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Abstract

State-of-the-art named entity recognition sys-

tems rely heavily on hand-crafted features and

domain-specific knowledge in order to learn

effectively from the small, supervised training

corpora that are available. In this paper, we

introduce two new neural architectures—one

based on bidirectional LSTMs and conditional

random fields, and the other that constructs

and labels segments using a transition-based

approach inspired by shift-reduce parsers.

Our models rely on two sources of infor-

mation about words: character-based word

representations learned from the supervised

corpus and unsupervised word representa-

tions learned from unannotated corpora. Our

models obtain state-of-the-art performance in

NER in four languages without resorting to

any language-specific knowledge or resources

such as gazetteers. 1

1 Introduction

Named entity recognition (NER) is a challenging

learning problem. One the one hand, in most lan-

guages and domains, there is only a very small

amount of supervised training data available. On the

other, there are few constraints on the kinds of words

that can be names, so generalizing from this small

sample of data is difficult. As a result, carefully con-

structed orthographic features and language-specific

knowledge resources, such as gazetteers, are widely

used for solving this task. Unfortunately, language-

specific resources and features are costly to de-

velop in new languages and new domains, making

NER a challenge to adapt. Unsupervised learning

1The code of the LSTM-CRF and Stack-LSTM NER

systems are available at https://github.com/

glample/tagger and https://github.com/clab/

stack-lstm-ner

from unannotated corpora offers an alternative strat-

egy for obtaining better generalization from small

amounts of supervision. However, even systems

that have relied extensively on unsupervised fea-

tures (Collobert et al., 2011; Turian et al., 2010;

Lin and Wu, 2009; Ando and Zhang, 2005b, in-

ter alia) have used these to augment, rather than

replace, hand-engineered features (e.g., knowledge

about capitalization patterns and character classes in

a particular language) and specialized knowledge re-

sources (e.g., gazetteers).

In this paper, we present neural architectures

for NER that use no language-specific resources

or features beyond a small amount of supervised

training data and unlabeled corpora. Our mod-

els are designed to capture two intuitions. First,

since names often consist of multiple tokens, rea-

soning jointly over tagging decisions for each to-

ken is important. We compare two models here,

(i) a bidirectional LSTM with a sequential condi-

tional random layer above it (LSTM-CRF; §2), and

(ii) a new model that constructs and labels chunks

of input sentences using an algorithm inspired by

transition-based parsing with states represented by

stack LSTMs (S-LSTM; §3). Second, token-level

evidence for “being a name” includes both ortho-

graphic evidence (what does the word being tagged

as a name look like?) and distributional evidence

(where does the word being tagged tend to oc-

cur in a corpus?). To capture orthographic sen-

sitivity, we use character-based word representa-

tion model (Ling et al., 2015b) to capture distribu-

tional sensitivity, we combine these representations

with distributional representations (Mikolov et al.,

2013b). Our word representations combine both of

these, and dropout training is used to encourage the

model to learn to trust both sources of evidence (§4).

Experiments in English, Dutch, German, and

Spanish show that we are able to obtain state-

260



of-the-art NER performance with the LSTM-CRF

model in Dutch, German, and Spanish, and very

near the state-of-the-art in English without any

hand-engineered features or gazetteers (§5). The

transition-based algorithm likewise surpasses the

best previously published results in several lan-

guages, although it performs less well than the

LSTM-CRF model.

2 LSTM-CRF Model

We provide a brief description of LSTMs and CRFs,

and present a hybrid tagging architecture. This ar-

chitecture is similar to the ones presented by Col-

lobert et al. (2011) and Huang et al. (2015).

2.1 LSTM

Recurrent neural networks (RNNs) are a family

of neural networks that operate on sequential

data. They take as input a sequence of vectors

(x1,x2, . . . ,xn) and return another sequence

(h1,h2, . . . ,hn) that represents some information

about the sequence at every step in the input.

Although RNNs can, in theory, learn long depen-

dencies, in practice they fail to do so and tend to

be biased towards their most recent inputs in the

sequence (Bengio et al., 1994). Long Short-term

Memory Networks (LSTMs) have been designed to

combat this issue by incorporating a memory-cell

and have been shown to capture long-range depen-

dencies. They do so using several gates that control

the proportion of the input to give to the memory

cell, and the proportion from the previous state to

forget (Hochreiter and Schmidhuber, 1997). We use

the following implementation:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)

ct = (1− it)⊙ ct−1+

it ⊙ tanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)

ht = ot ⊙ tanh(ct),

where σ is the element-wise sigmoid function, and

⊙ is the element-wise product.

For a given sentence (x1,x2, . . . ,xn) containing

n words, each represented as a d-dimensional vector,

an LSTM computes a representation
−→
ht of the left

context of the sentence at every word t. Naturally,

generating a representation of the right context
←−
ht

as well should add useful information. This can be

achieved using a second LSTM that reads the same

sequence in reverse. We will refer to the former as

the forward LSTM and the latter as the backward

LSTM. These are two distinct networks with differ-

ent parameters. This forward and backward LSTM

pair is referred to as a bidirectional LSTM (Graves

and Schmidhuber, 2005).

The representation of a word using this model is

obtained by concatenating its left and right context

representations, ht = [
−→
ht;
←−
ht]. These representa-

tions effectively include a representation of a word

in context, which is useful for numerous tagging ap-

plications.

2.2 CRF Tagging Models

A very simple—but surprisingly effective—tagging

model is to use the ht’s as features to make indepen-

dent tagging decisions for each output yt (Ling et

al., 2015b). Despite this model’s success in simple

problems like POS tagging, its independent classifi-

cation decisions are limiting when there are strong

dependencies across output labels. NER is one such

task, since the “grammar” that characterizes inter-

pretable sequences of tags imposes several hard con-

straints (e.g., I-PER cannot follow B-LOC; see §2.4

for details) that would be impossible to model with

independence assumptions.

Therefore, instead of modeling tagging decisions

independently, we model them jointly using a con-

ditional random field (Lafferty et al., 2001). For an

input sentence

X = (x1,x2, . . . ,xn),

we consider P to be the matrix of scores output by

the bidirectional LSTM network. P is of size n × k,

where k is the number of distinct tags, and Pi,j cor-

responds to the score of the jth tag of the ith word

in a sentence. For a sequence of predictions

y = (y1, y2, . . . , yn),

we define its score to be

s(X,y) =
n∑

i=0

Ayi,yi+1
+

n∑

i=1

Pi,yi
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where A is a matrix of transition scores such that

Ai,j represents the score of a transition from the

tag i to tag j. y0 and yn are the start and end

tags of a sentence, that we add to the set of possi-

ble tags. A is therefore a square matrix of size k+2.

A softmax over all possible tag sequences yields a

probability for the sequence y:

p(y|X) =
es(X,y)

∑
ỹ∈YX

es(X,ỹ)
.

During training, we maximize the log-probability of

the correct tag sequence:

log(p(y|X)) = s(X,y)− log




∑

ỹ∈YX

es(X,ỹ)




= s(X,y)− logadd
ỹ∈YX

s(X, ỹ), (1)

where YX represents all possible tag sequences

(even those that do not verify the IOB format) for

a sentence X. From the formulation above, it is ev-

ident that we encourage our network to produce a

valid sequence of output labels. While decoding, we

predict the output sequence that obtains the maxi-

mum score given by:

y∗ = argmax
ỹ∈YX

s(X, ỹ). (2)

Since we are only modeling bigram interactions

between outputs, both the summation in Eq. 1 and

the maximum a posteriori sequence y∗ in Eq. 2 can

be computed using dynamic programming.

2.3 Parameterization and Training

The scores associated with each tagging decision

for each token (i.e., the Pi,y’s) are defined to be

the dot product between the embedding of a word-

in-context computed with a bidirectional LSTM—

exactly the same as the POS tagging model of Ling

et al. (2015b) and these are combined with bigram

compatibility scores (i.e., the Ay,y′’s). This archi-

tecture is shown in figure 1. Circles represent ob-

served variables, diamonds are deterministic func-

tions of their parents, and double circles are random

variables.

Figure 1: Main architecture of the network. Word embeddings

are given to a bidirectional LSTM. li represents the word i and

its left context, ri represents the word i and its right context.

Concatenating these two vectors yields a representation of the

word i in its context, ci.

The parameters of this model are thus the matrix

of bigram compatibility scores A, and the parame-

ters that give rise to the matrix P, namely the param-

eters of the bidirectional LSTM, the linear feature

weights, and the word embeddings. As in part 2.2,

let xi denote the sequence of word embeddings for

every word in a sentence, and yi be their associated

tags. We return to a discussion of how the embed-

dings xi are modeled in Section 4. The sequence of

word embeddings is given as input to a bidirectional

LSTM, which returns a representation of the left and

right context for each word as explained in 2.1.

These representations are concatenated (ci) and

linearly projected onto a layer whose size is equal

to the number of distinct tags. Instead of using the

softmax output from this layer, we use a CRF as pre-

viously described to take into account neighboring

tags, yielding the final predictions for every word

yi. Additionally, we observed that adding a hidden

layer between ci and the CRF layer marginally im-

proved our results. All results reported with this

model incorporate this extra-layer. The parameters

are trained to maximize Eq. 1 of observed sequences

of NER tags in an annotated corpus, given the ob-

served words.
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2.4 Tagging Schemes

The task of named entity recognition is to assign a

named entity label to every word in a sentence. A

single named entity could span several tokens within

a sentence. Sentences are usually represented in the

IOB format (Inside, Outside, Beginning) where ev-

ery token is labeled as B-label if the token is the

beginning of a named entity, I-label if it is inside

a named entity but not the first token within the

named entity, or O otherwise. However, we de-

cided to use the IOBES tagging scheme, a variant of

IOB commonly used for named entity recognition,

which encodes information about singleton entities

(S) and explicitly marks the end of named entities

(E). Using this scheme, tagging a word as I-label

with high-confidence narrows down the choices for

the subsequent word to I-label or E-label, however,

the IOB scheme is only capable of determining that

the subsequent word cannot be the interior of an-

other label. Ratinov and Roth (2009) and Dai et al.

(2015) showed that using a more expressive tagging

scheme like IOBES improves model performance

marginally. However, we did not observe a signif-

icant improvement over the IOB tagging scheme.

3 Transition-Based Chunking Model

As an alternative to the LSTM-CRF discussed in

the previous section, we explore a new architecture

that chunks and labels a sequence of inputs using

an algorithm similar to transition-based dependency

parsing. This model directly constructs representa-

tions of the multi-token names (e.g., the name Mark

Watney is composed into a single representation).

This model relies on a stack data structure to in-

crementally construct chunks of the input. To ob-

tain representations of this stack used for predict-

ing subsequent actions, we use the Stack-LSTM pre-

sented by Dyer et al. (2015), in which the LSTM

is augmented with a “stack pointer.” While sequen-

tial LSTMs model sequences from left to right, stack

LSTMs permit embedding of a stack of objects that

are both added to (using a push operation) and re-

moved from (using a pop operation). This allows

the Stack-LSTM to work like a stack that maintains

a “summary embedding” of its contents. We refer

to this model as Stack-LSTM or S-LSTM model for

simplicity.

Finally, we refer interested readers to the original

paper (Dyer et al., 2015) for details about the Stack-

LSTM model since in this paper we merely use the

same architecture through a new transition-based al-

gorithm presented in the following Section.

3.1 Chunking Algorithm

We designed a transition inventory which is given in

Figure 2 that is inspired by transition-based parsers,

in particular the arc-standard parser of Nivre (2004).

In this algorithm, we make use of two stacks (des-

ignated output and stack representing, respectively,

completed chunks and scratch space) and a buffer

that contains the words that have yet to be processed.

The transition inventory contains the following tran-

sitions: The SHIFT transition moves a word from

the buffer to the stack, the OUT transition moves a

word from the buffer directly into the output stack

while the REDUCE(y) transition pops all items from

the top of the stack creating a “chunk,” labels this

with label y, and pushes a representation of this

chunk onto the output stack. The algorithm com-

pletes when the stack and buffer are both empty. The

algorithm is depicted in Figure 2, which shows the

sequence of operations required to process the sen-

tence Mark Watney visited Mars.

The model is parameterized by defining a prob-

ability distribution over actions at each time step,

given the current contents of the stack, buffer, and

output, as well as the history of actions taken. Fol-

lowing Dyer et al. (2015), we use stack LSTMs

to compute a fixed dimensional embedding of each

of these, and take a concatenation of these to ob-

tain the full algorithm state. This representation is

used to define a distribution over the possible ac-

tions that can be taken at each time step. The model

is trained to maximize the conditional probability of

sequences of reference actions (extracted from a la-

beled training corpus) given the input sentences. To

label a new input sequence at test time, the maxi-

mum probability action is chosen greedily until the

algorithm reaches a termination state. Although this

is not guaranteed to find a global optimum, it is ef-

fective in practice. Since each token is either moved

directly to the output (1 action) or first to the stack

and then the output (2 actions), the total number of

actions for a sequence of length n is maximally 2n.

It is worth noting that the nature of this algorithm
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Outt Stackt Buffert Action Outt+1 Stackt+1 Buffert+1 Segments

O S (u, u), B SHIFT O (u, u), S B —

O (u, u), . . . , (v, v), S B REDUCE(y) g(u, . . . ,v, ry), O S B (u . . . v, y)
O S (u, u), B OUT g(u, r∅), O S B —

Figure 2: Transitions of the Stack-LSTM model indicating the action applied and the resulting state. Bold symbols indicate

(learned) embeddings of words and relations, script symbols indicate the corresponding words and relations.

Transition Output Stack Buffer Segment

[] [] [Mark, Watney, visited, Mars]

SHIFT [] [Mark] [Watney, visited, Mars]

SHIFT [] [Mark, Watney] [visited, Mars]

REDUCE(PER) [(Mark Watney)-PER] [] [visited, Mars] (Mark Watney)-PER

OUT [(Mark Watney)-PER, visited] [] [Mars]

SHIFT [(Mark Watney)-PER, visited] [Mars] []

REDUCE(LOC) [(Mark Watney)-PER, visited, (Mars)-LOC] [] [] (Mars)-LOC

Figure 3: Transition sequence for Mark Watney visited Mars with the Stack-LSTM model.

model makes it agnostic to the tagging scheme used

since it directly predicts labeled chunks.

3.2 Representing Labeled Chunks

When the REDUCE(y) operation is executed, the al-

gorithm shifts a sequence of tokens (together with

their vector embeddings) from the stack to the out-

put buffer as a single completed chunk. To compute

an embedding of this sequence, we run a bidirec-

tional LSTM over the embeddings of its constituent

tokens together with a token representing the type of

the chunk being identified (i.e., y). This function is

given as g(u, . . . ,v, ry), where ry is a learned em-

bedding of a label type. Thus, the output buffer con-

tains a single vector representation for each labeled

chunk that is generated, regardless of its length.

4 Input Word Embeddings

The input layers to both of our models are vector

representations of individual words. Learning inde-

pendent representations for word types from the lim-

ited NER training data is a difficult problem: there

are simply too many parameters to reliably estimate.

Since many languages have orthographic or mor-

phological evidence that something is a name (or

not a name), we want representations that are sen-

sitive to the spelling of words. We therefore use a

model that constructs representations of words from

representations of the characters they are composed

of (4.1). Our second intuition is that names, which

may individually be quite varied, appear in regular

contexts in large corpora. Therefore we use embed-

Figure 4: The character embeddings of the word “Mars” are

given to a bidirectional LSTMs. We concatenate their last out-

puts to an embedding from a lookup table to obtain a represen-

tation for this word.

dings learned from a large corpus that are sensitive

to word order (4.2). Finally, to prevent the models

from depending on one representation or the other

too strongly, we use dropout training and find this is

crucial for good generalization performance (4.3).

4.1 Character-based models of words

An important distinction of our work from most

previous approaches is that we learn character-level
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features while training instead of hand-engineering

prefix and suffix information about words. Learn-

ing character-level embeddings has the advantage of

learning representations specific to the task and do-

main at hand. They have been found useful for mor-

phologically rich languages and to handle the out-

of-vocabulary problem for tasks like part-of-speech

tagging and language modeling (Ling et al., 2015b)

or dependency parsing (Ballesteros et al., 2015).

Figure 4 describes our architecture to generate a

word embedding for a word from its characters. A

character lookup table initialized at random contains

an embedding for every character. The character

embeddings corresponding to every character in a

word are given in direct and reverse order to a for-

ward and a backward LSTM. The embedding for a

word derived from its characters is the concatenation

of its forward and backward representations from

the bidirectional LSTM. This character-level repre-

sentation is then concatenated with a word-level rep-

resentation from a word lookup-table. During test-

ing, words that do not have an embedding in the

lookup table are mapped to a UNK embedding. To

train the UNK embedding, we replace singletons

with the UNK embedding with a probability 0.5. In

all our experiments, the hidden dimension of the for-

ward and backward character LSTMs are 25 each,

which results in our character-based representation

of words being of dimension 50.

Recurrent models like RNNs and LSTMs are ca-

pable of encoding very long sequences, however,

they have a representation biased towards their most

recent inputs. As a result, we expect the final rep-

resentation of the forward LSTM to be an accurate

representation of the suffix of the word, and the fi-

nal state of the backward LSTM to be a better rep-

resentation of its prefix. Alternative approaches—

most notably like convolutional networks—have

been proposed to learn representations of words

from their characters (Zhang et al., 2015; Kim et al.,

2015). However, convnets are designed to discover

position-invariant features of their inputs. While this

is appropriate for many problems, e.g., image recog-

nition (a cat can appear anywhere in a picture), we

argue that important information is position depen-

dent (e.g., prefixes and suffixes encode different in-

formation than stems), making LSTMs an a priori

better function class for modeling the relationship

between words and their characters.

4.2 Pretrained embeddings

As in Collobert et al. (2011), we use pretrained

word embeddings to initialize our lookup table. We

observe significant improvements using pretrained

word embeddings over randomly initialized ones.

Embeddings are pretrained using skip-n-gram (Ling

et al., 2015a), a variation of word2vec (Mikolov et

al., 2013a) that accounts for word order. These em-

beddings are fine-tuned during training.

Word embeddings for Spanish, Dutch, German

and English are trained using the Spanish Gigaword

version 3, the Leipzig corpora collection, the Ger-

man monolingual training data from the 2010 Ma-

chine Translation Workshop and the English Giga-

word version 4 (with the LA Times and NY Times

portions removed) respectively.2 We use an embed-

ding dimension of 100 for English, 64 for other lan-

guages, a minimum word frequency cutoff of 4, and

a window size of 8.

4.3 Dropout training

Initial experiments showed that character-level em-

beddings did not improve our overall performance

when used in conjunction with pretrained word rep-

resentations. To encourage the model to depend on

both representations, we use dropout training (Hin-

ton et al., 2012), applying a dropout mask to the final

embedding layer just before the input to the bidirec-

tional LSTM in Figure 1. We observe a significant

improvement in our model’s performance after us-

ing dropout (see table 5).

5 Experiments

This section presents the methods we use to train our

models, the results we obtained on various tasks and

the impact of our networks’ configuration on model

performance.

5.1 Training

For both models presented, we train our networks

using the back-propagation algorithm updating our

parameters on every training example, one at a

time, using stochastic gradient descent (SGD) with

2(Graff, 2011; Biemann et al., 2007; Callison-Burch et al.,

2010; Parker et al., 2009)
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a learning rate of 0.01 and a gradient clipping of

5.0. Several methods have been proposed to enhance

the performance of SGD, such as Adadelta (Zeiler,

2012) or Adam (Kingma and Ba, 2014). Although

we observe faster convergence using these methods,

none of them perform as well as SGD with gradient

clipping.

Our LSTM-CRF model uses a single layer for

the forward and backward LSTMs whose dimen-

sions are set to 100. Tuning this dimension did

not significantly impact model performance. We set

the dropout rate to 0.5. Using higher rates nega-

tively impacted our results, while smaller rates led

to longer training time.

The stack-LSTM model uses two layers each of

dimension 100 for each stack. The embeddings of

the actions used in the composition functions have

16 dimensions each, and the output embedding is

of dimension 20. We experimented with different

dropout rates and reported the scores using the best

dropout rate for each language.3 It is a greedy model

that apply locally optimal actions until the entire

sentence is processed, further improvements might

be obtained with beam search (Zhang and Clark,

2011) or training with exploration (Ballesteros et al.,

2016).

5.2 Data Sets

We test our model on different datasets for named

entity recognition. To demonstrate our model’s

ability to generalize to different languages, we

present results on the CoNLL-2002 and CoNLL-

2003 datasets (Tjong Kim Sang, 2002; Tjong

Kim Sang and De Meulder, 2003) that contain in-

dependent named entity labels for English, Span-

ish, German and Dutch. All datasets contain four

different types of named entities: locations, per-

sons, organizations, and miscellaneous entities that

do not belong in any of the three previous cate-

gories. Although POS tags were made available for

all datasets, we did not include them in our models.

We did not perform any dataset preprocessing, apart

from replacing every digit with a zero in the English

NER dataset.

3English (D=0.2), German, Spanish and Dutch (D=0.3)

5.3 Results

Table 1 presents our comparisons with other mod-

els for named entity recognition in English. To

make the comparison between our model and oth-

ers fair, we report the scores of other models with

and without the use of external labeled data such

as gazetteers and knowledge bases. Our models do

not use gazetteers or any external labeled resources.

The best score reported on this task is by Luo et al.

(2015). They obtained a F1 of 91.2 by jointly model-

ing the NER and entity linking tasks (Hoffart et al.,

2011). Their model uses a lot of hand-engineered

features including spelling features, WordNet clus-

ters, Brown clusters, POS tags, chunks tags, as

well as stemming and external knowledge bases like

Freebase and Wikipedia. Our LSTM-CRF model

outperforms all other systems, including the ones us-

ing external labeled data like gazetteers. Our Stack-

LSTM model also outperforms all previous models

that do not incorporate external features, apart from

the one presented by Chiu and Nichols (2015).

Tables 2, 3 and 4 present our results on NER for

German, Dutch and Spanish respectively in compar-

ison to other models. On these three languages, the

LSTM-CRF model significantly outperforms all pre-

vious methods, including the ones using external la-

beled data. The only exception is Dutch, where the

model of Gillick et al. (2015) can perform better by

leveraging the information from other NER datasets.

The Stack-LSTM also consistently presents state-

the-art (or close to) results compared to systems that

do not use external data.

As we can see in the tables, the Stack-LSTM

model is more dependent on character-based repre-

sentations to achieve competitive performance; we

hypothesize that the LSTM-CRF model requires less

orthographic information since it gets more contex-

tual information out of the bidirectional LSTMs;

however, the Stack-LSTM model consumes the

words one by one and it just relies on the word rep-

resentations when it chunks words.

5.4 Network architectures

Our models had several components that we could

tweak to understand their impact on the overall per-

formance. We explored the impact that the CRF, the

character-level representations, pretraining of our
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Model F1

Collobert et al. (2011)* 89.59

Lin and Wu (2009) 83.78

Lin and Wu (2009)* 90.90

Huang et al. (2015)* 90.10

Passos et al. (2014) 90.05

Passos et al. (2014)* 90.90

Luo et al. (2015)* + gaz 89.9

Luo et al. (2015)* + gaz + linking 91.2

Chiu and Nichols (2015) 90.69

Chiu and Nichols (2015)* 90.77

LSTM-CRF (no char) 90.20

LSTM-CRF 90.94

S-LSTM (no char) 87.96

S-LSTM 90.33

Table 1: English NER results (CoNLL-2003 test set). * indi-

cates models trained with the use of external labeled data

Model F1

Florian et al. (2003)* 72.41

Ando and Zhang (2005a) 75.27

Qi et al. (2009) 75.72

Gillick et al. (2015) 72.08

Gillick et al. (2015)* 76.22

LSTM-CRF – no char 75.06

LSTM-CRF 78.76

S-LSTM – no char 65.87

S-LSTM 75.66

Table 2: German NER results (CoNLL-2003 test set). * indi-

cates models trained with the use of external labeled data

Model F1

Carreras et al. (2002) 77.05

Nothman et al. (2013) 78.6

Gillick et al. (2015) 78.08

Gillick et al. (2015)* 82.84

LSTM-CRF – no char 73.14

LSTM-CRF 81.74

S-LSTM – no char 69.90

S-LSTM 79.88

Table 3: Dutch NER (CoNLL-2002 test set). * indicates mod-

els trained with the use of external labeled data

Model F1

Carreras et al. (2002)* 81.39

Santos and Guimarães (2015) 82.21

Gillick et al. (2015) 81.83

Gillick et al. (2015)* 82.95

LSTM-CRF – no char 83.44

LSTM-CRF 85.75

S-LSTM – no char 79.46

S-LSTM 83.93

Table 4: Spanish NER (CoNLL-2002 test set). * indicates mod-

els trained with the use of external labeled data

word embeddings and dropout had on our LSTM-

CRF model. We observed that pretraining our word

embeddings gave us the biggest improvement in

overall performance of +7.31 in F1. The CRF layer

gave us an increase of +1.79, while using dropout

resulted in a difference of +1.17 and finally learn-

ing character-level word embeddings resulted in an

increase of about +0.74. For the Stack-LSTM we

performed a similar set of experiments. Results with

different architectures are given in table 5.

Model Variant F1

LSTM char + dropout + pretrain 89.15

LSTM-CRF char + dropout 83.63

LSTM-CRF pretrain 88.39

LSTM-CRF pretrain + char 89.77

LSTM-CRF pretrain + dropout 90.20

LSTM-CRF pretrain + dropout + char 90.94

S-LSTM char + dropout 80.88

S-LSTM pretrain 86.67

S-LSTM pretrain + char 89.32

S-LSTM pretrain + dropout 87.96

S-LSTM pretrain + dropout + char 90.33

Table 5: English NER results with our models, using differ-

ent configurations. “pretrain” refers to models that include pre-

trained word embeddings, “char” refers to models that include

character-based modeling of words, “dropout” refers to models

that include dropout rate.

6 Related Work

In the CoNLL-2002 shared task, Carreras et al.

(2002) obtained among the best results on both

Dutch and Spanish by combining several small

fixed-depth decision trees. Next year, in the CoNLL-

2003 Shared Task, Florian et al. (2003) obtained the

best score on German by combining the output of

four diverse classifiers. Qi et al. (2009) later im-

proved on this with a neural network by doing unsu-

pervised learning on a massive unlabeled corpus.

Several other neural architectures have previously

been proposed for NER. For instance, Collobert et

al. (2011) uses a CNN over a sequence of word em-

beddings with a CRF layer on top. This can be

thought of as our first model without character-level

embeddings and with the bidirectional LSTM be-

ing replaced by a CNN. More recently, Huang et al.

(2015) presented a model similar to our LSTM-CRF,

but using hand-crafted spelling features. Zhou and

Xu (2015) also used a similar model and adapted

it to the semantic role labeling task. Lin and Wu

(2009) used a linear chain CRF with L2 regular-

ization, they added phrase cluster features extracted

from the web data and spelling features. Passos et

al. (2014) also used a linear chain CRF with spelling

features and gazetteers.

Language independent NER models like ours

have also been proposed in the past. Cucerzan
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and Yarowsky (1999; 2002) present semi-supervised

bootstrapping algorithms for named entity recogni-

tion by co-training character-level (word-internal)

and token-level (context) features. Eisenstein et

al. (2011) use Bayesian nonparametrics to construct

a database of named entities in an almost unsu-

pervised setting. Ratinov and Roth (2009) quanti-

tatively compare several approaches for NER and

build their own supervised model using a regular-

ized average perceptron and aggregating context in-

formation.

Finally, there is currently a lot of interest in mod-

els for NER that use letter-based representations.

Gillick et al. (2015) model the task of sequence-

labeling as a sequence to sequence learning prob-

lem and incorporate character-based representations

into their encoder model. Chiu and Nichols (2015)

employ an architecture similar to ours, but instead

use CNNs to learn character-level features, in a way

similar to the work by Santos and Guimarães (2015).

7 Conclusion

This paper presents two neural architectures for se-

quence labeling that provide the best NER results

ever reported in standard evaluation settings, even

compared with models that use external resources,

such as gazetteers.

A key aspect of our models are that they model

output label dependencies, either via a simple CRF

architecture, or using a transition-based algorithm

to explicitly construct and label chunks of the in-

put. Word representations are also crucially impor-

tant for success: we use both pre-trained word rep-

resentations and “character-based” representations

that capture morphological and orthographic infor-

mation. To prevent the learner from depending too

heavily on one representation class, dropout is used.
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