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NEUMANN BOUNDARY CONTROL OF HYPERBOLIC EQUATIONS 

WITH POINTWISE STATE CONSTRAINTS 

BORIS 8. MORDUKHOVICH1 and\~EAN-PIERRE RAYMOND2 

,, 

Abstract. We consider optimal control problems for hyperbolic systems with controls in Neumann 

boundary conditions with pointwise (hard) constraints on control and state functions. Focusing on hy­

perbolic dynamics governed by the multidimensional wave equation with a nonlinear term, we derive new 

necessary optimality conditions in the pointwise form of the Pontryagin Maximum Principle for the state­

constrained problem under consideration. Our approach is based on modern methods of variational analysis 

that allows us to obtain refined necessary optimality conditions with no convexity assumptions on integrands 

in the minimizing cost functional. 

Key words. optimal control, wave equation, Neumann boundary controls, state constraints, necessary 

optimality conditions 
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1 Introduction 

This paper concerns optimal control problems for hyperbolic systems with controls in Neumann 

boundary conditions in the presence of pointwise/hard constraints on control and state functions. It 

is well known that state-constr·ained control problems are among the most challenging and difficult 

in dynamic optimization. To the best of our knowledge, they have not been studied yet for hyperbolic 

systems with controls in Neumann boundary conditions, which is the objective of this paper. 

We pay the main attention to the following optimal control problem governed by the semilinear 

wave equation: minimize 

J(y, u) =In f(x, y(T))dx + i g(x, t, y)dxdt + ~ h(s, t, u)dsdt 

over admissible pairs (y, u) satisfying 

Ytt- 6.y + <I>(x, t, y) = 0 in Q: = Ox]O, T[, 

(1.1) 8vy = U on~:= rx]O, T[, 

y(O) =Yo, Yt(O) = Y1 in 0 
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under the pointwise constraints on control and state functions 

We denote this problem by (P) and shortly write as 

•'· 
(P) inf{J(y,u) I (y,u) satisfies (~.1),u E Uad, y E C}. 

,, 

The hyperbolic system (1.1) is given by a Neumann boundary control problem for the semilinear 

wave equation with a nonlinear term given by the function q>. Assumptions on this function as 

well as on the integrands J, g, and hare presented and discussed in Section 2. Note that n C JRN 

is an open bounded domain with the boundary r of class C2, the time T > 0 and the initial state 

(y0 ,y1 ) E H 1 (0) x L2 (0) are fixed. Note that the main constructions and results of the paper can 

be extended to hyperbolic equations governed by more general strongly elliptic operators in (1.1), 

not just the Laplacian .6.., with time-independent coefficients under certain regularity assumptions 

that are not considered in this paper. 

As mentioned, we are not familiar with any publications concerning state-constrained Neumann 

boundary control problems for hyperbolic equations. Some results for distributed controls in state­

constrained hyperbolic systems are obtained in [4, 6, 23, 24). Our preceding paper [16) concerns 

necessary optimality conditions for stated-constrained problems governed by the wave equation 

with Dirichlet boundary controls. 

It has been well recognized that Neumann and Dirichlet boundary conditions are essentially 

different in both parabolic and hyperbolic dynamical settings. While for parabolic equations the 

Dirichlet boundary value problem is considerably more difficult than the Neumann one, it is not 

the case for the hyperbolic dynamics; see, e.g., [8, 9, 10, 11, 12, 17, 19) and the references therein. 

Quite opposite, the fundamental regularity theory for hyperbolic equations with Dirichlet boundary 

conditions has come first; cf. [8] and [10]. The sharp regularity results developed by Lasiecka and 

Triggiani for hyperbolic equations of the Neumann type [10] play a crucial role in this paper. 

The main goal of this paper is to establish necessary optimality conditions for the state­

constrained Neumann boundary control problem (P), which will be derived under rather mild 

and natural assumptions. In contrast to the Dirichlet case [16], we concern the nonlinear dynamics 

in (1.1) imposing stronger regularity requirements on the initial state: (yo, yl) E H 1(0) x L2(0) in 

{1.1) instead of (y0 ,y1) E L2 (0) x H-1(0) in [16]. On the other hand, the Neumann case provides 

more regularity of the corresponding solutions to the boundary value problem in (1.1), which even­

tually allows us to entirely avoid the convexity assumptions on the integrands in the cost functional 

J(y, u) that play a crucial role in the Dirichlet control problem considered in [16]. Moreover, in 

this paper we are able to establish necessary optimality condition for (P) in the pointwise form of 

the Pontryagin Maximum Principle in contrast to the weaker integral form of [16]. 
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Our approach to deriving necessary optimality conditions in the Neumann problem (P) is com­

pletely different from the one in [16] developed for the Dirichlet case. Instead of reducing the 

original problem to an abstract optimization problem and then using a suitable version of the La­

grange Multiplier Rule in [16], we now employ perturbation methods of modern variational analysis 

involving penalizing state constraints and then pass,i:r.g to the limit from necessary optimality con-
·hl: 

ditions in unconstrained approximating problems. In\~he case of optimal control problems governed 

by ordinary differential systems with even nonsmooth data this approach has been developed in 

the seventies; see, e.g., [2, 15, 22]. For problems governed by partial differential equations the situ­

ation is more complicated and the first results have been obtained in the nineties only for bounded 

controls; see [12] and the references therein. As mentioned in [6, p. 595], versions of the maximum 

principle for unbounded control operators in the case of problems governed by partial differential 

equations were discovered by Fattorini [6] and independently by Raymond-Zidani [20]. Based on 

Ekeland's variational principle [3], and the approach developed in [20], we derive necessary opti­

mality conditions for the original state-constrained hyperbolic problem (P) in the strong/pointwise 

form of the maximum (actually minimum) principle of Pontryagin's type. Note that the approach 

developed in this paper allows us to obtain necessary optimality conditions for a more general 

version of problem (P), where the integrand h depends also on the state variable y. We are not 

going to pursue this issue here for simplicity. 

The rest of the paper is organized as follows. In Section 2 we present and discuss the basic 

assumptions used throughout the paper and then formulate the main result giving necessary con­

ditions for optimal solutions to (P). Section 3 is devoted to the proper definitions of solutions and 

the subsequent analysis of the Neumann boundary control problem in the state system (1.1) and 

in the corresponding adjoint system appearing in the necessary optimality conditions. 

Section 4 contains a preparatory material allowing us to derive in the concluding section nec­

essary optimality condition in the pointwise maximum principle form for approximating problems 

with no state constraints. Namely, we obtain the so-called increment formula for the minimizing 

functional with respect to diffuse/needle variations of controls. This technique, which is well known 

for the case of ordinary differential equations (see, e.g., [7, 15]), requires a more delicate analysis in 

the case of partial differential equations. Following the constructions of [20] developed in somewhat 

different parabolic setting, we obtain an increment formula for approximating hyperbolic problems 

based on suitable Taylor expansions of the problem data with respect to diffuse perturbations of 

reference controls. 

In the final Section 5 we give the proof of the main result of this paper that involves the three 

major steps of variational analysis: (a) perturbation of the original state-constrained problem by a 

family of approximating problems with no state constraints by using Ekeland's variational principle 

in an appropriate metric space, (b) deriving necessary optimality conditions in the approximating 

problems that provide suboptimality conditions to the original problem, and finally (c) passing to the 
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limit from the approximating problems to obtain the desired necessary conditions for the reference 

optimal solution to the state-constrained problem (P). 

2 Basic Assumptions and Statement of the Main Theorem 
•'· 

Throughout the paper we use standard notation.'\. For the reader convenience we recall that 

M([O, T]; L2 (D)) is the space of measures on [0, T] ~ith values in L2 (D), which is the topologi­

cal dual of C([O, T]; L2 (D)). The topological dual of 

Co(]O,T];L2 (D)) := {y E C([O,T];L2 (D)) 1 y(O) = o} 

is denoted by Mb(]O, T]; L2 (D)). It is well known that Mb(]O, T]; L2 (D)) can be identified with 

the subspace of M([O, T]; L2 (D)) of measures 1-" E M([O, T]; L2 (D)) such that 1-"lnx{o} = 0, where 

1-"lnx{o} denotes the restriction of 1-" to D x {0}. The same kind of notation is used in the paper in 

similar settings. For z E L2 ( Q) we denote by zt (respectively by Ztt) the derivative (respectively 

the second derivative) of z in t in the sense of distributions on Q. 

For a Banach space Z the duality pairing between Z and Z* is denoted by (-, ·)zxz•. When 

there is no ambiguity, we sometimes write(-,·) instead of (·,·)zxz•. Ify E C([O,T];L2 (D)) and 

1-" E Mb(]O, T]; L2 (D)), we still use the notation 

(y, !-")c([O,T];L2(!1))xMb(]o,T];L2(!1)) for (y, Mc([O,T];L2(!1))xM([O,T];L2(!1)), 

where P, is the extension of 1-" by zero to n x {0}. The same is used for similar spaces of measures. 

To emphasize a specific kind of regularity of solutions to the hyperbolic equations under consider­

ations, we may write, e.g., that (y, Yt) E C([O, T]; X) x C([O, T]; Y) is a solution to (1.1) instead of 

just indicating that y is a solution to this system. 

For the definition of the space BV([O, T]; (H1 (D))*) -the space offunctions of bounded variation 

on [0, T] with values in (H1 (D))*-we refer to [1, 14]. If p E BV([O, T]; (H1 (D))*), one can define 

p(C) and p(t+) for every t E]O, T[ and also p(O+) and p(T-), while the values p(O) and p(T) may be 

generally different from p(O+) and p(T-). There is a unique Radon measure on [0, T] with values in 

(H1 (D))*, denoted by dtp, such that the restriction of dtP to ]0, T[ is the vector-valued distributional 

derivative of pin ]0, T[ with dtp( {0}) = (p(O+)- p(O)) and dtp( {T}) = (p(T)- p(T-)). Moreover, 

identifying p with its representative right-hand side continuous in ]0, T[, one has 

p(O+) = p(O) + dtp( {0}) and p(t) = p(O) + dtp([O, t]) for every t E]O, T]. 

Recall that if (Pn) is a bounded sequence in BV([O, T]; (H1 (D))*), then there is a subsequence (Pnk) 

and a function p E BV([O, T]; (H1(D))*) such that 

Pnk (t) --+ p(t) weakly in (H1 (0) )* for almost every' t E [0, T]. 
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Note that this convergence may hold for every t E [0, T] if the above representative right-hand side 

continuous in ]0, T[ is not specified; see [1, Theorem 3.5] and.[14, Proposition 16.1]. In particular, 

Now let us formulate the standing Basic Assu~.ptions on the initial data of problem (P) that 

are needed throughout this paper. \, 

(Al) For every y E JR, <I>(-,·, y) is measurable in Q. For almost every (a.e.) pair (x, t) E Q, <I>(x, t, ·) 

is of class. C 1 on R Moreover, one has 

(2.1) I<I>~(x, t, y)l :::; M in Q x JR, 

where M is a positive constant. 

(A2) For every y E JR, f(·,y) is measurable inn with f(·,O) belonging to L 1(n). For a.e. x En, 

j ( x, ·) is a function of class C1 on R Moreover, there is a constant C > 0 such that 

IJ~(x, y)l :::; C(1 + jyl) W~lenever (x, y) En X R 

(A3) For every y E JR, g(·, ·, y) is measurable in Q with g(·, 0) belonging to L1 (Q). For a.e. 

(x, t) E Q, g(x, t, ·) is of class C1. Moreover, there is a constant C > 0 such that 

jg~(x, t, y)l :S C(1 + lyl) whenever (x, t, y) E Q x JR. 

(A4) For every u E JR, h(·, ·, u) is measurable on :E with h(·, 0) belonging to L1 (L:). For a.e. 

(s, t) E 1:, h(s, t, ·) is of class C1. Moreover, there is a constant C > 0 such that 

lh~(s, t, u)l :S C(1 +lui) whenever (s, t, u) E L: x JR. 

(A5) The state constraint set C c C([O, T]; L 2 (n)) is a closed and convex with intC =f. 0. We 

suppose that the initial state function (x, t) ~ y0 (x) belongs to the interior of C. 

(A6) The control set Uad is given in the form 

Uad := {u E L 2 (:E) I u(s, t) E K(s, t) a.e. on 1:}, 

where K is a measurable multifunction whose values are nonempty and closed ~ubsets of JR. 

Of course, we suppose as usual that the set of feasible pairs (y, u) to (P) is nonempty, i.e., 

there is u E Uad such that J(yu, u) < oo and Yu E C for the corresponding solution to system (1.1) 

rigorously defined and discussed in Section 3. 

Observe that the above basic assumptions do not impose any convexity requirements on the 

integrands in the cost functional with respect to either state or control" variables, as well as on the 
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control set Uad· This is different from the setting of [16] for the corresponding Dirichlet problem. 

The reason for such an essential relaxation is that the Neumann boundary value problem offers 

more regularity in comparison with the Dirichlet one and allows us to employ powerful variational 

methods to prove necessary optimality conditions that do not relay on weak convergences. The 

latter definitely requires convexity for the limiting, procedures to end up with pointwise results. 

On the other hand, in this paper we do not establish(any existence theorems for optimal solutions, 

in contrast to [16]. In fact, in the Neumann settingmnder consideration it would be enough to 

assume convexity only with respect to control variables to justify the existence of optimal solutions 

by direct methods. The stronger convexity assumptions imposed in [16] with respect to both state 

and control variables are due to the lack of regularity in the Dirichlet setting and are needed not 

only for the existence of optimal solutions but also for the proof of necessary optimality conditions 

as given in [16]. 

To formulate our main result, let us define the Hamiltonian function 

1-l(s, t, u,p, A) := pu + Ah(s, t, u) 

for the control problem (P). The following theorem gives necessary conditions for optimal solutions 

to (P) that are counterparts of the Pontryagin Maximum Principle in the pointwise form for the 

Neumann boundary control problem under consideration. Note that it is more convenient in our 

case to formulate this result with the minimum (not maximum) condition. 

Theorem 2.1 (pointwise necessary optimality conditions). Let (fj, u) be a optimal solution 

to problem (P) satisfying assumptions (A1)-(A6). Then there A E ~+, Jt E Mb(]O,T];L2 (n)), and 

a measurable subset E C E of full Lebesgue measure such that 

(2.2) 

(2.3) 

(A, Jt) =F 0, (Jt, z- Y) ::=; 0 for all z E C, and 

tl(s,t,u(s,t),p(s,t),A) = min 1-l(s,t,u,p(s,t),A) for all (s,t) E ij, 
uEK(s,t) 

where p is the corresponding solution to the adjoint system 

(2.4) 

Ptt- !::.p + <1?~(·, jj)p = Ag~(x, t, y) + JtiQ 

8vP = 0 

m Q, 

on E = rx]O, T[, 

p(T) =yo, Pt(T) = -Af~(x, jj(T))- Jtiox{T} m n. 

The proof of Theorem 2.1 is conducted in Section 5. The definitions of solutions to the state 

and adjoint systems in this theorem are given and discussed in the next section. 
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3 An.alysis of the State and Adjoint Systems 

Let us start with the Neumann boundary value problem for the linear wave equation 

Ytt- b.y = ¢ in Q, 

(3.1) 8vY = u ~ . ' 
on~' ,:\1: 

\. 

y(O) =Yo, Yt(O) ~ Yl inn. 

The following fundamental regularity result are established by Lasiecka and Triggiani [10]. 

Lemma 3.1 (basic regularity). Let y(¢,u,y0 ,yl) be a solution to the linear Neumann boundary 

value problem {3.1). Then the mapping u H y(O, u, 0, 0) is bounded from L2 (~) to C([O, T]; H 112 (0))n 

0 1([0, T]; H-112 (0)), and it is also bounded from L2 (~) to H 315-e(Q) for all c > 0. Furthermore, 

the mapping (¢,0,yo,y1) H y(¢,0,y0 ,y1 ) is bounded from L1(0,T;L2 (0)) x H 1(0) x L2 (0) to 

C([O, T]; H 1 (0)) n C([O, T]; L 2 (0)). 

Next we consider the Neumann boundary value problem for the linear wave equation with an 

irregular coefficient: 

Ytt- b.y + ay = ¢ in Q, 

(3.2) 8vy = u on~' 

y(O) = Yo, Yt(O) = Y1 in 0, 

where the irregular coefficient a(x, t) belongs to L00 (Q). The following upper estimate of solutions 

to the homogeneous problem in (3.2) is needed in the sequel. 

Lemma 3.2 (solution estimate for the homogeneous Neumann problem). Let y be a 

solution to {3.2) with u = 0. Then one has the estimate 

11YIIc([o,T);H1 (n)) + 11Ytllc([O,TJ;£2(n)) S C(II¢11£I(o,T;L2(n)) + IIYoiiHI(n) + IIYIII£2(n)), 

where the constant C may depend on llaiiLoo(Q) and II¢11£I(O,T;£2(n))• but it is invariant with respect 

to all a(x, t) having the same L 00 (Q)-norm. 

Proof. The proof is classical. It is sufficient to multiply the first equation in (3.2) by Yt, to integrate 

it over n, and then to use Gronwall's Lemma (see for example [13, page 184]). 

Lemma 3.3 (compactness of the solution operator). Let y(u) be the unique solution to {3.2) 

corresponding to (¢,yo, yl) = (0, 0, 0) and u. Then the mapping u H y(u) is a compact operator 

from L2 (~) into C([O, T]; L2 (0)). 
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Proof. The existence of the uniqueness of the corresponding solution to {3.2) can be deduced from 

the well-known result for (3.1) by using a fixed point method in L1{0,t; L2 {f!)) as lis sufficiently 

small and then by iterating the process n times with nl > T; cf. [18] for more details. Moreover, 

in this way we get the estimate 

IIYIIc((o,TJ;Hl/2(n)) + IIYtllc((o,t}~H-l/2(n)) :::; Clluii£2(E), 

where C depends on an upper bound for llaiiLoo(Q) being independent of a. Now the compactness 

result follows from [21, Corollary 5]. 6. 

Our next goal is to study the .Neumann boundary value problem (1.1), which is labelled as the 

state system for convenience. We first recall the notion of weak solutions to the Neumann problem 

in ( 1.1) that is appropriate for the purposes of this paper. 

Definition 3.4 (weak solutions to the state system). A function (y, Yt) E C([O, T]; L2 (f!)) x 

C{[O, T]; (H1 (f!))*) is a WEAK SOLUTION to system {1.1} if 

(3.3) 
k -if!(x, t, y)z dxdt = k yc.pdxdt + (Yt(T), z0)(Hl(n))• xHl(n) 

-In Yt(O)z(O) dx -In y(T)z1 dx +In y(O)zt(O) dx + h zu dsdt 

for all (c.p,z0 ,z1 ) E L1(0,T;L2 {f!)) x H 1{f!) x L2 {f!), where z solves the homogeneous Neumann 

boundary value problem 

Ztt - b.z = c.p in Q, 

(3.4) OvZ = 0 onE, 

z(T) = z0 ' Zt(T) = z1 in n. 

The advantage of the above definition is that it allows to establish the existence, uniqueness, 

and regularity of weak solutions to the original state system under the standing assumptions made 

in Section 2. 

Theorem 3.5 (existence, uniqueness, and regularity of weak solutions to the state sys­

tem). For every (u, y0 , Yl) E L2 (E) x H 1(f!) x L2 (f!) the state system {1.1} admits a unique weak 

solution (y, Yt) in C{[O, T]; H 112 (f!)) x C([O, T]; H-112 (f!)) satisfying the estimate 

11Yiic([o,T];H112(n)) + 11Ytllc([o,T];H-1/2(n)) :::; C(lluii£2(E) + IIYoiiHI(n) + IIYlli£2(n) + 1) 

with some constant C > 0. Moreover, the mapping (u,yo,Yl) ~ y is continuous from (u,yo,yl) E 

L2 (E) x H 1(f!) x L2 (f!) into C([O, T]; H 112 (f!)) n C 1([0, T]; H-112 (f!)). 
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Proof. The existence of solutions in the space C([O, t]; £ 2 (0)) n C1 ([0, t]; (H1 (S1))*) with t suf­

ficiently small can be obtained by a standard fixed point method. Then assumption (Al) and 

the estimates in Lemmas 3.2 and 3.3 allow to ensure the existence of solutions in the space given 

in the theorem. The proof of uniqueness is also standard and is omitted for brevity. The es­

timate of (y,yt) in C([O,T];H112 (S1)) n C1 ([0,T]i,H-112 (0)) follows from the estimate of yin 

C([O, T]; £ 2 (0)) due to the basic Lemma 3.1. To justi~ the continuity of the mapping (u, Yo, yi) f-t y 

from (u,y0 ,yi) E £ 2 (}:) x H 1(0) x £ 2 (!1) into C([O,;T];H112 (Q)) n C1([0,T];H-112 (0)), we use 

again assumption (Al) and the corresponding estimates for the linearized system (3.2) presented 

in Lemmas 3.2 and 3.3. 

Next we consider the adjoint system given by 

(3.5) 

Ptt - b.p + ap = J.LIQ 

8vP = 0 

in Q, 

on E, 

· p(T) = 0, Pt(T) = -J.Linx{T} in n, 

where J.L E Mb(JO, T]; £ 2(!1)), where J.LIQ and J.Linx{T} denote the restrictions of J.L to Q and to 

n x {T} ), respectively, and where a E L00 (Q). 

Take (p,pt) E £ 2(0, T; H 1 (S1)) x £ 2(0, T; L2 (n)) and assume that the combination Ptt- b.p, 

calculated in the sense of distributions on Q, belongs to Mb(Q). Following the construction in [19, 

Lemma 4.3] and using the divergence theorem, we define the normal trace on 8Q of the vectorfield 

(- \lp,pt) as an element of H-112 (8Q). Denoting this normal trace by 'YvQ (-\lp,pt), one has 

where the constant C > 0 is independent of p. In this way we get 

which allows us to justify the following definition of weak solutions to the adjoint hyperbolic system 

with the Neumann boundary conditions. 

Definition 3.6 (weak solutions to the adjoint system). A function (p,pt) E £ 00 (0, T; H 1 (n)) x 

£ 00 (0, T; L2(n)) is a WEAK SOLUTION to (3.5) if 

(3.6) { 
-In p(O)yl dx + (pt(O), Yo)(Hl(f!))• xHl(f!) 

+(y(cp,yo,yl),J.L)c([o,T];£2(n))xMb()o,T];£2(n))- fop¢dxdt = 0 
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for all (cp, yo, y!) E L 2 (Q) x H 1 (0.) x £ 2 (0.), where y(<p, yo, y!) is the solution to 

(3.7) 

Ytt - fly + ay = <p 

8vy = 0 

in Q, 

on 1':, 

y(O) = yo, Yt(O) ::::;:. .Yl zn 0. 

\ 

The next theorem establishes the existence, uniqueness, and regularity of weak solutions to the 

adjoint system under the standing assumptions made. 

Tneorem 3. 7 (existence, uniqueness and regularity of weak solutions to the adjoint 

system). The adjoint system (3.5) admits a unique weak solution (p,pt) E L 00 (0,T;H1 (0.)) x 

L 00 (0, T; £ 2 (0.)) such that Pt E BV([O, T]; (H1 (0.))*), p E Cw([O, T]; H 1 (D.)), and 

Pt(T) E £ 2 (0.) whenever T E {t E [O,T) I J.L(D. x {t}) = 0}, 

which implies thatpt(O) E £ 2 (0.) (Cw([O,T];H1 (0.)) denotes the space ofcontinuousfunctionsfrom 

[0, T] into H 1 (0) endowed with its weak topology). Moreover, one has the estimate 

(3.8) 

where C depends on llallL""(Q) but is invariant with respect to the functions a(x, t) having the same 

norm in the space L00 (Q). 

Proof. Observe that p = 0 when the pair (p,pt) E L 00 (0,T;H1(0.)) x L 00 (0,T;L2 (D.)) satisfies 

(3.6) with J.L = 0. This implies that the adjoint system (3.5) cannot admit more than one weak 

solution. To prove the existence of a weak solution, we pick a sequence (J.Ln) c £ 1(0, T; £ 2 (0.)) 

satisfying 

nl~~ h YJ.Ln dxdt = (y, J.LiQ)c((O,T];£2(n))xMb(]O,T(;£2(n)) for all Y E C([O, T]; L
2
(0.)), 

h J.Ln dxdt = IIJ.LIIMb(]O,T[;L2(f!)) · 

Taking the unique solution Pn to 

Ptt - flp + ap = f..Ln in Q, 

(3.9) 8vp= 0 on 1':, 

p(T) = 0, Pt(T) = -J.Linx{T} in D. 

and using [8, Theorem 2.1], we have the estimate 

(3.10) 

IIPnllL00 (0,T;Hl(f2)) + llPntllL00 (0,T;L2(!1)) + llPn(O)JJHl(f2) + 11Pnt(O)JIL2(f2) ~ CIIJ.t11Mb(]O,T];£2(f!)) 
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with a constant C > 0 independent of n, where Pnt stands for the derivative of Pn with respect to 

t in ]0, T[ in the sense of vector valued distributions. Denoting by Pntt the derivative of Pnt with 

respect tot in ]0, T[ in the sense of vector valued distributions, we get from (3.9) the representation 

•' where the operator 7rn is defined by ··· 
\ 

(7rn, y)Loo(O,T;(Hl(S1))• )x£l(O,T;Hl·~n)) = k \Jpn \Jy dxdt. 

Therefore, in addition to estimates (3.10), the sequences (Pntt) and (Pnt) are bounded in the spaces 

Mb(]O,T[; (H1 (0))*) and BV([O,T]; (H1{0))*), respectively. Observing that Mb(]O,T[; (H1 (0))*) 

is the dual of a separable Banach space, we select weak* convergent subsequences of the above se­

quences. The same sequential compactness property holds also for the space BV([O, T]; (H1 (0))*); 

see Section 2. In this way we findp E L00 (0, T; H 1{0)) withpt E L00 (0, T; L2 (0))nBV([O, T]; (H1 (0))*) 

and a subsequence of (Pn) converging top in the weak* topology of L00 (0, T; H 1(0)) and such that 

the corresponding subsequence of (Pnt) converges weak* in L 00 (0, T; L2 (0)) to Pt· Furthermore, we 

can also suppose, since 'YvQ(-\Jpn,Pnt) is bounded in L2(8Q), that 'YvQ(-\Jpn,Pnt) converges to 

'YvQ (- \/ p, pt) in the weak topology of L2 ( 8Q). Taking into account the relations 

'YvQ(-\Jpn,Pnt)lnx{T} = J.tlnx{T} and 'YvQ(-\Jpn,Pnt)lr: = 0, 

one gets that 'YvQ (- \/ p, pt) I r; = -Bvp = 0 and that 

'YvQ(-\Jpn,Pnt)lnx{O} = Pnt(O)-+ 'YvQ(-\/p,pt)lnx{O} = Pt(O) 

in the weak topology of L 2 (0). Finally, by passing to the limit in the equality 

-(pn(O),yl)£2(!1) + (pnt{O),yo)(H1(!1))•xH1(!1) 

+(y(J, Yo, yl), J.t)c([O,T];£2(!1))xMb()o,T];£2(n)) - (pn, f) L2(Q) = 0, 

we conclude that (p,pt) is the desired weak solution to the adjoint system (3.5) and complete the 

proof of the theorem. 

The last result of this section gives a useful Green-type relationship between the corresponding 

solutions of the state and adjoint systems. 

Theorem 3.8 (Green formula). Let y and p satisfy the state (3.2} and adjoint (3.5) systems, 

respectively. Then 

(y, J.t)c([O,T];L2(!1))xMb(]o,T];L2(!1)) - (p, Ytt - !:ly) L00 (0,T;H1(!1))x£1 (O,T;(Hl (!1))•) 
{3.11) 

= -In y(O)pt(O) dx +In Yt(O)p(O) dx + h ypdsdt. 

Proof. This is proved in Theorem 3. 7 for the sequence (Pn) of solutions to the approximating 

adjoint systems {3.9). Passing there to the limit as n -+ oo, we obtain the desired Green formula 

{3.11) as formulated in the theorem. !:::,. 
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4 Diffuse Perturbations and Increment Formula 

As mentioned in Section 1, our approach to deriving necessary optimality conditions in the original 

state-constrained problem (P) includes an approximation procedure to penalize the state con­

straints. In this way we arrive at a family of Neumann boundary control problems for hyperbolic 

equations with hard/pointwise constraints on cont~6ls but with no state constraints. Although the 
\ 

latter approximating problems are essentially easier than the initial state-constrained problem (P), 

they still require a delicate variational analysis. As well known in the control theory for ordinary 

differential equations, a key element in obtaining maximum-type conditions for problems with hard 

constraints on control but not on state variables is the so-called increment formula for the mini­

mizing cost functional with respect to needle variations of reference controls; see, e.g., [7, 15). In 

this section we obtain some counterparts of such results for the hyperbolic control problems under 

consideration, where analogues of needle variations are known as "diffuse perturbations" introduced 

in [20]. 

Given a reference control u E Uad, an admissible control u E Uad, and a number p E)O, 1 [, a 

diffuse perturbation of u is defined by 

( 4.1) { 
u(s, t) on 

up(s, t) := 
u(s, t) on 

where Ep is a measurable subset of :E. The next theorem can be viewed as an increment formula 

for the cost functional J(y, u) with respect to diffuse perturbations of the reference control. Note 

that it also contains the corresponding Taylor expansion for state trajectory of (1.1), which is an 

essential ingredient of the increment formula. By e,N we denote the Lebesgue measure on ffi.N. 

Theorem 4.1 (increment formula). Given arbitrary controls u, u E Uad and a number p E)O, 1[, 

we consider the diffuse perturbation defined in (4.1) and the weak solutions i} and Yp of system {1.1) 

corresponding to u and up, respectively. Then there exists a measurable subset Ep C :E such that 

the following hold: 

(4.2) 

(4.3) r (h(s, t, u)- h(s, t, u)) dsdt = p r (h(s, t, u)---: h(s, t, u)) dsdt, 
}Ep jE 

(4.4) Yp = i} + pz + prp with !~ llrpllc([o,T];£2(n)) = 0, and 

(4.5) J(yp, up)= J(y, u) + pb.J + o(p) with b.J := J~(iJ, u)z + J(y, u)- J(y, u), 
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where z is the weak solution to the system 

Ztt- !:l.z + <I>~(·,y)z = 0 in Q, 

(4.6) on :E, 

z(O) = 0, Zt(O) ,:;::: 0 in n. 
,;I•' 

The proof of the theorem given below relies on \he following technical lemma, which follows 

from [20, Lemma 4.1]. 

Lemma 4.2 {domains of diffuse perturbations). Let u,u E Uad· For every p E]O, 1[ there is 

a sequence of measurable subsets E~ in :E such that: 

(4.7) 

(4.8) 

(4.9) 

r (h(s, t, u)- h(s, t, u)) dsdt = p r (h(s, t, u)- h(s, t, u)) dsdt, 
}~ h 

1 
-xEn ---+ 0 weak* in £'Xl(:E) as n---+ oo, 
p p 

where xn stands for the characteristic function of the set n. 

Proof of Theorem 4.1. The existence of the domain sets Ep satisfying (4.2) and (4.3) is an 

easy consequence of Lemma 4.2. The main issue is to justify the Taylor expansion (4.4) for the 

trajectories Yp of (1.1) corresponding to the diffuse control perturbations. One clearly sees that 

(4.4) and (4.3) imply the increment formula (4.5) due to the constructions of diffuse perturbations. 

To prove (4.4), we pick a number p E]O, 1[, take the sets E~ from Lemma 4.2, and build the 

diffuse control perturbations 

n( ) ·- { u(s, t) on E \ E~, 
uP s, t .-

u(s, t) on E~. 

Let y~ be the solution of (1.1) corresponding to u~, and let z be the (unique) weak solution of 

( 4.6). It is easy to see that for all n the function ~~ = (y~ - y) / p - z is the unique weak solution 

to the system 

e(o) = 0, et(O) = 0 inn 

with the following data: 

a~ := fo1 

<I>~(-, (y + B(y~- y)) dB, f; :=(<I>~(·, y)- a~)z, 

13 
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Denote by ~~' 1 the solution to 

Ov~ = 0 on :E, 
•'· 
\~\·: 

~(0) = 0, 
\ 

~t(O) = 0 in 0, 

by ~~·2 the solution to 

~(0) = 0, ~t(O) = 0 in 0, 

and by (~ the solution to 

(u- L1( +a(= 0 in Q, 

((0) = 0, (t(O) = 0 in 0, 

where a(x, t) := <I>~(x, t, y(x, t)). One clearly has 

Ov(~~'2 - q) = 0 

(~~·2 - (~)(0) = 0, (~~·2 - (~)t(O) = 0 

on :E, 

in 0. 

Employing Lemmas 3.1 and 3.3, we find a constant G > 0, independent of nand p, ensuring the 

following estimates for all n = 1, 2, ... and 0 < p < 1: 

(4.10) 

(4.11) 

11~~'2 - qllcc[o,T];£2{!1)) ::5; Gila- a~llu(o,T;£2N(n))II(~IILoo{o,T;£2Nf<N-ll(n))' 

:::; Gila- a~lluco,T;£2N(f2))11qiiLoo(o,T;Hl/2(f2))' 

Taking (4.9) into account, we conclude that the sequence w~ converges to zero in the weak* topology 

of L00 (:E) for all 0 < p < 1. Therefore, by Lemma 3.3, the sequence (; converges to zero in 

G([O, T]; L2 (0)). Thus there is an integer n(p) such that 

(4.12) ll(;(p) llc([O,T];£2(!1)) :::; p for all 0 < p < 1. 

Observe further that u~(p) converges to u in L2(:E) asp.!- 0. It follows now from Theorem 3.5 that 

y~(p) converges to 'f) in G([O, T]; L2 (0)) as p .!- 0. Invoking assumptio·n (Al), one has that ¢~(p) 
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converges to zero in L1 (0, T; L2 (0)) and that (a- a~(p)) converges to zero in L1(0, T; L 2N (0)) as 

p-!- 0. This imply together with (4.10)-(4.12) that 

~~ lle;<Pl llc([o,rJ;£2(0)) ~ ~~(lle~<Pl. 1 llc([o,rJ;L2(o)) 
+lle~(p),2 - (~(p) llc((Q.TJ;£2(0)) + II(;<Pl llc([o,TJ;L2(o))) = o . 

. ~ \ \~ 

Setting finally Ep := E~(P), up:= u~(P), and ~rp := tJ<Pl, we end the proof of the theorem. 
' 

5 Proof of Necessary Optimality Conditions 

As mentioned, in the proof of our main theorem we are going to use Ekeland's variational principle 

[3], which is one of the most powerful tools of nonlinear analysis especially important in applications 

of variational methods. In the framework of deriving necessary optimality conditions for the state­

constrained problem (P), Ekeland's variational principle allows us to perform an efficient strong 

approximation of the given optimal solution to the original problem by some functions that happen 

to be optimal solutions to perturbed optimal control problems with no state constraints. To furnish 

this procedure, we first describe a complete metric space and a lower semicontinuous functional, 

which are suitable for the application of Ekeland's principle to our problem. 

Given u E Uad and a fixed positive number k, we define the set 

Uad(u, k) := { u E Uadl iu(s, t)- u(s, t)l ~ k for a.e. (s, t) E L:} 

and endow this set with the metric, which goes back to Ekeland's seminal paper [3], 

d(v,u) := _cN({(s,t)l u(s,t) #u(s,t)}), 

where .eN (0) denotes as before the Lebesgue measure of 0 c ffi.N. Observe that if (un) c Uad(u, k) 

and u E Uad(u, k) are such that limn-+oo d(un, u) = 0, then the sequence (un) strongly converges to 

u in the norm of L2 (L:). It is easy to see that the space (Uad(u, k), d) is metric. The next result 

provides more information about this space and about the cost functional of (P) on it, where Yu 

stands for for the weak solution of (1.1) corresponding to u. 

Lemma 5.1 (proper setting for Ekeland's principle). The metric space (Uad(u, k), d) is com­

plete, and the mapping u t--+ (yu, J(yu, u)) is continuous from (Uad('ii., k), d) into C([O, T]; L 2 (0)) x ffi.. 

Proof. The completeness of the space (Uad(u,k),d) is a well-known fact; cf. [3, 20]). Let us prove 

the continuity statement of the lemma based on the regularity of weak solutions to the state system 

(1.1) established in Section 3. 

Take (un) C Uad(u, k) and u E Uad(u, k) such that the control sequence Un converges to u in 

the above d-metric as n --t oo. Denote by y and by Yn the weak solutions of (1.1) corresponding 
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to u and to Un, respectively. Since Un --7 u strongly in L 2 (:E), the corresponding arcs Yn converge 

to y strongly in C([O, T]; L2 (n)) by Theorem 3.5. Furthermore, it follows from the estimates in 

assumptions (A2)-(A4) that the value sequence J(yn, un) converges to J(y, u) as n --7 oo, which 

ensures the desired continuity. 6 

',\, 
"lh1: 

Now following [12, Theorem 2.18] and using th~. classical results in the geometry of Banach 

spaces, we conclude that the separable space C([O, T]; L 2 (f!)) admits an equivalent norm l·lc([O,T];£2(n)), 

which is strictly convex on C([O, T]; L 2 (f!)). Moreover, the space M([O, T]; L 2 (f!)) endowed with 

the dual norm of l·lc([O,T);£2(n))• denoted by I·IM([O,T];£2(n))• is also strictly convex. Then we define 

the distance function 

(5.1) de(cp) := !~~ lcp- zlc([o,r];£2(n)) 

to the set C in the new norm 1·1 on C([O, T]; L2 (f!)). Since Cis convex, the distance function (5.1) 

is convex as well. It is always globally Lipschitzian of rank one satisfying 

. de(e + pz)- de(B) { I 
;~~:~~ p =max (~, z)M([O,T);£2(n))xC([O,T);£2(n)) ~ E 8dc(cp)} 

for every cp, z E C([O, T]; L2 (f!)), where 8de is the subdifferential in the sense of convex analysis. 

Therefore, for a given cp E C([O, T]; L2 (f!)) one has 

(~, z- cp) + dc(cp) :::;; dc(z) whenever ~ E 8de(cp) and z E C{[O, T]; L2 (f!)), 

I~IM([O,T];£2(n)) :::;; 1 whenever ~ E 8dc(cp). 

It follows from standard facts of convex analysis that 

I~IM([O,T];£2(n)) = 1 for every ~ E 8de(cp) and cp rt C. 

Moreover, since 8dc(cp) is convex and the norm I·IM([O,T];£2(n)) is strictly convex on M([O, T]; L2 (f!)), 

the sub differential 8de ( cp) is a singleton and de is Gateaux-differentiable at cp for cp rJ. C. 

Let (Y, u) be an optimal solution to the original problem (P). For each k = 1, 2, ... we define 

the penalized functional by 

J.(y,u):~ [(J(y,u)-J(ij,U)+ :,rr +.fc(y), 

where J is the cost functional in (P) while the distance function de{·) is given in (5.1). Since 

Jk(fj,u) = k-4, one has that 

1 
Jk(y,u) < inf{Jk(y,u)l u E Uad(u,k113

), (y,u) satisfies (1.1)} + k2 , 

for all k, i.e., (y, u) is a -b-optimal solution to the penalized problem. 
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Note that the functional Jk is smooth at points where it does not vanish, in the sense that it is 

Gateaux-differentiable at such points; cf. [15) in the case of control systems governed by ordinary 

differential equations. This follows from the construction of Jk, assumptions (A2)-(A4), and the 

above property of the function (5.1). Ekeland's principle allows us to strongly approximate (y, u) 

by a pair (yk, uk) satisfying (1.1) in such a way tha,t. (yk, uk) is an exact solution to some perturbed 

optimal control problem for system {1.1) with the safue control constraints and no state constraints. 

The new functional may be nonsmooth due to distance-type perturbations, but we can handle this 

by the choice of metric din Lemma 5.1. 

Proof of Theorem 2.1. We divide the proof of this theorem into the three major steps. 

Step 1: Approximating problems via Ekeland's principle. Given an optimal solution 

(Y, u) to the original problem (P), we fix a natural number k = 1, 2, ... and get from Lemma 5.1 

that the metric space (Uad(u,k 113 ),d) is complete, and that the functional u f---t Jk(Yu,u) is 

lower semicontinuous (even continuous) on this space. By the strong form of Ekeland's variational 

principle [3) we find an admissible control Uk satisfying 

(5.2) 

where Yk and Yu are the weak solutions of (1.1) corresponding to Uk and u, respectively. The latter 

means that Uk is an optimal solution to the perturbed problem 

inf { Jk(y,u) + ~~ u E Uad(u,k 113
), (y,u) satisfies (1.1)} 

for all natural numbers k. 

Step 2: Necessary conditions in approximating problems. First take an arbitrary u0 E Uad 

and construct the following modification of u feasible to (Pk) by 

(5.3) ( ) { 
uo(s, t) if lvo(s, t) - u(s, t)l ::; k113 , 

uok s, t := 
u(s, t) otherwise. 

Then, given any 0 :S p < 1, we define diffuse perturbations of the optimal control uk in (Pk) as 

(5.4) u~(s, t) := { uk(s, t) 
uok(s, t) 

Theorem 4.1 ensures the existence of measurable sets E~ c :E for which _cN (E~) = p.CN (:E), 

(5.5) Y~ = Yk + PZk + pr~, !~ llr~llc([O,TJ;L2(n)) = 0, and 

(5.6) 
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where y~ is the weak solution of (1.1) corresponding to u~, where Zk is the weak solution of 

Ztt - ~z +<I>~(·, Yk)z = 0 in Q, 

on :E, 

z(O) = 0, Zt(O) ='Q. inn, 
\ 

and where ~Jk is defined by 

Since each u~ is clearly feasible to (Pk), we have from (5.2) and the definition of the metric d that 

(5.7) 

Observe that Jk(yk, uk) f. 0 for all k due the optimality of Uk in (Pk) and the structure of Jk. 

Hence Jk is Gateaux differentiable at (yk, uk) by the discussions above. Then it easily follows from 

(5.6) and (5.7) that 

(5.8) 

where the multipliers Ak and J.tk are computed by 

dc(<I>(yk))\ldc(<I>(yk)) if <I>(yk) tf. C, 
Jk(Yk, Uk) 

0 otherwise. 

Now let Pk be the (unique) weak solution to the adjoint system 

(5.9) OvP = 0 on :E = rx]O,T[, 

p(T) = 0, Pt(T) = ->.kf~(·, Yk(T))- J.tklnx{T} inn, 

where J.tkiQ and J.tklnx{T} are the restrictions of J.tk to Q and n x {T}, respectively. Employing the 

Green formula of Theorem 3.8, we have 

Ak k g~(x, t, Yk)zk dxdt +AkIn f~(x, yk(T))zk(T) dx + (J-Lk, Zk) 

= h Pk(Zktt- ~Zk + <!>~(·, Yk)Zk) dxdt + h PkOvZk dsdt 

= hPk(Uk-Uok)dsdt. 

18 



The latter implies, by (5.8) and the definition of b.Jk, that 

(5.10) ~ (>.kh(s, t, uk) + PkUk)) dsdt ~ h (>.kh(s, t, uok) + PkUok) dsdt +~.eN(~) 

for every k = 1, 2, ... , which gives necessary optimality conditions for the solutions uk to the 

approximating problems (Pk)· ,;, 
•h~.' 

Step 3: Passing to the limit. To conclude the proof of the theorem, we need to pass to the 

limit in the above relations for the optimal solutions uk to (Pk) as k -+ oo. First observe that 

)..~ + l~-tkl~c[o,T];£2(n)) = 1 for all k = 1, 2, .... 

Invoking basic functional analysis, we find an element (>.,J..t) E lR x M([O,T];L2 (0)), with)..~ 0, 

and a subsequence of (>.k, J..tk) such that 

Ak -+).. in lR and J..tk--+ P, weak* in M([O, T]; L2 (0)). 

Furthermore, Theorem 3. 7 ensures the estimate 

IIPk IILoo (O,T;Hl (n)) + IIPkt IIL00 (0,T;£2(n)) 

~ 11~-tiiM([o,T];P(n)) + llg~ (-, Yk) llu co,T;£2(n)) + II!~(-, Yk (T)) IIL2(n) · 

Since the sequence (>.k) c IR, (J..tk) c M([O, T]; L2 (0)), (Yk) C C([O, T]; L2 (0)), and (uk) C L2 (~) 

are bounded, the sequence (pk,Pkt) is bounded in L00 (0, T; H 1(0)) x L00 (0, T; L2 (0)). Then there 

is a subsequence of (Pk.Pkt), which converges weak* in DXl(O, T; H 1 (0)) x L00 (0, T; L2(0)) to some 

(p, pt) belonging to this space. Employing standard arguments, we prove that (p, pt) is the (unique) 

weak solution to (2.4). 

Taking into account assumption (A5) on the convexity and nonempty interiority of the set C, 

one has the necessary condition (2.2) for the limiting multipliers (>-., J..t). It remains to justify the 

minimum condition (2.3). To furnish this, recall that Uk -+ u strongly in L2 (~). Passing to the 

limit as k-+ oo in (5.10), we get 

(5.11) ~ (>.h(s, t, u) + pu) dsdt:::; h (>.h(s, t, uo) + puo) dsdt for every uo E Uad· 

Finally, taking into account the structure of Uad in (A6) and employing the standard arguments 

(see, e.g., [20, Section 5.2]), we derive the pointwise condition (2.3) from the integral one in (5.11). 
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