγp/τw )wmax .

As long as γp > γd , the sequence (wi
21) converges to

w∞
21 :=

(1 − e−Dγp/τw )wmax

1 − e−T1γd/τwe−(γp−γd )D/τw
, (6)

as seen in Fig. 2b. An equivalent expression also holds in

the case of an arbitrary number of populations.

The relative distance to the fixed point w∞
21 is computed

by noting that (for T1 fixed)

|wi+1
21 − w∞

21 |/|wi
21 − w∞

21 | = e−T1γd/τwe−(γp−γd )D/τw ,

from which we calculate

|wi
21 − w∞

21 | ∝
(

e−T1γd/τwe−(γp−γd )D/τw

)i

.

Thus, the sequence converges exponentially with the

number of training trials, i. The relative distance to the fixed

point is proportional to e−mT1γd/τw , so the convergence is

faster for larger values of T1, as shown in Fig. 2c.

2.3.2 Synaptic weights of populations that are not

co-activated

To compute the dynamics of w12, we note that during a

training trial on the time interval [0, Ttot ], the following

piecewise equation governs the change in synaptic weight,

dw12

dt
=

{

0, t �∈ [T1 + D, T1 + T2 + D],
−

γd

τw

w12, t ∈ [T1 + D, T1 + T2 + D],

which can be solved explicitly to find

w12(Ttot ) = w12(0)e−T2γd/τw . (7)
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We can therefore write a recursive equation for the

weight after the i + 1st stimulus in terms of the weight after

the ith stimulus

wi+1
12 = wi

12e
−T2γd/τw ,

which converges to w∞
12 = 0. Thus, w∞

jk = 0 for all

pairs of populations (j, k) for which population j was not

activated immediately after population k during training.

In total, sequential activation of the populations leads to

the strengthening only of the weights wj+1,j , while other

weights are weakened.
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Fig. 2 Encoding timing in synaptic weights. a. Synaptic connections

evolve during training. When a presynaptic population (1) is active

and a postsynaptic population (2) is inactive, LTD reduces the synaptic

weight w21. When the populations (1 and 2) are co-active (overlap win-

dow between dashed lines), LTP increases w21. Shortly after, global

inhibition inactivates the presynaptic population (1), so long term plas-

ticity ceases (see Section 2). As in the text, wi
21 denotes the weight at

the end of the i-th trial. Arrow width and contrast correspond to synap-

tic weights. b. After several training trials, the synaptic weight wi
21

converges to a fixed point, w∞
21 , whose amplitude depends on the acti-

vation time of the presynaptic population. c. Starting from the same

initial value, w0
21(T1) = 0.25, the weight wi

21(T1) converges to differ-

ent values, w∞
21(T1), depending on the the training time, T1. Vertical

bar at T1=300 ms corresponds to the value used in (a) and (b)

2.4 Reactivation of trained networks

To examine how a sequence of event timings could be

encoded by our network, the first neural population in the

sequence was activated with a short cue. Typically, this cue

was of the form I1(t) = 1 for t ∈ [0, Tcue], I1(t) = 0 for

t ∈ [Tcue, ∞), and Ij (t) = 0 for j �= 1 (Fig. 1c). During

replay, aside from the initial cue, the activity in the network

was generated through recurrent connectivity.

We describe the case of two populations where the first

population is cued, and remains active due to self-excitation

(u1(t) ≈ 1), Fig. 3a. Since u2(0) = 0 and ϕ is the Heaviside

step function, the equations governing the dynamics of the

second population are

τ
du2

dt
= −u2 + ϕ(w21p1 − θ),

p1(t) = pmax + (1 − pmax)e
−t/τf . (8)

Thus, for population 2 to become active, w21p1(t) must

have reached θ (Fig. 3a). The time T between when u1

becomes active and u2 becomes active (“replay time”) could

be controlled by the synaptic weight w21. Figure 3b shows

the effect of changing the synaptic weight: For very small

values of the baseline weight w21, the effective synap-

tic strength w21p1(t) never reaches θ and activation does

not occur. Increasing the baseline weight w21 causes more

rapid activation of the second population, and for very

large weights w21 the activation is immediate. The weight

required for a presynaptic population to activate a postsy-

naptic population after T units of time is given in closed

form by

W(T ) :=
θ

pmax + (1 − pmax)e
−T/τf

. (9)

Similarly, the inverse of this function,

T (w) := τf ln

(

pmax − 1

pmax − θ/w

)

, (10)

gives the activation time as a function of the synaptic weight

(Fig. 3c). Note that Eq. (10) is valid for θ/pmax < w < θ .

If w ≤ θ/pmax , then activation of the next population does

not occur. If w ≥ θ , activation is immediate.

To ensure the first population becomes inactive when

population 2 becomes active, we assumed that global inhi-

bition overcame the self excitation in the first population,

w11+w12p2(T )−L−θ < 0. Also, for the second population

to remain active, we needed the self excitation plus the input

received from population 1 to be stronger than the global

inhibition; namely, w22+w21p1(T )−L−θ = w22−L > 0.

These two inequalities are satisfied whenever w12 is small

enough and L < wjj < L + θ .
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2.5 Matching training parameters to reactivation

parameters

To guarantee that long term plasticity leads to a proper

encoding of event times, it is necessary that the learned

weight, w∞
21 given by Eq. (6), matches the desired weight

W(T ) given by Eq. (9). This can be achieved by equating

the right hand sides of Eqs. (6) and (9), so that

(1 − e−Dγp/τw )wmax

1 − e−T γd/τwe−(γp−γd )D/τw

=
θ/pmax

1 + e−T/τf (1 − pmax)/pmax

. (11)

Equation (11) can be satisfied for all values of T by

choosing parameters that satisfy

τw/γd = τf ,

(1 − e−Dγp/τw )wmax = θ/pmax,

e−(γp−γd )D/τw = (pmax − 1)/pmax . (12)

Since there are fewer equations than model parameters,

there is a multi-dimensional manifold of parameters for

which Eq. (11) holds for all T . For instance, for fixed short-

term facilitation parameters θ , pmax , and τf and restricting

specific plasticity parameters τw and D, the appropriate γd ,

γp, and wmax can be determined using Eq. (12). This is how

we determined the parameters in Figs. 4 and 5.

The first relationship in Eq. (12) states τw/γd = τf , relat-

ing the timescale of short term facilitation to the timescale

of long term plasticity through the depression amplitude

parameter γd . It is important to note that this does not mean

that the timescales of the two processes need to match. As

stated in Table 1, following experimental data (Markram

and Tsodyks 1996; Alberini 2009; Graupner and Brunel

2012; Nabavi et al. 2014), we chose τf = 1s and τw = 150s

for our simulations. This implies that γd = 150, for training

to yield the correct weights.

As we demonstrate in Supplementary Fig. 1, perturbing

parameters of the long term plasticity process away from

the optimal relationships determined by Eq. (12) does alter

the learned time. The relative size of errors depends on

the parameters we perturb, and we find the model is most

sensitive to perturbation of wmax . Perturbations of other

parameters such as γp and γd lead to to errors roughly equal

in to the magnitude of the parameter perturbation (e.g., a

5 % perturbation of γd leads to a 5 % change in Treplay).

For more detailed models, the analog of Eq. (12) is

more cumbersome or impossible to obtain explicitly. Specif-

ically, when we incorporated noise into our models in the

Section 4.1 and considered spike rate adaptation in the

Section 4.3, we had to use an alternative approach. We

found it was always possible to numerically approximate

parameter sets that allowed a correspondence between the

trained and desired weight for all possible event times. A

simple way of finding such parameters was the method of

least squares: We selected a range of stimulus durations,

e.g. [.1s, 3s], and sampled timings from it, e.g. S =
{.1s, .2s, .3s, . . . , 3s}. For each T ∈ S we computed the

learned weight, wlearned(T , pars), where “pars” denotes the

list of parameters to be determined. Then, we computed

the replay time, Treplay(wlearned(T , pars)). We defined the

“cost” function

J (pars) =
∑

T ∈S

(

Treplay(wlearned(T , pars)) − T
)2

,

and the desired parameters were given by

parsbest := argminpars{J (pars)}. (13)

This approach was successful for different models and train-

ing protocols, and allowed us to find a working set of

parameters for models that included noise or different slow

processes for tracking time.

Equation (13) can also be interpreted as a learning rule

for the network parameters. Starting with arbitrary network

parameter values, any update mechanism that decreases the

cost function J will result in a network that can accurately

replay learned sequence times.

2.6 Training and replay simulations

To test our model, we trained the network with a sequence of

four events. Each event in the sequence corresponded to the

activation of a single neuronal population (Fig. 4a). Since

each population was inactivated (received strong negative

input) when the subsequent populations became active, we

also assumed that an additional, final population inactivated

the population responding to the last event (additional pop-

ulation not shown in the figure). Input during training was

strong enough so that activation of the different populations

was only determined by the external stimulus overriding

global inhibition and recurrent excitation.

During reactivation, the recurrent connections were

assumed fixed. This assumption can be relaxed if we

assume that LTP/LTD are not immediate, but occur on long

timescales, as in the Section 4.4.

We used m = 10 training trials, the default parameter

values in Table 1, and estimated γd , γp, and wmax using

Eq. (12). After the training trials were finished, we cued

the first population in the sequence, using I1(t) = 1 for

t ∈ [0, Tcue] and Ij (t) = 0 otherwise. We also started with

this set of weights, and retrained the network with a novel

sequence of stimuli.
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Fig. 3 Replay timing. a. Once population 1 is activated, the weight

of the connection to population 2 slowly increases, eventually becom-

ing strong enough to activate this next population in the sequence. b.

Activation time T := T1 decreases monotonically with the weight of

the connection between the populations, w := w21. For weak connec-
tions (wA = 0.33) the synapses must be strongly facilitated to reach
the threshold. If the weight is larger (wB = 0.42) threshold is reached
more quickly. For weights above the threshold (wC = 0.58 > θ ),
population 2 is activated immediately. Activation will not occur when
the synaptic connection is smaller than θ/pmax . c. Activation time T1

plotted against the initial synaptic weight, w21. For intermediate val-
ues of w21, the relationship is given by Eq. (10). Here wA, wB , wC

and T A, T B are the same as in panel (b)

3 Results

3.1 Training

We explore sequence learning in a network model of neu-

ral populations, where each population is activated by a

distinct stimulus or event. The initial connectivity between

the populations is random (Fig. 1a). To make our analy-

sis more transparent, we initially consider a deterministic

firing rate model, Eq. (1). Each individual neural popula-

tion is bistable, having both a low activity state and a high

activity state that is maintained through recurrent excitation.

Our results also hold for more biologically plausible firing

rate response functions and are robust to noise (Sections 4.1

and 4.2).

To train the network, we stimulated populations in a

fixed order, similar to the training paradigm used by (Xu

b

Fig. 4 Learning and replaying event sequences. a. As the number

of training trials increases, a cue results in an activation pattern that

approaches that evoked by the training sequence. Network architec-

ture is reshaped to encode the precise duration and order of events in

the sequence, with stronger feedforward connections corresponding to

shorter events (thicker and darker arrows correspond to larger synap-

tic weights). All weights are learned independently and training most

strongly affects the weights wi→i+1. The event times were T1 = 0.6,

T2 = 0.4, T3 = 1, and T4 = 0.5 seconds, with indices denoting the

population stimulated. The initial weights were w0
ij = 0.025 for i �= j

and wii = 1. b. The network in the last row of (a) was retrained with

the sequence T1 = 0.4, T4 = 1, T3 = 0.6, and T2 = 0.8, presented in

the order 1-4-3-2. After 10 training trials, the cued network replays the

new training sequence

et al. 2012; Eagleman and Dragoi 2012; Gavornik and

Bear 2014). The duration of each event in the training

sequence was arbitrary (Fig. 1b), and each stimulus in the

sequence drove a single neural population. Synaptic connec-

tions between populations were plastic. To keep the model

tractable, population activity was assumed to immediately

impact the weight of synaptic connections. Our results also

extend to a model with synaptic weights changing on longer

timescales (Section 4.4).

Changes in the network’s synaptic weights depended on

the firing rates of the pre- and post-synaptic populations

(Bliss and Lømo 1973; Bienenstock et al. 1982; Dudek and

Bear 1992; Markram and Tsodyks 1996; Sjöström et al.

2001). When a presynaptic population was active, either:

(a) synapses were potentiated (LTP) if the postsynaptic

population was subsequently active or (b) synapses were

depressed (LTD) if the postsynaptic population was not acti-

vated soon after (Section 2). Such rate-based plasticity rules

can be derived from spike time dependent plasticity rules
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(Kempter et al. 1999; Pfister and Gerstner 2006; Clopath

et al. 2010).

To demonstrate how the timing of events can be encoded

in the network architecture, we start with two populations

(Fig. 2). During training, population 1 was stimulated for T1

seconds followed by stimulation of population 2 (Fig. 2a).

The stimulus was strong enough to dominate the dynam-

ics of the population responses (Section 2). While the first

stimulus was present, population 1 was active and LTD

dominated, decreasing the synaptic weight, w21, from popu-

lation 1 to population 2. After T1 seconds, the first stimulus

ended, and the second population was activated. However,

population 1 did not become inactive instantaneously, and

for some time both population 1 and 2 were active. During

this overlap window, LTP dominated leading to an increase

in synaptic weight w21. Shortly after population 1 became

inactive, changes in the weight w21 ceased, as plasticity only

occurs when the presynaptic population is active. The ini-

tial and final synaptic weights (w0
21 and w1

21, respectively)

can be computed in closed form (Section 2). Repeated

presentations of the training sequence lead to exponen-

tial convergence of the synaptic weights, wi
21 (weight after

ith training trial), to a fixed value (Fig. 2b). On the other

hand, the synaptic weight w12 is weakened during each

trial because the presynaptic population 2 is always active

after the postsynaptic population 1 (Section 2). In the

case of N populations, each weight wk+1,k will converge

to a nonzero value associated with Tk , whereas all other

weights will become negligible during replay. Thus, the

network’s structure eventually encodes the order of the

sequence.

The duration of activation in population 1, T1, determines

the equilibrium value of the synaptic weight from popula-

tion 1 to population 2, w∞
21 (Section 2). For larger values

of T1, LTD lasts longer, weakening w21 (Fig. 2c). Hence,

weaker synapses are associated with longer event times.

Reciprocally, weaker synapses lead to longer activation

times during replay (Section 3.2).

As the stimulus duration, T1, determines the asymptotic

synaptic weight, w∞
21(T1), there is a mapping T1 → w∞

21(T1)

from stimulus times to the resulting weights. Event timing

is thus encoded in the asymptotic values of the synaptic

weights.

3.2 A slow process allows precise temporal replay

We next describe how the trained network replays

sequences. The presence of a slow process, which we

assumed here to be short term facilitation, is critical. This

slow process tracks time by ramping up until reaching a

pre-determined threshold. An event’s duration corresponds

to the amount of time it takes the slow variable to reach

this threshold. Such ramping models have previously been

a b

c d

e f

g h

i j

Fig. 5 Effect of noise on learning and replay. The effects of adding

normally distributed noise to (a) the observed training time T := T1

(duration of first stimulus) and (b) neural activity uj . Starting from a

uniform distribution (p(w0
21)) and considering either a noise level of

(c) σ = 0.1〈T 〉 in the training time or (d) σ = 0.03 in neural activity,

the probability density function p(wi
21) converges to the steady state

distribution p(w∞
21) (this is nearly identical to w10

21). Increasing noise

in the training times (e) or neural activity (f) widens the steady state

distribution p(w∞
21). The mean (dashed lines) and standard deviation

(shaded region) of w∞
21(T ) are pictured in panel (g) when noise with

standard deviation σ = 0.20〈T 〉 is added to the training times and

(h) when noise with standard deviation σ = 0.05 is added to neural

activity. As in Fig. 2c, the mean learned weight E
[

w∞
21

]

decreases

with 〈T 〉. The mean of the replay time (dashed line) and its standard

deviation (shaded region) are plotted against 〈T 〉 for the case of (i)

noise in training times and (j) noise in neural populations. As the mean

training time 〈T 〉 increases, so does the effect of noise on replay time

(dashed line and surrounding shading), Treplay (solid grey lines show

the diagonal line Treplay = T ). For a suitable choice of “corrected-

for-noise” parameters, the effect of noise on the mean replay time can

be removed (dotted line and surrounding shading). Insets in (i) and (j)

show the root-mean-square error in replay time as a function of training

time for the parameters obtained from the deterministic case (dashed)

and corrected-for-noise parameters (dotted)
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proposed as mechanisms for time-keeping (Buonomano

2000; Durstewitz 2003; Reutimann et al. 2004; Karmarkar

and Buonomano 2007; Gavornik et al. 2009). Without such

a slow process, cued activity would result in a sequence

replayed in the proper order, but information about event

timing would be lost.

For simplicity we focus on two populations, where activ-

ity of the first population represents a timed event (Fig. 3).

To simplify the analysis, we also assumed that synaptic

weights are fixed during replay. This assumption is not

essential (Section 4.4). After population 1 is activated with

a brief cue, it remains active due to recurrent excitation

(Section 2). Meanwhile, short term facilitation leads to an

increase in the effective synaptic strength from population 1

to population 2. Population 2 becomes active when the input

from population 1 crosses an activation threshold (Fig. 3a).

When both populations are simultaneously active, a suffi-

cient amount of global inhibition is recruited to shut off

the first population, which receives only weak input from

population 2. The second population then remains active,

as the strong excitatory input from the first population and

recurrent excitation exceed the global inhibition.

The weight of the connection from population 1 to pop-

ulation 2 determines how long it takes to extinguish the

activity in the first population (Fig. 3b). This synaptic

weight therefore encodes the time of this first and only

event. We demonstrate how this principle extends to multi-

ple event sequences in the Section 3.3. The time until the

activation of the second population decreases as the initial

synaptic weight increases, since a shorter time is needed

for facilitation to drive the input from population 1 to the

activation threshold (Fig. 3c). Note that when the baseline

synaptic weight is too weak, synaptic facilitation saturates

before the effective weight reaches the activation threshold,

and the subsequent population is never activated. When the

baseline synaptic weight is above the activation threshold,

the subsequent population is activated instantaneously.

Therefore, long term plasticity allows for encoding an

event time in the weight of the connections between popula-

tions in the network, while short term facilitation is crucial

for replaying the events with the correct timing. The time

of activation during cued replay will match the timing in

the training sequence as long as training drives the synap-

tic weights to the value that corresponds to the appropriate

event time (Fig. 2c):

W(T ) :=
θ

pmax + (1 − pmax)e
−T/τf

. (14)

Here pmax and τf are the strength and timescale of facili-

tation (Section 2). An exact match can be obtained by tuning

parameters of the long term plasticity process so the learned

weight matches Eq. (14). There is a wide range of parame-

ters for which the match occurs (Section 2). We next show

that the timing and order of sequences containing multiple

events can be learned in a similar way.

3.3 Repeated presentation of the same sequence

produces a time-coding feedforward network

To demonstrate that the mechanism we discussed extends

easily to arbitrary sequences, we consider a concrete

sequence of four stimuli. We set the parameters of the

model so that the training parameters match the reactivation

parameters (Eqs. (11–13) in Section 2).

We trained the network using the event sequence 1-

2-3-4 (Fig. 4a), repeatedly stimulating the corresponding

populations in succession. The duration of each population

activation was fixed across trials. After each training trial,

we cued the network by stimulating the first population for a

short period of time to trigger replay (Section 2). Thus, after

population 1 is activated the subsequent activity is governed

by the network’s architecture. As our theory suggests, the

cue-evoked network activity pattern converged with training

to the stimulus-driven activity pattern (Fig. 4a).

We further tested whether the same network can be

retrained to encode a sequence with a different order of

activation (1-4-3-2) with different event times. Figure 4b

shows that after training, the network encodes and replays

the new training sequence. Thus, the network architecture

can be shaped by long term plasticity to encode an arbitrary

sequence of event times, and a brief cue evokes the replay

of the learned sequence.

4 Extensions

4.1 Effects of noise

To examine the impact of the many sources of variabil-

ity in the nervous system (Faisal et al. 2008), we explored

how noise impacts the training and recall of event sequences

in our model. We examined the effects of stochastic event

times as well as noise in the network activity and the impact

such variability has on the training and recall of event

sequences. For simplicity, we focus on the case of two pop-

ulations, but our results extend to sequences of arbitrary length.

To examine the impact of variability in stimulus dura-

tions, we sampled T := T1 from a normal distribution

(Fig. 5a) with mean 〈T 〉 = 0.5 and variance σ 2 =
(cv 〈T 〉)2, where cv = 0.1 is the coefficient of variation.

Randomness in the observed event time may be due to

variability in the external world, temporal limitations on

sensation (Butts et al. 2007), or other observational errors

(Ma et al. 2006). We selected w0 := w0
21 from a uniform

distribution on [θ/pmax, θ ]. Figure 5c shows the evolution

of the probability density function of wm as m increases
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(using 20,000 initial w0’s). The synaptic weight after the

ith training, wi
21, is described by a probability density func-

tion that converges in the limit of many training trials.

The peak (mode) of this distribution is the most likely value

of the learned synaptic weight after repeated presentation of

the sequence (Fig. 5c). The variance of the learned synap-

tic weight, w∞
21, increases monotonically with the variance

in the training time, σ 2 (Fig. 5e). We explored the effects

of different levels of noise, σ = 0.1〈T 〉, 0.15〈T 〉, 0.2〈T 〉
(20,000 initial conditions for each), and estimated the prob-

ability density function of w∞ numerically (Fig. 5e). To

see the effect of noise for different mean training dura-

tions, we estimated the mean and standard deviation of

w∞ for 〈T 〉 ranging from 0.1s to 2s (step size of 0.05s)

using σ = 0.2〈T 〉 (5,000 initial conditions for each)

(Fig. 5g). For a distribution of training times with mean

〈T1〉 we obtain a unimodal probability density for the

weights, p(w21). As in the noise-free case, the mode of

this weight distribution decreases with 〈T1〉. Note that the

parameters given by Eq. (12), which guarantee that train-

ing and replay time coincide in the deterministic case, may

not be the same as the parameters needed when noise is

present. We numerically estimated these parameters using

Eq. (13) so the mean training time and mean replay time

coincided.

To determine how noise affects activation timing dur-

ing sequence replay, we compared the mean event time

with the mean replayed time. Since the network parameters

used here are those obtained from the noise-free case, we

expect that replay times are biased. Indeed, Fig. 5i shows

that activity during replay is slightly longer on average

than the corresponding training event. Also, the variance

in activation during replay increases with the mean dura-

tion of the trained event. We can search numerically and

find a family of parameters for which the mean activation

time during replay and training coincide (Fig. 5i). Error and

the coefficient of variation (CV) in replay time increases

with the duration of the trained time (Fig. 5i, shaded region

and inset).

We also estimated the mean learned synaptic weight and

its variance analytically: Since the synaptic weight, wi
21,

evolves according to the rule

wi+1
21 = wi

21A
(

T i
)

+ C,

where A(T ) := e−T γd/τwe−(γp−γd )D/τw and C := (1 −
e−Dγp/τw )wmax , we obtain

E
[

wi+1
21

]

= E
[

wi
21A(T i)

]

+ C.

Since wi
21 only depends on T j for j < i, it follows that

wi
21 and A(T i) are independent random variables; then,

E
[

wi+1
21

]

= E
[

wi
21

]

E
[

A(T i)
]

+ C,

and by taking the limit i → ∞ and solving for

limi→∞ E
[

wi
21

]

we find

µw := lim
i→∞

E
[

wi
21

]

=
C

1 − µA

,

where µA := E
[

A(T i)
]

. Squaring wi+1
21 = wi

21A(T i) + C

gives

(wi+1)2 = (wi)2A2(T i) + C2 + 2wi
21A(T i)C,

and then it similarly follows that

σ 2
w : = lim

i→∞

(

E
[

(wi
21)

2
]

− E
[

wi
21

]2
)

=
C2σ 2

A

(1 − µA)2(1 − σ 2
A − µ2

A)
,

where σ 2
A := E

[

A(T i)2
]

− E
[

A(T i)
]2

. To quantify the

average error, we computed numerically the mean and the

standard deviation of the replay time (Fig. 5i). The root-

mean-square error (RMSE) was computed by

RMSE(〈T 〉) :=
√

E
[

(〈T 〉 − Treplay)2
]

,

where the expected value is taken over the replay time,

Treplay . The coefficient of variation (CV) was computed by

CV (〈T 〉) :=
√

V ar(Treplay)

〈Treplay〉
.

To introduce neural noise (Fig. 5b), we added white noise

to the rate equations of the populations during training and

replay so that

duj =
1

τ

[

−uj + ϕ
(

Ij (t) + Ij,syn − θ
)]

dt + σdξj ,

where dξj is a standard white noise process with variance

σ 2. The analysis of the effect of noise in population activ-

ity is similar to the analysis performed on stimulus duration

noise, the only difference being that the noise level was

σ = 0.03 in panel Fig. 5d, σ = 0.03, 0.05, 0.06 in panel

Fig. 5f, and σ = 0.05 in panels Fig. 5h and j. After repeated

presentation of a sequence, the distribution of the learned

synaptic weights converged (Fig. 5d). The variance of the

synaptic weight increased monotonically with the variance

of the noise (Fig. 5f), and the mean weight decreased mono-

tonically with the event time (Fig. 5h). Since we used the

parameters found from the noise-free case, we expect some

bias in replay time. After training, the replayed event times

are shorter than the corresponding events in the training

sequence (Fig. 5j), and the effect is much more signifi-

cant than the lengthening of times due to observation noise.

This systematic bias in the replayed time error is due to

the saturating nature of the time-tracking process, short

term facilitation (Markram et al. 1998). Input to the sec-

ond population remains close to threshold for longer periods

of time for longer trained times, leading to more frequent
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a b

Fig. 6 Alternative firing rate function. The mechanism for sequence

learning and replay also works for other firing rate functions (see

Section 2). a. Using a nonlinear and nonsaturating response function

ϕγ (u) = √
γ u, long term plasticity still results in the coding of a train-

ing sequence as synaptic weights. b. After training, the cued network

replays the training sequence similarly to the replay seen in Fig. 4a.

noise-induced threshold crossings (Gardiner 2004). How-

ever, parameters for which mean event time and mean

replay time coincide can be found numerically (Section 2).

Interestingly, the CV attains a minimum in the vicinity of

the timescale of short term facilitation (τf = 1s), sug-

gesting the network best encodes events on the timescale

of the slow process (Fig. 5j, lower inset). This principle

holds across a range of short term facilitation timescales τf

(Supplementary Material, Fig. 2).

4.2 Alternative firing rate response function

We next show that the mechanism for learning the pre-

cise timing of an event sequence does not depend on the

particulars of the model. In previous sections, we used a

Heaviside step function as the firing rate function and chose

short term facilitation as the slow, time-tracking process.

However, the principles we have identified do not depend

on these specific choices. More general circuit models of

slowly ramping units can learn and replay timed event

sequences. The elements needed to learn and replay pre-

cise time durations are a chain of slow accumulators and

a learning rule which modifies weights to precisely time a

threshold-crossing event for each accumulator (Supplemen-

tary Material, Fig. 3).

Precise replay relies on a threshold-crossing process

which occurs as long as each population is bistable, having

only low and high activity states rather than graded activity.

Indeed, detailed spiking models (Litwin-Kumar and Doiron

2012) and experimental recordings (Major and Tank 2004)

suggest that cell assemblies can exhibit multiple stable

states. To test whether our conclusions hold with differ-

ent firing rate response functions, we replace the Heaviside

function with the nonsaturating function (Fourcaud-Trocmé

et al. 2003) (Fig. 6a)

ϕγ (x) =
{

0 if x < 0,√
γ x if x ≥ 0,

where the parameter γ determines the steepness. Note that

in the absence of other population inputs,

τ
duj

dt
= −uj + ϕγ

(

wjjuj − θ
)

,

which has steady states determined by the equation u =
ϕγ

(

wjju − θ
)

. One of the stable steady states is u = 0 and

there is a positive stable steady state, u∗, which is the largest

root of the quadratic equation u2 − γwjju + γ θ = 0. For

simplicity, we normalize γ and self-excitation so that the

stable states are u = 0 and u = 1; namely, we consider

γ ′ := γ /u2
∗ and w′

jj := wjju∗.

Since a population is activated when its input reaches the

threshold due to short term facilitation, the derivations that

led to Eqs. (9) and (10) are still valid for this model. How-

ever, the activation of a neuronal population (uj → 1) was

delayed since ϕγ has finite slope. This delay was negligible

when firing rate response was modeled by a Heaviside func-

tion, and activation was instantaneous. To take this delay

into account, we can modify Eqs. (9) and (10) to obtain

W(T ) :=
θ

pmax + (1 − pmax)e
−(T −d)/τf

,

and

T (w) := d + τf ln

(

pmax − 1

pmax − θ/w

)

,

where d is a heuristic correction parameter to account for

the time it takes for uj to approach 1.

Following the arguments that led to Eq. (12), we were

able to derive constraints on parameters to ensure the correct

timings are learned:

τw

Mγd

= τf ,

⎛

⎝1 −
e
−D(

(M−1)γd+γp
τw

)

1 + (M−1)γd

γp

⎞

⎠ wmax = θ/pmax,

e(γd−γp)D/τw =
pmax − 1

pmax

ed/τf . (15)

For simulations we used the parameters M = 1.5, d =
30ms, γ = 3, and estimated γd , γp, and wmax using Eq. (15)

(we then normalized ϕγ and wjj to make 0 and 1 the stable

firing rates). As in the previous simulations, the number of

presentations was m = 10; the durations of the events were

0.6s, 0.4s, 1s, and 0.5s for events 1, 2, 3 and 4, respectively.

Network architecture converges, and the replayed activ-

ity matches the order and timing of the training sequence

(Fig. 6b).

4.3 An alternative slow process: spike rate adaptation

We also examined whether spike frequency adaptation, i.e.

a slow decrease in firing rates in response to a fixed input to
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a neural population, can play the role of a slow, time track-

ing process (Benda and Herz 2003), instead of short term

facilitation. In contrast to the case of short term facilitation,

adaptation causes the effective input from one population to

decrease over time.

In this case population activity was modeled by

τ
duj

dt
= −uj + ϕ(wjjuj + sj − θ − Lv − aj ),

τa

daj

dt
= −aj + buj ,

τs

dsj

dt
= −sj +

N
∑

k �=j

wjkuk,

τ
dv

dt
= −v + ϕ

(

N
∑

k=1

Zkuk − θv

)

,

where aj denotes the adaptation level of population j , τa is

the time scale of adaptation, and b is the adaptation strength.

Feedback between populations was assumed to be slower

than feedback within a population; thus, the total input

for population j was split into self-excitation (wjjuj ), and

synaptic inputs from other populations (sj ) which evolved

on the time scale τs . Note that in the limit τs → 0, synapses

are instantaneous.

For a suitable choice of parameters, global inhibition

tracks activity faster than excitation between populations.

Then, when a population becomes inactive due to adap-

tation, the level of global inhibition decreases, allowing

subsequent populations to become active. This means the

weight of self excitation can encode timing. Thus, in this

setup we modeled long term plasticity within a population

as well. The learning rule for wjj was analogous to wjk with

the additional assumption that since wjj represented the

synaptic weight within a population, it could not decrease

below a certain value wmin. Also, the parameters for long

term plasticity within a population are allowed to be dif-

ferent from the parameters for long term plasticity between

populations.

The learning rule was then

τw

dwjj

dt
= −γ ′

d(wjj − wmin)uj (t − D′)(1 − uj (t))

−γ ′
p(wjj − w′

max)uj (t − D′)uj (t).

When the population was activated (u1(t) ≈ 1) for

t ∈ [0, T1] (Fig. 7a), the changes in the weight w11 were

governed by the piecewise differential equation

dw11

dt
=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, t �∈ [D′, T1 + D′]
γ ′
p

τw

(w′
max − w11) t ∈ [D′, T1]

−
γ ′
d

τw

(w11 − wmin) t ∈ [T1, T1 + D′].

The following equation relates the synaptic weight at the

end of a presentation, w11(Ttot ), to the synaptic weight at

the beginning of the presentation, w11(0):

w11(Ttot ) = w11(0)e−T1γ
′
p/τwe(γ ′

p−γ ′
d )D′/τw

+w′
maxe

−D′γ ′
d/τw (1 − e−(T1−D′)γ ′

p/τw )

+wmin(1 − e−D′γ ′
d/τw ).

This recurrence relation between the weight at the i + 1st

stimulus, wi+1
11 , and the weight at the ith stimulus, wi

11,

implies that wi
11 converges to the limit (Fig. 7b)

w∞
11 =

w′
maxe

−D′γ ′
d/τw (1 − e−(T1−D′)γ ′

p/τw )

1 − e−T1γ
′
p/τwe(γ ′

p−γ ′
d )D′/τw

+
wmin(1 − e−D′γ ′

d/τw )

1 − e−T1γ
′
p/τwe(γ ′

p−γ ′
d )D′/τw

.

Thus, for each stimulus duration a unique synaptic weight

is learned. Also, as shown in previous sections, w21 will

converge to a fixed value and w12 is weakened. Note that

in this case timing will be encoded as the weight of self-

excitation, and the order will be encoded as the weights

between populations.

During replay a cue activates population 1, u1 = 1, and

we obtain τ
du1
dt

= −u1+ϕ(w11−θ−a−L), τa
da1
dt

= −a+b.

Population 1 will become inactive (u1 ≈ 0) when w11 −
a1(t) decreases to θ + L. Then, the next population will

become active due to the decrease in global inhibition and

the remaining feedback from the first population due to the

slower dynamics of feedback between populations (Fig. 7c).

The precise time of activation can be controlled by tuning

the synaptic weight w11. Furthermore, since the activation

time satisfies w11 − a1(T ) = θ + L, we have a formula that

relates the synaptic weight to the activation time (Fig. 7d)

w11 = W(T ) := θ + L + b(1 − e−T/τa ).

When self excitation is too strong, adaptation will not

affect the activity of the first population and deactivation

will never occur. On the other hand, when self excitation is

too weak, activation is not sustained and the population will

be shut off immediately. To guarantee correct time coding

and decoding, w∞
11(T ) and W(T ) had to be approximately

equal for all T . The appropriate parameters could not be

found in closed form, so we again resorted to finding them

numerically using Eq. (13).

For simulations we used the parameters Zk = 0.6, L =
0.8, γp = 3750, γd = 100, γ ′

p = 267.86, γ ′
d = 7500,

wmax = 1.5, w′
max = 4.1312, and wmin = 1.3488. As in

the previous simulations, the number of presentations was

m = 10; the duration of the events were 0.6s, 0.4s, 1s, and

0.5s for events 1, 2, 3 and 4, respectively.

This idea generalizes to any number of events and pop-

ulations. Timing is encoded in the weight of the excitatory

self-connections within a population, while sequence order
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Fig. 7 Alternative slow process based on spike frequency adaptation.

a. When a population is active, LTP increases the synaptic weight w11.

After becoming inactive, LTD decreases w11 (see Section 2). b. Synap-

tic weight wi
11 is updated after the ith training trial. After several trials,

wi
11 converges to a fixed point w∞

11 that depends on the activation time

of the first population. c. Once population 1 is active, adaptation builds

up until overcoming self excitation. This will occur when the effective

strength, w11 −a1(t) ([excitation]−[adaptation]), crosses below θ +L

([threshold]+[inhibition]). d. Activation time T := T1 increases with

synaptic weight w := w11. For strong self excitation (wA) adaptation

takes longer to shut off the first population, so the next population in

the sequence is activated later. Weaker self excitation (wB ) will result

in quicker extinction of activity in the first population, result in the next

population activating sooner. For self excitation below θ + L ([thresh-

old] + [inhibition]), the first population will inactivate immediately,

resulting in immediate activation of the next population. If self exci-

tation of the first population is greater than θ + L + b ([threshold]

+ [inhibition] + [maximum adaptation]), it will remain active indef-

initely, and the subsequent population is never activated. e. When the

parameters of the long term plasticity process and the replay process

match, the network can learn the precise timing of sequences

is encoded in the weight of the connections between pop-

ulations. Moreover, for a range of network parameters, the

duration of the sequences during training and reactivation

coincide (Section 2). Presenting the event sequence used in

Fig. 4a, the network can learn the precise timing and order

of the events (Fig. 7e).

4.4 Incorporating long timescale plasticity

Thus far, we have assumed that during sequence replay,

synaptic connections remained unchanged (Section 3.3).

However, if synaptic changes occur on the same timescale

as the network’s dynamics, and are allowed to act during

replay, the network’s architecture can become unstable. This

problem can be solved by assuming that synaptic weights

change slowly compared to network dynamics (Alberini

2009).

We therefore extended our model so that long term plas-

ticity occurs on more realistic timescales. The impact of

rate covariation on the network’s synaptic weights was mod-

eled by a two step process: (a) rate correlation detection,

which occurs on the timescale of seconds and (b) transla-

tion of this information into an actual weight change, which

occurs on the timescale of minutes or hours. The initial and

immediate signal shaped by the firing rates of pre- and post-

synaptic neural populations was modeled by intermediate

variables we refer to as proto-weights (Gavornik et al. 2009)

(Fig. 8a). Changes to the actual synaptic weights occur on

a much longer timescale, and slowly converged to values

determined by the proto-weights (Fig. 8b).

Introducing proto-weights leads to repeated reenforce-

ment of learned activity patterns making them robust to

spontaneous network activations. The model takes the

form

τ
duj

dt
= −uj + ϕ

(

Ij (t) + Ij,syn − θ
)

,

τf

dpj

dt
= 1 − pj + (pmax − 1)uj ,

τ
dv

dt
= −v + ϕ

(

N
∑

k=1

Zkuk − θv

)

,

τw

dwjk

dt
= −γdwjkuk(t − D)(M − uj (t))

+γp(wmax − wjk)uk(t − D)uj (t), j �= k,

τI

dWjk

dt
= wjk(t − Dp) − Wjk(t), (16)

where

Ij,syn = Wjjuj +
N

∑

k �=j

Wjkpkuk − Lv,

τI is the time scale of the actual weights, and Dp is a

time delay in the process of transforming changes in the
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Fig. 8 A two-stage learning rule. a. Proto-weights track the signaled

change to synaptic connectivity brought about by firing rate covari-

ance. Actual weights evolve on a slower time scale and hence do not

track changes in the proto-weights immediately. b. Actual synaptic

weights approach proto-weight values on a longer timescale, so both

eventually converge to the same value.

proto-weights to changes in the actual weights. Since τw

represents the timescale of changes in proto-weights, the

timescale τI represents the timescale of actual synaptic

weight changes. The process of translating a coincidence in

firing rates into a weight change can be much longer than

detecting the coincidence, and we can thus take τI much

larger than τw (Markram and Tsodyks 1996).

It was still possible to analyze the model given in

Eq. (16), but the results were less transparent. During train-

ing, the proto-weights satisfied Eq. (6). As the number

of training trials increased, the proto-weights converged to

the limit given in Eq. (6). The actual weights also slowly

approached the same limit; that is, Wjk converged to the

limit given in Eq. (6). During replay, the proto-weights

evolved according to Eq. (16), but due to the delay Dp and

the time scale τI , the actual weights remained unchanged

and replay occurred accurately as in the Section 2.6.

Modeling long term plasticity as a two-stage process

allowed us to incorporate more realistic details: We were

able to assume that synaptic connections are plastic during

replay, as well as during training. Replaying the sequence

of neural population activations evokes long term plasticity

signals through the proto-weights, and alterations to actual

synaptic weights do not take place until after the epochs

of neural activity. During reactivation, the actual weights

already equal the values necessary to elicit the timed event

sequence. Then, the weakening of the connection due to

LTD will precisely equal the strengthening due to LTP,

resulting in no net change in the actual connection weight.

As long as the time scale of synaptic weight consolidation is

much larger than the sequence timescale, long term plastic-

ity during replay reinforces the learned network of weights

that is already present.

5 Discussion

Sequences of sensory and motor events can be encoded

in the architecture of neuronal networks. These sequences

can then be replayed with correct order and timing when

the first element of the sequence is presented, even in the

absence of any other sensory input. Experimental evidence

shows that after repeated presentations of a cued train-

ing sequence, the presentation of the cue alone triggers a

temporal pattern of activity similar to that evoked by the

training stimulus (Eagleman and Dragoi 2012; Xu et al.

2012; Shuler and Bear 2006; Gavornik and Bear 2014).

Our goal here was to provide a biologically plausible mech-

anism that could govern the learning of precisely timed

sequences.

5.1 Learning both the precise timing and order of

sequences

We demonstrated how a complex learning task can be

accomplished by combining two simple mechanisms. First,

the timing of a single event can be represented by a slowly

accumulating positive feedback process (Buonomano 2000;

Durstewitz 2003; Reutimann et al. 2004; Shea-Brown et al.

2006; Karmarkar and Buonomano 2007; Gavornik et al.

2009; Simen et al. 2011). Second, rate dependent long term

plasticity can reshape synaptic weights so that the order

and precise timing of events in a sequence is encoded by

the network’s architecture (Amari 1972; Abbott and Blum

1996).

To make the problem analytically tractable, we consid-

ered an idealized model of neural population firing rates,

long term plasticity, and short term facilitation. This allowed

us to obtain clear relationships between parameters of

the time-tracking process (short term facilitation) and the

learning process (long term plasticity). The assumptions

about model structure and parameters that were essen-

tial for sequence learning could be explicitly described

in this model. Similar conditions were required for learn-

ing in more realistic models, which incorporated the long

timescale of LTP/LTD.

A novel feature of our network model is that long term

plasticity influences the length of time a neural population

is active. Typical computational models of sequence learn-

ing employ networks of neurons (Jun and Jin 2007; Fiete

et al. 2010; Brea et al. 2013) or populations (Abbott and

Blum 1996) that are each active for equal amounts of time

during replay. However, sensory and motor processes can be

governed by networks whose neurons have a fixed stimulus

tuning (Xu et al. 2012; Gavornik and Bear 2014). There-

fore, a sequence of events of varying time lengths should

be represented by neural populations that are each active

for precisely the length of time of the corresponding event.
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Our model demonstrates that this can be achieved using

rate-based long term plasticity.

5.2 Experimental predictions

The general mechanisms we described here imply a num-

ber of experimentally testable features of the neural sub-

strates of the learning and recall of event sequences. Our

analysis of the impact of noise on time encoding demon-

strates a relationship between the dynamical mechanism

for encoding and error statistics. If time interval estima-

tion is accomplished through a slow process that saturates

toward a threshold, then the relative error of an interval

in the sequence should increase with interval length, and

average interval estimate should be shortened during replay

(Fig. 5j). This provides an innate mechanistic explanation

for underestimate of time duration, contributing to existing

literature that has found environmental conditions that can

lead to such systematic errors (Morrone et al. 2005; Terao

et al. 2008). When time is marked by a slow process that

scales linearly in time, average duration estimates will be

close to the true estimate and relative error will be invari-

ant to trained durations (Supplementary Material, Fig. 3).

We suggest a way in which average interval estimates may

be shorter than the trained interval, if the trained interval

is longer than the timescale of the slow process encoding

it. If the slow process that reads out the stored time grows

linearly or exponentially, average interval estimates may be

nearly equal or longer than the true duration (Supplementary

Material, Fig. 3).

The mechanics of sequence learning could be under-

stood further by examining the development of sequence

replay accuracy with the number of trainings. Errors in

sequence recall will tend to be greatest after very few train-

ings (Fig 4a). Cortical recordings reveal that, indeed, the

correlation between replayed activity and training sequence

evoked activity increases with the number of sequence expo-

sures (Eagleman and Dragoi 2012). Additionally, our model

suggests that errors in the replayed time of each event’s

beginning will build serially, if they rely upon a sequence

of population activations. This means that errors in the total

run time of a sequence will increase with sequence duration,

as in (Hass et al. 2008). However, errors in the individual

estimates of each event duration will not depend on their

placement in the sequence. Such errors should decrease at a

similar rate across all individual events, as suggested by our

analysis in Section 2. This prediction could be tested experi-

mentally by examining how subjects’ individual event dura-

tion estimates depend on the event’s position in a learned

sequence.

Lastly, we predict that event sequences can be learned

through rate correlation based synaptic plasticity acting

on connection between stimulus-tuned populations. This

mechanism could be probed experimentally in a num-

ber of ways. First, if neural activity underlying sequence

learning were being recorded electrophysiologically (Xu

et al. 2012; Gavornik and Bear 2014), subsequent experi-

ments could be performed to see if electrically stimulating

neurons out of sequence could disrupt learned sequence

memory. This would provide evidence that plasticity mech-

anisms that result from neural activity are involved in

the consolidation of sequence memory. Inactivating pop-

ulations in the sequence could also disrupt the replay of

the remainder of the sequence, supporting our network

chain model of sequence learning. For example, optoge-

netic methods could be used to inactivate a large fraction

of cells that respond to one of the events in sequence. If

such a disruption were to terminate sequence replay, this

would be strong evidence for the events being represented

by a chain of active populations. Furthermore, long term

plasticity processes could be disrupted through the local

injection of translational inhibitors (Alberini 2009). If this

leads to a reduction of sequence memory robustness, it

would constitute strong evidence for the importance of long

term plasticity in the local circuit for sequence memory

formation.

5.3 Comparison to previous models of interval timing

Several previous theoretical studies have proposed neural

mechanisms for the learning and recall of timed events.

Models capable of representing serial event order have

utilized individual units that are oscillators (Brown et al.

2000) or bistable populations (Grossberg and Merrill 1992).

Recent studies have found that continuous temporal trajec-

tories can be learned in networks of chaotic elements by

training weights to downstream neurons that constitute a

linear readout (Buonomano and Maass 2009; Hennequin

et al. 2014). A complementary approach has been used to

infer time by fitting a maximum likelihood model to the

rates and phases of spiking neurons in hippocampal net-

works (Itskov et al. 2011). Our approach is most similar

to previous studies that utilize discrete populations or neu-

rons to represent serial order (Grossberg and Merrill 1992;

Abbott and Blum 1996; Fiete et al. 2010; Brea et al. 2013).

Namely, we assume that the memory of each individual

event duration is learned in parallel with the others as in

(Fiete et al. 2010), in contrast to the serial building of

chains demonstrated in the model of (Jun and Jin 2007).

Reset models of sequence replay are supported by com-

parisons of human behavioral data to models that mark

event durations using a clock that is reset after each event

(McAuley and Jones 2003), suggesting errors are made

locally in time, rather than accumulated event-to-event. We

have extended previous work by developing a mechanism

for altering the activation time of each unit in the sequence.
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This learning process is distinct from the approach outlined

in (Buonomano and Maass 2009; Hennequin et al. 2014),

since it solely trains the recurrent architecture between pop-

ulations encoding time; tuning of a downstream readout is

unnecessary.

5.4 Internal tuning of long term plasticity parameters

There is a large set of parameters for which the network can

be trained to accurately replay training sequences. While

some parameter tuning is required, in simple cases we

could find these parameters explicitly. In all cases appro-

priate parameters could be obtained computationally using

gradient descent. In biological systems plasticity processes

could be shaped across many generations by evolution,

or within an organism during development. Indeed, recent

experimental evidence suggests that networks are capable

of internally tuning long term plasticity responses through

metaplasticity (Abraham 2008). For instance, NMDA recep-

tor expression can attenuate LTP (Huang et al. 1992; Philpot

et al. 2001), while metabotropic glutamate receptor acti-

vation can prime a network for future LTP (Oh et al.

2006). We note that such mechanisms would affect the

timescale and features of LTP/LTD, not the synaptic weights

themselves.

5.5 Models that utilize ramping processes with different

timescales

Our proposed mechanism relies on a ramping process that

evolves on the same timescale as the training sequence.

Short term facilitation (Markram et al. 1998) as well as

rate adaptation (Benda and Herz 2003) can fulfill this role.

However, other ramping processes that occur at the cel-

lular or network level are also capable of marking time

(Supplementary Material, Fig. 3). For instance, slow synap-

tic receptor types such as NMDA can slowly integrate

sensory input (Wang 2002), resulting in population firing

rate ramping similar to experimental observations in inter-

val timing tasks (Xu et al. 2014). Were we to incorporate

slow recurrent excitatory synapses in this way, the duration

of represented events would be determined by the decay

timescale of NMDA synapses. Alternatively, we could have

also employed short term depression as the slow process

in our model. Mutual inhibitory networks with short term

depression can represent dominance time durations that

depend on the network’s inputs, characteristic of percep-

tual rivalry statistics (Laing and Chow 2002). This rela-

tionship between population inputs and population activity

durations could be leveraged to represent event times in

sequences.

Events that occur on much shorter or longer timescales

than those we explored here could be marked by processes

matched to those timescales. For instance, fast events may

be represented simply using synaptic receptors with rapid

kinetics, such as AMPA receptors (Clements 1996). AMPA

receptor states evolve on the scale of tens of milliseconds,

which would allow representation of several fast succes-

sive events. However, we would expect a lower bound on

the duration of an event represented by this mechanism,

given by the neuronal membrane time constant (Dayan and

Abbott 2001). Slow events could also be represented by a

long chain of sub-populations, each of which is activated

for a shorter amount of time than the event. In the con-

text of our model, this would mean each population would

contain sub-populations connected as a feedforward chain

(Goldman 2009). Networks of cortical neurons can have

different subpopulations with distinct sets of timescales, due

to the variety of ion channel and synaptic receptor kinetics

(Ulanovsky et al. 2004; Bernacchia et al. 2011; Pozzorini

et al. 2013; Costa et al. 2013). This reservoir of timescales

could be utilized to learn events whose timings span several

orders of magnitude.

5.6 Learning the repeated appearance of an event

We only considered training sequences in which no event

appeared more than once (e.g. 1-2-3-4). If events appear

multiple times (e.g. 1-2-1-4), then a learned synaptic weight

(e.g. w21) would be weakened when the repeated event

appears again. This can be resolved by representing each

event repetition by the activation of a different subpopula-

tion of cells. There is evidence that this occurs in hippocam-

pal networks responding to spatial navigation sequences

on a figure eight track (Griffin et al. 2007). Even for

networks where each stimulus activates a specific popu-

lation, sequences with repeated stimuli could be encoded

in a deeper layer of the underlying sensory or motor

system. The same idea can be used to create networks

that can store several different event sequences contain-

ing the same events (e.g. 1-2-3-4; 2-4-3-1; 4-3-2-1). If

multiple sequences begin with the same event (e.g. 1-2-

3-4; 1-3-2-4), evoking the correct sequence would require

partial stimulation of the sequence (e.g. 1-2 or 1-3). Net-

works would then be less likely to misinterpret one learned

sequence for another sequence with overlapping events

(Abbott and Blum 1996).

5.7 Feedback correction in learned sequences

We emphasize that we did not incorporate any mechanisms

for correcting errors in timing during replay. However, this

could easily be implemented by considering feedback con-

trol via a stimulus that activates the population that is

supposed to be active, if any slippage in event timing begins
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to occur. This assumes there is some external signal indi-

cating how accurately the sequence is being replayed. For

instance, human performance of a piece of music relies on

auditory feedback signals that are used by the cerebellum to

correct motor errors (Zatorre et al. 2007; Kraus and Chan-

drasekaran 2010). If feedback is absent or is manipulated,

performance deteriorates (Finney and Palmer 2003; Pfor-

dresher 2003). Similar principles seem to hold in the replay

of visual sequences. (Gavornik and Bear 2014) showed that

portions of learned sequence are replayed more accurately

when preceded by the correct initial portion of the learned

sequence. We could incorporate feedback into our model by

providing external input to the network at several points in

time, not just the initial cue stimulus.

5.8 Conclusions

Overall, our results suggest that a precisely timed sequence

of events can be learned by a network with long term synap-

tic plasticity. Sequence playback can be accomplished by

a ramping process whose timescale is similar to the event

timescales. Trial-to-trial variability in training and neural

activity will be inherited by the sequence representation in a

way that depends on the learning process and the playback

process. Therefore, errors in sequence representation pro-

vide a window into the neural processes that represent them.

Future experimental studies of sequence recall that statisti-

cally characterize these errors will help to shed light on the

neural mechanisms responsible for sequence learning.
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