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Neural-adaptive Stochastic Attitude Filter on SO(3)
Hashim A. Hashim, Mohammed Abouheaf, and Kyriakos G. Vamvoudakis

Abstract—Successful control of a rigid-body rotating in three
dimensional space requires accurate estimation of its attitude.
The attitude dynamics are highly nonlinear and are posed on
the Special Orthogonal Group SO(3). In addition, measure-
ments supplied by low-cost sensing units pose a challenge for
the estimation process. This paper proposes a novel stochastic
nonlinear neural-adaptive-based filter on SO(3) for the attitude
estimation problem. The proposed filter produces good results
given measurements extracted from low-cost sensing units (e.g.,
IMU or MARG sensor modules). The filter is guaranteed to
be almost semi-globally uniformly ultimately bounded in the
mean square. In addition to Lie Group formulation, quaternion
representation of the proposed filter is provided. The effectiveness
of the proposed neural-adaptive filter is tested and evaluated in
its discrete form under the conditions of large initialization error
and high measurement uncertainties.

Index Terms—Neuro-adaptive, stochastic differential equations
(SDEs), Brownian motion process, attitude estimator, Special
Orthogonal Group, Unit-quaternion, SO(3), IMU, MARG.

I. INTRODUCTION

ROBOTICS and control applications are heavily reliant
on robust filtering solutions to guarantee feasibility

of accurate rigid-body orientation (attitude) estimation [1]–
[4]. The attitude can be reconstructed algebraically given
known observations in the inertial-frame and the associated
measurements in the body-frame. Examples include QUEST
algorithm [5] and singular value decomposition (SVD) [1].
However, body-frame measurements might be attached with
uncertainties, in particular if they were supplied by low-
cost inertial measurement units (IMUs) or magnetic, angular
rate, and gravity (MARG) sensor. Hence, accounting for mea-
surement imperfections requires substituting algebraic attitude
reconstruction with estimation filters.

The problem of attitude estimation is traditionally tackled
by the active control and robotics research community using
Gaussian filters, such as, Kalman filter (KF) [6], extended
Kalman filter (EKF) [7], multiplicative extended Kalman filter
(MEKF) [2], unscented Kalman filter (UKF) [3], and invari-
ant extended Kalman filter (IEKF) [8]. The unit-quaternion
structure of the majority of Gaussian filters offers the benefit
of nonsingular attitude representation [9], [10]. However,
on the other hand, unit-quaternion formulation is subject to
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nonuniqueness [11], [12]. This motivated the researchers to
explore posing the attitude on the Special Orthogonal Group
SO(3). Unlike unit-quaternion, SO(3) offers unique and global
representation of the rotational matrix [4], [9], [10], [13]–
[15]. Therefore, over the last decade multiple nonlinear attitude
filters on SO(3) have been proposed, such as nonlinear deter-
ministic filters [4], [13]–[15] and nonlinear stochastic filters
[9], [10]. The nonlinear filter design on SO(3) has proven to
1) have a simpler structure, 2) be computationally cheap, and
3) have better tracking performance in contrast to Gaussian
filters [4], [9], [10], [13]–[15].

It is widely known that neural networks (NNs) have capa-
bility to learn complex nonlinear relationships [16]–[19]. In
the recent years, adaptive artificial neural networks (ANNs)
learning, known as neural-adaptive learning, has been found
effective for approximating unknown nonlinear dynamics on-
line in several control applications. Examples include two-
degrees-of-freedom arm robots [16], multi-agent systems [17],
unknown multi-input multi-output systems [18] and fault-
tolerant control [19]. Accurate NN approximation of unknown
nonlinear dynamics allows for successful control process [16]–
[19]. In this work, the attitude dynamics are modelled on the
Lie Group of SO(3). The uncertainties inherent to attitude
dynamics and gyroscope measurements, are addressed using
Brownian motion process. The contributions of this paper are
as follows: 1) a neural-adaptive nonlinear stochastic attitude
filter on SO(3) is proposed, 2) the measurement uncertainties
are corrected using neural-adaptive adaptation mechanisms ex-
tracted by adopting Lyapunov stability, and 3) the closed loop
signals are guaranteed to be almost semi-globally uniformly
ultimately bounded (SGUUB). While the filter is proposed
in a continuous form, its discrete form obtained using exact
integration methods is also presented. The filter is tested at a
low sampling rate to reflect real-life applications. To the best
of the authors knowledge, the attitude estimation problem has
not been addressed using a neural-adaptive stochastic filter on
SO(3).

The paper is structured to include six Sections. Section
II presents preliminaries of the attitude problem. Section III
defines the problem, contains the available measurements,
error criteria, and neural network approximation. Section
IV presents a novel neural-adaptive stochastic attitude filter.
Section V shows and discusses the obtained results. Lastly,
Section VI concludes the paper.

II. PRELIMINARIES

In this work, R represents the set of real numbers, R+

denotes the set of nonnegative real numbers, and Rn×m
stands for a real n-by-m dimensional space. In and 0n×m
denote an n-by-n identity matrix and an n-by-m dimensional
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matrix of zeros, respectively. For a ∈ Rn and A ∈ Rn×m,
||a|| =

√
a>a stands for Euclidean norm of x and ||A||F =√

Tr{AA∗} describes the Frobenius norm of A where ∗
denotes a conjugate transpose. For A ∈ Rn×n, define a set
of eigenvalues as λ(A) = {λ1, λ2, . . . , λn} where λA = λ(A)
denotes the maximum value, while λA = λ(A) describes the
minimum value of λ(A). {I} defines a fixed inertial-frame and
{B} describes a fixed body-frame. Rigid-body’s orientation
in three-dimensional space, commonly known as attitude, is
expressed as R ∈ SO(3) with

SO(3) = {R ∈ R3×3|R>R = I3, det(R) = +1}

where det(·) denotes a determinant. The Lie algebra associated
with SO(3) is termed so(3) and can be described as

so(3) = {[a]× ∈ R3×3|[a]>× = −[a]×, a ∈ R3}

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 ∈ so (3) , a =

 a1
a2
a3


The operator vex stands for the inverse mapping of [·]× with
the map vex : so(3) → R3 where vex([a]×) = a,∀a ∈ R3.
The anti-symmetric projection has the map Pa : R3×3 →
so(3) where

Pa(M) =
1

2
(M −M>) ∈ so (3) ,∀M ∈ R3×3

For M = [mi,j ]i,j=1,2,3 ∈ R3×3, let us define

Υ(M) = vex(Pa(M)) =
1

2

 m32 −m23

m13 −m31

m21 −m12

 ∈ R3 (1)

For R ∈ SO (3), define the Euclidean distance of R as follows:

||R||I =
1

4
Tr{I3 −R} ∈ [0, 1] (2)

with Tr{·} standing for a trace of a matrix. For A ∈ R3×3

and α ∈ R3, considering the composition mapping in (1), let
us introduce the following identity:

Tr{A[α]×} = Tr{Pa(A)[α]×} = −2Υ(A)>α (3)

III. PROBLEM FORMULATION

A. Measurements and Dynamics

Let R ∈ SO(3) be the attitude of a rigid-body in three-
dimensional space defined with respect to {B}. The true
attitude dynamics:

Ṙ = R [Ω]× (4)

where Ω ∈ R3 represents angular velocity of the rigid-body
defined with respect to {B}. The attitude of a rigid-body can
be obtained given a group of measurements in {B} and a group
of observations in {I}. Let ri ∈ R3 denote an observation in
{I}. As such, the measurement of ri with respect to {B} is
given by

yi = R>ri + ni ∈ R3, ∀i = 1, 2, . . . , N (5)

where ni denotes unknown noise. The attitude can be obtained
given two or more non-collinear inertial observations (N ≥

2) and the respective body-frame measurements. If N = 2,
the third observation and the associated measurement can be
defined by r3 = r2× r1 and y3 = y2× y1 where × denotes a
cross product. The set of observations and measurements can
be normalized as follows:

ri =
ri
||ri||

, yi =
yi
||yi||

(6)

Low-cost IMU or MARG sensors can be utilized for attitude
determination or estimation, see [4], [9], [10], [13]–[15].
Gyroscope (angular rate or angular velocity) measurements
can be defined as follows:

Ωm = Ω + n ∈ R3 (7)

with Ω being the true angular velocity defined in (4), and n
being unknown noise corrupting Ωm. The noise vector n is
bounded and Gaussian with a zero mean E[n] = 0 where
E[·] denotes expected value of a component. Derivative of a
Gaussian process results in a Gaussian process [20], [21]. As
such, n can be formulated as a Brownian motion process

n = Qdβ
dt

(8)

where β ∈ R3 andQ ∈ R3×3 is an unknown time-variant sym-
metric matrix with Q2 = QQ> being the noise covariance. It
is worth noting that P{β(0) = 0} = 1 and E[β] = 0 where
P{·} denotes probability of a component. Therefore, from (4),
(7), and (8), the true attitude dynamics can be defined in a
stochastic sense as follows:

dR = R[Ωm]×dt−R[Qdβ]× (9)

In view of (1)-(3), one obtains the normalized Euclidean
distance of R in (9) as follows:

d||R||I = 2Υ(R)>Ωmdt− 2Υ(R)>Qdβ (10)

Lemma 1. [10] Let R ∈ SO(3), Υ(R) = vex(Pa(R)) as
in (1), and ||R||I = 1

4Tr{I3−R} as (2). Hence, the following
equality holds:

||Υ(R)||2 = 4(1− ||R||I)||R||I

Definition 1. [10], [22] Consider the stochastic attitude dy-
namics in (10) and let t0 be the initial time. ||R||I = ||R(t)||I
is said to be almost SGUUB if for a given set π ∈ R and
||R(t0)||I a constant α > 0 exists and a time constant Tα =
Tα(κ, ||R(t0)||I) such that E[||R(t0)||I] < α, ∀t > t0 + α.

Lemma 2. [23] Recall the stochastic attitude dynamics
in (10) and assume that V (||R||I) be a twice differentiable
potential function such that

LV (||R||I) = V >1 f +
1

2
Tr{gQ2g>V2} (11)

with f = 2Υ(R)>Ωm ∈ R, g = −2Υ(R)> ∈ R1×3,
LV (||R||I) being a differential operator, V1 = ∂V/∂||R||I,
and V2 = ∂2V/∂||R||2I . Let α1(·) and α2(·) be class K∞
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functions, and assume that the constants β > 0 and η ≥ 0
such that

α1(||R||I) ≤ V (||R||I) ≤ α2(||R||I) (12)

LV (||R||I) = V >1 f +
1

2
Tr{gQ2g>V2}

≤ −βV (||R||I) + η (13)

Hence, the stochastic attitude dynamics in (10) have an almost
unique strong solution on [0,∞). Moreover, the solution ||R||I
is upper bounded in probability with

E[V (||R||I)] ≤ V (||R(0)||I)exp(−βt) + η/β (14)

Also, (14) implies that ||R||I is SGUUBin the mean square.

Define R̂ as the estimate of R. Define the error in estimation
by

R̃ = R>R̂ (15)

B. Filter Structure and Error Dynamics

Define the filter dynamics as follows:

˙̂
R = R̂[Ωm − C]× (16)

with C ∈ R3×1 being a neural-adaptive-based correction
matrix to be designed in the subsequent Section. From (4)
and (16), the error dynamics are as follows:

dR̃ = R>dR̂+ dR>R̂

= (R̃[Ω− C]× + [Ω]>×R̃)dt+ R̃[Qdβ]×

= R̃[Ω]× − [Ω]×R̃− R̃[C]×dt+ R̃[Qdβ]× (17)

In view of (3) and (17), one obtains the Euclidean distance of
(17) as below:

d||R̃||I = d
1

4
Tr{I3 − R̃} = −1

4
Tr{dR̃}

=
1

4
Tr{R̃[Cdt−Qdβ]×} −

1

4
Tr{R̃[Ω]× − [Ω]×R̃}

=
1

4
Tr{Pa(R̃)[Cdt−Qdβ]×}

= −1

2
Υ(R̃)>Cdt+

1

2
Υ(R̃)>Qdβ (18)

where Tr{R̃[Ω]× − [Ω]×R̃} = 0.

C. Neural Network Structure

In this work, NNs with a linear in parameter structure will
be employed. For x ∈ Rn and a function f(x) ∈ Rm, one has

f(x) = W>ϕ(x) + αf

where W ∈ Rq×m denotes a q-by-m-dimensional matrix of
synaptic weights, ϕ(x) ∈ Rq denotes an activation function,
q denotes number of neurons, and αf ∈ Rm denotes an
approximated error vector. The activation function may contain
high order connections, for instance, Gaussian functions [24],
radial basis functions (RBFs) [25], sigmoid functions [26].
Our objectives are to achieve accurate estimation of the
attitude matrix, estimate the nonlinear attitude dynamics, and
compensate for the uncertainties. NNs have been proven to be

successful in estimating high-order nonlinear dynamics [16]–
[19]. Recall the nonlinear dynamics in (18)

d||R̃||I = −1

2
Υ(R̃)>Cdt+

1

2
Υ(R̃)>Qdβ

Define ϕ(Υ(R̃)) as an activation function, and let us approx-
imate

C>Υ(R̃) = C>Γ>c ϕ(Υ(R̃)) + αb

QΥ(R̃) = W>σ ϕ(Υ(R̃)) + ασ

where ϕ(Υ(R̃)) ∈ Rq×1 is an activation function, Γc ∈ Rq×3
is a known weighted matrix, C ∈ R3×1 is a correction weights
vector to be adaptively tuned, Wσ ∈ Rq×3 are the unknown
NN weights to be adaptively tuned, q > 0 is an integer that
denotes the number of neurons, and αb ∈ R and ασ ∈ R3 are
the approximated error components. Note that αb, ||ασ|| → 0
as q → ∞. Therefore, the error dynamics of the Euclidean
distance in (18) can be reformulated as below:

d||R̃||I = f̃dt+ g̃Qdβ =− 1

2
(C>Γ>c ϕ(Υ(R̃)) + αb)dt

+
1

2
(ϕ(Υ(R̃))>Wσ + α>σ )dβ

(19)

Define Wσ as an unknown symmetric constant matrix of NN
weights where Wσ = WσW

>
σ ∈ Rq×q . Let Ŵσ ∈ Rq×q be

the estimate of Wσ , and the error in NN weights be

W̃σ = Wσ − Ŵσ ∈ Rq×q (20)

IV. NEURAL-ADAPTIVE-BASED STOCHASTIC FILTER
DESIGN

In this Section, our objective is to develop a nonlinear
stochastic filter based on neural-adaptive techniques for the
attitude estimation problem. Consider the following neural-
adaptive-based nonlinear stochastic filter design:

˙̂
R = R̂[Ωm − C]×
˙̂
Wσ = ψ2

2 Γσϕ(Υ(R̃))ϕ(Υ(R̃))> − kσΓσŴσ

C =
(

Γ>c + ψ2

2ψ1
(Γ>c Γc)

−1Γ>c Ŵσ

)
ϕ(Υ(R̃))

(21)

where kσ ∈ R and kc ∈ R are positive constants, Γσ ∈
Rq×q is a positive diagonal matrix, Γc ∈ Rq×3 with Γ>c Γc
being positive definite, q denotes the number of neurons,
Ŵσ ∈ Rq×q is the estimate of Wσ , and R̃ = R>y R̂ with
Ry being the reconstructed attitude, see QUEST [5] or SVD
[1]. Υ(R̃) = vex(Pa(R̃)), ||R̃||I = 1

4Tr{I3 − R̃}, ψ1 =
1
2 (1 + ||R̃||I) exp(||R̃||I), and ψ2 = 1

2 (2 + ||R̃||I) exp(||R̃||I).
It is becomes apparent that Ŵσ is symmetric for Ŵσ(0) =
Ŵσ(0)>. It is worth noting that Γc defines the convergence
rate of ||R̃||I to the neighbourhood of the origin, while Γσ
defines the convergence rate of Ŵσ to Wσ .

Theorem 1. Recall the stochastic attitude dynamics in (9).
Assume the availability of at least two observations and their
respective measurements in (5) at each time instant. Consider
the nonlinear neural-adaptive stochastic filter in (21) supplied
with measurements in (7) Ωm = Ω + n and (5) yi = R>ri
for all ∀i = 1, 2, . . . , N . Hence, for ||R̃(0)||I 6= +1 (unstable
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equilibria), all the closed-loop errors are SGUUB in the mean
square.

Proof. Let V = V (||R̃||I, W̃σ) be a Lyapunov function can-
didate defined as

V = 2||R̃||I exp(||R̃||I) +
1

2
Tr{W̃>σ Γ−1σ W̃σ} (22)

with the map V : SO (3)×Rq×q → R+. Since exp(||R̃||I) ≤
exp(1) < 3, one obtains

e>
[

1 0
0 1

2λ(Γ−1σ )

]
︸ ︷︷ ︸

H1

e ≤V ≤ e>
[

3 0

0 1
2λ(Γ−1σ )

]
︸ ︷︷ ︸

H2

e

such that
λ(H1)||e||2 ≤ V ≤ λ(H2)||e||2

where e = [
√
||R̃||I, ||W̃σ||F ]> and λ(Γ−1σ ) and λ(Γ−1σ )

stand for the minimum and the maximum eigenvalues of
Γ−1σ , respectively. Since both λ(Γ−1σ ) > 0 and λ(Γ−1σ ) > 0,
λ(H1) and λ(H2) are positive and V (||R̃||I, W̃σ) > 0 for all
e ∈ R2\{0}. Consequently, on has

∂V
∂||R̃||I

= 2ψ1 = 2(1 + ||R̃||I) exp(||R̃||I)
∂2V
∂||R̃||2I

= 2ψ2 = 2(2 + ||R̃||I) exp(||R̃||I)
(23)

In view of (22), (23), and Lemma 2, the following differential
operator is obtained:

LV = ψ1f̃ +
1

2
Tr
{
g̃g̃>ψ2

}
− Tr{W̃>σ Γ−1σ

˙̂
Wσ} (24)

From (21)

LV = −ψ1Tr{Cϕ(Υ(R̃))>Γc}+ ψ1αb+ (25)
ψ2

4
Tr{(W>σ ϕ(Υ(R̃)) + ασ)(W>σ ϕ(Υ(R̃)) + ασ)>}

− Tr{W̃>σ Γ−1σ
˙̂
Wσ}

According to Young’s inequality, α>σW
>
σ ϕ(Υ(R̃)) ≤

1
2ϕ(Υ(R̃))>Wσϕ(Υ(R̃)) + 1

2 ||ασ||. Therefore, one obtains

LV ≤ −ψ1Tr{Cϕ(Υ(R̃))>Γc} − Tr{W̃>σ Γ−1σ
˙̂
Wσ}

+
ψ2

2
ϕ(Υ(R̃))ϕ(Υ(R̃))>Wσ + ψ1αb +

ψ2

2
||ασ||2 (26)

Note that ψ1 ≤ exp(||R̃||I) < 3 and ψ2 ≤ 3 exp(||R̃||I) < 9.
In view of (20), let us replace Wσ in (21) by Wσ = W̃σ+Ŵσ .
Thus, using ˙̂

Wσ and C in (21), the expression (26) can be
reformulated in an inequality form as follows:

LV ≤− ψ1||Γ>c ϕ(Υ(R̃))||2 − kσ||W̃σ||2F

+ kσ||W̃σ||F ||Wσ||F + 3αb +
9

2
||ασ||2 (27)

Based on Young’s inequality, kσ||W̃σ||F ||Wσ||F ≤
kσ
2 ||W̃σ||2F + kσ

2 ||Wσ||2F . Consider a hyperbolic tangent
activation function ϕ(a) = exp(a)−exp(−a)

exp(a)+exp(−a) where a ∈ R.
One finds that 4||Γ>c ϕ(Υ(R̃))||2 ≥ kc||Υ(R̃)||2 where

kc = λ(Γ>c Γc). Hence, for a hyperbolic tangent activation
function one has

LV ≤− kc
4
||Υ(R̃)||2 − kb

2
||W̃σ||2F + η (28)

where η = supt≥0
kb
2 ||Wσ||2F + 3αb + 9

2 ||ασ||
2. This shows

that LV is ultimately bounded. Let δ ≥ 1−||R̃(0)||I and recall
Lemma 1. Accordingly, one shows

LV ≤− e>
[
δ kc 0
0 kσ

]
︸ ︷︷ ︸

H3

e+ η

≤− λ(H3)||e||2 + η (29)

where e = [
√
||R̃||I, ||W̃σ||F ]>. Since kσ > 0 and kc > 0 and

given that ||R̃(0)||I does not belong to the unstable equilibria,
it becomes apparent that λ(H3) > 0. Hence, LV < 0 if

||e||2 > η

λ(H3)

Consequently, one finds

dE[V ]

dt
= E[LV ] ≤ −λ(H3)

λ(H2)
E[V ] + η (30)

Let us define β = λ(H3)

λ(H2)
. Therefore, one obtains

0 ≤ V (t) ≤ V (0) exp(−βt) +
η

β
(1− exp(−βt)) (31)

As such, it becomes apparent that e is almost SGUUB which
completes the proof.

The comprehensive steps of the neural-adaptive stochastic
attitude filter implementation in its discrete form are listed in
Algorithm 1 with ∆t being a small sampling time. Singular
value decomposition [1] has been utilized a method of attitude
reconstruction. In Algorithm 1, si denotes ith sensor measure-
ment confidence level with

∑N
i=1 si = 1.

V. SIMULATION RESULTS

This section illustrates the functionality of the proposed
neural-adaptive stochastic filter on the Lie group of SO (3).
The discrete filter presented in Algorithm 1 has been tested
at a sampling rate of ∆t = 0.01 seconds. Assume that the
initial value of R is R(0) = I3 ∈ SO (3) and the true angular
velocity be as below:

Ω = 0.6
[
sin(0.4t), sin(0.7t+

π

4
), 0.4 cos(0.3t)

]>
, (rad/sec)

Let the true angular velocity be attached with unknown
normally distributed random noise n = N (0, 0.11) (rad/sec)
(zero mean and standard deviation of 0.11), see (7). Define
two observations in {I}: r1 = [1,−1, 1]> and r2 = [0, 0, 1]>.
Let {B} measurements be corrupted with unknown normally
distributed random noise n1 = n2 = N (0, 0.1), see (5). Let us
consider three neurons (q = 3). Consider selecting the design
parameters as follows: Γc = 2I3, Γσ = 2I3, and kσ = 1.
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Algorithm 1 Neural-adaptive stochastic attitude estimator
Initialization:

1: Set R̂[0] = R̂0 ∈ SO (3), Ŵσ[0] = Ŵσ|0 = 0q×q , q > 0,
si ≥ 0 for all i ≥ 2, select Γσ, kσ > 0, λ(Γ>c Γc) > 0,
and set k = 0.

while
/* Attitude reconstruction using Singular Value Decom-
position */

2:



ri = ri
||ri|| , yi = yi

||yi|| , i = 1, 2, . . . , N

B =
∑n
i=1 siyir

>
i = USV >

U+ = U · diag(1, 1,det(U))

V+ = V · diag(1, 1,det(V ))

Ry = V+U
>
+

3: R̃k = R>y R̂k and Υ = Υ(R̃k) = vex(Pa(R̃))

4: ϕ(Υ) = exp(Υ)−exp(−Υ)
exp(Υ)+exp(−Υ) /* hyperbolic tangent activa-

tion function */
5: Ŵσ|k = Ŵσ|k−1 + ∆tΓσ(ψ2ϕ(Υ)ϕ(Υ)>− kσŴσ|k−1)

6: C =
(

Γ>c + ψ2

2ψ1
(Γ>c Γc)

−1Γ>c Ŵσ|k

)
ϕ(Υ)

/* angle-axis parameterization */

7:


% = (Ωm|k − C)∆t

µ = ||%||, x = %/||%||
Rexp = I3 + sin(µ)[x]× + (1− cos(µ))[x]2×

8: R̂k+1 = R̂kRexp
9: k + 1→ k

end while

Let the initial estimate of neural network weights be set to
Ŵ (0) = 03×3 and the initial estimate of the attitude be

R̂(0) =

 −0.9214 −0.0103 0.3884
0.2753 −0.7227 0.634
0.2742 0.6911 0.6687

 ∈ SO (3)

where ||R̃(0)||I = 1
4Tr{I3−R>0 R̂0} ≈ 0.994 approaching the

unstable equilibrium +1. As to activation function, we selected
a hyperbolic tangent activation function:

ϕ(α) =
exp(α)− exp(−α)

exp(α) + exp(−α)
, α ∈ R

Fig. 1 illustrates the high level of noise corrupting the
angular velocity measurements in comparison to the true data.
In Fig. 2, the estimated Euler angles (roll (φ̂), pitch (θ̂), and
yaw (ψ̂)) are plotted against the true Euler angles (φ, θ, ψ).
Fig. 2 demonstrates fast and strong tracking capability of
the proposed approach. The effectiveness and robustness of
the neural-adaptive approach are illustrated in Fig. 3 where
the error initiates at a large value and rapidly reaches close
neighborhood of the origin. Table I shows statistical analysis
of mean and standard deviation (std) of the steady-state error
values between 5 to 29 seconds with respect to the number of
neurons. As illustrated by Table I, greater number of neurons
results in improved steady-state error convergence. Finally,
Fig. 4 depicts the boundedness of the neural-adaptive estimates
as they converge close to zero as ||R̃||I → 0.
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Fig. 1. Rate gyro: True (black center-line) and measurements (colored)
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Fig. 2. Euler angles: True (green solid-line) and estimated (blue dash-line)
using 3 neurons

TABLE I
STATISTICAL ANALYSIS OF THE STEADY-STATE ERROR WITH RESPECT TO

THE NUMBER OF NEURONS.

Output data of ||R̃||I = 1
4
Tr{I3 −R>k R̂k} over the period (5-29 sec)

Neurons number 3 10 50

Mean 2.3× 10−3 2× 10−3 1.4× 10−3

STD 1.9× 10−3 1.4× 10−3 9× 10−4

VI. CONCLUSION

Accurate attitude estimation is a fundamental component
of successful robotic applications. The estimation can be
achieved using a group of observations and measurements.
Accurate estimation become challenging when low-cost mea-
surement units are utilized. This work addressed the attitude
estimation problem using a neural-adaptive stochastic filter on
the Special Orthogonal Group SO(3). The novel filter accounts
for the noise present in the gyroscope measurements. The
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Fig. 3. Normalized Euclidean error ||R̃||I = 1
4
Tr{I3 −R>k R̂k}.
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Fig. 4. Frobenius norm of neural-adaptive estimates (3 neurons).

proposed filter is ensured to be almost SGUUB in the mean
square. The numerical simulation illustrates robustness and
rapid adaptability of the proposed neural-adaptive approach.
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Appendix

Neural-adaptive Filter Quaternion Representation

Let S3 = {Q ∈ R4
∣∣ ||Q|| =

√
q20 + q>q = 1} and let Q =

[q0, q
>]> ∈ S3 be a unit-quaternion vector with q0 ∈ R and

q ∈ R3. Let Q−1 = [ q0 −q> ]> ∈ S3 be the inverse of
Q ∈ S3. Consider � to be a quaternion product. Then, for
Q1 = [ q01 q>1 ]> ∈ S3 and Q2 = [ q02 q>2 ]> ∈ S3, one
has

Q1 �Q2 =

[
q01q02 − q>1 q2

q01q2 + q02q1 + [q1]×q2

]
S3 can be mapped to SO (3) as below [11], [12]

RQ = (q20 − ||q||2)I3 + 2qq> + 2q0 [q]× ∈ SO (3) (32)

Let Qy be the reconstructed attitude, obtained for instance,
using QUEST [5]. Define Q̂ = [q̂0, q̂

>]> ∈ S3 as the estimate

of Q = [q0, q
>]> ∈ S3, and let the error in estimation be Q̃ =

Q−1y � Q̂ = [q̃0, q̃
>]> ∈ S3. The quaternion representation of

the neural-adaptive stochastic attitude filter in (21) is as below:

˙̂
Wσ = ψ2

2 Γσϕ(2q̃0q̃)ϕ(2q̃0q̃)
> − kσΓσŴσ

C =
(

Γ>c + ψ2

2ψ1
(Γ>c Γc)

−1Γ>c Ŵσ

)
ϕ(2q̃0q̃)

u = Ωm − C

Φ =

[
0 −u>

u −[u]×

]
˙̂
Q = 1

2ΦQ̂

(33)

where Υ(R̃Q) = 2q̃0q̃, ||R̃Q||I = 1 − q̃20 , ψ1 = 1
2 (1 +

||R̃Q||I) exp(||R̃Q||I), and ψ2 = 1
2 (2+ ||R̃Q||I) exp(||R̃Q||I).
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