
Neural and Super-Turing Computing

HAVA T. SIEGELMANN
University of Massachusetts at Amherst, Department of Computer Science, Amherst, MA 01003,
USA; E-mail: hava@cs.umass.edu

Abstract. “Neural computing” is a research field based on perceiving the human brain as an in-
formation system. This system reads its input continuously via the different senses, encodes data
into various biophysical variables such as membrane potentials or neural firing rates, stores inform-
ation using different kinds of memories (e.g., short-term memory, long-term memory, associative
memory), performs some operations called “computation”, and outputs onto various channels, in-
cluding motor control commands, decisions, thoughts, and feelings. We show a natural model of
neural computing that gives rise to hyper-computation. Rigorous mathematical analysis is applied,
explicating our model’s exact computational power and how it changes with the change of paramet-
ers. Our analog neural network allows for supra-Turing power while keeping track of computational
constraints, and thus embeds a possible answer to the superiority of the biological intelligence within
the framework of classical computer science. We further propose it as standard in the field of analog
computation, functioning in a role similar to that of the universal Turing machine in digital compu-
tation. In particular an analog of the Church-Turing thesis of digital computation is stated where the
neural network takes place of the Turing machine.

Key words: analog computation, computational theory, chaos, dynamical systems, neuron

1. Neural Computing: An Introduction

The brain is unique information machinery. We understand that a nearby cat is
smaller than a far-away truck even when the two retinal pictures have equal size,
we notice a running tiger behind the bushes from minute hints only, and we identify
a female face – tasks that are hard for any artificial vision system. Even in the early
stages of visual processes, the visual system executes computation, association,
and filtering, apparently to benefit action in the real world and contribute to the
survival of the race. Humans, unlike classical computers, are able to mine data.
Informally, data-mining is our ability to understand all the many green dots of a
pointilliste painting as, for example, a single tree, and to filter out all the “irrelevant
data” such as the blue and brown intermediate pieces. Data-mining enables us
divide these dots into one or several trees, or even to note a general pattern in the
treetops. For artificial computers, data-mining is done by complicated algorithms,
which are far from being executed in real time. No classical algorithm can execute
this complicated task. Another astonishing feature of the brain as an information
system is its ability to work in different modes of operation and to automatically
switch between them. When crossing a busy street, we are likely not to notice
the nightingale singing and the details of the full moon, although we see them
physically. Our level of sensitivity and choice of attention are chosen on-line in

Minds and Machines 13: 103–114, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.



104 HAVA T. SIEGELMANN

accordance with the tasks that are to be done and with the amount of background
noise from either the environment or internal processes – this without investing any
energy or conscious effort. Technologies that introduce any kind of adaptivity and
mode changes are extremely hard to design in artificial systems.

How does the brain compute, and what makes it so superior to computers for
intelligent tasks such as multi-modality sensory fusion, filtering, data-mining, and
recognition? The brain seems to rely on different strategies from contemporary
computers. The neural cortex is composed of a highly parallel architecture of about
1011 neurons. Neurons receive their input through “input channels” (dendrites)
where the average in-degree is 104 per neuron; each neuron processes its input
data and outputs a value via its "output channel” (axon). The biological nervous
system proceeds by transferring information continuously like a dynamical system
without relying on any static memory; yet it remembers. The system can incorpor-
ate analog physical values, continuous time updating, and various analog media of
encoding and fusing data, which digital models of computation cannot handle. A
neuron is slower by six orders of magnitude than a basic silicon gate, implying that
brain superiority is not due to fast operation. An axon transfers information to the
next dendrites through chemical gates (synapses), giving rise to the adaptation and
changing of the architecture as part of the learning experience. This is in contrast
to the static architecture of a present-day computer.

Neural computing combines research on different levels: the molecular level,
the synaptic level, the levels of the single neuron, cortical circuits, cortical maps,
and neural maps, and up to the system level. It combines the work of biochemists,
neurophysiologists, neurobiologists, computer scientists, engineers, psychologists,
and philosophers. On the lower levels, attention is given to the detailed structure
of the single neuron and to the development of bottom-up approaches to compu-
tation: what functions can be executed on neuronal “wetware”? On the highest
level, philosophers and computer scientists focus on the type of computation and
functions enabled by neural concepts.

This paper focuses on the high level research of neural computation and de-
scribes new computational theories that have been developed to explain and ana-
lyze brain-like computational paradigms as well as respective innovative technolo-
gies.

2. Computational Models

Computational theory has developed hand in hand with the field of neural compu-
tation. The young but fascinating research fields of analog computational theory
and of hyper-computation are closely related to neural computation.

The Turing machine was suggested in 1935–36 as a model of a mathematician
who solves problems by following a specifiable fixed algorithm and using unlim-
ited time, energy, pencils, and paper. Turing’s 1938 search for models of hyper-
computers (that outperform this mathematician), together with his later emphasis



NEURAL AND SUPER-TURING COMPUTING 105

on learning and adaptation, probably reflects his understanding that there are other
kinds of computation beyond the static, fully specifiable algorithm (Copeland,
2000; Copeland et al., 1999). The brain, for example, could be perceived as a
powerful computer with its excellent ability for speech recognition, image recog-
nition, and the human ability to develop new theories. The nervous system, con-
stituting an intricate web of neurons with 1014synaptic connections that adapt with
experience, cannot be perceived as a static algorithm; the chemical and physical
processes affecting the neuronal states, like other natural processes, are based on
exact real values and are thus not specifiable by finite means.

The second meeting of the Josiah Macy Jr. scientific conference was held in
1943. Its aim was to identify applicable parallels between brain and computer. In
this meeting, which was attended by researchers from diverse areas of science,
social science, and engineering. McCulloch and Pitts demonstrated the first com-
putational model of the neuron. They argued that because of the on/off nature
of action potentials (as seen by Hodgkin and Huxley), the nervous system could
be thought of as a finite interconnection of logical devices. The theory of Mc-
Culloch and Pitts was controversial. Many stressed that while digital behavior
is a recognized component of cerebral functioning, any theory that did not take
into account the relevant continuous variables (i.e., the underlying chemical and
physical phenomena) could not be considered a faithful model. From ensuing de-
bates and discussions, two different approaches emerged. The first, led by Gerard
and Bateson, emphasized the significance of continuous-valued computation; the
second, headed by McCulloch, Pitts, and von Neumann, stressed the advantages in
the simplicity of digital computation Nyce (1992, p. 32) (although von Neumann
acknowledged analog values to exist in neural functioning (e.g., von Neumann,
1958). However, following the development of von Neumann’s model of universal
computation, based on the principle of the McCulloch-Pitts neuron and on the
universal Turing machine, the digital approach prevailed in the field of cybernetic
research. The digital model laid the groundwork both for the 20th century’s com-
puter paradigm and for an enhanced understanding of computational processes in
the brain.

Towards the end of the 1980s, the continuous neural network model was re-
vived. Unlike the output values 0,1 of the McCulloch-Pitts neuron, the newer neural
models calculate continuous values between 0 and 1. These models were crucial for
the development of adaptive technologies, including the classical back-propagation
algorithm that learns neural parameters (e.g. Rumelhart et al., 1986), and they
enabled new theoretical foundations to be laid for machine learning and brought
about engineering tools such as optimal controllers. The same advance from the
discrete to the continuous model was adopted concurrently in biological modeling
of the nervous system.

Soon afterwards, the unavoidable fundamental question was raised: how to
characterize computational models described by networks of continuous neurons?
The need for new theories describing the operations and capabilities of machines
that are analog or adaptive have become imperative if one wants to describe and



106 HAVA T. SIEGELMANN

analyze nature’s computation as well as the already developing analog chips and
adaptive technologies. This is the goal of the work described in this paper (see also
Siegelmann, 1998).

3. Analog Computation

In the field of analog computation, any physical system observed by an experi-
menter in a laboratory and any dynamical activity in nature is perceived as per-
forming a computational process. Beginning from an initial state (input), a physical
system evolves in its state space according to an update equation (the computation
process) until it reaches some designated state (the output). Such natural processes
can be modeled with dynamical systems of the form x(t + 1) = f (x(t)) or
dx/dt = f (x(t)) by identifying a set of internal variables x together with a rule f
that describes the transformation from state to state.

Three main properties distinguish analog from digital models (Siegelmann,
1998):
1. Analog computational models are defined on a continuous phase space (e.g.

where the variables x may assume analog values), while the phase space of a
digital model is inherently discrete.

2. Physical dynamics are characterized by the existence of real constants that
influence the macroscopic behavior of the system. In contrast, in digital com-
putation all constants are in principle accessible to the programmer.

3. The motion generated by a physical system is “locally continuous” in the
dynamics. That is, unlike the flow in digital computation, statements of the
following forms are not allowed in the analog setup: “tests for 0” or “if x > 0
then compute one thing and if x < 0 then continue in another computation
path.”

Continuous time dynamics is part of many analog systems as well, and we distin-
guish between continuous versus discrete time analog computational models.

Note that although the physical system contains internal continuous values, dis-
creteness of the output may be dictated by the limited precision of the measurement
tools used to probe the continuous phase space. This brings us to a discrete I/O, as
in the definition of digital computation.

Blum, Shub, and Smale introduced a discrete time computational model that
operates in each time step on real valued registers, irrespective of their binary
representation, and allows for real constants as well (Blum et al., 1989). The BSS
model is considered a model of computation over the real numbers, rather than a
model of analog computation, because it lacks the property of local continuity (item
3 above), which is crucial in a framework of analog computing. Hybrid models of
computation behave similarly. These combine discrete and continuous time dynam-
ics, usually by means of ordinary differential equations (ODEs) that are governed
by finite automata. Due to their finite automaton component, hybrid systems also
do not adhere to local continuity. A Coupled Map Lattice is the analog version of



NEURAL AND SUPER-TURING COMPUTING 107

a cellular automaton. This model is composed of an infinite lattice of variables in
which all variables are updated by the same local transition rule. This definition
is general enough to include any discrete time model. Other models of analog
computers were proposed in Shannon (1941); Pour-El (1974) and were found to
be computationally weak.

Next we will describe the model called the Analog Recurrent Neural Network
(Siegelmann et al., 1994). This model was shown to be hyper-computational.

4. The Analog Recurrent Neural Network Model

A mathematically simple but biologically relevant model is a finite assembly of
simple processors (or neurons) called the Analog Recurrent Neural Network
(ARNN). This network was suggested jointly with Eduardo Sontag, a mathem-
atician and control-theorist from Rutgers University, and the material in this section
summarizes the work in Siegelmann et al. (1994); Siegelmann (1998).

Unlike the von Neumann computer model, the structure of the neural network
cannot be separated into a memory region and a processing unit; memory and
processing are strongly coupled. Each neuron is part of the processing unit, and the
memory is implicitly encoded in the mutual influence between any pair of neurons.
The influence is represented by a real number weight. The status of the weights,
whether perceived as unknown parameters that are to be estimated or as fixed
constants (after being learnt), prompts the two different views of the neural model:
when the weights are considered unknown parameters, the network is an adaptive
technology that is to approximate input–output mappings by means of parameter
estimation – also called learning. When the weights are considered constant, the
networks can perform exact computations rather than mere approximations. The
network is “analog” in that its neurons update within a continuous phase space, it
updates with local continuity, and it incorporates real constant weights. The adject-
ive "recurrent” emphasizes that the interconnection is general, rather than layered
or symmetrical. Such architecture allows for an internal state representation (x)

and describes its evolution over time.
(Comment: A related model is the network of spiking neurons. Here the neurons
output binary values, but the time intervals between consecutive spikes are exact
reals. The computational analysis of the two models is equivalent under the trans-
formation of neural value and time interval Maass (1996) and we thus consider the
analog recurrent networks only.)

Formally, the ARNN consists of a finite number of simple neurons updating in
discrete time. There are two input channels into which inputs are presented. Each
neuron updates its activation value (state) according to a function of the activations
(xj ), inputs (uj ), and a set of real coefficients/weights (aij , bij , ci):

xi(t + 1) = σ


 N∑

i=1

aij xj (t) +
M∑

j=N

bijuj (t) + ci


 i = 1, 2, ...



108 HAVA T. SIEGELMANN

where N is the number of processors, M (=2) is the number of external input
signals, and σ a very simple “sigmoid-like” function, the saturated-linear function:

σ (x) =



0 if x < 0
x if ≤ x ≤ 1
1 if x > 1

As part of the description, we assume that we have singled out a subset of the N

processors, say xi1...xip; these are the p output processors that communicate the
output of the network to the environment. Thus a particular network of this type is
specified by its weights and the set of output processors.

The structure of the network, including the values of the interconnection weights,
does not change in time, but rather remains constant. What changes in time are
the activation values, or outputs of each processor, which are used in the next
iteration. In this sense our model is “uniform”. We next show this model to be
hyper-computational and analyze its exact computational power.

5. Analyzing the Analog Recurrent Neural Network

A Nonuniform model of computation was introduced by Karp and Lipton (1982).
It generalizes the concept of monotonic response time as a function of the input
length, such as the class P (the class of all recursive functions that are computable
in polynomial time), to include growing hardware: there exists a function f such
that output for an input of length n is calculated by an acyclic interconnection of
f (n) digital components (e.g., McCulloch-Pitts neurons or logical gates). Inputs
of different length are computed by different hardware, and the different intercon-
nections can not be all described by a Turing machine. Karp and Lipton (1982)
showed that such a family of nonuniform acyclic digital circuits is able to compute
a larger set of functions than the classical Turing machine. When f denote polyno-
mial functions, the resulting families of circuits compute a class called P/poly: the
letter “P” is reminiscent of computation in polynomial time, and the term “poly”
is to note that the sizes of the different circuits are polynomial in the input length.
P/poly was proved to contain all functions in P, some but not all recursive functions
above the class P, and even some nonrecursive (super-Turing) functions as well.

This ARNN model was proved to compute in polynomial time exactly the
functions in P/poly. That is, the ARNNs are hyper-computational but still have
a well-defined computational class (Siegelmann et al., 1994).

We next try to explain this class of functions P/poly using the model of a Turing
machine with an external advisor who wants to help a Turing machine to compute
more input-output maps than there are in the class P. This model may help some
of us comprehend what the analog networks compute. So, assume that a Turing
machine is given, and that in addition to the input, the machine also receives some
extra bits of advice.



NEURAL AND SUPER-TURING COMPUTING 109

1. Assume first that for each input, the advisor can provide one bit of advice,
and the advisor knows everything with no limits. Under such general terms,
he may describe any binary map he wants (by providing the output bit for
any input string) and the machine would be able to compute every binary
language, including nonrecursive ones. So, we want to put some constraints
on the advice.

2. A reasonable rule is that the advisor will not supply a bit for every input,
but rather one bit for all inputs having the same length. Inputs of different
length may receive independent advice. (This is called nonuniform advice.)
The machine can now still compute more than P, but less than before, since the
2n words of length n receive only one bit of advice.

3. The analog neural network computes more than the class in item 2 above.
Because for larger n there are more input strings of length n, the advisor
will now give more advice bits as n grows. He provides n2 bits, or n3 or any
polynomially long advice, but still with the constraints that all input words of
the same length receive the same advice. The resulting super-Turing class of
nonuniform polynomial advice is what the analog neural network computes in
polynomial time.

6. Connecting with Classical Computability

One may wonder about the connection between these computationally powerful
neural networks and classical computability. We have proved (Siegelmann et al.,
1995) that the classical Turing Model is a subset of the recurrent networks. If
one restricts attention to networks whose interconnection weights are all rational
numbers, then one obtains a model of computation that is polynomially related
to Turing Machines. In particular, we proved that given any multi-tape Turing
Machine, one can simulate it in realtime by some network with rational weights,
and of course the converse simulation in polynomial time is obvious. We counted
and found a network made up of 886 neurons that computes all partial recursive
functions.

In the Turing model, to get the P/poly power, one has to add nonuniformity.
The neural network framework, on the other hand, is both natural and elegant
for computation beyond the Turing limit: a change in the weights from rational
numbers to real numbers is all that is needed to change the power of the system
from that of a Turing Machine to the class P/poly.

Two questions arise from considering Turing Machines as a subset of recurrent
networks. First, are there some networks whose computational power lies between
P and P/poly? Second, what is the essence of the difference between rational and
real numbers that causes such a discrepancy in computational power? Together
with Jose Balcázar and Ricard Gavaldà we have proved (Balcázar et al., 1997) that
the equivalence between neural networks and either Turing Machines (P) or Turing
Machines with polynomial advice (P/poly) constitute only the two extremes of the



110 HAVA T. SIEGELMANN

computational hierarchy spanned by the neural networks. To do this, we recruited
a tool from information theory, the Kolmogorov characterization.

Kolmogorov complexity is a measure of the information contained in an in-
dividual object. We used a variant of Kolmogorov characterization to measure
the information encoded in numbers; this variant takes into account computation
efficiency as well. We then defined rational numbers, real numbers and an infinite
hierarchy in the real numbers (between rationals and “total-reals”) in terms of their
resource-bounded Kolmogorov complexity. Rationals have the complexity [1,n]
since rationals and any other linear time Turing generated number can be described
in constant time and linear generation time. Reals have the complexity [n,n] since
all the bits have to be described and there is no way around it. Middle complexity
can be for example [logn,n]. In this way, we were able to reveal an infinite hierarchy
of computational classes associated with neural networks that have weights of in-
creasing Kolmogorov characterization; the hierarchy lies between Turing Machines
and Turing Machines with polynomial advice.

7. Real Values in Analog Networks

One may argue that the analog networks, which require infinite bit description, are,
for all practical purposes, useless since systems with infinitely precise constants
cannot be built. However, the real weights are appealing for the mathematical
modeling of analog computation that occurs in nature. In nature, the fact that
the constants are not known to us, or cannot even be measured, is irrelevant for
the true evolution of the system. For example, the planets revolve according to
the exact values of G, π , and their masses, regardless of our inability to gauge
these values. Although one could replace these constants with rational numbers
and observe similar qualitative behavior in finite time simulation, the long-term
infinite-time characteristics of the system depend on the precise real values. Put
differently, the analog network can be thought of as a mathematical idealization
that assumes continuous phase space and precise data. This assumption of con-
tinuity is common in mathematics. Once it allowed the introduction of integrals to
approximate volumes; another time it enabled the design of polynomial algorithms
to solve linear programming, where the previously used discrete algorithms were
exponentially slow. Perhaps this continuous framework is what makes many neural
networks to be so efficient as well.

Because analog neural networks are defined with unbounded precision, one
could think, naively, that infinite precision is required to fully describe their com-
putation; however, we found that this is not the case. We have proved that “linear
precision suffices” (Siegelmann et al., 1994) that is, up to the qth step of the com-
putation, only the first O(q) (e.g., number which is linear in q) bits in both weights
and activation values of the neurons influence the result.

This property of being indifferent to small changes in the internal value, where
“small” is measured as a function of the computation time, can be interpreted as a



NEURAL AND SUPER-TURING COMPUTING 111

weak property of robustness. This robustness includes changes in the precise form
of the activation function, in the weights of the network, and even an error in the
update. In the classical model of (digital) computation, in contrast to in our model,
this type of robustness cannot even be properly defined.

The amount of information necessary for the neural network is identical to the
precision required by chaotic systems. Here we call it linear precision, where we
mean linearly many bits as a function of the computation time. In chaotic systems
the jargon is ‘exponential precision’, which is calculated in terms of the value of
the computation time. These are equivalent quantities in different wordings. For
chaotic systems, if you want to know the behavior after t steps, you have to know
the variable values in precision 2t . Higher precision will not change the result and
smaller precision will not suffice to describe the dynamics. Due to the equival-
ence of descriptive precisions, neural networks may constitute a framework for the
modeling of physical dynamics.

8. Hyper-Computation via Analog Neural Networks

Many dynamical systems and idealized chaotic systems that cannot be described by
the universal Turing machine are well captured within the framework of the analog
neural network (Siegelmann, 1995). Thus the network of continuous neurons can
be considered as standard in the field of analog computation, functioning in a role
similar to that of the universal Turing machine in digital computation. An analog
of the Church-Turing thesis of digital computation can be formulated as follows:

No possible abstract analog device can have more computational capabilities
(up to polynomial time) than Analog Recurrent networks.

There is an alternative interpretation of this thesis. It can be perceived as dif-
ferentiating between static computational models and dynamically evolving ones
with learning capabilities. The classical computing paradigms are static; they in-
clude only rational constants and are bounded by the power of the universal Tur-
ing machine. Evolving machines, on the other hand, can tune their internal con-
stants/parameters, possibly on some continuum where the values would not be
measurable by an external observer.

Since the networks have the property "linear precision suffices”, their paramet-
ers need not be fully tuned when beginning the computation. This implies that
an interleaved process of learning (the qth bits of the constants) and computing
(the qth step) has super-Turing power. It is reasonable to suggest that the speed
and accuracy of the learning process are the two parameters that determine the
network’s exact location on the computational continuum, ranging from the static
classical models all the way up to adaptive models.

We conclude that – as with analog architectures – neural networks, Bayesian
networks and other adaptive algorithms, if adapting on a continuum, are mathem-
atically proven to outperform the static digital model.



112 HAVA T. SIEGELMANN

In Siegelmann (1995) a chaotic dynamical system that is computationally equiv-
alent to the recurrent neural network model was presented. This system, called “the
analog shift map”, is an almost classical chaotic dynamical system. It is also asso-
ciated with the analog computation models suggested in this paper (and hence the
term ‘analog’). More than that, it is a mathematical formulation that is conjectured
to describe idealized physical phenomena. To the extent that the analog shift map
does describe idealized physical phenomena, the same is true for neural networks.

The work described in this paper constitutes the rigorous mathematical found-
ation of the analog recurrent neural network model. This model is particularly in-
teresting because of its popularity in engineering applications for automatic learn-
ing and time series prediction; and also because it can model natural biological
systems. It is especially interesting mathematically, as it allows for unbounded
(analog) precision while still being bounded in processing elements and having
no long-term memory registers. Our model may also be thought of as a possible
answer to Penrose’s recent claim Penrose (1989) that the standard model of com-
puting is not appropriate for modeling true biological intelligence. Penrose argues
that physical processes, evolving at a quantum level, may result in computations
which cannot be incorporated in Church’s Thesis. The analog neural network does
allow for non-Turing power while keeping track of computational constraints, and
thus embeds a possible answer to Penrose’s challenge within the framework of
classical computer science.

9. Comment on Stochastic Analog Neural Networks

It is interesting to consider what happens to the analog networks when they exhibit
stochastic and random behavior. To obtain such a model, we extend in a natural
way the von Neumann model of unreliable interconnection of components to the
area of neural networks, and incorporate Shannon’s random-noise approach of
independent fixed noise.

The model results from adding to the network a heads/tails coin, or a stochastic
neuron, where the probability of falling on heads or tails is a real number.

b =
{

0 with probability p

1 with probability 1 − p

Although p in this model is a real number, it is never accessed by any neuron: the
coin is binary so that the other neurons receive only digital values from it.

We say that the language L is epsilon-recognized in time T by a stochastic
network if every input string of length n is classified in time T (n) by every com-
putation path of that input, and the error probability (e.g., the fraction of runs in
which output is wrong) in deciding the input relative to the language is bounded by
ε < 1/2.

While for real weight analog networks, the class of stochastic languages is com-
putationally equivalent to the class of deterministic languages, when the weights



NEURAL AND SUPER-TURING COMPUTING 113

are rational stochasticity does add power. Stochastic networks with rational weights
and real probabilities compute an intermediate super-Turing class between P and
P/poly. This class is called BPP/log (Siegelmann, 1998, 1999).

We conclude that in any process that is affected by a real number, explicitly (like
as a weight) or implicitly (like in the stochastic process that emits binary values
according to a real stochasticity) the real value brings on nonrecursive computation
(Siegelmann, 1999). In these terms the analog recurrent neural networks are the
high end of the nonrecursive efficiently computed classes, where the stochastic and
the deterministic versions are equal.

Note that the stochasticity described in this section is very particular in the sense
that it is modeled by a coin (as in the von Neumann noise model). When the noise
itself is defined by a richer continuous function, the computational power of the net-
work may be reduced to regular or even definite languages, which are a strict subset
of regular languages (see, for example, Siegelmann, 2002). A language is called
definite if for some integer r, any two strings coinciding on the last r symbols are
either both or neither in the language. Definite languages are reminiscent of short-
term memory. The type of stochasticity and noise is what decides the computational
power from the weak definite languages all the way up to hyper-computation.

References

Balcázar, J.L., Gavaldà, R. and Siegelmann, H.T. (1997), ‘Computational Power of Neural Networks:
A Characterization in Terms of Kolmogorov Complexity’, IEEE Transactions on Information
Theory 43(4), pp. 1175–1183.

Blum, L., Shub, M. and Smale, S. (1989), ‘On a Theory of Computation and Complexity Over the
Real Numbers: NP Completeness, Recursive Functions, and Universal Machines,’ Bull. A.M.S.
21, pp. 1–46.

Copeland, B.J. (2000), ‘Narrow Versus Wide Mechanism’, Journal of Philosophy 97, pp. 5–32.
Copeland, B.J. and Proudfoot, D. (1999), ‘Alan Turing’s Forgotten Ideas in Computer Science’,

Scientific American 280, pp. 99–103.
Hopfield, J.J. and Tank, D.W. (1985), ‘Neural Computation of Decisions in Optimization Problems’,

Biological Cybernetics 52, pp. 141–152.
Karp, R.M. and Lipton, R. (1982), ‘Turing Machines That Take Advice’, Enseignment Mathematique

28, pp. 191–209.
Kay, L.M., Lancaster, L.R. and Freeman, W.J. (1996), ‘Reafference and Attractors in the Olfactory

System During Odor Recognition’, International Journal of Neural Systems 7(4), pp. 489–495.
Koch, C. and Crick, F.C. (2000), in M.S. Gazzaniga, ed., Some Thoughts on Consciousness and

Neuroscience The Cognitive Neurosciences, 2nd edition, MIT Press, Cambridge, MA, pp. 1285–
1294.

Maass, W. (1996), ‘Networks of Spiking Neurons: The Third Generation of Neural Network Models’,
Electronic Colloquium on Computational Complexity (ECCC) 3 (031).

Nyce, J. (1992), ‘Analogy or Identity: Brain and Machine’ at the Macy Conferences on Cybernetics
SIGBIO Newsletter: Published by the Association for Computing Machinery, Special Interest
Group on Biomedial Computing 12, pp. 32–37.

Orponen, P. (1997), ‘A Survey of Continuous-Time Computation Theory,’ in D.-Z. Du and K.-I
Ko, eds, Advances in Algorithms, Languages, and Complexity, Dordrecht: Kluwer Academic
Publishers, pp. 209–224.



114 HAVA T. SIEGELMANN

Penrose, R. (1989), The Emperor’s New Mind, Oxford: Oxford University Press.
Pour-El, M.B. (1974), ‘Abstract Computability and its Relation to the General Purpose Analog

Computer (Some Connections Between Logic, Differential Equations and Analog Computers)’,
Transactions of the American Mathematical Society 199, pp. 1–29.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), ‘Learning Representations by Back-
Propagating Errors’, Nature 323, pp. 533–536.

Shannon, C.E. (1941), ‘Mathematical Theory of the Differential Analyzer’, Journal of Mathematics
and Physics of the Massachusetts Institute of Technology 20, pp. 337–354.

Siegelmann, H.T. (1995), ‘Computation Beyond the Turing Limit’, Science 238(28), pp. 632–637.
Siegelmann, H.T. (1998), Neural Networks and Analog Computation: Beyond the Turing Limit,

Boston MA: Birkhauser.
Siegelmann, H.T. (1999), ‘Stochastic Analog Networks and Computational Complexity’, Journal of

Complexity 15(4), pp. 451–475.
Siegelmann, H.T. (2002), ‘Neural Automata and Analog Computational Complexity’, in M.A. Arbib,

ed., 2nd edition, The Handbook of Brain Theory and Neural Networks, Cambridge, MA: MIT
Press, in press.

Siegelmann, H.T., Ben-Hur, A. and Fishman, S. (1999), ‘Computational Complexity for continu-
ous Time Dynamics,’ Physical Review Letters 83(7), pp. 1463–1466 (Full version to appear in
Journal of Complexity).

Siegelmann H.T. and Fishman S. (1998), ‘Computation by Dynamical Systems,’ Physica D 120, pp.
214–235

Siegelmann, H.T. and Sontag, E.D. (1994), ‘Analog Computation via Neural Networks,’ Theoretical
Computer Science 131, pp. 311–360.

Siegelmann, H.T. and Sontag, E.D. (1995), ‘Computational Power of Neural Networks,’ Journal of
Computer System Sciences 50(1), pp. 132–150.

von Neumann, J. (1958), The Computer and the Brain, New Haven: Yale University Press.


