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Abstract 22 

Numerous brain lesion and fMRI studies have linked individual differences in executive 23 

abilities and fluid intelligence to brain regions of the fronto-parietal “multiple-demand” 24 

(MD) network. Yet, fMRI studies have yielded conflicting evidence as to whether better 25 

executive abilities are associated with stronger or weaker MD activations and whether 26 

this relationship is restricted to the MD network. Here, in a large-sample (n=216) fMRI 27 

investigation, we found that stronger activity in MD regions – functionally defined in 28 

individual participants – was robustly associated with more accurate and faster 29 

responses on a spatial working memory task performed in the scanner, as well as fluid 30 

intelligence measured independently (n=114). In line with some prior claims about a 31 

relationship between language and fluid intelligence, we also found a weak association 32 

between activity in the brain regions of the left fronto-temporal language network during 33 

an independent passive reading task, and performance on the working memory task. 34 

However, controlling for the level of MD activity abolished this relationship, whereas the 35 

MD activity-behavior association remained highly reliable after controlling for the level of 36 

activity in the language network. Finally, we demonstrate how unreliable MD activity 37 

measures, coupled with small sample sizes, could falsely lead to the opposite, negative, 38 

association that has been reported in some prior studies. Taken together, these results 39 

align well with lesion studies demonstrating that a core component of individual 40 

differences variance in executive abilities and fluid intelligence is selectively and 41 

robustly positively associated with the level of activity in the MD network. 42 

 43 
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Introduction 48 

General cognitive abilities, such as fluid intelligence, and the tightly linked executive 49 

abilities, are among the best predictors of academic achievement and professional 50 

success (Gottfredson, 2002; Kuncel and Hezlett, 2010; Plomin and Deary, 2015). These 51 

abilities are thought to rely on a network of bilateral frontal and parietal brain regions. 52 

Damage to these regions, but not outside of them, is associated with disorganized 53 

executive behavior and significant loss of fluid intelligence (Duncan et al., 1995; 54 

Glascher et al., 2010; Roca et al., 2010; Warren et al., 2014; Woolgar et al., 2018, 55 

2010). Similar frontal and parietal regions are active in brain imaging studies during 56 

diverse demanding tasks, including manipulations of working memory, fluid reasoning, 57 

selective attention, set shifting, response inhibition, and novel problem solving inter alia 58 

(Assem et al., 2019; Cole and Schneider, 2007; Dosenbach et al., 2006; Duncan, 2010, 59 

2000; Duncan and Owen, 2000; Fedorenko et al., 2013; Geake and Hansen, 2005; 60 

Vakhtin et al., 2014). We refer to this set of brain regions as the “multiple-demand” (MD) 61 

network (following Duncan, 2013, 2010) given their sensitivity to multiple task demands. 62 

The MD network includes lateral and dorsomedial frontal areas, anterior insular areas, 63 

and areas along the intra-parietal sulcus (Assem et al., 2019; Fedorenko et al., 2013), 64 

and these areas form a functionally integrated system as evidenced by strong 65 

synchronization during naturalistic cognition (Assem et al., 2019; Blank et al., 2014; 66 

Paunov et al., 2019). 67 

Prior fMRI studies have linked activity in the MD network with individual 68 

differences in executive abilities and fluid intelligence, but have left open the nature of 69 

this relationship. In particular, some have found that stronger MD activation is 70 
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associated with worse performance on executive tasks and lower IQ (Basten et al., 71 

2015; Deary et al., 2010; Dunst et al., 2014; Haier et al., 1988; Neubauer and Fink, 72 

2009; Rypma et al., 2006; Rypma and Esposito, 2000; Santarnecchi et al., 2014; Stern 73 

et al., 2018). Such studies have typically advocated a “neural efficiency” explanation: 74 

smarter individuals can use neural resources more efficiently. Others, however, have 75 

found the opposite pattern, where stronger MD activation is associated with better 76 

executive task performance and higher IQ (Basten et al., 2013; Burgess et al., 2011; 77 

Choi et al., 2008; Cole et al., 2012; Gray et al., 2003; Lee et al., 2006; Tschentscher et 78 

al., 2017). In an attempt to reconcile these conflicting findings, some have suggested 79 

that the direction of the correlation may depend on task difficulty with “neural efficiency” 80 

(i.e., a negative association between MD activity and performance) observed in easier 81 

tasks, and positive associations observed during more complex tasks  (for a review, see 82 

Neubauer and Fink, 2009). 83 

Similarly, fMRI studies of inter-regional synchronization (typically, during rest; 84 

e.g. Fox et al., 2005) have not painted a consistent picture. Some have reported 85 

stronger synchronization among the MD brain regions in individuals with superior 86 

executive abilities and higher IQ (Cole et al., 2012), but others have reported weaker 87 

synchronization in such individuals (Santarnecchi et al., 2014; van den Heuvel et al., 88 

2009). 89 

Furthermore, a number of fMRI studies have linked individual differences in 90 

executive abilities and fluid intelligence with activity outside of the fronto-parietal MD 91 

network, including in occipito-temporal areas (Haier et al., 2003a; Park et al., 2010 but 92 

see Sani et al., 2019, and Assem et al., 2019, for evidence that these regions may 93 
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belong to an extended MD network) and the default mode network (DMN) (Lipp et al., 94 

2012; Smith et al., 2015; Sripada et al., 2019), and with the strength of synchronization 95 

among non-MD brain regions (Dubois et al., 2018; Hilger et al., 2017). 96 

These apparently discrepant results could reflect the complexity of the brain-97 

behavior relationship in the domain of executive abilities, with perhaps multiple 98 

underlying cognitive constructs and neural mechanisms contributing. However, a 99 

number of limitations plague previous studies that may instead explain away some of 100 

these discrepancies. First, many earlier studies have used small numbers of 101 

participants (as low as n=8) and/or transformed continuous behavioral measures into 102 

categorical variables (e.g., high- vs. low-performing participants). Both of these factors 103 

can produce inflated or spurious relationships (Haier et al., 1988; Lee et al., 2006; 104 

Rypma et al., 2006; Rypma and Esposito, 2000; Wager et al., 2005). Second, most 105 

studies have failed to assess the reliability of the relevant behavioral and/or brain 106 

measures (e.g., the strength of the BOLD response, or the strength of inter-regional 107 

synchronization) – a critical prerequisite for relating behavioral and brain individual 108 

variability (Dubois et al., 2018; Smith et al., 2015). Both behavioral and brain measures 109 

have to be stable within individuals over time (e.g., across multiple runs of a task, or 110 

across tasks) (Mahowald and Fedorenko, 2016). This is especially important for studies 111 

using BOLD estimates based on contrasts of task relative to fixation, or resting-state 112 

inter-region synchronization measures, which may fail to isolate MD activity from 113 

general state variables, like motivation, arousal, or caffeine intake (Basten et al., 2013; 114 

Cole et al., 2012; Dubois et al., 2018; Dunst et al., 2014; Gray et al., 2003; Rypma et al., 115 

2006; Rypma and Esposito, 2000; Smith et al., 2015; Stern et al., 2018; Wager et al., 116 
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2005). Third, almost all previously mentioned studies have failed to take into 117 

consideration individual variability in the precise locations of the MD regions. This 118 

variability leads to losses in sensitivity and functional resolution (Brett et al., 2002; 119 

Nieto-Castañón and Fedorenko, 2012; Saxe et al., 2006), and it also affects the 120 

interpretation of inter-regional functional synchronization findings (Bijsterbosch et al., 121 

2019, 2018). This problem is compounded by the proximity of MD areas to functionally 122 

distinct areas such as language-selective regions (Fedorenko et al., 2012), which show 123 

no response to any demanding task other than language processing (Fedorenko et al., 124 

2011; Fedorenko and Varley, 2016; Monti et al., 2012). And fourth, many studies have 125 

failed to adequately assess the selectivity of the relationship between MD activity and 126 

behavior (Choi et al., 2008; Cole et al., 2012; Dubois and Adolphs, 2016; Gray et al., 127 

2003; Rypma et al., 2006). This is important given that trait variables (e.g., brain 128 

vascularization) are known to affect neural responses (e.g., Ainslie and Duffin, 2009; 129 

Kazan et al., 2016), so to argue that the MD network’s activity relates to individual 130 

differences in executive functions or fluid intelligence, it is important to demonstrate that 131 

activity in some other, control, brain region or network does not show a similar 132 

relationship. 133 

To circumvent these limitations and rigorously test the relationship between MD 134 

activity and executive abilities and fluid intelligence, we conducted a large-scale fMRI 135 

study, where participants (n=216) performed a spatial working memory (WM) task that 136 

included a harder and an easier condition. We first established the reliability of the 137 

Hard>Easy (H>E) BOLD effect in the MD network (defined functionally in each 138 

participant individually (Fedorenko et al., 2013)), and then examined the relationship 139 
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between the size of this effect and a) behavioral performance on the task (including in 140 

an independent run of data), and b) fluid intelligence (in a subset of participants, n=114). 141 

We further evaluated the selectivity of this MD-behavior relationship by examining fMRI 142 

responses in the left fronto-temporal language network while the same participants 143 

performed a language comprehension task (Fedorenko et al., 2010). This network 144 

serves as a good control because, on the one hand, the language network is robustly 145 

functionally distinct from the MD network (e.g., Blank et al., 2014; Mineroff et al., 2018; 146 

Fedorenko and Blank, submitted), but on the other hand, language has long been 147 

implicated in abstract and flexible thought (e.g., Bickerton, 1995; Carruthers, 2002; 148 

Dennett, 1997; cf. Fedorenko and Varley, 2016), including some studies that have 149 

linked damage to the regions of this network to performance on some fluid reasoning 150 

tasks (e.g., Baldo et al., 2010; cf. Woolgar et al., 2018). 151 

To foreshadow our results, we found that stronger (rather than weaker) MD 152 

responses were associated with better performance on the spatial WM task as well as 153 

higher fluid intelligence scores. We also found a weak association between the strength 154 

of activity in another large-scale network – the language network – and WM task 155 

performance. However, this relationship was eliminated once the level of MD activity 156 

was taken into account. Finally, we demonstrate how unreliable MD activity measures, 157 

coupled with small sample sizes, could lead to the opposite (negative) association 158 

between MD activity level and behavior as has been reported in the literature. These 159 

results align well with findings from lesion studies that have suggested that a key 160 

proportion of variance in executive abilities and fluid intelligence is strongly and 161 

selectively associated with frontal and parietal MD brain regions. 162 
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Materials and Methods 163 

Participants 164 

216 right-handed participants (age 23.6 ± 6.4), 136 males; 190 right handed, 13 left 165 

handed, 8 ambidextrous, 5 with missing handedness data) with normal or corrected-to-166 

normal vision, students at Massachusetts Institute of Technology (MIT) and members of 167 

the surrounding community, participated for payment. All participants gave informed 168 

consent in accordance with the requirements of the Committee On the Use of Humans 169 

as Experimental Subjects (COUHES) at MIT. 170 

Experimental Paradigms 171 

Participants performed a spatial working memory task in a blocked design (Fig. 1). 172 

Each trial lasted 8 seconds: within a 3x4 grid, a set of locations lit up in blue, one at a 173 

time for a total of 4 (easy condition) or two at a time for a total of 8 (hard condition). 174 

Participants were asked to keep track of the locations. At the end of each trial, they 175 

were shown two grids with some locations lit up and asked to choose the grid that 176 

showed the correct, previously seen locations by pressing one of two buttons. They 177 

received feedback on whether they answered correctly. Each participant performed two 178 

runs, with each run consisting of six 32-second easy condition blocks, six 32-second 179 

hard condition blocks, and four 16-second fixation blocks, for a total duration of 448s 180 

(7min 28s). Condition order was counterbalanced across runs. 181 

In addition to the spatial working memory task, all participants performed a 182 

language localizer task (Fedorenko et al., 2010), used here to test the selectivity of the 183 

relationship between the MD network’s activity and behavior. The majority of the 184 
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participants (n=182, 84.3%) passively read sentences and lists of pronounceable 185 

nonwords in a blocked design (see Table 1). The Sentences>Nonwords (S>N) contrast 186 

targets brain regions sensitive to high-level linguistic processing (Fedorenko et al., 187 

2011, 2010). Each trial started with 100ms pre-trial fixation, followed by a 12-word-long 188 

sentence or a list of 12 nonwords presented on the screen one word/nonword at a time 189 

at the rate of 450ms per word/nonword. Then, a line drawing of a hand pressing a 190 

button appeared for 400ms, and participants were instructed to press a button 191 

whenever they saw the icon, and finally a blank screen was shown for 100ms, for a total 192 

trial duration of 6s. The button-press task was included to help participants stay alert 193 

and focused. Each block consisted of 3 trials and lasted 18s. Each participant 194 

performed two runs, with each run consisting of sixteen experimental blocks (eight per 195 

condition), and five fixation blocks (14s each), for a total duration of 358s (5min 58s). 196 

Condition order was counterbalanced across runs. The remaining 21 participants 197 

performed similar versions of the language localizer with minor differences in the timing 198 

and procedure, with one participant performing an auditory version of the localizer (see 199 

Table 1 for exact timings and procedures; we have previously established that the 200 

localizer contrast is robust to such differences (Fedorenko et al., 2010; Scott et al., 201 

2016). 202 

203 
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 204 

 Version 
 A B C D 

Number of participants 182 12 1 8 

Task (Passive Reading/Listening / 
Memory) 

PR M PL M 

Words / nonwords per trial 12 12 variable 12 
Trial duration (ms) 6,000 6000 18000 6000 
   Fixation 100 300 0 300 
   Presentation of each word / nonword 450 350 variable 350 

   Probe (M) + button press (M/PR)  400 1000 -- 1000 
   Fixation 100 500 0 500 
Trials per block 3 3 1 3 
Block duration (s) 18 18 18 18 
Blocks per condition (per run) 8 8 8 6 
Conditions Sentences 

Nonwords 
Sentences 
Nonwords 

Intact 
speech 

Degraded 
speech 

Sentences 
Nonwords 
Word-lists* 

Fixation block duration (s) 14 18 14 18 
Number of fixation blocks per run 5 5 5 4 
Total run time (s) 358 378 358 396 
Number of runs 2 2 2 2-3 

 205 

Table 1. Details of the design, materials, and procedure for the different variants of the 206 

language localizer task. *indicates conditions not used in this study 207 

208 
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Finally, most participants completed one or more additional experiments for 209 

unrelated studies. The entire scanning session lasted approximately 2 hours. 210 

A subset of 114 participants performed the non-verbal component of KBIT 211 

(Kaufman and Kaufman, 2013) after the scanning session. The test consists of 46 items 212 

(of increasing difficulty) and includes both meaningful stimuli (people and objects) and 213 

abstract ones (designs and symbols). All items require understanding the relationships 214 

among the stimuli and have a multiple-choice format. If a participant answers 4 215 

questions in a row incorrectly, the test is terminated, and the remaining items are 216 

marked as incorrect. The test is scored following the formal guidelines to calculate each 217 

participant’s IQ score. 218 

FMRI data acquisition 219 

Structural and functional data were collected on the whole-body 3 Tesla Siemens Trio 220 

scanner with a 32-channel head coil at the Athinoula A. Martinos Imaging Center at the 221 

McGovern Institute for Brain Research at MIT. T1-weighted structural images were 222 

collected in 128 axial slices with 1mm isotropic voxels (TR=2,530ms, TE=3.48ms). 223 

Functional, blood oxygenation level dependent (BOLD) data were acquired using an 224 

EPI sequence (with a 90° flip angle and using GRAPPA with an acceleration factor of 225 

2), with the following acquisition parameters: thirty-one 4mm thick near-axial slices, 226 

acquired in an interleaved order with a 10% distance factor; 2.1mm x 2.1mm in-plane 227 

resolution; field of view of 200mm in the phase encoding anterior to posterior (A > P) 228 

direction; matrix size of 96mm x 96mm; TR of 2,000ms; and TE of 30ms. Prospective 229 

acquisition correction (Thesen et al., 2000) was used to adjust the positions of the 230 
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gradients based on the participant’s motion one TR back. The first 10s of each run were 231 

excluded to allow for steady-state magnetization. 232 

FMRI data preprocessing and first-level analysis 233 

FMRI data were analyzed using SPM5 and custom MATLAB scripts. (Note that first-234 

level analyses have not changed much in later versions of SPM; we used an older 235 

version of the software here due to the use of these data in other projects spanning 236 

many years and hundreds of subjects; critical second-level analyses were performed 237 

using custom MATLAB scripts). Each subject’s data were motion corrected and then 238 

normalized into a common brain space (the Montreal Neurological Institute (MNI) 239 

template) and resampled into 2mm isotropic voxels. The data were then smoothed with 240 

a 4mm Gaussian filter and high-pass filtered (at 200s). The task effects in both the 241 

spatial WM task and in the language localizer task were estimated using a General 242 

Linear Model (GLM) in which each experimental condition was modeled with a separate 243 

boxcar regressor (with boxcars corresponding to blocks). For the working memory task, 244 

each run was modelled by one regressor for the easy blocks and one regressor for the 245 

hard blocks; similarly for the language task, each run was modelled by one regressor for 246 

sentence blocks and one regressor for non-word blocks. Regressors were convolved 247 

with the canonical hemodynamic response function (HRF). Fixation blocks in both tasks 248 

were not modeled and considered as part of the implicit baseline. 249 

MD fROIs definition and response estimation 250 

To define the MD and language (see below) functional regions of interest (fROIs), we 251 

used the Group-constrained Subject-Specific (GSS) approach (Fedorenko et al., 2010). 252 

In particular, fROIs were constrained to fall within a set of “masks”, areas that 253 
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corresponded to the expected gross locations of activation for the relevant contrast. For 254 

the MD fROIs, following Fedorenko et al. (Fedorenko et al., 2013) and Blank et al. 255 

(Blank et al., 2014), we used eighteen anatomical masks (Tzourio-Mazoyer et al., 2002) 256 

across the two hemispheres. These masks covered the portions of the frontal and 257 

parietal cortices where MD activity has been previously reported, including bilateral 258 

opercular inferior frontal gyrus (L/R IFGop), middle frontal gyrus (L/R MFG), orbital MFG 259 

(L/R MFGorb), insular cortex (L/R Insula), precentral gyrus (L/R PrecG), supplementary 260 

and presupplementary motor areas (L/R SMA), inferior parietal cortex (L/R ParInf), 261 

superior parietal cortex (L/R ParSup), and anterior cingulate cortex (L/R ACC) (Fig. 2a). 262 

(It is worth noting, however, that a whole-brain GSS analysis (Fedorenko et al., 2010) 263 

performed on the Hard>Easy spatial WM activation maps of n=197 participants yields a 264 

set of functional masks that largely overlap with these anatomical parcels (e.g., Diachek 265 

et al., 2019). Within each mask, we selected the top 10% (as well as the top 20% and 266 

30% for validation analyses, as described below) of most responsive voxels in each 267 

individual participant based on the t-values for the H>E spatial WM contrast. This top 268 

n% approach ensures that each fROI can be defined in every participant, and that the 269 

fROI sizes are identical across participants. 270 

To estimate the fROIs’ responses to the Hard and Easy conditions, we used an 271 

across-run cross-validation procedure (Nieto-Castañón and Fedorenko, 2012) to ensure 272 

that the data used to identify the fROIs are independent from the data used to estimate 273 

their response magnitudes (Kriegeskorte et al., 2009). To do this, the first run was used 274 

to define the fROIs and the second run to estimate the responses. This procedure was 275 

then repeated using the second run to define the fROIs and the first run to estimate the 276 
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responses. Finally, the responses were averaged across the left-out runs to derive a 277 

single response magnitude estimate for each participant in each fROI for each 278 

condition. Finally, these estimates were averaged across the 18 fROIs of the MD 279 

network to derive one value per condition for each participant (see Fig. 2c for evidence 280 

of strong inter-region correlations in effect sizes, replicating Mineroff et al., 2018). (An 281 

alternative approach could have been to examine fROI volumes – the number of MD-282 

responsive voxels at a fixed significance threshold – instead of effect sizes. However, 283 

first, effect sizes and region volumes are strongly correlated; and second, effect sizes 284 

tend to be more stable within participants than region volumes (Mahowald and 285 

Fedorenko, 2016)). 286 

Language fROIs definition and response estimation 287 

To define the language fROIs, we used a set of six functional masks that were 288 

generated based on a group-level representation of data for the Sentences>Nonwords 289 

contrast from a large set (n=220) of participants (e.g., Paunov et al., 2019). These 290 

masks included three regions in the left frontal cortex: two located in the inferior frontal 291 

gyrus, and one located in the middle frontal gyrus; and three regions in the left temporal 292 

and parietal cortices spanning the entire extent of the lateral temporal lobe and going 293 

posteriorly to the angular gyrus. Within each masks, we selected the top 10% of most 294 

responsive voxels in each individual participant based on the t-values for the 295 

Sentences>Nonwords contrast. To estimate the fROIs’ responses to the Sentences and 296 

Nonwords conditions, we used the across-run cross-validation procedure described 297 

above. 298 

299 
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Results 300 

Reliability of behavioral measures 301 

Behavioral performance on the spatial WM task was as expected: individuals were more 302 

accurate and faster on the easy trials (accuracy=92.22% ± 7.88%; RT=1.20s ± 0.23s) 303 

than the hard trials (accuracy=77.47% ± 11.10%, t(215)=-23.23, p<0.0001, Cohen’s 304 

d=1.53 (effect sizes are based on the two-tailed independent samples t-test); RT=1.49s 305 

± 0.25s, t(215)=-26.14, p<0.0001, Cohen’s d=-1.23). Behavioral measures were stable 306 

within individuals across runs for overall (averaging across the Hard and Easy 307 

conditions) accuracies (r=0.66, p<0.0001) and RTs (r=0.81, p<0.0001). In contrast, 308 

difference scores (Hard > Easy) were less stable for both accuracies (r=0.26, p<0.0001) 309 

and RTs (r=0.46, p<0.0001) (Fig. 1). To further validate overall scores as a reliable 310 

individual measure, we tested their correlation with IQ scores, a well-established stable 311 

measure, in the subset of subjects (n=114) that performed the IQ KBIT test. Indeed, IQ 312 

scores correlated with overall but not difference accuracy scores (r(IQ vs. overall)=0.35 313 

vs. r(IQ vs. H>E)=0.0033) while the correlations were similar for RTs (r(IQ vs. overall)=-314 

0.21 vs. r(IQ vs. H>E)=0.22). Thus, in the critical brain-behavior analyses below, we 315 

used overall accuracies and RTs rather than the H>E measures, because the former 316 

are more stable within individuals as demonstrated by their high correlation across runs 317 

and correlation with the well-established stable IQ measure. Furthermore, the H>E 318 

behavioral measures might contain a non-linearity, such that smaller between-condition 319 

differences are observed in both high performers (when performance is close to ceiling) 320 

and low performers (when performance is close to chance). 321 

322 
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 323 

Figure 1. (a) Sample trials of the in-scanner spatial WM task and (b) reliability of its 324 

behavioral measures across runs (n=216) and with an independent measure of IQ score 325 

(n=114). 326 

327 
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MD network activity and behavior 328 

As expected (Fedorenko et al., 2013), each of the eighteen MD fROIs individually, as 329 

well as the average across fROIs, showed a highly robust positive H>E effect across 330 

participants separately in each run (ts(216)>11.54, ps<0.0001, Cohen’s d=0.79-1.54). 331 

Individual differences in the MD H>E effect sizes were also stable across runs for each 332 

MD fROI individually (rs=0.60–0.80) and when averaging across fROIs (r=0.74, 333 

p<0.0001; Fig. 2d). We used the H>E contrast as it was more stable than task>fixation 334 

contrasts (H>fix r=0.65 and E>fix r=0.31). This greater stability of the H>E contrast 335 

plausibly reflects the fact that it factors out variability due to state differences, thus 336 

honing in on the relevant variability, related to the level of the MD network’s activity. For 337 

each participant, we averaged the H>E effect size across the 18 MD fROIs to derive a 338 

single measure because the H>E effect sizes were strongly correlated across the 18 339 

regions (rs=0.45-0.88; Fig. 2c), replicating Mineroff et al., 2018, and in line with general 340 

evidence of the MD brain regions forming a tightly functionally integrated system 341 

(Assem et al., 2019; Blank et al., 2014; see also Paunov et al., 2019). 342 

To ensure that the stability of the MD H>E effect size did not depend on the 343 

particular details of the fROI definition (i.e., top 10% of most responsive voxels within 344 

the masks), we also extracted the effect sizes from the fROIs defined as the top 20% 345 

and top 30% of most responsive voxels. The extracted H>E effect sizes were almost 346 

perfectly correlated with those extracted from the top 10% fROIs (20% vs 10%, r=0.99, 347 

p<0.0001; 30% vs 10%, r=0.98, p<0.0001). Thus, we proceed to use the H>E effect 348 

sizes extracted from the original (10%) fROIs. 349 
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For each participant, we used behavioral measures from the spatial WM task 350 

(overall accuracies and RTs), and one brain activation measure (H>E effect sizes 351 

averaged across the 18 MD ROIs). The critical analyses revealed that larger MD H>E 352 

effect sizes were associated with more accurate (r=0.44, p<0.0001) and faster (r=-0.29, 353 

p<0.0001; Fig. 2e) performance. To further test the predictive power of MD H>E effect 354 

sizes, we cross-compared brain-behavior relationships across runs (Dubois and 355 

Adolphs, 2016) and found that MD H>E effect sizes in run 1 correlated with both 356 

accuracies (r=0.34, p<0.0001) and RTs (r=-0.22, p<0.0001) in run 2, and MD H>E effect 357 

sizes in run 2 correlated with accuracies (r=0.40, p<0.0001) and RTs (r=-0.27, 358 

p<0.0001) in Run 1. 359 

Next, to test the generalizability of the relationship between MD activation and 360 

behavior, we asked whether MD H>E effect sizes explain variance in fluid intelligence, 361 

as measured with the Kaufman Brief Intelligence Test (KBIT) (Kaufman and Kaufman, 362 

2013) in a subset of participants (n=114). Indeed, larger MD H>E effect sizes were 363 

associated with higher intelligence quotient (IQ) scores (r=0.34, p<0.0002, normalized 364 

R2(R2
H>E vs IQ/R2

H>E reliability)=21%; Fig. 2e). This relationship was still significant after 365 

controlling for WM accuracy using a partial correlation analysis (r=0.26, p=0.0061), 366 

suggesting that MD activity explains unique variance captured by the fluid intelligence 367 

test over and above any shared working memory component between the test and the 368 

task. 369 

These results thus support a positive association between MD activity and fluid 370 

cognitive abilities. In the next section we assess the selectivity of this MD-behavior 371 

relationship.   372 

373 
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 374 

Figure 2. MD activity and behavior. (a) Anatomical masks used to constrain 375 

individual-specific functional activations. (b) Unthresholded group average activation 376 
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map (beta estimates) for the spatial WM Hard>Easy (H>E) contrast. (c) Pearson 377 

correlation values between MD regions for the H>E contrast, computed across 378 

individuals (d) Stability of MD H>E effect sizes across runs (n=216). (e) MD H>E effect 379 

sizes and behavior relationship: Larger MD H>E effect sizes are associated with better 380 

accuracy (left) and faster RTs (middle) in the spatial WM task (n = 216), as well as 381 

higher IQ scores (n = 114) (right) as measured by an independent test (KBIT). 382 

383 
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Language network activity and behavior 384 

Does the strength of brain activity outside of the MD network explain variance in 385 

executive abilities? We tested the selectivity of the MD-behavior relationship by 386 

examining another large-scale network implicated in high-level cognition: the fronto-387 

temporal language-selective network in the left hemisphere (Fedorenko et al., 2011).  388 

We extracted the language network’s activity during a reading task (Fedorenko et 389 

al., 2010) (Sentences>Nonwords (S>N) contrast; Fig. 3a). Similar to MD H>E effect 390 

sizes, language S>N effect sizes were highly stable across runs for each language fROI 391 

individually and averaging across fROIs (r=0.83, p<0.0001; Fig. 3b), in line with prior 392 

work (Mahowald and Fedorenko, 2016). 393 

Larger language S>N effect sizes were weakly associated with more accurate 394 

(r=0.18, p<0.01) but not faster (r=-0.08, p=0.24) performance on the spatial WM task 395 

(Fig. 3c). We also observed a weak trend for a relationship between S>N effect sizes 396 

and IQ scores (r=0.16, p=0.09) (Fig. 3c). Critically, however, controlling for the size of 397 

the MD H>E effects, in a partial correlation analysis, abolished the associations 398 

between language S>N effect sizes and the behavioral measures (spatial WM 399 

accuracies: r=0.11, p=0.10; IQ scores: r=0.14, p=0.14; Fig. 3d). In contrast, controlling 400 

for the size of the language S>N effects did not affect the relationship between MD H>E 401 

effect sizes and the behavioral measures (spatial WM accuracies: r=0.42 cf. r=0.44; 402 

spatial WM RTs: r=-0.27 cf. r=-0.29; IQ scores: r=0.34 cf. r=0.35; all ps<0.001). 403 

In line with findings from brain lesion studies, these results confirm the selective 404 

relationship between the MD network and executive functions / fluid intelligence. 405 

406 
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Figure 3. Language network activity and behavior. (a) Unthresholded group average 408 

activation map (betas) for the language Sentences>Nonwords (S>N) contrast. (b) 409 

Stability of language S>N effect sizes across runs (n=216). (c) Language S>N effect 410 

sizes and behavior relationship: Larger language S>N effect sizes are weakly 411 

associated with better accuracy in the spatial WM task (left) and higher IQ scores 412 

(right), but not RTs in the WM task (middle). (d) Language S>N effect sizes and 413 

behavior relationship, controlling for MD H>E effect sizes: The weak relationships 414 

between language S>N effect sizes and behavior observed in (c) are now abolished.415 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2019. ; https://doi.org/10.1101/110270doi: bioRxiv preprint 

https://doi.org/10.1101/110270
http://creativecommons.org/licenses/by-nc/4.0/


Page 25 of 45 

 

Effect of sample size and reliability of the neural measure on brain-416 

behavior associations 417 

In a further attempt to explain discrepancies in the prior literature (e.g., some studies 418 

finding that stronger MD activity is associated with better executive abilities, but other 419 

studies finding the opposite pattern, as discussed in the Introduction), we examined the 420 

effects of sample size and reliability of the fMRI effect sizes on the brain-behavior 421 

relationships (Gelman and Carlin, 2014). We used two indices of MD activity that 422 

differed in their reliability – (1) MD H>E effect size used in the main analysis above (a 423 

highly reliable measure, with the across-runs correlation of r=0.74) and (2) MD E>Fix 424 

effect size (a less reliable measure, with the across-runs correlation of r=0.31) – and 425 

examined their relationship to IQ scores. 426 

Samples of different sizes (ranging from 10 to 110, in increments of 10) were 427 

randomly selected from our set of 114 participants. For each sample, we computed a 428 

correlation between each of the two activity measures and IQ scores. This process was 429 

repeated 1,000 times per sample size. The resulting correlations were then examined 430 

for their sign, size, and significance. The results, shown in Fig. 4 (left), clearly 431 

demonstrate that a combination of small samples and brain activity measures of low 432 

reliability (e.g., MD E>fix effect size), like those used in many earlier studies, can 433 

produce a significant (p<0.05) correlation of the opposite sign to that observed in a 434 

larger population (red dots with a negative correlation). This problem is diminished, but 435 

not eliminated, when a reliable neural measure like the MD H>E effect size is used (Fig. 436 

4, right). The results also demonstrate that inflated correlations that are often observed 437 

in small samples are not eliminated even when a reliable activity measure is used. 438 
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The results from this analysis also challenge the claim of a negative association 439 

between MD activity and performance observed in easier tasks. As demonstrated 440 

above, at least in this paradigm, brain activity during a relatively easy executive task 441 

was not reliable within individuals across runs. This low reliability could yield 442 

correlations of opposite sign. However, even with large sample sizes, the MD E>fix 443 

effect size shows a weak positive, not negative, association with IQ scores (Fig. 4, left). 444 

445 
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 446 

Figure 4. Effects of sample size and the reliability of the brain measure on brain-447 

behavior relationships. On the x-axis in both panels, we show correlations (1,000 per 448 

sample) obtained for samples of different sizes. In the left panel, we use a brain activity 449 

measure of low reliability (MD E>Fix effect size), and in the right panel, we use a highly 450 

reliable brain activity measure (MD H>E effect size). Correlations significant at the 451 

p<0.05 level are marked in red. 452 

453 
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Discussion 454 

In a large set of participants, we examined the relationship between activity in the 455 

fronto-parietal “multiple-demand (MD)” network (Duncan, 2013, 2010), on the one hand, 456 

and executive abilities and fluid intelligence, on the other. The brain regions of interest 457 

were defined in individual participants using a functional localizer task (e.g. Fedorenko 458 

et al., 2013). We observed a robust positive association between the strength of 459 

activation in the MD network and performance on a spatial working memory (WM) task 460 

in the scanner, as well as IQ measured independently. We also examined the specificity 461 

of this relationship by considering another network important for high-level cognition – 462 

the fronto-temporal language-selective network (Fedorenko et al., 2011). Although the 463 

strength of activation in this network showed a weak positive association with some of 464 

the behavioral measures, these relationships were eliminated once the level of the MD 465 

network’s activity was taken into account (controlling for the level of the language 466 

network’s activity did not affect the MD-behavior relationships). Finally, we showed how 467 

small sample sizes and/or the use of brain activity measures of low reliability, as used in 468 

many earlier studies (Dunst et al., 2014; Haier et al., 1988; Lipp et al., 2012; Rypma et 469 

al., 2006), could produce inflated and/or the opposite-sign correlations between brain 470 

and behavior. To our knowledge, our relatively large sample size, coupled with the 471 

participant-specific functional localization approach to defining the regions of interest 472 

(Nieto-Castañón and Fedorenko, 2012; Saxe et al., 2006), provides the strongest 473 

evidence to date for the positive and selective association between the MD network’s 474 

activity and behavioral measures of executive abilities and fluid intelligence. This 475 

evidence aligns well with findings from lesion studies that have also reported a selective 476 
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relationship between fronto-parietal regions and fluid cognitive abilities (Duncan et al., 477 

1995; Glascher et al., 2010; Roca et al., 2010; Warren et al., 2014; Woolgar et al., 2018, 478 

2010). 479 

 Some limitations of our study are worth noting. First, some have previously tried 480 

to explain the discrepancies in the MD-behavior literature by alluding to differences in 481 

the age of participants across studies (Reuter-Lorenz et al., 2000; Rypma and Esposito, 482 

2000), arguing that the MD-behavior relationship may change across the lifespan. The 483 

age range in our sample (25th-75th percentile = 20-25) is too narrow to evaluate this 484 

hypothesis rigorously. The studies that had motivated this hypothesis a) used small 485 

sample sizes (e.g. Rypma and Esposito, 2000), b) used task>fixation measures of 486 

neural activity that are likely to be unreliable, and c) did not take into account inter-487 

individual variability in the locations of the MD regions, which may be especially 488 

important given the increased variability in the functional architecture of older adults 489 

(Geerligs et al., 2017). 490 

Second, our study used MD activity estimates during a single task. An estimate 491 

derived from multiple MD tasks may more accurately capture the variability in the MD 492 

network’s engagement across individuals. Similarly, our measure of fluid intelligence 493 

was derived from a single IQ test (KBIT; Kaufman and Kaufman, 2013). A measure of 494 

fluid intelligence based on a diverse battery of executive function tasks may be more 495 

reliable. Nevertheless, we note that in our study (a) the size of the correlation we 496 

observed (r=~0.35) is within the range of correlations reported in recent studies that 497 

have used a multi-task-based estimate of fluid intelligence (Dubois et al., 2018; Sripada 498 

et al., 2019), (b) the relation between MD-IQ survived after controlling for the correlation 499 
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between IQ and WM performance, highlighting the unique behavioral variance captured 500 

by the KBIT test over and above the WM task. 501 

Third, we estimated MD activity using a blocked design experiment, thus 502 

averaging across multiple steps of a cognitive process (in our case, encoding of 503 

information into working memory, maintaining it over time, and finally, retrieving it from 504 

working memory at the decision-making step). Temporally finer-grained MD activity 505 

estimates at particular steps in the task may more precisely narrow in on the core neural 506 

computations that relate to executive abilities / fluid intelligence. For instance, a recent 507 

event-related study demonstrated robust MD activity at each of the stages above (Soreq 508 

et al., 2019). A general challenge with this approach is that individual-level estimates 509 

from event-related designs are likely to be more noisy / less reliable, although with 510 

sufficient data per participant, this limitation could be overcome. An early study (Gray et 511 

al., 2003) with 60 participants found a significant difference between higher and lower 512 

IQ subjects in MD activity when it was estimated from individual lure trials (in a n-back 513 

task) but not when MD activity was estimated across an entire block of trials. In our 514 

study, we demonstrate that MD activity estimated from a block of trials carries 515 

meaningful variance about individual differences in fluid intelligence. Stronger MD 516 

activation during more difficult tasks is thought to reflect the increased demand on 517 

integrating different kinds of information needed to solve the task at hand (Assem et al., 518 

2019; Duncan, 2013; Tschentscher et al., 2017). Thus, stronger MD activity across a 519 

block could plausibly reflect less frequent lapses of “attentional focus” – needed for the 520 

correct binding of information to solve the task at hand – and thus better behavioral 521 

performance. 522 
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Studies of brain lesions have demonstrated repeatedly that there is no relation 523 

between lesions in the language network and executive abilities (Fedorenko and Varley, 524 

2016; Woolgar et al., 2018; cf. Baldo et al., 2010). Our study, to our knowledge, is the 525 

first to investigate the relationship between brain activity in the language network and 526 

behavior employing a large sample size and individual-subject fROIs. In line with lesion 527 

findings, we show that controlling for MD activity abolishes any relationship between 528 

activity in the language network and spatial WM performance. The weak language-529 

behavior association observed prior to controlling for MD activity is plausibly related to a 530 

trait factor like vascularization, or a state factor like arousal. 531 

As we have briefly alluded to in the introduction, several studies have linked 532 

executive abilities and fluid intelligence to other brain measures, both structural and 533 

functional, including outside the boundaries of the MD network. For example, a recent 534 

large-scale study using the UK Biobank dataset (n=~30,000) reported that total brain 535 

volume, as well as multiple global measures of grey and white matter macro- and 536 

microstructure (especially, in older participants), explained substantial variance in fluid 537 

intelligence (Cox et al., 2019). Another large-scale study used the Human Connectome 538 

Project dataset (n=920) to show that the strength of functional dissociation between the 539 

MD network and the default mode network (DMN) (Power et al., 2011) during an n-back 540 

working memory task explains substantial variance (~25%) in IQ scores (Sripada et al., 541 

2019), similar to the current study, although the same measure extracted from two other 542 

executive tasks (also in the HCP dataset) explained only ~10% of variance in IQ scores. 543 

It is not known whether or how these, or other measures that have been put forward in 544 

the prior literature as candidate predictors of variation in fluid intelligence, correlate with 545 
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the measure used in the current study (i.e., the relative increase in the MD activity for a 546 

more difficult compared to an easier version of an executive task). Further studies that 547 

assess the reliability of those diverse brain measures, extracted with analysis pipelines 548 

that respect individual variability in structure (Masouleh et al., 2019) and function 549 

(Coalson et al., 2018; Nieto-Castañón and Fedorenko, 2012), and direct comparisons 550 

among those measures can help clarify their unique and shared contributions to 551 

explaining variability in executive abilities and intelligence. Given the complexity of 552 

human reasoning abilities, multiple brain processes likely contribute, but we suggest 553 

that the MD network is a key player governing individual differences in fluid intelligence 554 

and executive abilities, in line with the fact that damage to MD structures selectively and 555 

robustly predicts intelligence losses. 556 

To conclude, against a backdrop of contradictory prior findings, we demonstrate 557 

a robust positive and selective association between the MD network’s activity level, on 558 

the one hand, and executive abilities and fluid intelligence, on the other. Our analyses 559 

also help resolve some of the prior contradictions in the literature. Given its high 560 

reliability, the MD activity measure used here, and measures obtained from similarly 561 

strong manipulations of cognitive demand, can be used as a neural marker to further 562 

probe variability in executive abilities both in the typical population and among 563 

individuals with cognitive and psychiatric disorders. This marker can also serve as a 564 

promising neural bridge (Braver et al., 2010) between behavioral variability and genetic 565 

variability associated with differences in fluid intelligence (Deary et al., 2006; Plomin and 566 

Spinath, 2004). 567 

568 
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