
Neural Additive Models:

Interpretable Machine Learning with Neural Nets

Rishabh Agarwal
∗

Google Research, Brain Team
Levi Melnick

Microsoft Research

Nicholas Frosst
Cohere

Xuezhou Zhang
University of Wisconsin-Madison

Ben Lengerich
MIT

Rich Caruana
Microsoft Research

Geoffrey E. Hinton
Google Research, Brain Team

Abstract

Deep neural networks (DNNs) are powerful black-box predictors that have achieved
impressive performance on a wide variety of tasks. However, their accuracy comes
at the cost of intelligibility: it is usually unclear how they make their decisions.
This hinders their applicability to high stakes decision-making domains such as
healthcare. We propose Neural Additive Models (NAMs) which combine some of
the expressivity of DNNs with the inherent intelligibility of generalized additive
models. NAMs learn a linear combination of neural networks that each attend to a
single input feature. These networks are trained jointly and can learn arbitrarily
complex relationships between their input feature and the output. Our experiments
on regression and classification datasets show that NAMs are more accurate than
widely used intelligible models such as logistic regression and shallow decision
trees. They perform similarly to existing state-of-the-art generalized additive
models in accuracy, but are more flexible because they are based on neural nets
instead of boosted trees. To demonstrate this, we show how NAMs can be used
for multitask learning on synthetic data and on the COMPAS recidivism data due
to their composability, and demonstrate that the differentiability of NAMs allows
them to train more complex interpretable models for COVID-19. Source code is
available at neural-additive-models.github.io.

1 Introduction

While deep neural networks have achieved impressive results on tasks such as computer vision [17]
and language modeling [31], it is notoriously difficult to understand how such networks make
predictions, and they are often considered as black-box models. This hinders their applicability to high-
stakes domains such as healthcare, finance and criminal justice. Various efforts have been made to
demystify the predictions of neural networks (NNs). For example, one family of methods, represented
by LIME [33], attempt to explain individual predictions of a neural network by approximating it
locally with interpretable models such as linear models and shallow trees2. However, these approaches
often fail to provide a global view of the model and their explanations often are not faithful to what
the original model computes or do not provide enough detail to understand the model’s behavior [35].

∗Correspondence to: Rishabh Agarwal <rishabhagarwal@google.com>, Levi Melnick
<lemeln@microsoft.com>, and Rich Caruana <rcaruana@microsoft.com>.

2Linear models, shallow decision trees and GAMs are interpretable only if the features they are trained on
are interpretable.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://neural-additive-models.github.io

In this paper, we make restrictions on the structure of neural networks, which yields a family of
glass-box models called Neural Additive Models (NAMs), that are inherently interpretable while
suffering little loss in prediction accuracy when applied to tabular data. Methodologically, NAMs
belong to a model family called Generalized Additive Models (GAMs) [14]. GAMs have the form:

g(E[y]) = β + f1(x1) + f2(x2) + · · ·+ fK(xK) (1)

…..

…..

…..

. . .

. . .

Figure 1: NAM architecture for binary classification. Each
input variable is handled by a different neural network. This
results in easily interpretable yet highly accurate models.

where x = (x1, x2, . . . , xK) is the input
with K features, y is the target variable, g(.)
is the link function (e.g., logistic function)
and each fi is a univariate shape function
with E[fi] = 0. Generalized linear models,
such as logistic regression, are a special form
of GAMs where each fi is restricted to be
linear.

NAMs learn a linear combination of net-
works that each attend to a single input fea-
ture: each fi in (1) is parametrized by a
neural network. These networks are trained
jointly using backpropagation and can learn
arbitrarily complex shape functions. Inter-
preting NAMs is easy as the impact of a fea-
ture on the prediction does not rely on the
other features and can be understood by visu-
alizing its corresponding shape function (e.g.,
plotting fi(xi) vs. xi). While interpretabil-
ity of NAMs may seem heuristic, the graphs
learned by NAMs are an exact description of
how NAMs compute a prediction.

Traditionally, GAMs were fitted via iterative backfitting using smooth low-order splines, which reduce
overfitting and can be fit analytically. More recently, GAMs [5] were fitted with boosted decision
trees to improve accuracy and to allow GAMs to learn jumps in the feature shaping functions to better
match patterns seen in real data that smooth splines could not easily capture. This paper examines
using DNNs to fit generalized additive models (NAMs) which provides the following advantages:

• NAMs introduce an expressive yet intelligible class of models to the deep learning (DL) commu-
nity, a much larger community than the one using tree-based GAMs.

• NAMs are likely to be combined with other DL methods in ways we don’t foresee. This is
important because a key drawback of deep learning is interpretability. For example, NAMs have
already been employed for survival analysis [46].

• NAMs, due to the flexibility of NNs, can be easily extended to various settings problematic
for boosted decision trees. For example, extending boosted tree GAMs to multitask, multi-
class or multi-label learning requires significant changes to how trees are trained, but is easily
accomplished with NAMs without requiring changes to how neural nets are trained due to their
composability (Section 4.2). Futhermore, the differentiability of NAMs allows them to train more
complex interpretable models for COVID-19 (Section 4.1).

• Graphs learned by NAMs are not just an explanation but an exact description of how NAMs
compute a prediction. As such, a decision-maker can easily interpret NAMs and understand
exactly how they make decisions. This would help harness the expressivity of neural nets on
high-stakes domains with intelligibility requirements, e.g., in-hospital mortality prediction [22].

• NAMs are more scalable as inference and training can be done on GPUs/TPUs or other specialized
hardware using the same toolkits developed for deep learning over the past decade – GAMs
currently cannot.

• Accurate GAMs [5] currently require millions of decision trees to fit each shape function while
NAMs only use a small ensemble (2 - 100) of neural nets. Thus, NAMs are relatively much easier
to extend compared to GAMs.

2

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Input

−2

−1

0

1

2

Lo
g

O
dd

s

True
Predicted

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Input

−2

−1

0

1

2

Lo
g

O
dd

s

True
Predicted

(a) (b)

Figure 2: Accurately Fitting the Toy Dataset: Training predictions learned by a single hidden layer neural
network with 1024 (a) standard ReLU, and (b) ReLU-n with ExU hidden units trained for 10,000 epochs on
the binary classification dataset described in Section 2. We can see that the ReLU network has learned a fairly
smooth function while the ExU network has learned a very jumpy function. We find that a DNN with three
hidden layers also learned smooth functions (see Figure A.3).

2 Neural Additive Models

Modeling jagged shape functions is required to learn accurate additive models as there are often
sharp jumps in real-world datasets, e.g., see Figure 4 for jumps in graphs for PFRatio and Bilirubin
which correspond to real patterns in the MIMIC-II dataset [38] (Section A.1). Similarly, Caruana
et al. [5] observe that GAMs fit using splines tend to over regularize and miss genuine details in real
data, yielding less accuracy than tree-based GAMs. Therefore, we require that neural networks (NNs)
are able to learn highly non-linear shape functions, to fit these patterns.

Although NNs can approximate arbitrarily complex functions [18], we find that standard NNs fail to
model highly jumpy 1D functions, and demonstrate this failure empirically using a toy dataset. The
toy dataset is constructed as follows: For the input x, we sample 100 evenly spaced points in [-1, 1].
For each x, we sample p uniformly random in [0.1, 0.9) and generate 100 labels from a Bernoulli
random variable which takes the value 1 with probability p. This creates a binary classification dataset
of (x, y) tuples with 10,000 points. Figure 2 shows the log-odds of the empirical probability p (i.e.,
log p

1−p
) of classifying the label of x as 1 for each input x. This dataset tests the NN’s ability to

“overfit” the data, rather than its ability to generalize.

Over-parameterized NNs with ReLUs [25] and standard initializations such as Kaiming initializa-
tion [16] and Xavier initialization [10] struggle to overfit this dataset when trained using mini-batch
gradient descent, despite the NN architecture being expressive enough3(see Figures 2(a) and A.3).
This difficulty of learning large local fluctuations with ReLU networks without affecting their global
behavior when fitting jagged functions might be due to their bias towards smoothness [2, 32].

We propose exp-centered (ExU) hidden units to overcome this neural net failure: we simply learn the
weights in the logarithmic space with inputs shifted by a bias. Specifically, for a scalar input x, each
hidden unit using an activation function f computes h(x) given by

h(x) = f (ew ∗ (x− b)) (2)

where w and b are the weight and bias parameters. The intuition behind ExU units is as follows:
For modeling jagged functions, a hidden unit should be able to change its output significantly, with
a tiny change in input. This requires the unit to have extremely large weight values depending on
the sharpness of the jump. The ExU unit computes a linear function of input where the slope can
be very steep with small weights, making it easier to modify the output easily during training. ExU
units do not improve the expressivity of neural nets, however they do improve their learnability for
fitting jumpy functions. While we use ExU units to train accurate NAMs, they are more generally
applicable for approximating jumpy functions with neural nets.

We noticed that ExU units with standard weight initialization also struggle to learn jagged curves;
instead initializing the weights using a normal distribution N (x, 0.5) with x ∈ [3, 4] works well in
practice. This initialization simply ensures that the initial network starts with a jagged (random)

3This problem doesn’t occur with full-batch gradient descent.

3

20 40 60 80 100
Input (xi)

−1.0

−0.5

0.0

0.5

1.0

1.5

f i(
x i
)

Sub-network Prediction
Average Prediction

Figure 3: Regularizing ExU networks. Output
of a ExU feature net trained with dropout = 0.2

for the age feature in the MIMIC-II dataset [38].
Predictions from individual subnets (as a result of
dropping out hidden units) are much more jagged
than the average predictions using the entire fea-
ture net. Refer to Section A.3 for an overview of
regularization approaches used in this work.

20 40 60 80 100
Age

−6

−4

−2

0

2

M
IM

IC
-II

 IC
U

 M
or

ta
lit

y
R

is
k

0 20 40 60 80
Bilirubin

−6

−4

−2

0

2

0 500 1000 1500 2000 2500
PFratio

−6

−4

−2

0

2

(a) Graphs learned by NAMs with ExU units

20 40 60 80 100
Age

−4

−3

−2

−1

0

1

2

M
IM

IC
-II

 IC
U

 M
or

ta
lit

y
R

is
k

0 20 40 60 80
Bilirubin

−4

−3

−2

−1

0

1

2

0 500 1000 1500 2000 2500
PFratio

−4

−3

−2

−1

0

1

2

(b) Graphs learned by NAMs with standard units

Figure 4: ExU vs. standard hidden units. On MIMIC-II,
NAMs trained with ExU units learn jumpier graphs than with
standard units while achieving a similar AUC (≈ 0.829).
Ensembling them further improves performance (≈ 0.830).
Note that white regions in the plots correspond to regions with
low data density (typically a few points) and thus we see much
higher variance in the learned shape functions. We present a
detailed case study on the MIMIC-II dataset in Section A.1.

function which we empirically find to be crucial for fitting any jumpy function. Furthermore, we use
ReLU activations capped at n (ReLU-n) [21] to ensure that each ExU unit is active in a small input
range, making it easier to model sharp jumps in a function without significantly affecting the global
behavior. ExU-units can be combined with any activation function (i.e., any f can be used in (2)), but
ReLU-n performs well in practice. Figure 2(b) shows that NNs with ExU units are able to fit the toy
dataset significantly better than standard NNs.

Finally, realistic shape functions typically tend to be smooth with large jumps at only a few points (Fig-
ure 4). To avoid overfitting with ExUs, strong regularization is crucial which can learn such realistic
functions (e.g., Figure 3). With ReLUs, we can typically fit smooth functions but they might miss
some of these jumps. To avoid overfitting when fitting NAMs with ExUs, we employ various regular-
ization methods including dropout, weight decay, output penalty, and feature dropout (see Section A.3
for an overview).

2.1 Intelligibility and Modularity of NAMs

The intelligibility of NAMs results in part from the ease with which they can be visualized. Because
each feature is handled independently by a learned shape function parameterized by a neural net, one
can get a full view of the model by simply graphing the individual shape functions. For data with
a small number of inputs, it is possible to have an accessible explanation of the model’s behavior
visualized fully on a single page. Please note these shape function plots are not just an explanation
but an exact description of how NAMs compute a prediction. A decision-maker can easily interpret
such models and understand exactly how they make decisions, for example, we validated the behavior
of NAMs on the MIMIC-II dataset [38] with a doctor (Appendix A.1).

We set the average score for each graph (i.e., each feature) averaged across the entire training dataset
to zero by subtracting the mean score. To make individual shape functions identifiable and modular,
a single bias term is then added to the model so that the average predictions across all data points
matches the observed baseline. This makes interpreting the contribution of each term easier: e.g.,
on binary classification tasks, negative scores decrease probability, and positive scores increase
probability compared to the baseline probability of observing that class. This property also allows
each graph to be removed from the NAM (zeroed out) without introducing bias to the predictions.

Visualization. We plot each shape function and the corresponding data density on the same graph.
Specifically, we plot each learned shape function fk(xk) vs. xk for an ensemble of NAMs using a
semi transparent blue line, which allows us to see when the models in the ensemble learned the same
shape function and when they diverged. This provides a sense of the confidence of the learned shape
functions. We also plot on the same graphs the normalized data density, in the form of pink bars.
The darker the shade of pink, the more data there is in that region. This allows us to know when the
model had adequate training data to learn appropriate shape functions.

4

Table 1: Single-task learning NAM results. Means and standard deviations are reported from 5-fold cross
validation. Higher AUCs and lower RMSEs are better. We report results on two widely used regression datasets,
namely California Housing [27] for predicting housing prices and FICO [9] for understanding credit score
predictions, as well as two classification datasets, namely Credit [7] for financial fraud detection and MIMIC-
II [38] for predicting mortality in ICUs. We present a case study on the MIMIC-II dataset in Section A.1 and
discuss the interpretations from NAMs on other datasets in Section A.2.

Model MIMIC-II (AUC) Credit (AUC) CA Housing (RMSE) FICO (RMSE)

Log./Linear Reg. 0.791 ± 0.007 0.975 ± 0.010 0.728 ± 0.015 4.344 ± 0.056
CART 0.768 ± 0.008 0.956 ± 0.004 0.720 ± 0.006 4.900 ± 0.113

NAMs 0.830 ± 0.008 0.980 ± 0.002 0.562 ± 0.007 3.490 ± 0.081
EBMs 0.835 ± 0.007 0.976 ± 0.009 0.557 ± 0.009 3.512 ± 0.095

XGBoost 0.844 ± 0.006 0.981 ± 0.008 0.532 ± 0.014 3.345 ± 0.071
DNNs 0.832 ± 0.009 0.978 ± 0.003 0.492 ± 0.009 3.324 ± 0.092

M
ax

 D
el

in
qu

en
cy

 E
ve

r
M

on
th

s
Si

nc
e

M
os

t
 R

ec
en

t D
el

in
qu

en
cy

M
on

th
s

Si
nc

e
M

os
t R

ec
en

t T
ra

de

In

qu
iri

es
 in

 L
as

t 6
 M

on
th

s

To

ta
l T

ra
de

s

In
qu

iry

N
et

 F
ra

ct
io

n
In

st
al

lm
en

t B
ur

de
n

M
on

th
s

Si
nc

e
M

os
t R

ec
en

t
In

qu
iry

 e
xc

lu
di

ng
 7

 d
ay

s
M

on
th

s
Si

nc
e

O
ld

es
t T

ra
de

 O
pe

n

%
 In

st
al

lm
en

t T
ra

de
s

N
um

be
r I

ns
ta

llm
en

t T
ra

de
s

 w
ith

 B
al

an
ce

%
 T

ra
de

s
w

ith
 B

al
an

ce

In
qu

iri
es

 in
 L

as
t 6

 M
on

th
s

 e
xc

lu
di

ng
 7

 d
ay

s

Tr
ad

es
 O

pe
n

in
 L

as
t 1

2
M

on
th

s

Tr

ad
es

 9
0+

 E
ve

r

R

ev
ol

vi
ng

 T
ra

de
s

w
ith

 B
al

an
ce

Tr

ad
es

 6
0+

 E
ve

r

Sa

tis
fa

ct
or

y
Tr

ad
es

xB

an
k/

N
at

l T
ra

de
s

w
ith

 h
ig

h
ut

iliz
at

io
n

ra
tio

%
 T

ra
de

s
N

ev
er

 D
el

in
qu

en
t

D
el

in
qu

en
t

M
ax

 D
el

q/
Pu

bl
ic

 R
ec

or
ds

 L
as

t Y
ea

r
N

et
 F

ra
ct

io
n

R
ev

ol
vi

ng
 B

ur
de

n

Av
er

ag
e

M
on

th
s

in
 F

ile

−8

−6

−4

−2

0

2

4

FI
C

O
 S

co
re

 C
on

tri
bu

tio
n

Low FICO Score Applicant
High FICO Score Applicant

Figure 5: Understanding individual predictions for credit scores. Fea-
ture contribution using the learned NAMs for predicting scores of two
applicants in the FICO dataset [9]. For a given input, each feature net in
the NAM acts as a lookup table and returns a contribution term. These
contributions are combined in a modular way: they are added up, and
passed through a link function for prediction. the longer a person’s credit
history, the better it is for their credit score The high scoring applicant
has a long credit history (Average Months on File), which contributes to
their credit score better. On the contrary, the low scoring applicant used
their credit quite frequently (Total Number of Trades) and has a large
burden (Net Fraction Installment Burden), thus resulting in a low score.

−124 −122 −120 −118 −116
Longitude

−10

−5

0

5

10

15

H
ou

se
 P

ric
e

C
on

tri
bu

tio
n

2 4 6 8 10 12 14
Median Income

−10

−5

0

5

10

15

H
ou

se
 P

ric
e

C
on

tri
bu

tio
n

Figure 6: California Housing.
Graphs learned by NAMs trained
to predict house prices [27] for
two most important features. As
expected, The house prices in-
crease linearly with median in-
come in high data density regions.
Furthermore, the graph for longi-
tude shows sharp jumps in price
prediction around the location of
San Francisco and Los Angeles.

3 Evaluating the Accuracy of NAMs

In this section, we evaluate the single-task learning capacity of NAMs against the following baselines
on both regression and classification tasks:

• Logistic / Linear Regression and Decision Trees (CART): Prevalent intelligible models. For
both methods above we use the sklearn implementation [28], and tune the hyper-parameters
with grid search.

• Explainable Boosting Machines (EBMs): Current state-of-the-art GAMs [5, 23] which use
gradient boosting of millions of shallow bagged trees that cycle one-at-a-time through the features.

• Deep Neural Networks (DNNs): Unrestricted, full-complexity models which can model higher-
order interaction between the input features. This gives us a sense of how much accuracy we
sacrifice in order to gain interpretability with NAMs.

• Gradient Boosted Trees (XGBoost): Another class of full-complexity models that provides
an upper bound on the achievable test accuracy in our experiments. We use the XGBoost
implementation [6].

5

Patient
Context

Demographics

Lab Tests

STL
NAM

MTL
NAM

Treatments

Untreated
Mortality Risk

Total
Treatment

Benefit

Mortality
RiskPersonalized

Treatment
Benefits

⅀

⟨·,·⟩

(a) Architecture

5 10 15 20
Neutrophil / Lymphocyte Ratio

0.0

0.5

1.0

1.5

2.0

Ex
pe

ct
ed

 B
en

ef
it

(L
og

-O
dd

s)

20 40 60 80
Age (Years)

0.0

0.5

1.0

1.5

2.0

Ex
pe

ct
ed

 B
en

ef
it

(L
og

-O
dd

s)

(b) Anti-Coagulants

5 10 15 20
Neutrophil / Lymphocyte Ratio

0.0

0.5

1.0

1.5

2.0

Ex
pe

ct
ed

 B
en

ef
it

(L
og

-O
dd

s)

20 40 60 80
Age (Years)

0.0

0.5

1.0

1.5

2.0

Ex
pe

ct
ed

 B
en

ef
it

(L
og

-O
dd

s)

(c) NSAIDs

5 10 15 20
Neutrophil / Lymphocyte Ratio

0.0

0.5

1.0

1.5

2.0

Ex
pe

ct
ed

 B
en

ef
it

(L
og

-O
dd

s)

20 40 60 80
Age (Years)

0.0

0.5

1.0

1.5

2.0

Ex
pe

ct
ed

 B
en

ef
it

(L
og

-O
dd

s)

(d) Glucocorticoids

Figure 7: Estimating personalized treatment benefits for Covid-19 patients. NAMs provide a unique
combination of intelligibility and differentiability which make them suitable as a component in contextual
parameter generation (a). By applying NAMs in this way, we are able to estimate and interpret personalized
benefits of medical treatments for Covid-19 patients (b-d).

Training and Evaluation. Feature nets in NAMs are selected amongst (1) DNNs containing 3
hidden layers with 64, 64 and 32 units and ReLU activation, and (2) single hidden layer NNs with
1024 ExU units and ReLU-1 activation. We perform 5-fold cross validation to evaluate the accuracy
of the learned models. To measure performance in Table 1, we use area under the precision-recall
curve (AUC) for binary classification and root mean-squared error (RMSE) for regression. More
details about training and evaluation protocols can be found in Section A.5 in the appendix.

NAMs achieve comparable performance to EBMs on both classification and regression datasets,
making them a competitive alternative to EBMs. Given this observation, we next look at some
additional capabilities of NAMs that are not available to EBMs or any tree-based learning methods.

4 Unique Capabilities of NAMs

4.1 Intelligible Parameter Generation: Leveraging the Differentiability of NAMs

Medical treatment protocols are designed to deliver treatments to patients who would most benefit
from them. To optimize treatment protocols, we would like a model which provides an intelligible
map from patient information to an estimate of benefit for each potential treatment. To accomplish
this, we use a NAM to generate parameters for personalized models of mortality risk given treatment
(Fig. 7). By training to match predicted mortality risk with observed mortality, the NAM encodes
expected treatment benefits as a function of patient information. NAMs are the only nonlinear GAM
suitable for this application because NAMs are differentiable and can be trained via backpropagation.

Figure 7 shows a NAM trained to predict treatment benefits for Covid-19 patients. We train the
model on deidentified data from over 3000 Covid-19 patients. The model suggests that the benefits of
anti-coagulants and NSAIDs decrease with increased Neutrophil / Lymphocyte Ratio (NLR), while
the effectiveness of glucocorticoids slightly increases with increasing NLR. NLR is a marker of
inflammation and severe Covid-19; it is thus expected that anti-coagulants (which target a distinct
biomedical pathway) and NSAIDs (which are weaker) would not be as effective for patients with
elevated NLR. In contrast, glucocorticoids become more effective for patients with more inflammation.
This example shows the utility of a differentiable nonlinear additive model such as NAMs.

4.2 Multitask Learning

One advantage of NAMs is that they are easily extended to multitask learning (MTL) [4], whereas
MTL is not available in EBMs or in any major boosted-tree package. In NAMs, the composability
of neural nets makes it easy to train multiple subnets per feature. The model can learn task-specific
weights over these subnets to allow sharing of subnets (shape functions) across tasks while also
allowing subnets to differentiate between tasks as needed. However, it is unclear how to implement
MTL in EBMs and possibly requires changes to both the backfitting procedure and the information
gain rule in decision trees. Figure 8 shows a multitask NAM architecture that can jointly learn
different feature representations for each task while preserving the intelligibility and modularity
of NAMs. As we show, this can benefit both accuracy and interpretability. We first demonstrate
multitask NAMs on a synthetic dataset before showing their utility on a multitask formulation of the
COMPAS recidivism prediction dataset.

6

Figure 8: Multitask NAM architecture for binary classifica-
tion. Multiple subnets are trained on each input feature and
weighted sums are learned over the subnets.

Multitask NAM Architecture. The mul-
titask architecture is identical to that of
single task NAMs except that each fea-
ture is associated with multiple subnets
and the model jointly learns a task-specific
weighted sum over their outputs that deter-
mines the shape function for each feature
and task. The outputs corresponding to
each task are summed and a bias is added
to obtain the final prediction score. The
number of subnets does not need to be the
same as the number of tasks — the num-
ber of subnets can be less than, equal to,
or even more than the number of tasks. Al-
though the shape plot for each task is a lin-
ear combination of the shape plots learned
by each subnet for that feature, this gen-
erates a single unique shape plot for each
task and there is no need to examine what
has been learned by the individual subnets
for interpreting multitask NAMs.

4.2.1 Experiments on Synthetic Multitask Data

Multitask models often show improvement over single task learning when tasks are similar to each
other and training data is limited. We construct a synthetic dataset that showcases the benefit of
multitask learning in NAMs and demonstrates their ability to learn task-specific shape plots when
needed. We define 6 related tasks, each a function of three variables. All 6 tasks are the same function
of variables x0 and x1, and differ only in the function applied to x2:

Task0 = f(x0) + g(x1) + h(x2) Task1 = f(x0) + g(x1) + i(x2)
Task2 = f(x0) + g(x1)− h(x2) Task3 = f(x0) + g(x1)− i(x2)
Task4 = f(x0) + g(x1) + (h(x2) + i(x2)) Task5 = f(x0) + g(x1)− (h(x2) + i(x2))

Functions f(x0), g(x1), h(x2) and i(x2) are as follows:

1 0 1
0.0

0.5

1.0

1.5

f(x0)

1 0 1

1.0

0.5

0.0
g(x1)

1 0 1
1

0

1
h(x2)

1 0 1
1

0

1
i(x2)

A NAM with two subnets per feature can model every function of x2 by learning two subnets, one for
h(x2) and one for i(x2) and assigning appropriate weights to the output of each. Because we would
not know this in advance with real data, we use 6 subnets so that each of the 6 tasks (outputs) could,
if needed, learn independent shape functions. We train models on 2,500 training examples, evaluate

1 0 1
1

0

1
Single Task

NAM
Single Task

NAM

Task 0

1 0 1
1

0

1

Task 1

1 0 1
2

0

2
Task 2

1 0 1

1

0

1
Task 3

1 0 1
1

0

1
Task 4

1 0 1
2

0

2
Task 5

1 0 1
x2

1

0

1Multitask
NAM

Multitask
NAM

1 0 1
x2

1

0

1

1 0 1
x2

2

0

2

1 0 1
x2

1

0

1

1 0 1
x2

1

0

1

1 0 1
x2

2

0

2

Figure 9: Single and Multitask NAM shape plots for x2 from a typical (median) run of each task. The learned
shape function is blue; the generator function is black. See A.8.2 for details of the generator functions.

7

Table 2: MSE for STL and MTL NAMs on synthetic data. Average of 20 runs. Lower MSEs are better.

Model Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Mean

Single Task NAM 0.965 1.116 1.347 0.944 1.058 1.066 1.083
Multitask NAM 0.710 0.715 0.709 0.711 0.717 0.709 0.712

Single Task NAM Multitask NAM

Women

Men

Women

Men

Figure 10: Single and Multitask COMPAS Recidivism Prediction. Plots in the left column show the shape
functions for each input feature learned by an ensemble of 100 single task NAMs. Thin blue lines represent
shape functions for individual members of the ensemble. Pink bars represent the normalized data density for
each feature. Plots in the right column show the Race and Charge degree shape plots for an ensemble of 100
multitask NAMS, with the Women task shown in green, and the Men task in blue.

them on a test set of 10,000 examples, and average the results over 20 trials. Also, we ensured that
each subnet has enough parameters to easily learn the necessary feature shape plots. So MTL is not
doing better than STL because STL has inadequate capacity and MTL has more capacity.

Table 2 shows that on average across all tasks, multitask NAMs achieve mean squared error 34%
lower than single task NAMs, and at least 25% lower on each individual task. In all 120 trials of the
6 tasks combined, MTL achieved a better score than STL on 119 of the 120 trials. Figure 9 shows the
shape plots learned by median runs of STL and MTL for the functions of x2 that vary among tasks.
Furthermore, we illustrate that a multi-task NAM is as interpretable as a single task NAM by plotting
the multi-task NAM predictions on the 3 input features for each of the tasks in Figure A.6.

4.2.2 Single and Multitask COMPAS Recidivism Prediction

COMPAS is a proprietary score developed to predict recidivism risk, which is used to inform bail,
sentencing and parole decisions and has been the subject of scrutiny for racial bias [1, 8, 42]. In 2016,
ProPublica released recidivism data [30] on defendants in Broward County, Florida.

Single Task Recidivism Prediction: First, we ask whether this dataset is biased using the trans-
parency of single-task NAMs. Figure 10 shows the learned single-task NAM which is as accurate
as black-box models on this dataset (see Table 1). The shape function for race indicates that the
learned NAM may be racially biased: Black defendants are predicted to be higher risk for reoffending
than white or Asian defendants. This suggests that the recidivism data may be racially-biased. The
modularity of NAMs makes it easy to correct this bias by simply removing the contributions learned
from the race attribute by zeroing out its mean-centered graph in the learned NAM. Although this
would drop the AUC score as we are removing a discriminative feature, it may be a more fair model
to use for making bail decisions. It is important to keep potentially offending attributes in the model
during training so that the bias can be detected and then removed after training. If the offending
variables are eliminated before training, it makes debiasing the model more difficult: if the offending
attributes are correlated with other training attributes, the bias is likely to spread to those attributes [3].
The transparency and modularity of NAMs allows one to detect unanticipated biases in data and
makes it easier to correct the bias in the learned model.

8

Table 3: ROC AUC for multitask and single task NAMs on COMPAS dataset, broken down by gender. Each cell
contains the mean AUC ± one standard deviation obtained via 5-fold cross validation. Higher AUCs are better.

Model COMPAS Women COMPAS Men COMPAS Combined

Single Task NAM 0.716 ± 0.026 0.735 ± 0.009 0.737 ± 0.010
Multitask NAM 0.723 ± 0.019 0.737 ± 0.009 0.739 ± 0.010

Multitask Recidivism Prediction: In some settings multitask learning can increase accuracy and
intelligibility by learning task-specific shape plots that expose task-specific patterns in the data that
would not be learned by single task learning. We reformulate COMPAS as a multitask problem where
recidivism prediction for men and women are treated as separate tasks on a NAM with two outputs.
Indeed, we find that a multitask NAM reveals different relationships between race, charge degree,
and recidivism risk for men and women while achieving slightly higher overall accuracy.

The right column of Figure 10 displays a selection of shape plots learned for a multitask NAM trained
on the same data as the single task NAM but with Male and Female as separate output tasks. (The
remaining MTL shape plots are similar for the two genders, reinforcing that these are strongly related
tasks, but we omit them for brevity.) The race shape plot in the multitask NAM shows a different
pattern of racial bias for each gender. The curve for men looks similar to that of the single task NAM
(which is expected because men make up 81% of the data), but the curve for women suggests that
recidivism risk is lower for Black women and higher for Caucasian and Hispanic women than for
their male counterparts. The multitask shape plots also reveal that charge degree is almost twice as
important for women as it is for men. The straightforward extension of NAMs to the multitask setting
offers a useful modelling technique not currently available with tree-based GAMs.

5 Related Work

Generalized Additive Neural Networks (GANNs) [29] are somewhat similar to the NAMs we propose
here. Like NAMs, GANNs used a restriction in the neural net architecture to force it to learn additive
functions of individual features. GANNs, however, predate deep learning and use a single hidden
layer with typically only 1-5 hidden units. Furthermore, GANNs did not use backpropagation [37],
required human-in-the-loop evaluation and were not successful in training accurate or scalable GAMs
with neural nets. See Section A.7 for a more detailed overview of GANNs.

In contrast, NAMs in this paper benefit from the advances in deep learning. They use a large number
of hidden units and multiple hidden layers per input feature subnet to allow more complex, more
accurate shape functions to be learned. Furthermore, NAMs use novel ExU hidden units to allow
subnets to learn the more non-linear functions often required for accurate additive models, and then
form an ensemble of these nets to provide uncertainty estimates, further improve accuracy and reduce
the high-variance that can result from encouraging the model to learn highly non-linear functions.

Prior to NAMs, the state-of-the-art in high-accuracy, interpretable generalized additive models [12,
14] are the GAM [23] and GA2M [24] based on regularized boosted decision trees which were
successfully applied to healthcare datasets [5]. We compare the accuracy of NAMs to these models
in Section 3. We note that pairwise interactions, similar to GA2Ms, can be easily added to NAMs –
GA2Ms use a heuristic to compute the importance of each pairwise interaction by fitting residual
from first-order terms and select the k (≤ 10) most important interactions. We don’t consider such
interactions to keep the paper focused on additive modeling with neural nets.

6 Conclusion and Future Work

We present Neural Additive Models (NAMs), which combine the inherent interpretability of GAMs
with the expressivity of DNNs, opening the door for other advances in interpretability in deep learning.
NAMs are competitive in accuracy to GAMs and accurate alternatives to prevalent interpretable
models (e.g., shallow trees) while being more easily extendable than existing GAMs due to their
differentiability and composability.

A promising direction for future work is improving the expressivity of NAMs by incorporating
higher-order feature interactions. While such interactions may result in more expressivity, they might
worsen the intelligibility of the learned NAM. Thus, finding a small number of crucial interactions
seems important for more expressive yet intelligible NAMs. Another interesting avenue is developing

9

better activation functions or feature representations for easily expressing complex functions using
NAMs. For example, fourier features [43] have been shown to be highly effective for learning high
frequency functions via neural networks and might be useful for training expressive NAMs.

Extending and applying NAMs beyond tabular data to more complex tasks with high-dimensional
inputs, such as computer vision and language understanding, is an exciting avenue for future work.
While NAMs only use some of the expressivity of DNNs, one can imagine using NAMs in a real-
world pipeline where intelligibility is required for decision making from representation [36] (e.g.,
features learned from images, speech etc). Much of the existing interpretability work in deep learning
focuses on making learned representations interpretable. Also, NAMs can be used for interpretability
across multiple raw features (e.g., multimodal inputs) where interpretability within a NAM network
can utilize existing interpretability methods in ML – recently CNN-LSTM based extension of NAMs
have already been developed for genomics [40] where the input to each NAM network was a one-hot
encoded DNA sequence (passed as an image). Overall, we believe that NAMs are likely to broaden
the use of inherently interpretable models in the deep learning community.

Broader Impact

Interpretability in AI systems might be desirable or necessary for various reasons – see [44] for an
overview; we discuss some of them in the context of NAMs below:

• Safeguarding against bias: NAMs can check whether training data is used in ways that result in
bias or discriminatory outcomes and can be easily corrected for bias to yield possibly more fair
models – e.g., Section 4.2.2 demonstrates this utility for recidivism risk prediction.

• Improving AI system design: NAMs allow developers to interrogate why it behaved in a certain
way (e.g., tracking system malfunctions), and develop improvements – Section A.1 shows that
NAMs can explain seemingly anomalous results in healthcare as well as uncover problems that
might put some kinds of patients at risk and need correction before deploying the system.

• Adhering to regulatory standards or policy requirements: Interpretability of NAMs can be
important in enforcing legal rights surrounding a system – e.g., credit scores in the United States,
have a well-established “right to explanation”. NAMs can also enable individuals to contest model
outputs, e.g., challenging an unsuccessful loan application, based on the interpretations provided
by NAMs for a specific decision (Figure 5).

• Assessing risk, robustness, and vulnerability: This can be particularly important if an AI
system is deployed in a new environment, where we cannot be sure of its effectiveness – e.g.,
NAMs for fraud detection (Section A.2.2) can be analyzed to understand the risks involved or
how it might fail before deploying it to unseen customers.

• Giving users confidence in the system: Interpretations from NAMs might provide users confi-
dence that it works as intended – e.g., expensive house prices near metropolitan areas such as San
Francisco, as predicted by NAMs (Figure 6), is expected for a trustworthy model.

• Data-driven scientific discovery: NAMs can be applied in natural sciences – e.g., ecology [12],
medicine [13], astronomy [15] etc. – to obtain novel scientific insights and discoveries from
observational or simulated data [34, 45] while remaining scalable to the ever-increasing data.

There are also pitfalls associated with interpretability methods – NAMs are no exception. Different
contexts give rise to different interpretability needs – e.g., public have different expectations of
systems used in healthcare vs. recruitment [19]. Furthermore, AI system designs often need to
balance competing demands – e.g., to optimize the accuracy of a system or ensure fairness (NAMs
for making bail decisions with race feature “removed” may be less accurate but more fair). In many
critical decision-making areas – e.g., healthcare, justice, and public services – complex processes
have developed over time to provide safeguards, audit functions, or other forms of accountability.
NAMs may therefore be only the first step in creating trustworthy systems. Those developing NAMs
must consider how their use fits in the wider socio-technical context of its deployment

Acknowledgments

We would like to thank Kevin Swersky for reviewing an early draft of the paper. We also thank Sarah
Tan for providing us with pre-processed versions of some of the datasets used in the paper. RA would
also like to thank Marlos C. Machado and Marc G. Bellemare for helpful discussions.

10

References

[1] Julia Angwin, Jeff Larson, Lauren Kirchner, and Surya Mattu. Machine Bias:
There’s software used across the country to predict future criminals. And it’s
biased against blacks, 2016. URL https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing. [Accessed Febru-
ary 1, 2020].

[2] Devansh Arpit, Stanislaw Jastrzkebski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A
closer look at memorization in deep networks. ICML, 2017.

[3] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in
criminal justice risk assessments: The state of the art. Sociological Methods & Research, 2018.

[4] Rich Caruana. Multitask learning. Machine Learning, 1997.

[5] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad.
Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission.
SIGKDD, 2015.

[6] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. SIGKDD, 2016.

[7] Andrea Dal Pozzolo. Adaptive machine learning for credit card fraud detection. PhD Thesis,
Department of Computer Science, Université Libre de Bruxelles, 2015.

[8] Julia Dressel and Hany Farid. The accuracy, fairness, and limits of predicting recidivism.
Science advances, 2018.

[9] FICO. FICO Explainable Machine Learning Challenge. https://community.fico.com/s/
explainable-machine-learning-challenge, 2018.

[10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. AISTATS, 2010.

[11] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and
D Sculley. Google vizier: A service for black-box optimization. SIGKDD, 2017.

[12] Antoine Guisan, Thomas C Edwards Jr, and Trevor Hastie. Generalized linear and generalized
additive models in studies of species distributions: setting the scene. Ecological modelling,
2002.

[13] T Hastie and R Tibshirani. Generalized additive models for medical research. Statistical
methods in medical research, 1995.

[14] Trevor Hastie and Robert Tibshirani. Generalized Additive Models. Chapman and Hall/CRC,
1990.

[15] M W Hattab, R S de Souza, B Ciardi, J-P Paardekooper, S Khochfar, and C Dalla Vecchia.
A case study of hurdle and generalized additive models in astronomy: the escape of ionizing
radiation. Monthly Notices of the Royal Astronomical Society, 2018.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. CVPR, 2015.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CVPR, 2016.

[18] Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multilayer feedforward networks are
universal approximators. Neural Networks, 1989.

[19] ICO. Project explain: Interim report. 2019. https://ico.org.uk/media/2615039/
project-explain-20190603.pdf.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[21] Alex Krizhevsky. Convolutional deep belief networks on cifar-10. 2010.

[22] Christine K Lee, Muntaha Samad, Ira Hofer, Maxime Cannesson, and Pierre Baldi. Development
and validation of an interpretable neural network for prediction of postoperative in-hospital
mortality. NPJ digital medicine, 2021.

11

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
https://ico.org.uk/media/2615039/project-explain-20190603.pdf
https://ico.org.uk/media/2615039/project-explain-20190603.pdf

[23] Yin Lou, Rich Caruana, and Johannes Gehrke. Intelligible models for classification and
regression. SIGKDD, 2012.

[24] Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. Accurate intelligible models with
pairwise interactions. SIGKDD, 2013.

[25] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
ICML, 2010.

[26] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. Interpretml: A unified framework
for machine learning interpretability. arXiv preprint arXiv:1909.09223, 2019.

[27] R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters,
1997.

[28] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. JMLR, 2011.

[29] William JE Potts. Generalized additive neural networks. SIGKDD, 1999.

[30] ProPublica. COMPAS Data and analysis for ‘Machine Bias’. https://github.com/
propublica/compas-analysis, 2016.

[31] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2018.

[32] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. ICML, 2018.

[33] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining
the predictions of any classifier. SIGKDD, 2016.

[34] Ribana Roscher, Bastian Bohn, Marco F Duarte, and Jochen Garcke. Explainable machine
learning for scientific insights and discoveries. arXiv preprint arXiv:1905.08883, 2019.

[35] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 2019.

[36] Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and Chudi Zhong.
Interpretable machine learning: Fundamental principles and 10 grand challenges. arXiv preprint
arXiv:2103.11251, 2021.

[37] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Nature, 1986.

[38] Mohammed Saeed, Mauricio Villarroel, Andrew T Reisner, Gari Clifford, Li-Wei Lehman,
George Moody, Thomas Heldt, Tin H Kyaw, Benjamin Moody, and Roger G Mark. Multipa-
rameter intelligent monitoring in intensive care ii (mimic-ii): a public-access intensive care unit
database. Critical care medicine, 2011.

[39] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. NeurIPS, 2012.

[40] Divyanshi Srivastava, Begüm Aydin, Esteban O Mazzoni, and Shaun Mahony. An interpretable
bimodal neural network characterizes the sequence and preexisting chromatin predictors of
induced transcription factor binding. Genome Biology, 2021.

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. JMLR, 2014.

[42] Sarah Tan, Rich Caruana, Giles Hooker, and Yin Lou. Distill-and-compare: Auditing black-box
models using transparent model distillation. AAAI/ACM Conference on AI, Ethics, and Society,
2018.

[43] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimensional domains. arXiv preprint
arXiv:2006.10739, 2020.

[44] The Royal Society. Explainable AI: The Basics - Policy Briefing. 2019.
https://royalsociety.org/-/media/policy/projects/explainable-ai/
AI-and-interpretability-policy-briefing.pdf.

12

https://github.com/propublica/compas-analysis
https://github.com/propublica/compas-analysis
https://royalsociety.org/-/media/policy/projects/explainable-ai/AI-and-interpretability-policy-briefing.pdf
https://royalsociety.org/-/media/policy/projects/explainable-ai/AI-and-interpretability-policy-briefing.pdf

[45] The Royal Society and The Alan Turing Institute. The AI revolution in scientific research.
2019. https://royalsociety.org/-/media/policy/projects/ai-and-society/
AI-revolution-in-science.pdf.

[46] Lev V Utkin, Egor D Satyukov, and Andrei V Konstantinov. Survnam: The machine learning
survival model explanation. arXiv preprint arXiv:2104.08903, 2021.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [Yes]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

https://royalsociety.org/-/media/policy/projects/ai-and-society/AI-revolution-in-science.pdf
https://royalsociety.org/-/media/policy/projects/ai-and-society/AI-revolution-in-science.pdf

