
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 146–157

Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1014

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 146–157

Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1014

Neural AMR: Sequence-to-Sequence Models for Parsing and Generation

Ioannis Konstas† Srinivasan Iyer† Mark Yatskar†

Yejin Choi† Luke Zettlemoyer†‡

†Paul G. Allen School of Computer Science & Engineering, Univ. of Washington, Seattle, WA

{ikonstas,sviyer,my89,yejin,lsz}@cs.washington.edu

‡Allen Institute for Artificial Intelligence, Seattle, WA

lukez@allenai.org

Abstract

Sequence-to-sequence models have shown

strong performance across a broad range

of applications. However, their applica-

tion to parsing and generating text using

Abstract Meaning Representation (AMR)

has been limited, due to the relatively lim-

ited amount of labeled data and the non-

sequential nature of the AMR graphs. We

present a novel training procedure that can

lift this limitation using millions of unla-

beled sentences and careful preprocessing

of the AMR graphs. For AMR parsing, our

model achieves competitive results of 62.1

SMATCH, the current best score reported

without significant use of external seman-

tic resources. For AMR generation, our

model establishes a new state-of-the-art

performance of BLEU 33.8. We present

extensive ablative and qualitative analysis

including strong evidence that sequence-

based AMR models are robust against

ordering variations of graph-to-sequence

conversions.

1 Introduction

Abstract Meaning Representation (AMR) is a se-

mantic formalism to encode the meaning of natu-

ral language text. As shown in Figure 1, AMR rep-

resents the meaning using a directed graph while

abstracting away the surface forms in text. AMR

has been used as an intermediate meaning repre-

sentation for several applications including ma-

chine translation (MT) (Jones et al., 2012), sum-

marization (Liu et al., 2015), sentence compres-

sion (Takase et al., 2016), and event extraction

(Huang et al., 2016). While AMR allows for rich

semantic representation, annotating training data

in AMR is expensive, which in turn limits the use

Obama was elected and his voters celebrated

Obama

elect.01 celebrate.01

vote.01

and *

op1 op2

ARG0

poss

ARG0

person
name

name

op1

person

ARG0-of

Figure 1: An example sentence and its cor-

responding Abstract Meaning Representation

(AMR). AMR encodes semantic dependencies be-

tween entities mentioned in the sentence, such as

“Obama” being the “arg0” of the verb “elected”.

of neural network models (Misra and Artzi, 2016;

Peng et al., 2017; Barzdins and Gosko, 2016).

In this work, we present the first success-

ful sequence-to-sequence (seq2seq) models that

achieve strong results for both text-to-AMR pars-

ing and AMR-to-text generation. Seq2seq models

have been broadly successful in many other appli-

cations (Wu et al., 2016; Bahdanau et al., 2015;

Luong et al., 2015; Vinyals et al., 2015). How-

ever, their application to AMR has been limited,

in part because effective linearization (encoding

graphs as linear sequences) and data sparsity were

thought to pose significant challenges. We show

that these challenges can be easily overcome, by

demonstrating that seq2seq models can be trained

using any graph-isomorphic linearization and that

unlabeled text can be used to significantly reduce

sparsity.

Our approach is two-fold. First, we introduce a

novel paired training procedure that enhances both

the text-to-AMR parser and AMR-to-text genera-

tor. More concretely, first we use self-training to

146

https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014

bootstrap a high quality AMR parser from mil-

lions of unlabeled Gigaword sentences (Napoles

et al., 2012) and then use the automatically parsed

AMR graphs to pre-train an AMR generator. This

paired training allows both the parser and genera-

tor to learn high quality representations of fluent

English text from millions of weakly labeled ex-

amples, that are then fine-tuned using human an-

notated AMR data.

Second, we propose a preprocessing procedure

for the AMR graphs, which includes anonymizing

entities and dates, grouping entity categories, and

encoding nesting information in concise ways, as

illustrated in Figure 2(d). This preprocessing pro-

cedure helps overcoming the data sparsity while

also substantially reducing the complexity of the

AMR graphs. Under such a representation, we

show that any depth first traversal of the AMR is

an effective linearization, and it is even possible to

use a different random order for each example.

Experiments on the LDC2015E86 AMR cor-

pus (SemEval-2016 Task 8) demonstrate the ef-

fectiveness of the overall approach. For parsing,

we are able to obtain competitive performance of

62.1 SMATCH without using any external anno-

tated examples other than the output of a NER

system, an improvement of over 10 points rela-

tive to neural models with a comparable setup.

For generation, we substantially outperform previ-

ous best results, establishing a new state of the art

of 33.8 BLEU. We also provide extensive ablative

and qualitative analysis, quantifying the contribu-

tions that come from preprocessing and the paired

training procedure.

2 Related Work

Alignment-based Parsing Flanigan et al.

(2014) (JAMR) pipeline concept and relation

identification with a graph-based algorithm. Zhou

et al. (2016) extend JAMR by performing the

concept and relation identification tasks jointly

with an incremental model. Both systems rely on

features based on a set of alignments produced

using bi-lexical cues and hand-written rules. In

contrast, our models train directly on parallel cor-

pora, and make only minimal use of alignments to

anonymize named entities.

Grammar-based Parsing Wang et al. (2016)

(CAMR) perform a series of shift-reduce transfor-

mations on the output of an externally-trained de-

pendency parser, similar to Damonte et al. (2017),

Brandt et al. (2016), Puzikov et al. (2016), and

Goodman et al. (2016). Artzi et al. (2015) use

a grammar induction approach with Combinatory

Categorical Grammar (CCG), which relies on pre-

trained CCGBank categories, like Bjerva et al.

(2016). Pust et al. (2015) recast parsing as a

string-to-tree Machine Translation problem, us-

ing unsupervised alignments (Pourdamghani et al.,

2014), and employing several external semantic

resources. Our neural approach is engineering

lean, relying only on a large unannotated corpus

of English and algorithms to find and canonicalize

named entities.

Neural Parsing Recently there have been a few

seq2seq systems for AMR parsing (Barzdins and

Gosko, 2016; Peng et al., 2017). Similar to our

approach, Peng et al. (2017) deal with sparsity by

anonymizing named entities and typing low fre-

quency words, resulting in a very compact vocab-

ulary (2k tokens). However, we avoid reducing our

vocabulary by introducing a large set of unlabeled

sentences from an external corpus, therefore dras-

tically lowering the out-of-vocabulary rate (see

Section 6).

AMR Generation Flanigan et al. (2016) spec-

ify a number of tree-to-string transduction rules

based on alignments and POS-based features that

are used to drive a tree-based SMT system. Pour-

damghani et al. (2016) also use an MT decoder;

they learn a classifier that linearizes the input

AMR graph in an order that follows the output

sentence, effectively reducing the number of align-

ment crossings of the phrase-based decoder. Song

et al. (2016) recast generation as a traveling sales-

man problem, after partitioning the graph into

fragments and finding the best linearization order.

Our models do not need to rely on a particular lin-

earization of the input, attaining comparable per-

formance even with a per example random traver-

sal of the graph. Finally, all three systems intersect

with a large language model trained on Gigaword.

We show that our seq2seq model has the capacity

to learn the same information as a language model,

especially after pretraining on the external corpus.

Data Augmentation Our paired training proce-

dure is largely inspired by Sennrich et al. (2016).

They improve neural MT performance for low re-

source language pairs by using a back-translation

MT system for a large monolingual corpus of the

target language in order to create synthetic output,

147

and mixing it with the human translations. We

instead pre-train on the external corpus first, and

then fine-tune on the original dataset.

3 Methods

In this section, we first provide the formal defini-

tion of AMR parsing and generation (section 3.1).

Then we describe the sequence-to-sequence mod-

els we use (section 3.2), graph-to-sequence con-

version (section 3.3), and our paired training pro-

cedure (section 3.4).

3.1 Tasks

We assume access to a training dataset D where

each example pairs a natural language sentence s

with an AMR a. The AMR is a rooted directed

acylical graph. It contains nodes whose names

correspond to sense-identified verbs, nouns, or

AMR specific concepts, for example elect.01,

Obama, and person in Figure 1. One of

these nodes is a distinguished root, for exam-

ple, the node and in Figure 1. Furthermore, the

graph contains labeled edges, which correspond

to PropBank-style (Palmer et al., 2005) seman-

tic roles for verbs or other relations introduced for

AMR, for example, arg0 or op1 in Figure 1. The

set of node and edge names in an AMR graph is

drawn from a set of tokens C, and every word in a

sentence is drawn from a vocabulary W .

We study the task of training an AMR parser,

i.e., finding a set of parameters θP for model f ,

that predicts an AMR graph â, given a sentence s:

â = argmax
a

f
(

a|s; θP
)

(1)

We also consider the reverse task, training an

AMR generator by finding a set of parameters

θG, for a model f that predicts a sentence ŝ, given

an AMR graph a:

ŝ = argmax
s

f
(

s|a; θG
)

(2)

In both cases, we use the same family of pre-

dictors f , sequence-to-sequence models that use

global attention, but the models have independent

parameters, θP and θG.

3.2 Sequence-to-sequence Model

For both tasks, we use a stacked-LSTM sequence-

to-sequence neural architecture employed in neu-

ral machine translation (Bahdanau et al., 2015; Wu

et al., 2016).1 Our model uses a global atten-

tion decoder and unknown word replacement with

small modifications (Luong et al., 2015).

The model uses a stacked bidirectional-LSTM

encoder to encode an input sequence and a stacked

LSTM to decode from the hidden states produced

by the encoder. We make two modifications to

the encoder: (1) we concatenate the forward and

backward hidden states at every level of the stack

instead of at the top of the stack, and (2) intro-

duce dropout in the first layer of the encoder. The

decoder predicts an attention vector over the en-

coder hidden states using previous decoder states.

The attention is used to weigh the hidden states of

the encoder and then predict a token in the out-

put sequence. The weighted hidden states, the

decoded token, and an attention signal from the

previous time step (input feeding) are then fed to-

gether as input to the next decoder state. The de-

coder can optionally choose to output an unknown

word symbol, in which case the predicted atten-

tion is used to copy a token directly from the input

sequence into the output sequence.

3.3 Linearization

Our seq2seq models require that both the input and

target be presented as a linear sequence of tokens.

We define a linearization order for an AMR graph

as any sequence of its nodes and edges. A lin-

earization is defined as (1) a linearization order

and (2) a rendering function that generates any

number of tokens when applied to an element in

the linearization order (see Section 4.2 for imple-

mentation details). Furthermore, for parsing, a

valid AMR graph must be recoverable from the

linearization.

3.4 Paired Training

Obtaining a corpus of jointly annotated pairs of

sentences and AMR graphs is expensive and cur-

rent datasets only extend to thousands of exam-

ples. Neural sequence-to-sequence models suffer

from sparsity with so few training pairs. To reduce

the effect of sparsity, we use an external unan-

notated corpus of sentences Se, and a procedure

which pairs the training of the parser and genera-

tor.

Our procedure is described in Algorithm 1, and

first trains a parser on the dataset D of pairs of sen-

tences and AMR graphs. Then it uses self-training

1We extended the Harvard NLP seq2seq framework from
http://nlp.seas.harvard.edu/code.

148

Algorithm 1 Paired Training Procedure

Input: Training set of sentences and AMR graphs (s, a) ∈
D, an unannotated external corpus of sentences Se, a
number of self training iterations, N , and an initial sam-
ple size k.

Output: Model parameters for AMR parser θP and AMR
generator θG.

1: θP ← Train parser on D
⊲ Self-train AMR parser.

2: S1
e ← sample k sentences from Se

3: for i = 1 to N do
4: Ai

e ← Parse Si
e using parameters θP

⊲ Pre-train AMR parser.
5: θP ← Train parser on (Ai

e, S
i
e)

⊲ Fine tune AMR parser.
6: θP ← Train parser on D with initial parameters θP
7: Si+1

e ← sample k · 10i new sentences from Se

8: end for
9: SN

e ← sample k · 10N new sentences from Se

⊲ Pre-train AMR generator.
10: Ae ← Parse SN

e using parameters θP
11: θG ← Train generator on (AN

e , SN
e)

⊲ Fine tune AMR generator.
12: θG ← Train generator on D using initial parameters θG
13: return θP , θG

to improve the initial parser. Every iteration of

self-training has three phases: (1) parsing samples

from a large, unlabeled corpus Se, (2) creating a

new set of parameters by training on Se, and (3)

fine-tuning those parameters on the original paired

data. After each iteration, we increase the size of

the sample from Se by an order of magnitude. Af-

ter we have the best parser from self-training, we

use it to label AMRs for Se and pre-train the gen-

erator. The final step of the procedure fine-tunes

the generator on the original dataset D.

4 AMR Preprocessing

We use a series of preprocessing steps, including

AMR linerization, anonymization, and other mod-

ifications we make to sentence-graph pairs. Our

methods have two goals: (1) reduce the complex-

ity of the linearized sequences to make learning

easier while maintaining enough original informa-

tion, and (2) address sparsity from certain open

class vocabulary entries, such as named entities

(NEs) and quantities. Figure 2(d) contains exam-

ple inputs and outputs with all of our preprocess-

ing techniques.

Graph Simplification In order to reduce the

overall length of the linearized graph, we first re-

move variable names and the instance-of re-

lation (/) before every concept. In case of

re-entrant nodes we replace the variable mention

with its co-referring concept. Even though this

replacement incurs loss of information, often the

surrounding context helps recover the correct real-

ization, e.g., the possessive role :poss in the ex-

ample of Figure 1 is strongly correlated with the

surface form his. Following Pourdamghani et al.

(2016) we also remove senses from all concepts

for AMR generation only. Figure 2(a) contains an

example output after this stage.

4.1 Anonymization of Named Entities

Open-class types including NEs, dates, and num-

bers account for 9.6% of tokens in the sentences

of the training corpus, and 31.2% of vocabulary

W . 83.4% of them occur fewer than 5 times in the

dataset. In order to reduce sparsity and be able to

account for new unseen entities, we perform ex-

tensive anonymization.

First, we anonymize sub-graphs headed by one

of AMR’s over 140 fine-grained entity types that

contain a :name role. This captures structures

referring to entities such as person, country,

miscellaneous entities marked with *-enitity,

and typed numerical values, *-quantity. We

exclude date entities (see the next section). We

then replace these sub-graphs with a token indicat-

ing fine-grained type and an index, i, indicating it

is the ith occurrence of that type.2 For example, in

Figure 2 the sub-graph headed by country gets

replaced with country 0.

On the training set, we use alignments obtained

using the JAMR aligner (Flanigan et al., 2014) and

the unsupervised aligner of Pourdamghani et al.

(2014) in order to find mappings of anonymized

subgraphs to spans of text and replace mapped text

with the anonymized token that we inserted into

the AMR graph. We record this mapping for use

during testing of generation models. If a gener-

ation model predicts an anonymization token, we

find the corresponding token in the AMR graph

and replace the model’s output with the most fre-

quent mapping observed during training for the

entity name. If the entity was never observed, we

copy its name directly from the AMR graph.

Anonymizing Dates For dates in AMR graphs,

we use separate anonymization tokens for year,

month-number, month-name, day-number and

day-name, indicating whether the date is men-

tioned by word or by number.3 In AMR gener-

2In practice we only used three groups of ids: a different
one for NEs, dates and constants/numbers.

3We also use three date format markers that appear in the
text as: YYYYMMDD, YYMMDD, and YYYY-MM-DD.

149

US officials held an expert group meeting in January 2002 in New York.
(h / hold-04

 :ARG0 (p2 / person

 :ARG0-of (h2 / have-org-role-91

 :ARG1 (c2 / country

 :name (n3 / name

 :op1 “United" op2: “States”))

 :ARG2 (o / official)))

 :ARG1 (m / meet-03

 :ARG0 (p / person

 :ARG1-of (e / expert-01)

 :ARG2-of (g / group-01)))

 :time (d2 / date-entity :year 2002 :month 1)

 :location (c / city

 :name (n / name :op1 “New" :op2 “York”)))

hold

 :ARG0 person :ARG0-of have-org-role :ARG1 loc_0 :ARG2 official
 :ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group

 :time date-entity year_0 month_0
 :location loc_1

hold

 :ARG0 person :ARG0-of have-org-role :ARG1 country_0 :ARG2 official
 :ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group

 :time date-entity year_0 month_0
 :location city_1

hold

 :ARG0 person :ARG0-of have-org-role :ARG1 country :name name :op1
United :op2 States :ARG2 official
 :ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group

 :time date-entity :year 2002 :month 1
 :location city :name name :op1 New :op2 York

hold

 :ARG0 (person :ARG0-of (have-org-role :ARG1 loc_0 :ARG2 official))
 :ARG1 (meet :ARG0 (person :ARG1-of expert :ARG2-of group))

 :time (date-entity year_0 month_0)
 :location loc_1

US officials held an expert group meeting in January 2002 in New York.

country_0 officials held an expert group meeting in month_0 year_0 in city_1.

loc_0 officials held an expert group meeting in month_0 year_0 in loc_1.

loc_0 officials held an expert group meeting in month_0 year_0 in loc_1.

(a)

(b)

(c)

(d)

Figure 2: Preprocessing methods applied to sentence (top row) - AMR graph (left column) pairs.

Sentence-graph pairs after (a) graph simplification, (b) named entity anonymization, (c) named entity

clustering, and (d) insertion of scope markers.

ation, we render the corresponding format when

predicted. Figure 2(b) contains an example of all

preprocessing up to this stage.

Named Entity Clusters When performing

AMR generation, each of the AMR fine-grained

entity types is manually mapped to one of the

four coarse entity types used in the Stanford NER

system (Finkel et al., 2005): person, location,

organization and misc. This reduces the sparsity

associated with many rarely occurring entity

types. Figure 2 (c) contains an example with

named entity clusters.

NER for Parsing When parsing, we must nor-

malize test sentences to match our anonymized

training data. To produce fine-grained named enti-

ties, we run the Stanford NER system and first try

to replace any identified span with a fine-grained

category based on alignments observed during

training. If this fails, we anonymize the sentence

using the coarse categories predicted by the NER

system, which are also categories in AMR. After

parsing, we deterministically generate AMR for

anonymizations using the corresponding text span.

4.2 Linearization

Linearization Order Our linearization order

is defined by the order of nodes visited by

depth first search, including backward travers-

ing steps. For example, in Figure 2, start-

ing at meet the order contains meet, :ARG0,

person, :ARG1-of, expert, :ARG2-of,

group, :ARG2-of, :ARG1-of, :ARG0.4 The

order traverses children in the sequence they are

presented in the AMR. We consider alternative or-

derings of children in Section 7 but always follow

the pattern demonstrated above.

Rendering Function Our rendering function

marks scope, and generates tokens following the

pre-order traversal of the graph: (1) if the element

is a node, it emits the type of the node. (2) if the el-

ement is an edge, it emits the type of the edge and

then recursively emits a bracketed string for the

(concept) node immediately after it. In case the

node has only one child we omit the scope mark-

ers (denoted with left “(”, and right “)” paren-

theses), thus significantly reducing the number of

generated tokens. Figure 2(d) contains an example

showing all of the preprocessing techniques and

scope markers that we use in our full model.

5 Experimental Setup

We conduct all experiments on the AMR cor-

pus used in SemEval-2016 Task 8 (LDC2015E86),

which contains 16,833/1,368/1,371 train/dev/test

examples. For the paired training procedure of Al-

gorithm 1, we use Gigaword as our external cor-

pus and sample sentences that only contain words

from the AMR corpus vocabulary W . We sub-

sampled the original sentence to ensure there is no

overlap with the AMR training or test sets. Table 2

4Sense, instance-of and variable information has
been removed at the point of linearization.

150

Dev Test

Model Prec Rec F1 Prec Rec F1

SBMT (Pust et al., 2015) - - 69.0 - - 67.1

CAMR (Wang et al., 2016) 72.3 61.4 66.6 70.4 63.1 66.5

CCG* (Artzi et al., 2015) 67.2 65.1 66.1 66.8 65.7 66.3

JAMR (Flanigan et al., 2014) - - - 64.0 53.0 58.0

GIGA-20M 62.2 66.0 64.4 59.7 64.7 62.1

GIGA-2M 61.9 64.8 63.3 60.2 63.6 61.9

GIGA-200k 59.7 62.9 61.3 57.8 60.9 59.3

AMR-ONLY 54.9 60.0 57.4 53.1 58.1 55.5

SEQ2SEQ (Peng et al., 2017) - - - 55.0 50.0 52.0

CHAR-LSTM (Barzdins and Gosko, 2016) - - - - - 43.0

Table 1: SMATCH scores for AMR Parsing. *Reported numbers are on the newswire portion of a

previous release of the corpus (LDC2014T12).

summarizes statistics about the original dataset

and the extracted portions of Gigaword. We evalu-

ate AMR parsing with SMATCH (Cai and Knight,

2013), and AMR generation using BLEU (Pap-

ineni et al., 2002)5.

We validated word embedding sizes and RNN

hidden representation sizes by maximizing AMR

development set performance (Algorithm 1 – line

1). We searched over the set {128, 256, 500,

1024} for the best combinations of sizes and set

both to 500. Models were trained by optimiz-

ing cross-entropy loss with stochastic gradient de-

scent, using a batch size of 100 and dropout rate

of 0.5. Across all models when performance does

not improve on the AMR dev set, we decay the

learning rate by 0.8.

For the initial parser trained on the AMR cor-

pus, (Algorithm 1 – line 1), we use a single stack

version of our model, set initial learning rate to

0.5 and train for 60 epochs, taking the best per-

forming model on the development set. All subse-

quent models benefited from increased depth and

we used 2-layer stacked versions, maintaining the

same embedding sizes. We set the initial Giga-

word sample size to k = 200, 000 and executed a

maximum of 3 iterations of self-training. For pre-

training the parser and generator, (Algorithm 1 –

lines 4 and 9), we used an initial learning rate of

1.0, and ran for 20 epochs. We attempt to fine-tune

the parser and generator, respectively, after every

epoch of pre-training, setting the initial learning

rate to 0.1. We select the best performing model on

the development set among all of these fine-tuning

5We use the multi-BLEU script from the MOSES decoder
suite (Koehn et al., 2007).

Corpus Examples OOV@1 OOV@5

AMR 16833 44.7 74.9

GIGA-200k 200k 17.5 35.3

GIGA-2M 2M 11.2 19.1

GIGA-20M 20M 8.0 12.7

Table 2: LDC2015E86 AMR training set,

GIGA-200k, GIGA-2M and GIGA-20M statistics;

OOV@1 and OOV@5 are the out-of-vocabulary

rates on the NL side with thresholds of 1 and 5, re-

spectively. Vocabulary sizes are 13027 tokens for

the AMR side, and 17319 tokens for the NL side.

Model Dev Test

GIGA-20M 33.1 33.8

GIGA-2M 31.8 32.3

GIGA-200k 27.2 27.4

AMR-ONLY 21.7 22.0

PBMT* (Pourdamghani et al., 2016) 27.2 26.9

TSP (Song et al., 2016) 21.1 22.4

TREETOSTR (Flanigan et al., 2016) 23.0 23.0

Table 3: BLEU results for AMR Generation.

*Model has been trained on a previous release of

the corpus (LDC2014T12).

attempts. During prediction we perform decoding

using beam search and set the beam size to 5 both

for parsing and generation.

6 Results

Parsing Results Table 1 summarizes our devel-

opment results for different rounds of self-training

and test results for our final system, self-trained

on 200k, 2M and 20M unlabeled Gigaword sen-

tences. Through every round of self-training, our

151

parser improves. Our final parser outperforms

comparable seq2seq and character LSTM models

by over 10 points. While much of this improve-

ment comes from self-training, our model with-

out Gigaword data outperforms these approaches

by 3.5 points on F1. We attribute this increase

in performance to different handling of prepro-

cessing and more careful hyper-parameter tuning.

All other models that we compare against use se-

mantic resources, such as WordNet, dependency

parsers or CCG parsers (models marked with *

were trained with less data, but only evaluate on

newswire text; the rest evaluate on the full test set,

containing text from blogs). Our full models out-

perform JAMR, a graph-based model but still lags

behind other parser-dependent systems (CAMR6),

and resource heavy approaches (SBMT).

Generation Results Table 3 summarizes our

AMR generation results on the development and

test set. We outperform all previous state-of-the-

art systems by the first round of self-training and

further improve with the next rounds. Our fi-

nal model trained on GIGA-20M outperforms TSP

and TREETOSTR trained on LDC2015E86, by

over 9 BLEU points.7 Overall, our model incor-

porates less data than previous approaches as all

reported methods train language models on the

whole Gigaword corpus. We leave scaling our

models to all of Gigaword for future work.

Sparsity Reduction Even after anonymization

of open class vocabulary entries, we still encounter

a great deal of sparsity in vocabulary given the

small size of the AMR corpus, as shown in Ta-

ble 2. By incorporating sentences from Gigaword

we are able to reduce vocabulary sparsity dramati-

cally, as we increase the size of sampled sentences:

the out-of-vocabulary rate with a threshold of 5 re-

duces almost 5 times for GIGA-20M.

Preprocessing Ablation Study We consider the

contribution of each main component of our pre-

processing stages while keeping our linearization

order identical. Figure 2 contains examples for

each setting of the ablations we evaluate on. First

we evaluate using linearized graphs without paren-

6Since we are currently not using any Wikipedia resources
for the prediction of named entities, we compare against the
no-wikification version of the CAMR system.

7We also trained our generator on GIGA-2M and fine-
tuned on LDC2014T12 in order to have a direct comparison
with PBMT, and achieved a BLEU score of 29.7, i.e., 2.8
points of improvement.

Model BLEU

FULL 21.8

FULL - SCOPE 19.7

FULL - SCOPE - NE 19.5

FULL - SCOPE - NE - ANON 18.7

Table 4: BLEU scores for AMR generation abla-

tions on preprocessing (DEV set).

Model Prec Rec F1

FULL 54.9 60.0 57.4

FULL - ANON 22.7 54.2 32.0

Table 5: SMATCH scores for AMR parsing abla-

tions on preprocessing (DEV set).

theses for indicating scope, Figure 2(c), then with-

out named entity clusters, Figure 2(b), and addi-

tionally without any anonymization, Figure 2(a).

Tables 4 summarizes our evaluation on the

AMR generation. Each components is required,

and scope markers and anonymization contribute

the most to overall performance. We suspect with-

out scope markers our seq2seq models are not as

effective at capturing long range semantic rela-

tionships between elements of the AMR graph.

We also evaluated the contribution of anonymiza-

tion to AMR parsing (Table 5). Following pre-

vious work, we find that seq2seq-based AMR

parsing is largely ineffective without anonymiza-

tion (Peng et al., 2017).

7 Linearization Evaluation

In this section we evaluate three strategies for con-

verting AMR graphs into sequences in the context

of AMR generation and show that our models are

largely agnostic to linearization orders. Our re-

sults argue, unlike SMT-based AMR generation

methods (Pourdamghani et al., 2016), that seq2seq

models can learn to ignore artifacts of the conver-

sion of graphs to linear sequences.

7.1 Linearization Orders

All linearizations we consider use the pattern de-

scribed in Section 4.2, but differ on the order in

which children are visited. Each linearization gen-

erates anonymized, scope-marked output (see Sec-

tion 4), of the form shown in Figure 2(d).

Human The proposal traverses children in the

order presented by human authored AMR annota-

tions exactly as shown in Figure 2(d).

152

Linearization Order BLEU

HUMAN 21.7

GLOBAL-RANDOM 20.8

RANDOM 20.3

Table 6: BLEU scores for AMR generation for dif-

ferent linearization orders (DEV set).

Global-Random We construct a random global

ordering of all edge types appearing in AMR

graphs and re-use it for every example in the

dataset. We traverse children based on the posi-

tion in the global ordering of the edge leading to a

child.

Random For each example in the dataset we tra-

verse children following a different random order

of edge types.

7.2 Results

We present AMR generation results for the three

proposed linearization orders in Table 6. Ran-

dom linearization order performs somewhat worse

than traversing the graph according to Human lin-

earization order. Surprisingly, a per example ran-

dom linearization order performs nearly identi-

cally to a global random order, arguing seq2seq

models can learn to ignore artifacts of the conver-

sion of graphs to linear sequences.

Human-authored AMR leaks information

The small difference between random and global-

random linearizations argues that our models are

largely agnostic to variation in linearization order.

On the other hand, the model that follows the

human order performs better, which leads us to

suspect it carries extra information not apparent

in the graphical structure of the AMR.

To further investigate, we compared the rela-

tive ordering of edge pairs under the same par-

ent to the relative position of children nodes de-

rived from those edges in a sentence, as reported

by JAMR alignments. We found that the majority

of pairs of AMR edges (57.6%) always occurred

in the same relative order, therefore revealing no

extra generation order information.8 Of the exam-

ples corresponding to edge pairs that showed vari-

ation, 70.3% appeared in an order consistent with

the order they were realized in the sentence. The

relative ordering of some pairs of AMR edges was

8This is consistent with constraints encoded in the anno-
tation tool used to collect AMR. For example, :ARG0 edges
are always ordered before :ARG1 edges.

Error Type %

Coverage 29

Disfluency 23

Anonymization 14

Sparsity 13

Attachment 12

Other 10

Table 7: Error analysis for AMR generation on a

sample of 50 examples from the development set.

particularly indicative of generation order. For ex-

ample, the relative ordering of edges with types

location and time, was 17% more indicative

of the generation order than the majority of gener-

ated locations before time.9

To compare to previous work we still report re-

sults using human orderings. However, we note

that any practical application requiring a system to

generate an AMR representation with the intention

to realize it later on, e.g., a dialog agent, will need

to be trained either using consistent, or random-

derived linearization orders. Arguably, our models

are agnostic to this choice.

8 Qualitative Results

Figure 3 shows example outputs of our full sys-

tem. The generated text for the first graph is nearly

perfect with only a small grammatical error due

to anonymization. The second example is more

challenging, with a deep right-branching struc-

ture, and a coordination of the verbs stabilize

and push in the subordinate clause headed by

state. The model omits some information from

the graph, namely the concepts terrorist and

virus. In the third example there are greater

parts of the graph that are missing, such as the

whole sub-graph headed by expert. Also the

model makes wrong attachment decisions in the

last two sub-graphs (it is the evidence that

is unimpeachable and irrefutable, and not the

equipment), mostly due to insufficient annota-

tion (thing) thus making their generation harder.

Finally, Table 7 summarizes the proportions of

error types we identified on 50 randomly selected

examples from the development set. We found that

the generator mostly suffers from coverage issues,

9Consider the sentences “She went to school in New York
two years ago”, and “Two years ago, she went to school in
New York”, where “two year ago” is the time modifying con-
stituent for the verb went and “New York” is the location
modifying constituent of went.

153

an inability to mention all tokens in the input, fol-

lowed by fluency mistakes, as illustrated above.

Attachment errors are less frequent, which sup-

ports our claim that the model is robust to graph

linearization, and can successfully encode long

range dependency information between concepts.

9 Conclusions

We applied sequence-to-sequence models to the

tasks of AMR parsing and AMR generation, by

carefully preprocessing the graph representation

and scaling our models via pretraining on mil-

lions of unlabeled sentences sourced from Giga-

word corpus. Crucially, we avoid relying on re-

sources such as knowledge bases and externally

trained parsers. We achieve competitive results for

the parsing task (SMATCH 62.1) and state-of-the-

art performance for generation (BLEU 33.8).

For future work, we would like to extend our

work to different meaning representations such as

the Minimal Recursion Semantics (MRS; Copes-

take et al. (2005)). This formalism tackles certain

linguistic phenomena differently from AMR (e.g.,

negation, and co-reference), contains explicit an-

notation on concepts for number, tense and case,

and finally handles multiple languages10 (Bender,

2014). Taking a step further, we would like to

apply our models on Semantics-Based Machine

Translation using MRS as an intermediate rep-

resentation between pairs of languages, and in-

vestigate the added benefit compared to directly

translating the surface strings, especially in the

case of distant language pairs such as English and

Japanese (Siegel, 2000).

Acknowledgments

The research was supported in part by DARPA un-

der the DEFT program through AFRL (FA8750-

13-2-0019) and the CwC program through ARO

(W911NF-15-1-0543), the ARO (W911NF-16-1-

0121), the NSF (IIS-1252835, IIS-1562364, IIS-

1524371), an Allen Distinguished Investigator

Award, and gifts by Google and Facebook. The

authors thank Rik Koncel-Kedziorski and the UW

NLP group for helpful discussions, and the anony-

mous reviewers for their thorough and helpful

comments.

10A list of actively maintained languages can be
found here: http://moin.delph-in.net/

GrammarCatalogue

limit
 :arg0 (treaty :arg0-of (control :arg1 arms))
 :arg1 (number
 :arg1 (weapon :mod conventional
 :arg1-of (deploy
 :arg2 (relative-pos :op1 loc_0 :dir west)
 :arg1-of possible)))

SYS: the arms control treaty limits the number of
conventional weapons that can be deployed west of
Ural Mountains .

REF: the arms control treaty limits the number of
conventional weapons that can be deployed west of
the Ural Mountains .

COMMENT: disfluency

state
 :arg0 (person
 :arg0-of (have-org-role
 :arg1 (committee :mod technical)
 :arg3 (expert
 :arg1 person
 :arg2 missile
 :mod loc_0)))
 :arg1 (evidence
 :arg0 equipment
 :arg1 (plan :arg1 (transfer :arg1 (contrast
 :arg1 (missile :mod (just :polarity -))
 :arg2 (capable
 :arg1 thing
 :arg2 (make :arg1 missile)))))
 :mod (impeach :polarity - :arg1 thing)
 :mod (refute :polarity - :arg1 thing))

SYS: a technical committee expert on the
technical committee stated that the equipment is
not impeach , but it is not refutes .

REF: a technical committee of Indian missile
experts stated that the equipment was
unimpeachable and irrefutable evidence of a plan
to transfer not just missiles but missile-making
capability.

COMMENT: coverage , disfluency, attachment

state
 :arg0 report
 :arg1 (obligate :arg1 (government-organization
 :arg0-of (govern :arg1 loc_0))
 :arg2 (help :arg1 (and
 :op1 (stabilize :arg1 (state :mod weak))
 :op2 (push :arg1 (regulate
 :mod international :arg0-of (stop
 :arg1 terrorist
 :arg2 (use
 :arg1 (information
 :arg2-of (available :arg3-of free))
 :arg2 (and
 :op1 (create :arg1 (form
 :domain (warfare
 :mod biology :example (version
 :arg1-of modify :poss other_1))
 :mod new))
 :op2 (unleash :arg1 form)
))))))))

REF: the report stated British government must
help to stabilize weak states and push for
international regulations that would stop
terrorists using freely available information to
create and unleash new forms of biological
warfare such as a modified version of the
influenza virus .

COMMENT: coverage , disfluency, attachment

SYS: the report stated that the Britain
government must help stabilize the weak states
and push international regulations to stop the
use of freely available information to create a
form of new biological warfare such as the
modified version of the influenza .

Figure 3: Linearized AMR after preprocessing,

reference sentence, and output of the generator.

We mark with colors common error types: disflu-

ency, coverage (missing information from the in-

put graph), and attachment (implying a semantic

relation from the AMR between incorrect entities).

154

References

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer.
2015. Broad-coverage CCG semantic parsing
with AMR. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 1699–1710.
http://aclweb.org/anthology/D15-1198.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings
of the 2015 International Conference on Learn-
ing Representations. CBLS, San Diego, California.
http://arxiv.org/abs/1409.0473.

Guntis Barzdins and Didzis Gosko. 2016. RIGA
at SemEval-2016 Task 8: Impact of Smatch ex-
tensions and character-level neural translation on
AMR parsing accuracy. In Proceedings of the
10th International Workshop on Semantic Eval-
uation. Association for Computational Linguis-
tics, San Diego, California, pages 1143–1147.
http://www.aclweb.org/anthology/S16-1176.

Emily M. Bender. 2014. Language CoLLAGE: Gram-
matical description with the LinGO grammar ma-
trix. In Proceedings of the 9th International Confer-
ence on Language Resources and Evaluation. Reyk-
javik, Iceland, pages 2447–2451.

Johannes Bjerva, Johan Bos, and Hessel Haagsma.
2016. The Meaning Factory at SemEval-2016 Task
8: Producing AMRs with Boxer. In Proceed-
ings of the 10th International Workshop on Seman-
tic Evaluation. Association for Computational Lin-
guistics, San Diego, California, pages 1179–1184.
http://www.aclweb.org/anthology/S16-1182.

Lauritz Brandt, David Grimm, Mengfei Zhou, and
Yannick Versley. 2016. ICL-HD at SemEval-2016
Task 8: Meaning representation parsing - aug-
menting AMR parsing with a preposition seman-
tic role labeling neural network. In Proceed-
ings of the 10th International Workshop on Seman-
tic Evaluation. Association for Computational Lin-
guistics, San Diego, California, pages 1160–1166.
http://www.aclweb.org/anthology/S16-1179.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, Sofia, Bulgaria, pages
748–752. http://www.aclweb.org/anthology/P13-
2131.

Ann Copestake, Dan Flickinger, Carl Pollard,
and Ivan A. Sag. 2005. Minimal Recur-
sion Semantics: An introduction. Research
on Language and Computation 3(2):281–332.
https://doi.org/10.1007/s11168-006-6327-9.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for abstract meaning

representation. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics, Valencia, Spain, pages 536–
546. http://www.aclweb.org/anthology/E17-1051.

Jenny Rose Finkel, Trond Grenager, and Christo-
pher Manning. 2005. Incorporating non-local in-
formation into information extraction systems by
Gibbs sampling. In Proceedings of the 43rd An-
nual Meeting on Association for Computational
Linguistics. Association for Computational Lin-
guistics, Ann Arbor, Michigan, pages 363–370.
https://doi.org/10.3115/1219840.1219885.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and
Jaime Carbonell. 2016. Generation from abstract
meaning representation using tree transducers. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, San Diego, California, pages 731–739.
http://www.aclweb.org/anthology/N16-1087.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract mean-
ing representation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Lin-
guistics, Baltimore, Maryland, pages 1426–1436.
http://www.aclweb.org/anthology/P14-1134.

James Goodman, Andreas Vlachos, and Jason Narad-
owsky. 2016. UCL+Sheffield at SemEval-2016
Task 8: Imitation learning for AMR parsing
with an alpha-bound. In Proceedings of the
10th International Workshop on Semantic Eval-
uation. Association for Computational Linguis-
tics, San Diego, California, pages 1167–1172.
http://www.aclweb.org/anthology/S16-1180.

Lifu Huang, Taylor Cassidy, Xiaocheng Feng, Heng
Ji, Clare R. Voss, Jiawei Han, and Avirup Sil.
2016. Liberal event extraction and event schema
induction. In Proceedings of the 54th An-
nual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics, Berlin, Germany, pages 258–268.
http://www.aclweb.org/anthology/P16-1025.

Bevan Jones, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, and Kevin Knight. 2012.
Semantics-Based Machine Translation with Hyper-
edge Replacement Grammars. In Proceedings of the
2012 International Conference on Computational
Linguistics. Bombay, India, pages 1359–1376.
http://www.aclweb.org/anthology/C12-1083.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, Chris Dyer, Ondřej Bojar,
Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open source toolkit for statistical machine

155

translation. In Proceedings of the 45th Annual
Meeting of the Association for Computational
Linguistics. Association for Computational Lin-
guistics, Prague, Czech Republic, pages 177–180.
http://dl.acm.org/citation.cfm?id=1557769.1557821.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman
Sadeh, and Noah A. Smith. 2015. Toward abstrac-
tive summarization using semantic representations.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, Denver, Colorado, pages 1077–1086.
http://www.aclweb.org/anthology/N15-1114.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1412–
1421. http://aclweb.org/anthology/D15-1166.

Dipendra Kumar Misra and Yoav Artzi. 2016. Neu-
ral shift-reduce CCG semantic parsing. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Austin, Texas, pages
1775–1786. https://aclweb.org/anthology/D16-
1183.

Courtney Napoles, Matthew Gormley, and Ben-
jamin Van Durme. 2012. Annotated Gigaword.
In Proceedings of the Joint Workshop on Auto-
matic Knowledge Base Construction and Web-scale
Knowledge Extraction. Association for Computa-
tional Linguistics, Montréal, Canada, pages 95–100.
http://www.aclweb.org/anthology/W12-3018.

Martha Palmer, Daniel Gildea, and Paul
Kingsbury. 2005. The Proposition Bank:
An annotated corpus of semantic roles.
Computational Linguistics 31(1):71–106.
http://www.cs.rochester.edu/ gildea/palmer-
propbank-cl.pdf.

Kishore Papineni, Salim Roukos, Todd Ward,
and Wei-Jing Zhu. 2002. Bleu: a method
for automatic evaluation of machine transla-
tion. In Proceedings of 40th Annual Meeting
of the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Philadelphia, Pennsylvania, USA, pages 311–318.
https://doi.org/10.3115/1073083.1073135.

Xiaochang Peng, Chuan Wang, Daniel Gildea, and
Nianwen Xue. 2017. Addressing the data spar-
sity issue in neural AMR parsing. In Pro-
ceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, Valencia, Spain, pages 366–375.
http://www.aclweb.org/anthology/E17-1035.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and
Kevin Knight. 2014. Aligning English strings with

abstract meaning representation graphs. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing. Association for
Computational Linguistics, Doha, Qatar, pages 425–
429. http://www.aclweb.org/anthology/D14-1048.

Nima Pourdamghani, Kevin Knight, and Ulf Her-
mjakob. 2016. Generating English from ab-
stract meaning representations. In Proceed-
ings of the 9th International Natural Language
Generation conference. Association for Computa-
tional Linguistics, Edinburgh, UK, pages 21–25.
http://anthology.aclweb.org/W16-6603.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing english
into abstract meaning representation using syntax-
based machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1143–
1154. https://aclweb.org/anthology/D/D15/D15-
1136.

Yevgeniy Puzikov, Daisuke Kawahara, and Sadao
Kurohashi. 2016. M2L at SemEval-2016 Task 8:
AMR parsing with neural networks. In Proceed-
ings of the 10th International Workshop on Seman-
tic Evaluation. Association for Computational Lin-
guistics, San Diego, California, pages 1154–1159.
http://www.aclweb.org/anthology/S16-1178.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, Berlin, Germany, pages 86–96.
http://www.aclweb.org/anthology/P16-1009.

Melanie Siegel. 2000. HPSG Analysis of Japanese,
Springer Berlin Heidelberg, pages 264–279.

Linfeng Song, Yue Zhang, Xiaochang Peng, Zhiguo
Wang, and Daniel Gildea. 2016. AMR-to-text gen-
eration as a traveling salesman problem. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Austin, Texas, pages
2084–2089. https://aclweb.org/anthology/D16-
1224.

Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsu-
tomu Hirao, and Masaaki Nagata. 2016. Neu-
ral headline generation on abstract meaning rep-
resentation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Austin, Texas, pages 1054–1059.
https://aclweb.org/anthology/D16-1112.

Oriol Vinyals, Ł ukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Proceedings of the

156

28th International Conference on Neural Informa-
tion Processing Systems, MIT Press, pages 2773–
2781. http://papers.nips.cc/paper/5635-grammar-
as-a-foreign-language.pdf.

Chuan Wang, Sameer Pradhan, Xiaoman Pan, Heng Ji,
and Nianwen Xue. 2016. CAMR at SemEval-2016
Task 8: An extended transition-based AMR parser.
In Proceedings of the 10th International Workshop
on Semantic Evaluation. Association for Compu-
tational Linguistics, San Diego, California, pages
1173–1178. http://www.aclweb.org/anthology/S16-
1181.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR
abs/1609.08144. http://arxiv.org/abs/1609.08144.

Junsheng Zhou, Feiyu Xu, Hans Uszkoreit, Weiguang
QU, Ran Li, and Yanhui Gu. 2016. AMR parsing
with an incremental joint model. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, Austin, Texas, pages 680–689.
https://aclweb.org/anthology/D16-1065.

157

	Neural AMR: Sequence-to-Sequence Models for Parsing and Generation

