
ORIGINAL RESEARCH
published: 16 December 2020

doi: 10.3389/fnhum.2020.609170

Frontiers in Human Neuroscience | www.frontiersin.org 1 December 2020 | Volume 14 | Article 609170

Edited by:

Chella Kamarajan,

SUNY Downstate Medical Center,

United States

Reviewed by:

Amanda Elton,

University of North Carolina at Chapel

Hill, United States

José Manuel Reales,

National University of Distance

Education (UNED), Spain

*Correspondence:

A. Vania Apkarian

a-apkarian@northwestern.edu

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Cognitive Neuroscience,

a section of the journal

Frontiers in Human Neuroscience

Received: 22 September 2020

Accepted: 25 November 2020

Published: 16 December 2020

Citation:

Pinto CB, Bielefeld J, Jabakhanji R,

Reckziegel D, Griffith JW and

Apkarian AV (2020) Neural and

Genetic Bases for Human Ability

Traits.

Front. Hum. Neurosci. 14:609170.

doi: 10.3389/fnhum.2020.609170

Neural and Genetic Bases for Human
Ability Traits
Camila Bonin Pinto 1,2†, Jannis Bielefeld 1,2†, Rami Jabakhanji 1,2, Diane Reckziegel 1,2,

James W. Griffith 3 and A. Vania Apkarian 1,2,4,5*

1Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States, 2Center for

Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States, 3Department

of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States, 4Department

of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States,
5Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States

The judgement of human ability is ubiquitous, from school admissions to job performance

reviews. The exact make-up of ability traits, however, is often narrowly defined and

lacks a comprehensive basis. We attempt to simplify the spectrum of human ability,

similar to how five personality traits are widely believed to describe most personalities.

Finding such a basis for human ability would be invaluable since neuropsychiatric

disease diagnoses and symptom severity are commonly related to such differences

in performance. Here, we identified four underlying ability traits within the National

Institutes of Health Toolbox normative data (n = 1, 369): (1) Motor-endurance, (2)

Emotional processing, (3) Executive and cognitive function, and (4) Social interaction.

We used the Human Connectome Project young adult dataset (n = 778) to show

that Motor-endurance and Executive and cognitive function were reliably associated with

specific brain functional networks (r2 = 0.305±0.021), and the biological nature of these

ability traits was also shown by calculating their heritability (31 and 49%, respectively)

from twin data.

Keywords: human ability, heritability, neural circuits, NIH toolbox, human connectome project (HCP)

INTRODUCTION

Understanding differences in human ability traits, such as cognition, emotion or behavioral
tendency, has been an area of great interest in the field of neuropsychology. Using such ability
traits can facilitate neuropsychiatric diagnosis and treatment, as well as allow the prediction of
individual risks. It can help understand contributors of different conditions, such as chronic pain
(Alais et al., 2010; Vachon-Presseau et al., 2016), neurodevelopmental disorders (Barch et al., 2019),
autism (Happé and Frith, 1996), stroke rehabilitation (Carlozzi et al., 2017; Johnson et al., 2017),
Alzheimer’s disease (Snyder et al., 2011), and other neuropsychiatric conditions (Hayden et al.,
2018). While personality traits have been studied extensively (Gerlach et al., 2018), human ability,
including behavioral and neurological function, is still underexplored.

Human ability, compared to personality, is less well-defined. However, the National Institutes of
Health (NIH) Toolbox, which provides a unified assessment of neurologic and behavioral function,
quantifies a comprehensive spectrum thereof. It combines different sets of measures, including
scales for emotional, cognitive, motor, and sensory function in order to provide a full range of
individual assessment, making this dataset a natural candidate for mapping out human ability. The
measured response parameters have been shown to be sensitive and effective in the detection of
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subtle differences between participants, and the underlying
ability traits described by the individual tasks, like cognitive
and motor skills, are well-understood (Gershon et al., 2013). Its
relevance in medical research is well-established, demonstrating
utility in clinical stroke (Carlozzi et al., 2017), disability
classification (Hessl et al., 2016), and brain injury recovery
(Tulsky et al., 2017), for example. In addition, human ability
is expected to predict real world outcomes, like socioeconomic
status, education levels, and health issues, just like personality
traits do (Eisenberg et al., 2019).

Beyond providing a complete basis of human ability, we
investigated their biological origins. We used the Human
Connectome Project HCP large-scale independent components
analysis (ICA) young adult dataset (Van Essen et al., 2012) to
determine whether these ability traits are represented by brain
properties like morphology and functional connectivity.

Additionally, we evaluated whether heritability plays a role in
determining ability traits, with the goal of estimating how much
of the variation of a specific ability trait is due to environmental
factors vs. genetic differences. We hypothesized that ability traits
with significant correlations in brain biology would also show
significant heritability, since they both point to a common,
biological underpinning.

METHODS

In this section we show how we constructed the statistical models
underlying the analysis and what decisions were made at each
step in the process. It will become clear that each step is motivated
by the data; the parameterizations are all natural to these datasets.

Data
In our initial analysis we used the NIH Toolbox normative
dataset (Gershon, 2016), which contains data from healthy
subjects across their entire lifespan. Ages 17 and under are tested
differently, so we focused on ages 18 and above. Additionally,
we drew conclusions using data from the Human Connectome
Project (HCP) 1200 young adult database (ages 18–35) (Van
Essen et al., 2012). Within the HCP data, we used both the NIH
Toolbox assessments and the family structured data, being able
to identify twins, siblings, and half siblings. This allowed us to
draw parallels to the original NIH Toolbox normative data and
link it to heritability results. Besides that, also from the HCP 1200
data release, we extracted the structural and functional magnetic
resonance imaging (fMRI) data.

First, the data were filtered, and only NIH Toolbox scored
variables present in both datasets were included. Statistical
analyses were performed age- and gender-blind (the NIH
Toolbox data uses gender instead of biological sex), in addition to
other demographic variables. Later on, they were used to analyze
the nature of the subject clusters. The set of final variables is
given in Supplementary Table 4 and is used, both in the NIH
Toolbox normative dataset, as well as the HCP young adult data.
Included are 31 variables within the cognition, motor, sensory,
and emotion domains.

To avoid over-imputation, only participants aged 18 and
above that reported more than 70% of the variables in question

were included. Within the HCP dataset, all participants with
quality control issues in the fMRI were excluded. 778 HCP
subjects ages 18–35 remained (Supplementary Figure 1). The
grip strength and dexterity measures in the toolbox are directly
derived from raw scores. We use these, both in the NIH Toolbox
dataset, as well as the in the HCP dataset.

After filtering, the individual scores for the datasets were
scaled. The final NIH Toolbox normative data were standardized
to mean zero and standard deviation of one. The HCP data were
scaled by these NIH Toolbox values to provide compatibility
between the two datasets: We determined the mean and standard
deviation for each NIH Toolbox normative data variable and
z-scored the corresponding HCP Toolbox data using these.

Factor Analysis
Starting out, we reduced the dimensionality of the data. This
reveals the underlying generalized variables and can be used
to reduce noise (Revelle, 2009). We tested both principal
component (PCA) and factor analysis techniques (FA) and
compared them via their likelihoods. In factor analysis models,
the part of the model describing the error is handled more
flexibly in contrast to principal components (Hastie et al., 2009)
(Supplementary Figure 2A). Principal components model the
error using a covariance matrix ∝ σ 2

I, where I is the identity,
while factor analysis relaxes this to∝ diag(σ 2

1 , σ 2
2 , . . . , σ 2

N).
Parallel analysis (Horn, 1965) was used to obtain the optimal

number of components. This approach compares the eigenvalues
of covariance matrices: One for the NIH Toolbox normative
data and one based on white noise. Factors corresponding
to eigenvalues smaller than the ones of the noise covariance
were discarded (Supplementary Figure 2B). Here, we select four
factors to describe the NIH Toolbox normative dataset. This
choice is on the conservative side of how many features to
include. Factor analysis decompositions are unique only up to
a rotation1 (Hastie et al., 2009), so there is some freedom in
picking the exact composition of latent variables. In order to
minimize overlap between those, we chose a varimax rotation
(Kaiser, 1958). This maximizes the variance of the squared
loadings column-wise, which leads to the most block-diagonal
form of the loading’s matrix. In other words, coefficients of
variables that contribute to multiple latent factors are minimized.
We use an off-the-shelf implementation of factor rotations in
python (mvds314, 2017). These rotations have no effect on the
clustering of the subjects. For the HCP data, the identical factor
decomposition was performed. Supplementary Figure 2B shows
that the same number of factors govern the HCP dataset.

Clustering
Cluster analysis is used to show equivalency between the ability
traits in the NIH Toolbox normative and the HCP dataset. We
cluster the data using Gaussian mixture models (GMM). The
benefit of using these over more immediate algorithms like k-
means clustering is the generalizability thereof: Any point in

1For PCA and factor analysis we have A = Q · P where A is the original data

matrix, Q are the loadings and P maps these onto the original variables. Now

A = Q · P = Q · I·P = Q ·
(

R−1 · R
)

· P =
(

Q · R−1
)

· (R · P) ≡ Q′ · P′, and

Q′ and P′ are the new loadings and projection matrices. R is a rotation matrix.
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factor space can uniquely and easily be mapped to a cluster.
Equivalently, each point in the coordinate space is assigned a
probability to lie within any cluster. Numerically, a number of
Gaussian distributions is fitted to the density of data points in
the four-dimensional factor space. With K Gaussian components
its mathematical form is p (x) =

∑K
k=1 πkN (x|µk, 6k) and

each Gaussian density N (x|µk,6k) is centered around its mean
µk with covariance 6k and is weighted by πk which allows for
differently sized clusters.

We use scikit-learn to fit this model to the data (Pedregosa
et al., 2011). For this approach, spherical covariance matrices are
chosen to keep model complexity to a minimum.

The number of clusters needs to be determined separately. We
use the Bayesian Information Criterion (BIC) (Schwarz, 1978)
and the Rand index (Rand, 1971) to obtain this value. The BIC
trades likelihood for model complexity and gives a quantitative
result for the optimal value. The Rand index, on the other
hand, is a more direct measure of clustering performance and
compares different partitions of the dataset regarding whether
pairs of subjects within each have been clustered together or
not. An adjusted Rand index of 1 indicates perfect overlap
between cluster partitions, whereas a value of 0 indicates that
no pairs in one partition have been clustered together in the
other partition. Details for our implementation can be found in
Von Luxburg (2010).

The entire analysis was performed considering individual
responses to the NIH Toolbox tasks only. We specifically
excluded background information from the questionnaires
like age, gender, and ethnicities. The factor analysis already
generalizes the variables, and the clustering separates subjects.
We compared the overall representation of these covariates along
the four clusters. For age and gender, we plot the proportion
of each per cluster. The same GMM model was applied to
the HCP dataset. Pairwise t-tests were performed between the
biggest outlier and the rest of the clusters. The cluster with the
biggest deviation from the mean in each variable is defined as
this outlier. Results are displayed in Supplementary Tables 1,
2. The cluster composition and number of clusters as degrees
of freedom have been tested in different clustering methods (k-
means, hierarchical) to confirm that they are independent of the
actual algorithm used.

Brain Morphology and Connectivity
The HCP provides brain morphological and connectivity data.
We checked the relationships between those, and the ability traits
found in the NIH Toolbox normative data. We regressed brain
properties against the four latent ability traits.

As variables we included bothmorphological and connectivity
data. The HCP FreeSurfer data (Fischl, 2012) contain about 200
variables, and the HCP provides connectivity data from ∼ 152

to ∼3002 features—independent component (IC) correlation
matrices for each participant. The squared numbers indicate that
the data consists of connectivities, not ICs. Technically with n

ICs one obtains n(n−1)
2 = O(n2) unique features. Multiple levels

of processing of the connectivity data are provided, of which
we used the most processed “analyzed” data, in which spatial
distortions have been minimized and data have been aligned

across modalities and across subjects using appropriate volume-
based and surface-based registration methods (Glasser et al.,
2013; WU-Minn, 2017). We first obtain the best dataset used for
predictive modeling from all of the following combinations: (1)
Any number of independent components of the data provided
(15, 25, 50, 100, 200, 300). (2) Two kinds of connectivity matrices
calculated from these: netmats1 and netmats2. (3) Connectivity
vs. nodal degrees, and (4) inclusion of age and gender variables.
The most predictive dataset is that which yields the closest
L1-regularized regression in its 30% hold-out sample. The L1-
paramter is optimized in-sample (IS).

Netmats1 denotes using full normalized temporal correlation
between every node timeseries and every other. This is a
relatively simple approach, but has various practical and
interpretational disadvantages (Smith, 2012). Netmats2 utilizes
partial temporal correlations between nodes’ timeseries. This
aims to estimate direct connection strengths better than achieved
by full correlation. To slightly improve the estimates of partial
correlation coefficients, a small amount of L2 regularization is
applied (setting ρ = 0.01 in the Ridge Regression netmats option
in FSLNets) (Smith et al., 2014; WU-Minn, 2017). For the nodal
degrees, we calculated degrees for densities of 1% up to 10% in
1% increments.

After selecting the best input data, we regress these predictors
against the ability traits to obtain a predictive model. To evaluate
the generalizability of our findings and the robustness of the
models, the initial sample of n = 778 HCP participants was
split into two sub-samples again: training (IS, 70%) and test
(OOS, 30%), independent from the above split. For the model
training and optimizing of its regularization hyperparameter, a
nested cross validation was performed within the training dataset
(5-fold cross validation). We modeled the data using a L1-
regularized linear regression. L1 regularization helps with model
parsimony through feature selection and generalizability by
keeping parameters small. An optimal regularization parameter
avoids over- or underfitting the model. All predictors are
included simultaneously in the regression, how many of those
are used depends on the size of the regularization parameter.
This leaves one optimal model for each of the above data
combinations.We calculated goodness of fit r2 on the test dataset.
From this procedure, we selected our reference model with the
highest OOS r2.

This model is used to evaluate overall r2 results and statistical
significances. However, to report the brain properties relevant
to our discussion, we increased the regularization parameter by
roughly a factor of two from 0.05 to 0.095. Increasing this up to
0.1 constrains the number of variables substantially, therefore we
retained this value at 0.095. TheOOS goodness of fit r2 goes down
by 5% only (from r2 = 0.317 ± 0 .017 to r2 = 0.305 ± 0.021),
while using just 1/10th of the optimal number of features (∼ 40
instead of ∼ 400). Given this evidence, we based our feature
interpretation on these more-regularized models.

To avoid over-fitting to train-test splits and other chance-
events like cross-validation selections, which have a big effect
on outcomes, an ensemble of models is obtained by running
this model selection procedure 100 times. This entails splitting
the data into train and test samples and scoring results using
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cross-validation multiple times. Train-test splits had a non-
negligible impact on results, but performing all data splitting
multiple times averages out these effects.

Note that obtaining finely tuned results from specific train-test
splits is a common source of confirmation bias (Klayman and Ha,
1987; Klayman, 1995).With our ensemble approach we avoid this
pitfall at the expense of having to deal with a multitude of models.
This drawback, however, enables us to obtain a robust feature set:
We only described variables that are contained in more than 80%
of the model ensemble.

The HCP connectivity data integrates numbered ICs.
To identify the large brain networks from these ICs, we
used a template matching procedure using the canonical
network templates (Shirer et al., 2012; Altmann et al.,
2015). Each IC was correlated with all canonical network
templates and the largest correlation determined the mapping
(see Supplementary Figure 6). Individual ICA templates were
created using voxels different from 0 and with z score above the
99 percentiles. For visualization, we used the BrainNet viewer
(Xia et al., 2013).

To further characterize and interpret these results we used
Neurosynth (Yarkoni et al., 2011; Gorgolewski et al., 2015) to
decode brain functional activity related to each one of these
individual ICA network maps.

Neurosynth is large-scale database of functional
neuroimaging data which can map any brain connectivity
image to its meta-analysis database. Neurosynth uses a
whole-brain reverse-inference to associate specific terms with
brain maps. This feature (“decoder”) allowed us to extract
words and properties frequently associated with brain areas
covered by the HCP ICs. We created word clouds of the
most correlated words while filtering out brain morphology
descriptors (Supplementary Figure 7). Separate ICs describe
different topics, and as expected, ICs classified as equal canonical
networks shared similar topics.

Heritability
TheHCP 1200 data also contains information on family structure
within the subjects. This information was used to identify
subjects in 4 categories: monozygotic (MZ) twins, dizygotic (DZ)
twins, full siblings (not twins), and half siblings. Using this
information, we calculated the mean Euclidean distance of pairs
of data points within the HCP data in the ability trait space
for MZ, DZ, full siblings, half sibling and unrelated participants
(Figure 4A).

To estimate the heritability of ability traits, we followed the
ACEmodel (Everitt, 2005): To compute heritability components,
we compared regression coefficients of within-MZ to within-DZ
data using Falconer’s formula (Falconer, 1960). Our dataset is
small, so we used this simpler approach rather than structural
equation modeling which is used elsewhere in the literature
(Lynch and Walsh, 1998; Hill and Mackay, 2004; Visscher et al.,
2008; Boker et al., 2011).

Following the ACE model, it was possible to estimate
the relative contribution of the additive genetic variance
(A), common environmental variance (C), and idiosyncratic
environment variance (E) for each ability trait. Falconer’s formula

assumes that MZ twins share 100% of their genetic and shared
environmental components, therefore r2MZ = A + C, whereas
DZ twins share 50% of their genetic and 100% of their shared
environmental components: r2DZ = 1

2A + C. We also have
A+ C+ E = 1. Here, r2 are the correlation coefficients for linear
regressions of any variable spanned by the twin-pair space.

Note that these assumptions are fairly restrictive compared to
structural equation modeling approaches. For example, genetic-
environment interactions (Purcell, 2002; Caspi andMoffitt, 2006)
are not being modeled here.

These three assumptions can be used to calculate the
contributions of the three components from the two regression
coefficients for MZ and DZ pairs. In the literature, this
genetic component is known as the broad sense heritability
H2. We calculated this measure for the components from the
dimensionality reduction in addition to the original variables.
Hereditability is reported only for variables and ability traits
where the regressions for both, MZ and DZ twin pairs, were
statistically significant (p < 0.05) (Table 1).

Gender-corrected results were obtained by linearly regressing
each variable against a binary gender category and subtracting
this result. Using such regression residuals, we can recalculate
heritability without dividing the sample into males and females.

RESULTS

Data Filtering and Study Design
We used data from the NIH normative study (4,852 individuals
and 172 variables) (Gershon, 2016) and the HCP S1200 release
(1,206 individuals and 261 variables) (Van Essen et al., 2012).
Data filtering was performed prior to initiation of data analyses:
Only the 31 NIH Toolbox scores present in both datasets
were kept (Figure 1 and Supplementary Figure 1), while some
remaining variables were later used as covariates. We only
included adult subject (18–85 years old, excluding 3,495), who
completed all NIH Toolbox assessments, with no more than
30% missing data, excluding 74 participants. Subjects with
fMRI quality control issues (n = 157) based on notable brain
anatomical, processing or data issues (WU-Minn, 2017) were
excluded. After data filtering, 1,369 subjects were kept in the NIH
normative data and 778 subjects in the HCP dataset. Missing
data were replaced by mean values because the overall number of
missing data were low (2.7%) and the NIH Toolbox consortium
recommends mean imputation (Slotkin et al., 2012).

Ability Traits
Here, we used the NIH Toolbox assessment battery to span a
basis space for human ability. To extract underlying ability traits,
we performed a factor analysis dimensionality reduction. This
defined ability traits as combinations of the original toolbox
tasks; we did not include any demographics characteristics in
this step of the analysis. Subsequently, four underlying ability
traits explained all 31 NIH Toolbox variables up to intrinsic noise
(Supplementary Figure 2B) which explains 87.6% of the total
variance. Ability traits were interpreted based on their factors
loadings as: (1) Motor-endurance, (2) Emotional processing,
(3) Executive and cognitive function, and (4) Social interaction
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TABLE 1 | Heritability estimates of ability traits.

Broad sense

heritability

Shared environment Non-shared environment MZ

p-value

DZ

p-value

Ability traits by gender

Motor-endurance M 0.32± 0.23 0.34± 0.14 0.34± 0.10 <0.001 <0.05

Motor-endurance F 0.30± 0.27 0.35± 0.23 0.35± 0.09 <0.0001 <0.05

Executive and cognitive function F 0.22± 0.20 0.24± 0.28 0.54± 0.09 <0.05 <0.05

Gender corrected ability traits

Motor-endurance 0.31± 0.22 0.34± 0.19 0.35± 0.07 <0.0001 <0.001

Executive and cognitive function 0.49± 0.22 0.05± 0.20 0.46± 0.07 <0.0001 <0.05

Individual ability variable

Upper extremity strength—ND-hand M 0.14± 0.34 0.50± 0.30 0.36± 0.12 <0.001 <0.05

Endurance-−2-min walk—distance F 0.29± 0.43 0.33± 0.22 0.38± 0.09 <0.0001 <0.05

List sorting F 0.27± 0.17 0.47± 0.14 0.25± 0.06 <0.0001 <0.001

Picture sequence memory F 0.37± 0.26 0.16± 0.22 0.47± 0.08 <0.001 0.05

M, male; F, female; ND, Non-Dominate; MZ, monozygotic twins; DZ, dizygotic twins.

Only items for which we have significant correlations for mono- and dizygotic twins were kept. The individual ability variables showed which tasks drove the significant results in the ability

traits. Ability trait 1 (Motor-endurance) was driven by Motor-endurance tests, while ability trait 3 (Executive and cognitive function) had strong influences from list sorting and memory

tasks. The filtered HCP data includes 52 male and 96 female MZ twins and 38 male and 66 female DZ twins. P-values are calculated comparing traits between individual twin pairs.

Confidence intervals include one standard deviation.

FIGURE 1 | Structure of paper. (1) NIH toolbox data from Normative study and HCP was filtered, only ability data were included in the initial analysis. (2) A

dimensionality reduction of the 31 variables was performed exposing four ability traits. (3) The HCP dataset is used to link brain features to ability traits and (4) to

determine heritability of individual ability traits and brain networks.

(Figure 2). Note that our trait loadings are rotated relative to the
canonical toolbox domains of cognition, emotion, sensory-, and
motor function.

To further evaluate these properties, we investigated whether
brain properties (morphology and connectivity) provided by the
HCP dataset arbitrate the ability traits described here.

Linking the HCP Data
HCP data were used to infer brain properties and degrees
of heritability of the four ability traits. To show that both
datasets—NIH normative and HCP—are governed by the same
underlying traits, clustering analysis was performed on them. The
latter identifies groups of subjects with shared factor loadings.
Covariates like age, gender, socioeconomic status, and education
are then compared across clusters. Equivalence therein shows
how meaningful the four ability traits are because they generalize
across datasets with different demographics.

The clustering models are trained on the four ability traits of
the normative data only, since the traits also exclusively stem

from this data. The statistical models used were not affected by
the HCP data at all, and only reflect patterns encountered in the
NIH normative data. Once the HCP data has been clustered with
this model, covariates can be compared.

Both, the Bayesian Information Criterion (BIC), and the
Adjusted Rand Index (ARI) favor 4 clusters of participants in the
normative data (Supplementary Figure 3A). The BIC compares
the accuracy of statistical models to their complexity. The ARI
evaluates agreements of subsets of the partitions produced by
the clustering model. Robustness was confirmed by applying
the same clustering method to different subsets of the data and
correspondingly calculated the BIC and ARI scores.

The clusters generalize across both datasets: Although the

HCP dataset contains data on younger subjects (from 18 to 35

years old) (Supplementary Figure 5A), the agreement between

these clusters with regards to age and gender is tight. The

distribution of these variables is consistent along all clusters

and reflects the underlying nature of their composition. For

instance, cluster 1 is represented mostly by male subjects,
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FIGURE 2 | Dimensionality reduction reveals ability traits. Factor loadings in terms of the individual NIH toolbox variables. A factor analysis performed on the 31

individual NIH toolbox variables identified 4 varimax rotated ability traits: (1) Motor-endurance, (2) emotional processing, (3) executive and cognitive function, and (4)

social interaction. Loadings smaller than 0.3 are suppressed in the figure. Abbreviations are mapped to NIH toolbox variables in Supplementary Table 4. The

dexterity variables are multiplied by negative one because the original value represents the time to test completion, so greater values indicate worse performance.

However, all other variables follow the convention that greater values represent better test performance.

clusters 2 and 3 are more dominantly female in both datasets,
whereas cluster 4 correlates strongly with increasing age
(Supplementary Figure 5B) and is therefore under-represented
in the HCP data.

HCP clusters are also compared to a subset of NIH normative
subjects from the same age group. This shows that the lower
proportion of subjects in cluster 4 and the overrepresentation
of cluster 1 in the HCP dataset is in fact a function of age and
gender: The young adults in the NIH normative data follow the
same patterns as in the HCP but total numbers are re-distributed
between clusters 1 and 4. This deviation is caused by the gender
ratios within these datasets: The HCP data presents a much lower
gender representation at 1.24 females per male compared to the
NIH normative dataset at 1.78. The ratios of subjects in the HCP
dataset are similar in their first two age bins of the NIH data
(Supplementary Figure 5B shows this in detail). Accounting for
the differences in gender and age we showed that the ability
traits generalize. Note the strong gender and age dependencies
in clusters 1 and 4: Gender and age were excluded from the initial
data analysis, nevertheless this uncorrected data reveals a strong
clustering thereof.

Additionally, the four ability traits explain a similar
amount of data variance (81% in the HCP dataset vs.
87% for the NIH normative data), and both datasets favor
four underlying ability traits (see Supplementary Figure 2).
Therefore, these ability traits reveal adequate convergent and
discriminant validity.

Brain Morphology and Connectivity
So far, we have focused on describing human ability, root causes
for these differences stay elusive. To what degree can brain
properties predict these ability outcomes? Using morphological

data like tissue volume and thickness in conjunction with average
functional connectivity strengths between large-scale networks,
we assessed the relationship between these biological properties
and human ability. Starting out, we regressed brain properties
against the four ability traits.

Brain network connectivities were taken from the ICA
provided by the HCP (Van Essen et al., 2012). 152-3002

features—corresponding to 15–300 independent components—
are provided. The HCP FreeSurfer (Fischl, 2012) data contain
about 200 morphological variables.

Functional connectivities with 50 independent components
performed best in the brain properties vs. traits regressions.
For the brain connectivity features, the HCP’s more strongly
regularized network matrices dataset of functional connections
(netmats2) are favored. Netmats2 aims to estimate direct
connection strengths better than netmats1 (see section Methods:
Brain Morphology and Connectivity). The model favored by
the data includes the gender, morphological and connectivity
variables with a total of about 400 features. However, since we
were primarily interested in model interpretation, we reduced
the complexity of this model by doubling its regularization
coefficient from its optimal value (details in section Methods:
Brain Morphology and Connectivity). This leaves us with 40
features without severely reducing goodness-of-fit.

Interestingly, final out-of-sample (OOS)model results depend
more significantly on the train-test splits than the exact choice
of independent variables. The difference between netmats1 and
2, for example, is small. To address this issue, we performed
this entire fitting method 100 times to get statistically significant
results. The confidence intervals around below results, for
example, are obtained this way. All quoted numbers are averages
across this ensemble of 100 models.
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The independent components for ability trait 1 (Motor-
endurance) and 3 (Executive and cognitive function) contain 73
and 91% connectivity variables, respectively, and also include
gender as a predictor. The rest of the model ensemble is made
up by morphological features. We fitted against all four ability
traits, for which the OOS r2 = 0.302 ± 0.017 (adjusted r2 =

0.222± 0.023). Individually, trait 1 has an average goodness of fit
r2 = 0.78 and p-value close to 0 and trait 3 has r2 = 0.27 and
p= 0.003 (all OOS). P-values are calculated regressing predicted
and real ability trait values.

Ability traits 2 and 4 are not statistically significant with
average OOS p-values of 0.1 and 0.4, respectively. These are
the ability traits dominated by emotional and social interaction
variables, and, apparently, are less robustly reflected in the brain
morphology or functional connectivity.

The best statistical model includes gender as a feature. When
comparing model results with and without gender, r2 drops by
50%. Specifically, ability trait 1 predictions are dominated by
gender, which is unsurprising, because this describes Motor-
endurance which is strongly gender dependent.

We were interested in the exact anatomy that provides these
relationships. Figure 3 shows the most significant brain features
involved in our final model. This plot does not contain any
morphological features since they overfit to the exact train-test
splits and are not reliably selected.

In contrast, the statistically significant associations link ability
traits 1 (Motor-endurance) and 3 (Executive and cognitive
function) to correlations across a series of networks including
executive control, the default mode, salience, precuneus, sensory-
motor, language, auditory, and visual networks. Independent
components were correlated against an atlas of regions of interest
for interpretability.

The coefficients of these large-scale network links and their
contribution to the individual ability traits are displayed in
Figure 3. There were stronger positive associations between the
Motor-endurance ability trait and the inter-network connectivity
of the auditory and the posterior salience network and the
visuo-spatial and ventral default mode network connectivity. In
contrast, there is a negative relationship to the sensorimotor-
language connectivity, representing coordination and speech
production (Figure 3A). These relate to connectivity patterns
that have previously been implicated in sensory and motor skills
such as visuospatial orientation, attention, and tactile sensations
(Johansen-Berg et al., 2002; Erickson et al., 2015).

Regarding Executive and cognitive function, the most
prominent feature integrates the left executive control with
the precuneus network and the posterior salience with the
sensorimotor network. These are all positively correlated to the
executive function ability trait (Figure 3B). On the other hand,
language and ventral default mode networks presented stronger
negative coefficients. This pattern involving negative integration
of motor/visuospatial networks was previously associated with
lower working memory in healthy subjects and in schizophrenia
and major depression disorder. Yamashita et al. (2018) showed
that working memory was most strongly related to within-
network functional connections of the left fronto-parietal
network, contributing 1/3 of the total variance. The next biggest

contributions at ∼1/4 of the total variance each come from
connections between the supplemental motor and the primary
sensorimotor networks as well as the cingulo-opercular network
connected to the midbrain, in accordance with what we obtained.

Overall, we showed that two ability traits (Motor-endurance
and Executive and cognitive function) were reliably associated
with functional connectivity between brain networks consistent
with, and specifying, previous literature results. Next, we
investigated whether heritability plays a role determining the
ability traits.

Heritability of Ability Traits
Human ability changes over time, however, with cross-sectional
studies like these, such effects cannot be captured. Nonetheless,
more static ability can be observed using the heritability of
ability traits. Here, we used the restricted HCP data containing
information on family structure within the participants to
identify genetic influences among the ability traits. In our cleaned
HCP dataset (n = 714 after excluding subjects with unclear
family structures or no genotyped results) we identified 148
subjects that are monozygotic (MZ) twins, 104 dizygotic (DZ)
twins, 548 subjects that are full siblings and not twins and 25
subjects who are half siblings. The sum of these numbers is
>714 because participants can be both twins and half-siblings,
for example, so they can appear more than once.

We first characterized genetic influence along the ability traits
by simply calculating the Euclidean distance between twins,
siblings, and unrelated subjects in ability trait space (Figure 4A).
This distance grows with a decrease in the genetic overlap
between siblings which suggests a genetic influence over the
abilities we identified.

Having shown this clear trend, we calculated numerical
heritability indexes of the ability traits. These calculations assume
that every ability trait can be explained by a combination of
genetic, shared environmental, or non-shared environmental
factors. These three type contributors can be obtained by
comparing overlaps between MZ twins and DZ twins, because
both presumably share all environmental factors, and a well-
defined fraction of genetic ones. For this analysis, genders are
separated because for DZ twins of opposite sex these assumptions
no longer hold. Table 1 shows results for this analysis.

Ability traits 1 and 3 (Motor-endurance and Executive and
cognitive function) presented significant results of around 30%
broad sense heritability for ability trait 1 (females andmales), and
22% for ability trait 3 (females only). In contrast, the emotional
traits showed no significant heritability. To potentially uncover
additional dependencies, and in spite of the importance of gender
in the heritability index calculation and the overall role of this
variable in the definition of the ability traits, we additionally
performed the same analysis on gender-corrected data, ignoring
theoretical assumptions. The results obtained, however, are very
similar results to the above, in that ability traits 2 and 4 remained
insignificant (Table 1).

Similarly, we also calculated the gender-dependent heritability
for each original test variable. The results show which underlying
ability traits are driving the findings in Table 1. Note that some
ability traits—self-efficacy, pattern comparison score and the
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FIGURE 3 | Large-scale network connectivity determines ability trait 1 (Motor-endurance) and 3 (Executive and cognitive function). The large-scale network links were

determined by averaging more regularized models and displaying the average coefficient for features that are prevalent in each model. Prevalence is determined by

presence in 80% of the models. Only the two significant ability traits are displayed. Ability trait 2 and 4 show insignificant predictions out of sample. Template matching

using canonical network templates (Shirer et al., 2012; Altmann et al., 2015) was performed. For visualization, ICA maps derived from the HCP consortium

(dimensionality = 50) were thresholded at the top 1% z-score for non-null voxels and brains were displayed using the BrainNet viewer (Xia et al., 2013). Note that the

independent variables are all z-scored, so parameter values can be compared. The bars represent average model coefficients, not connectivity values. (A) Ability trait

1 (Motor-endurance) connectivity model coefficients. More connectivity between IC 7 and 10 indicates higher values of trait 1, for example. (B) Ability trait 3 (Executive

and cognitive function) brain connectivity model coefficients.

upper extremity strength—have negative heritability coefficients.
In the literature, these are treated as a breakdown of the model
(Burton et al., 2018), and are excluded from results.

Similar results have also been shown for general ability
and personality traits in the literature (Robinson et al., 1992;
Vukasović and Bratko, 2015), showing that both Motor-
endurance and Executive and cognitive function have genetically
influenced components. Note that ability traits 1 and 3 are
significant both in the brain predictions, and for the broad
sense heritability.

Our selection of predictive brain features allows us to compare
how individual sibling types differ from each other in their brain
connectivity. To illustrate this, we focused on their distances in
the space spanned by the 19 prevalent features describing the

Motor-endurance and Executive and cognitive function ability
traits. This is equivalent to the above illustration in ability trait
space, unsurprisingly, Figure 4B shows that large brain networks
are more similar in siblings with more genetic overlap.

Overall, these heritability results link nicely with the
significant factors in the twin analysis (Table 1) and point out the
biological, as opposed to behavioral, root causes describing ability
traits 1 and 3.

DISCUSSION

In this paper we used the NIH Toolbox individual measurements
(31 scores) to identify ability traits in healthy subjects and
associated these properties with functional brain connectivity
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FIGURE 4 | Estimates of the genetic influence on ability traits. HCP family structure data were used to identify genetic influences among the ability traits and brain

networks contributing to them. Mean Euclidean distance of pairs of data points within the HCP data. MZ: monozygotic twins, DZ: dizygotic twins Error bars

correspond to one standard deviation of distances of the corresponding subset. (A) Distances between pairs of subjects within the four-dimensional ability trait space.

(B) Distances between subjects using the space spanned by the 19 relevant features from Figure 3. A higher genetic overlap leads to smaller distances.

and genetic disposition. We identified four ability traits that can
consistently describe the participants. Two of these ability traits,
Motor-endurance and Executive and cognitive function, were
associated with connectivity between large brain networks and
influenced by genetic disposition. Regarding the ability traits,
the first (Motor-endurance), reflects increased physical fitness
and endurance of participants; the second and fourth ability
traits (2: emotional processing and 4: social interaction) reflect
social and emotional properties, including psychological well-
being, stress, negative affect and social purpose. The third ability
trait (Executive and cognitive function) shows processing speeds,
attention, episodic, and working memory (see Figure 2). The
data used in this paper are cross-sectional and ability traits
are comprised of outcomes that can change over subject’s lives.
Therefore, age and gander variables were not included in the
factor analysis; even though we expect changes in behavior over
time in addition to gender differences. Additionally, excluding
age and gender focuses more purely on ability. For example, in
Supplementary Figure 5, using the clusters, we show that the
executive function trait, which anti-correlates strongly with age,
still captures ability independent thereof.

We used brain morphology and connectivity to characterize
the networks involved with the ability traits and identified
whether these were hereditary. It is noteworthy to point out that
these two approaches differ significantly from each other. One
selects from brain features that relate closely to the identified
ability traits. The other one compares how similar different kind
of twins respond to surveys and perform in tasks. Defying those
unequal analyses, the results equivalently point at biological
root causes of human ability: Ability traits 1 and 3 (Motor-
endurance and Executive and cognitive function) are predictable
by the connectivity between large brain networks and are both
significantly hereditary.

The significant functional connections involved in the
characterization of ability traits 1 and 3 comprise a series
of brain networks including the default mode and salience

network and their associations with sensory-motor, language,
auditory, and visual networks as part of the ventral attention
network. With respect to the ability trait 1, a recent study
also showed that alterations in the inter and intra connectivity
of the default-mode-network (DMN) with dorsal attention,
somatomotor, salience, and executive control networks can
explain the variance in cardiorespiratory fitness independent
of physical activity (Voss et al., 2016). Not surprisingly, the
relationship between physical fitness and cognition is also
consistent with previous studies showing that functional DMN
connectivity mediates this relationship (Voss et al., 2010).
Numerous studies show that at rest, both the salience and
attention networks (i.e., visuospatial, perception) coordinate
the processing of information by regulating the DMN activity
(Chen et al., 2013; Cohen and D’Esposito, 2016). The dynamical
connectivity between and within these areas is related with
variability in the performances in cognitive tasks, such as working
memory tasks. They also identified similar large-scale network
connectivity that correlated with working memory performance
in neuropsychiatric conditions such as schizophrenia, major
depressive disorder, obsessive compulsive disorder, and attention
deficit disorders (Yamashita et al., 2018). Altered connections in
the executive control networks were observed across the four
conditions. Besides that, visual network alterations were also
associated with lower working memory ability. Taken together,
our results show that functional connections of brain networks
associated with the Executive and cognitive function ability
trait were consistent with the literature, while being more
specific. Task control networks associated with Executive and
cognitive function in Figure 3B are known to exert top-down
regulation of sensorimotor processing as well as interact with
DMN influencing behavioral performance (Wen et al., 2013).

The emotional and social traits were not reliably associated
with brain connectivity or morphology. We caution against
concluding that there are no such dependencies. While
morphological changes require more chronic, pathological
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dispositions, resting state connectivity has been shown to
correlate with emotional traits (Roy et al., 2009; Blackford et al.,
2014; Guell et al., 2018). These studies, however, focus on
individual brain features (amygdala, pars triangularis, superior
temporal gyrus among others) or even subsets thereof, whereas
here, more broad ICmaps are being used. It is in this context that
more fine-grained networks are ignored and thus do not reliably
relate to emotional and social traits. Future studies could address
this question by selecting from larger ICA decompositions, like
300 instead of our 50, which reveals smaller networks. Here,
however, since more ICs overfit overall results, such detailed
predictors remain hidden.

Here, we only evaluated relationships between large networks
at rest with variables from the NIH Toolbox assessment battery.
However, it is important to point out that the activity of these
brain networks and subnetworks also correspond to resting and
task-related connectivity patterns (Smith et al., 2009). Our results
support that increased performance in a specific ability trait
may depend on the intrinsic correlation between these pairs
of networks.

In addition to the characterization of the networks involved
with the ability traits, we investigated the effects of genetic
influence on traits. Behavioral and ability traits are both sensitive
to environmental influences. However, we showed that ability
traits 1 and 3 (Motor-endurance and Executive and cognitive
function) were also strongly influenced by genetic disposition.
Broad sense heritability accounts for about 31 and 49% of the
observed variance in each ability trait, respectively. Given the
associations observed by us between theMotor-endurance ability
trait and functional connectivity, the genetic contribution is in
line with previous reports of strong genetic influence (about
50%) over the cardiorespiratory fitness and how it accounts for
the specific association between cognition and physical fitness
(Bouchard et al., 2011). Therefore, individuals that are genetically
predisposed to higher levels of cardiorespiratory fitness would
present better performance in tasks related to the Motor-
endurance ability trait independent of age. Additionally, it is
possible that they experience the most protection against adverse
effects of aging on the brain—which ultimately has important
clinical implications.

Our findings with respect to the heritability of the Executive
and cognitive function ability trait is also well-substantiated,
since previous studies showed a moderate heritability around
30% of working memory in different twin population samples
(Singer et al., 2006; Zhou et al., 2018). While Executive and
cognitive function heritability shows much more varying results
in the literature—estimates range from 27% to about 77%, it
is important to point out that the properties of the Executive
and cognitive function ability trait are much more complex than
only working memory or cognition alone and the strong genetic
influences observed by us can be a result of additive genetic
factors within attention, episodic memory, and cognition.

Moreover, our results are also corroborated by a recent
publication computing heritability across the HCP dataset using
the NIH toolbox domains (Christova et al., 2020). Although
we apply factor analysis to obtain four traits, they can be
mapped into the four NIH Toolbox domains of motor, cognition,

emotion and sensory. Similar to our results, Christova et al.
showed that the heritability estimates for the NIH Toolboxmotor
domain ranges from 13 to 29%—compared to 30% in our motor-
endurance trait—and from 36 to 48% in the cognition domain—
compared with 22–40% in the Executive and cognitive function
trait. Moreover, Christova et al. showed that the heritability
of the NIH Toolbox emotional domain is about 35%, which
we were not able to confirm. To compute heritability, we only
considered significant inter-twin correlations (p < 0.05), which
the emotional processing and social interaction traits did not
show. Note, however, that our traits, as mentioned above, are not
identical to the emotional NIH Toolbox domain.

In summary, both the Motor-endurance and the Executive
and cognitive function ability traits showed significant
heritability factors. From a top-down point of view this
result is not surprising because both point to common genetic
factors that determine these outcomes.

We also showed that common genetic components are
partially responsible for individual variabilities in network
connectivity, by showing that the 19 large brain networks
included in our model (related to traits 1 and 3) are progressively
more similar in MZ twins than DZ twins and siblings
(see Figure 4B). Similarity in functional connectivity between
these large brain networks is therefore proportional to the
shared genetic background. A recent study, using the HCP
functional magnetic resonance imaging (fMRI) data, estimated
the heritability of 39 cortical regions, and showed that on
average, broad sense heritability accounted for about 15% of
the observed variance in fMRI connectivity (Colclough et al.,
2017). Similar results connecting heritability and Executive and
cognitive function and motor skills have been found in Bouchard
et al. (1997), Beunen et al. (2003), Damoiseaux et al. (2006), and
Heutink et al. (2006). Generally, there are strong results between
heritability and network connectivity (Smit et al., 2008; Jansen
et al., 2015; Yang et al., 2016; Colclough et al., 2017).

A recurring theme in this analysis is the sparsity of data
regarding certain measures. Even though the HCP dataset is
large compared to other fMRI collections, its analytic power in
the heritability and brain feature regime is limited by its size.
Both, gender-independent ability trait predictions as well as more
significant heritability results require larger datasets. Specifically,
twin studies are often one or two orders of magnitude larger
(Lichtenstein et al., 2002; Trouton et al., 2002; Moayyeri et al.,
2013). However, their scope often is much narrower. Direct
classifications based on brain features would only be possible
with larger datasets. Some of the open questions following this
paper will therefore easily be addressed once larger datasets have
been acquired.

On the other hand, studying brain-ability connections and
corresponding heritability analyses have only been made possible
by providing a standardized framework, in this case the NIH
Toolbox. This points out the power thereof: Once a common
denominator has been established, many pivoting analyses
can be performed from there. This enables a large degree of
generalizability of research. Including NIH Toolbox surveys in
other data acquisition projects would allow for extensions of this
analysis to other fields.
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In this paper, we found a characterization of human
ability that is complete with respect to the NIH Toolbox
tasks, and succinctly describes them with just four ability
traits. We quantified which ability traits are rooted in brain
networks and found to which degree these ability traits are
genetically influenced. Looking forward, this framework allows
us to determine connections between the trait space and
clinical outcomes.
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